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ABSTRACT
Stream stars removed by tides from their progenitor satellite galaxy or globular cluster act as a group of test particles on
neighbouring orbits, probing the gravitational field of the Milky Way. While constraints from individual streams have been
shown to be susceptible to biases, combining several streams from orbits with various distances reduces these biases. We fit a
common gravitational potential to multiple stellar streams simultaneously by maximizing the clustering of the stream stars in
action space. We apply this technique to members of the GD-1, Palomar 5 (Pal 5), Orphan, and Helmi streams, exploiting both
the individual and combined data sets. We describe the Galactic potential with a Stäckel model, and vary up to five parameters
simultaneously. We find that we can only constrain the enclosed mass, and that the strongest constraints come from the GD-1,
Pal 5, and Orphan streams whose combined data set yields M(< 20 kpc) = 2.96+0.25

−0.26 × 1011 M#. When including the Helmi
stream in the data set, the mass uncertainty increases to M(< 20 kpc) = 3.12+3.21

−0.46 × 1011 M#.

Key words: methods: numerical – Galaxy: fundamental parameters – Galaxy: kinematics and dynamics – Galaxy: structure –
dark matter.

1 IN T RO D U C T I O N

The outer reaches of the Milky Way, known as the ‘halo’, are
dominated by dark matter. Knowledge of the mass and shape of
the halo is required for placing strong constraints on the formation
history of the Milky Way, testing the nature of dark matter, and
modified gravity models (e.g. Mao, Williamson & Wechsler 2015;
Thomas et al. 2018). Some of the most promising dynamical tracers
of the Galactic potential in the halo region are stellar steams. Stellar
streams form when stars are torn from globular clusters or dwarf
galaxies due to Galactic tidal forces. The stars in the ensuing
debris gradually stretch out in a series of neighbouring orbits. This
property makes stellar streams superb probes of the underlying
gravitational potential, allowing us to constrain the mass distribution
within the extent of their orbits (Johnston et al. 1999). In addition,
density variations and gaps within a stream can potentially provide
information about past encounters with small-scale substructure
and therefore an opportunity to detect the presence of dark matter
subhaloes (Carlberg, Grillmair & Hetherington 2012; Sanders, Bovy
& Erkal 2016; Erkal, Koposov & Belokurov 2017; Banik & Bovy
2019; Bonaca et al. 2019, 2020).

The first detections of streams included the discovery of the
tidally distorted Sagittarius dwarf galaxy by Ibata, Gilmore & Irwin

! E-mail: reino@strw.leidenuniv.nl

(1994), the tidal tails around multiple globular clusters by Grillmair
et al. (1995), and the Helmi streams by Helmi et al. (1999). Since
then, the number of known streams has grown rapidly owing to
the high-quality data from wide-field surveys. The first surge in
discoveries came with the arrival of the Sloan Digital Sky Survey
(SDSS), where among others, the GD-1 (Grillmair & Dionatos
2006b), Orphan (Belokurov et al. 2006; Grillmair 2006), Palomar 5
(Pal 5; Odenkirchen et al. 2001), and NGC 5466 streams (Grillmair
& Johnson 2006) were found. More discoveries from other surveys,
such as the Pan-Andromeda Archaeological Survey (PAndAS), the
Panoramic Survey Telescope and Rapid Response System 1 (Pan-
STARRS1), and the Dark Energy Survey, followed (Bernard et al.
2014, 2016; Koposov et al. 2014; Martin et al. 2014; Shipp et al.
2018).

Despite the abundance of known streams (see e.g. Newberg &
Carlin 2016; Mateu, Read & Kawata 2018), full six-dimensional (6D)
phase-space maps of stream members, crucial for obtaining accurate
constraints on the Galactic potential, have only been made for a few
cases. Recently, the second data release of Gaia (Gaia DR2; Gaia
Collaboration et al. 2018) expanded our ability to make such maps by
several orders of magnitude, by measuring proper motions for more
than a billion Milky Way stars. This phenomenal wealth of data
has already facilitated the discovery of many new streams (Malhan,
Ibata & Martin 2018; Ibata, Malhan & Martin 2019; Meingast,
Alves & Fürnkranz 2019) and prompted further investigations of
the previously known ones (Price-Whelan & Bonaca 2018; Koposov
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et al. 2019; Koppelman et al. 2019; Price-Whelan et al. 2019). To
gain a full 6D view of more distant streams, Gaia data must be
combined with radial velocity measurements for faint stars from
current or future wide-field spectroscopic surveys such as the Radial
Velocity Experiment (RAVE; Kunder et al. 2017), Southern Stellar
Stream Spectroscopic Survey (S5; Li et al. 2019), WHT Enhanced
Area Velocity Explorer (WEAVE; Dalton et al. 2012), 4-metre Multi-
Object Spectroscopic Telescope (4MOST; de Jong et al. 2019), fifth
generation of the Sloan Digital Sky Survey (SDSS-V; Kollmeier et al.
2017), etc.

Perhaps the most intuitive approach for constraining the Galactic
potential with stellar streams is the orbit-fitting technique, where
orbits integrated in different potentials are compared with the tracks
of observed streams (e.g. Koposov, Rix & Hogg 2010; Newberg et al.
2010). However, the oversimplification that streams perfectly follow
the original progenitor’s orbit has been shown to lead to systematic
biases when used to constrain the Galactic potential (Sanders &
Binney 2013a). More realistic stream modelling involves creating
either full N-body simulations of disruptions of stellar clusters (the
most accurate but also most computationally expensive option) or
particle-spray models, where the stream is created by ejecting stars
from the Lagrange points of an analytical model of the progenitor at
specific times (Bonaca et al. 2014; Küpper et al. 2015; Erkal et al.
2019).

All these methods compare models to observed streams in 6D
phase space, or some subset of measured positions and velocities.
It is, however, possible to simplify the behaviour of streams con-
siderably by switching to action-angle coordinates (McMillan &
Binney 2008; Sanders & Binney 2013b; Bovy et al. 2016). In this
work, we follow the action-space clustering method of Sanderson,
Helmi & Hogg (2015). Actions are integrals of motion that, save
for orbital phase, completely define the orbit of a star bound in a
static or adiabatically time-evolving potential. Converting the 6D
phase-space position of a star to action space essentially compresses
the entire orbit of a star to just three numbers. Stream stars move
along similar orbits and thus should cluster tightly in action space.
However, since action calculation requires knowledge of the Galactic
potential, clustering occurs only if the actions are calculated with
something close to the true potential (Peñarrubia, Koposov & Walker
2012; Magorrian 2014; Yang, Boruah & Afshordi 2020). Therefore,
our strategy to find the true Galactic potential is to identify the
potential that produces the most clumpy distribution of stars in action
space.

The method outlined in Sanderson et al. (2015) quantifies the de-
gree of action-space clustering with the Kullback–Leibler divergence
(KLD), which is used to determine both the best-fitting potential
and its associated uncertainties. In that work, we demonstrated
the effectiveness of this procedure by successfully recovering the
input parameters of a potential using mock streams evolved in that
potential. Here, we apply the same technique to real stellar streams.

Stellar streams can possess a variety of morphologies: some
appear as long narrow arcs, others shells, while still others are fully
phase mixed and no longer easily distinguishable as single structures
(Hendel & Johnston 2015; Amorisco 2015). However, even if phase
mixing has induced a lack of apparent spatial features, the fact that
these stars still follow similar orbits causes them to condense into
a single cluster in action space. Our method is thus applicable to
streams in any evolutionary stage.

Another important advantage of this technique is that it can be
applied to multiple streams simultaneously. Combining multiple
streams is crucial since it helps counteract the biases to which
single-stream fits have been shown to be susceptible (Bonaca et al.

2014). Single-stream fits that account for only statistical uncertainties
are severely limited by systematics, both in the insufficiency of the
potential model (compare e.g. the Law & Majewski 2010 and Vera-
Ciro & Helmi 2013 fits to the Sagittarius stream in the era before
Gaia) and in the limited range of orbits explored. Only simultaneous
fitting of multiple streams can begin to probe the extent and nature of
these systematic uncertainties by consolidating several independent
measurements of the mass profile over a range of Galactic distances.

This paper is organized as follows. In Section 2, we explain the
theoretical background and the details of our procedure. In particular,
the Stäckel potential used to model the Milky Way is introduced in
Section 2.1, the calculation of actions from the observed phase space
is described in Section 2.2, and Sections 2.3 and 2.4 discuss how
we determine the best-fitting potential (see also Appendix B) and
confidence intervals, respectively. In Section 3, we introduce the four
streams in our sample, giving a brief overview of their properties and
an outline of our data sets (for more detail see Appendix A). Our
results, for both individual and combined streams, are presented in
Section 4 for the one-component model and in Section 5 for the two-
component model. Section 6 is dedicated to validating our results
and presenting the predicted orbits. In Section 7, we compare our
results with other potential models of the Milky Way and discuss the
implications, and in Section 8, we summarize our main conclusions.

2 M E T H O D

To constrain the Milky Way’s gravitational potential, we exploit the
idea that stream stars’ action-space distributions bear the memory
of their progenitor’s orbit. We describe the Galactic potential with
a one- or two-component Stäckel model (Section 2.1), converting
the observed phase-space coordinates of each star in our sample into
action-space coordinates (Section 2.2) for a wide, astrophysically
motivated range of Stäckel potential parameters. The model for the
potential that produces the most clumped configuration of actions
is selected as the best-fitting potential (Section 2.3). Once the best-
fitting potential is identified, its confidence intervals are determined
by quantifying the relative difference between the action distribution
in the best-fitting potential and those of all other considered potentials
(Section 2.4).

2.1 Stäckel potential

While there exist algorithms to estimate approximate actions for
any gravitational potential (see review by Sanders & Binney 2016),
analytical transformation from phase-space coordinates to action-
angle coordinates is possible only for a small set of potentials. The
best suited of these to describe a real galaxy is the axisymmetric
Stäckel model (de Zeeuw 1985; Batsleer & Dejonghe 1994). This
work exploits potentials of the Stäckel form, enabling us to explore
the relevant parameter space efficiently. In addition, using a potential
with analytic actions avoids introducing additional numerical errors
from action estimation, which are a function of the actions them-
selves, and are several orders of magnitude higher for radial than
circular orbits (Vasiliev 2019a).

The Hamilton–Jacobi equation is a formalization of classical
mechanics used for solving the equations of motion of mechanical
systems (see e.g. Goldstein 1950). The Stäckel potential, when
expressed in ellipsoidal coordinates, allows the Hamilton–Jacobi
equation to be solved by the separation of variables and therefore
the actions to be calculated analytically. Here, we describe the
Stäckel potential using spheroidal coordinates: the limiting case
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of ellipsoidal coordinates that is used to describe an axisymmetric
density distribution.

The transformation from cylindrical coordinates R, z, φ to
spheroidal coordinates λ, ν, φ is achieved using the equation

R2

τ − a2
+ z2

τ − c2
= 1, (1)

where τ = λ, ν. Hence, this is a quadratic equation for τ with roots
λ and ν. Parameters a and c, which can be interpreted as the scale
lengths on the equatorial and meridional planes, respectively, define
the location of the foci & =

√
a2 − c2 and therefore the shape of the

coordinate system. We also define the axial ratio of the coordinate
surfaces, e ≡ a

c
.

An oblate density distribution has a > c, while a prolate density
distribution has a < c. Further details about this coordinate system
can be found in de Zeeuw (1985) and Dejonghe & de Zeeuw (1988).
The Stäckel potential, ', in spheroidal coordinates has the form

'(λ, ν) = −f (λ) − f (ν)
λ − ν

,

f (τ ) = (τ − c2)G(τ ), (2)

where G(τ ) is the potential in the z = 0 plane, defined as

G(τ ) = GMtot√
τ + c

, (3)

with Mtot the total mass and G the gravitational constant. Putting
these elements together, we get

'(λ, ν) = − GMtot√
λ +

√
ν
. (4)

It is possible to combine two Stäckel potentials for a more realistic
model of the Galaxy (Batsleer & Dejonghe 1994). In this case,
we have two components in the full potential, 'outer and 'inner,
each following equation (2). In Batsleer & Dejonghe (1994), the
inner component is intended to represent the disc, while the outer
component is associated with the halo. However, for our work
the individual components are not intended to represent specific
structures of the Milky Way; their purpose is simply to add more
flexibility to our model.

The two components have different axis ratios and scale radii,
defined by parameters aouter, couter and ainner, cinner. For the overall
potential to retain the Stäckel form (as defined by equation 2), and
hence the separability of the Hamilton–Jacobi equation, the two
components must share the same foci and therefore the coordinates
must be related by

λouter − λinner = νouter − νinner = q, (5)

and the parameters of the two components’ coordinate systems have
to be linked by

a2
outer − a2

inner = c2
outer − c2

inner = q, (6)

where q is a constant. The total potential is then

'(λouter, νouter, q) = −GMtot

[
1 − k√

λouter + √
νouter

+ k√
λouter − q + √

νouter − q

]
, (7)

where k is the ratio of the inner component mass to the outer
component mass, and Mtot is the sum of the two component masses.

We set q > 0, so that the scale of the outer component is larger than
the scale of the inner component. We restrict our model to potentials

where the inner component has an oblate shape, i.e. einner > 1, suitable
for the inner regions of the Milky Way. In addition, we require the
inner component to be flatter than the outer component by restricting
einner > eouter. These choices force the outer component also to have
eouter > 1, meaning the overall model is limited to quasi-spherical and
oblate shapes. The cause for this final restriction becomes evident
when we write down q in the following from:

q =
c2

inner

(
e2

inner − e2
outer

)

e2
outer − 1

. (8)

Ultimately, the cause for this final restriction comes from the
requirement that both the disc potential and the halo potential
share the same foci, which means they have to be oriented in
the same way. We first consider a model that consists of a single
component represented by a Stäckel potential. The set of three
parameters that defines a particular potential is ζ = (Mtot, a, e).
We select trial potentials by drawing 40 points from a uniform
distribution in log space for each parameter over its prior range: [0.7,
1.8] in log10(a/kpc), [11.5, 12.5] in log10(M/M#), and [log10(0.5),
log10(2.0)] in log10(e). Consequently, there are 403 trial potentials
for this model.

Next, we consider two-component Stäckel potential, defined by a
set of five parameters ζ = (Mtot, aouter, eouter, ainner, k). In this case
the parameters are not all independent, but are constrained by equa-
tions (6). Thus, we select the trial potentials by drawing 50 points for
the shape parameters, again from uniform distributions in log space,
over the following ranges: [0.7, 1.8] in log10(aouter/kpc), [log10(1.0),
log10(2.0)] in log10(eouter), and [log10(0), log10(0.7)] in log10(ainner).
Of these, we only use the (∼8000) parameter combinations that allow
us to construct a mathematically valid potential, i.e. one where both
einner and eouter are larger than 1. In addition, we draw 20 points
for the mass parameters in these parameter ranges: [11.5, 12.5] in
log10(M/M#) and [log10(0.01), log10(0.3)] in log10(k). For each of
these potentials we find the mass enclosed within r = R2 + z2 by
calculating

M(< r) = 2π
∫ r

0

∫ √
r2−R2

−
√

r2−R2
ρ(R, z) R dz dR, (9)

where the density ρ(R, z) is found through the Poisson equation.
Therefore, rather than determining the mass enclosed within an
isodensity contour, we integrate the density profile out to a spherical
r in order to compare with previous work.

2.2 Actions

In this work, we analyse stellar data in action-angle coordinates. The
actions are integrals of motion that uniquely define a bound stellar
orbit and the angles are periodic coordinates that define the phase of
the orbit. For a bound, regular orbit,1 the actions Ji are related to the
coordinates qi and their conjugate momenta pi by

Ji = 1
2π

∮
pi dqi, (10)

where the integration is over one full oscillation in qi. In the
spheroidal coordinate system defined in Section 2.1, q1 = λ, q2 = ν,
and q3 = φ. The expressions for the actions in the Stäckel potential
are found by solving the Hamilton–Jacobi equation via separation
of variables (see e.g. Binney & Tremaine 2008). This leads to the

1An orbit for which the angle-action variables exist (Binney & Tremaine
2008).
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definition of three integrals of motion: the total energy E, and the
actions I2 and I3; and to the equations for the momenta. The integral
of motion I2 is related to the angular momentum in the z-direction,

I2 =
L2

z

2
, (11)

while I3 can be seen as a generalization of L − Lz (Dejonghe & de
Zeeuw 1988),

I3 = 1
2

(
L2

x + L2
y

)
+ (a2 − c2)

[
1
2
v2

z − z2 G(λ) − G(ν)
λ − ν

]
. (12)

The momenta, pτ , are then expressed as a function of the τ coordinate
and the three integrals of motion:

p2
τ = 1

2(τ − a2)

[
G(τ ) − I2

τ − a2
− I3

τ − c2
+ E

]
, (13)

from which the first two actions can be calculated as

Jτ = 1
2π

∮
pτ dτ, (14)

where the integral is over the full oscillation of the orbit in τ , i.e. the
limits are the roots of p2

τ . As pτ is only a function of τ and the three
integrals of motion, it follows that Jτ is also an integral of motion.
The third action, Jφ , is equal to Lz and therefore independent of the
particular axisymmetric potential.

We calculate the actions for all stars in our sample for each
trial potential. From the observed sky positions and proper motions
in Gaia DR2, cross-matched with distance and radial velocity
estimators from the various sources discussed in Section 3, we
derive the Galactocentric phase-space coordinates ω = (x, v), where
x is the three-dimensional position vector and v is the three-
dimensional velocity vector. Details of this transformation are given
in Appendix A. The phase-space coordinates are then used to
calculate (τ , pτ ) and E, I2, and I3 for each star in each trial potential.
As mentioned before, Jφ = Lz and does not vary from potential
to potential. The other two actions, Jλ and Jν , are found from
equation (14) by numerical integration. We discuss the influence
of measurement errors in Section 6.

Some combinations of observed phase-space coordinates and trial
potential can result in the star being unbound from the Galaxy, in
which case its actions are undefined. In our analysis, we throw out
any potential that produces unbound stars, a reasonable assumption
given that the stars in our data set are all well within the Galaxy’s
expected virial radius and have velocities much less than estimates
of the escape velocity. We comment on the impact of this choice on
our results in Section 6.

2.3 Determination of the best-fitting potential

In the previous section, we transformed the phase-space coordinates
of stream stars to action-space coordinates for particular trial poten-
tials. Now, we analyse the resulting action distributions to measure
their degree of clustering. We quantify the degree of clustering with
the use of the KLD following Sanderson et al. (2015). The KLD
measures the difference between two probability distributions p(x)
and q(x) and is defined by

KLD(p||q) =
∫

p(x) log
p(x)
q(x)

dnx. (15)

The larger the difference between the two probability distributions,
the larger the value of the associated KLD. If the two distributions
are identical, the KLD value is 0.

For a discrete sample [xi] with i = 1, . . . , N drawn from a
distribution p(x), the KLD can be calculated via Monte Carlo
integration as

KLD(p||q) ≈ 1
N

N∑

i

log
p(xi)
q(xi)

, if q(xi) )= 0 ∀i. (16)

We now specify the distribution q(x) to be a uniform distribution
u( J), in the actions. This uniform distribution corresponds to a
fully unclustered action space. To test whether a trial potential
parametrized by ζ maps the observed phase-space data ω to a
more clustered distribution than u( J), we set p(x) to p( J | ζ , ω).
p( J | ζ , ω) is the probability distribution p of actions J , given
parameter values ζ , and the phase-space coordinates ω.

The KLD is then

KLD1(ζ ) = 1
N

N∑

i

log
p( J | ζ , ω)

u( J)

∣∣∣∣
J=J i

ζ

, (17)

where N is the total number of stars in our sample. p is evaluated
at J i

ζ = J(ζ , ωi), where ωi are the phase-space coordinates of star
i. The potential closest to the true potential gives rise to the most
clumped probability distribution; i.e. the distribution that is the most
peaked and therefore most dissimilar to a uniform distribution. We
therefore select as our best-fitting potential parameters, ζ 0, the pa-
rameters that maximize the KLD across all our trial potentials. This is
equivalent to selecting the model that produces the most similar orbits
for all stars in a given stream, by exploring all possible star orbits
over a range of models given their current phase-space coordinates.
We label equation (17) as KLD1 because the identification of the
best-fitting model is the first step in our procedure. Practically, we
calculate KLD1 using equation (17) for all potentials that are not
discarded for producing unbound stars. We obtain the numerator
in equation (17) by constructing a three-dimensional probability
density function p( J | ζ ,ω) using the EnLink algorithm developed
by Sharma & Johnston (2009). This algorithm computes a locally
adaptive metric by making use of a binary space-partitioning tree
scheme, where the partitioning criterion is determined by comparing
the Shannon entropy or information along different dimensions.
The density is then computed using the Epanechnikov kernel with
the smoothing length determined by the given number of nearest
neighbours identified by the tree. We use the code’s default 10 nearest
neighbours as recommended in Sharma & Johnston (2009).

The denominator in equation (17), u( J), is a uniform distribution
normalized over the maximum possible range of J :

u =
[(

J max
λ − J min

λ

) (
J max

ν − J min
ν

) (
J max

φ − J min
φ

)]−1
, (18)

where Jmax and Jmin are the extrema amongst all J calculated for
our five-parameter search. This means u( J) is constant for all J and
all ζ and as such does not have an impact on maximizing KLD1(ζ ).

The standard KLD1(ζ ), calculated using equation (17), gives
equal weight to each of the stars in the sample, and it is suited to cases
where our data sample includes either a single stream or multiple
streams with unknown stellar membership. However when combined
stellar stream data are analysed and star membership is known, as
it is in our case, we can exploit this extra information and modify
equation (17) accordingly. Equation (17) has the implicit property
that streams with more stars exert a larger influence on the results
compared to streams with fewer stars, since each star contributes
equally to the KLD. While this is reasonable when membership is
not known a priori, it is not the ideal use of the data since then the
largest and hottest streams, which give the least sensitive constraints,
dominate over thinner and colder streams with far fewer members.
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When membership information is available, we can instead introduce
a scheme that gives equal weight to all streams, by weighting the
contribution of each star with

wj = 1
Ns

× 1
Nj

, (19)

where Ns is the number of streams in our sample and Nj is the number
of stars in stream ‘j’ (and therefore N =

∑Ns
j Nj ). This weighted

KLD1(ζ ) is thus calculated as follows:

wKLD1(ζ ) =
Ns∑

j

Nj∑

i

wj log
p( J | ζ , ω)

u( J)

∣∣∣∣
J=J ij

ζ

, (20)

where J ij
ζ = J(ζ , ωij ), where ωij are the phase-space coordinates

for star i in stream j.
The KLD works best if there is little overlap between the different

streams in action space. We showed in previous work (Sanderson
et al. 2015) that the clustering-maximization algorithm will still
find a good model potential if the streams overlap, and does not
crucially depend on knowing stream membership. However, in our
case, stream membership is known, and the performance of the
algorithm can be further improved by incorporating this information
in the weighted KLD1 approach. The most straightforward way of
doing this is simply to shift each stream by a constant in action
space so that they are well separated, since it is the clustering, not
the location in action space, that drives the fit.2 This tactic also
helps avoid the spurious solution achieved by increasing the mass
and decreasing the scale radius until all stars are clustered near the
origin in action space, which sometimes can dominate over the true
consensus fit for severely overlapping streams or in cases with a high
fraction of interlopers from the thick disc. For this work, we displace
the streams from one another in Lz, since this action is independent
of the potential for our axisymmetric model. On the other hand, when
performing our analysis with the standard KLD1 (equation 17) this
shift in action space will not be applied.

2.4 Determination of confidence intervals

One interpretation of the KLD is that of an average log-likelihood
ratio of a data set. The likelihood ratio,

* =
N∏

i

p(xi | ζ )
q(xi | ζ )

, (21)

indicates how much more likely x is to occur under p(x | ζ ) than
under q(x | ζ ), where we recall that p(x | ζ ) and q(x | ζ ) are
probability density functions. Therefore, the average log-likelihood
ratio for xi is

〈log *〉 = 1
N

N∑

i

log
p(xi | ζ )
q(xi | ζ )

, (22)

which is equivalent to calculating the KLD. The interpretation of
KLD as an average log-likelihood ratio allows us to draw confidence
intervals on the best-fitting parameters through Bayes’ theorem,
which states that the posterior probability of a model defined by

2In fact, in previous papers we used the product of the marginal distributions
of p instead of the uniform distribution as the comparison distribution q;
this form of the KLD is known as the mutual information (MI), and for
a multivariate Gaussian it can be shown that the MI depends only on the
off-diagonal elements of the covariance matrix – or in other words, on the
correlation between actions.

its parameters ζ , given data x, is equal to the likelihood of the data
given the model times the prior probability of the model:

p(ζ | x) ∝ p(x | ζ )p(ζ ). (23)

This indicates that the ratio of likelihoods is directly linked to the
ratio of posterior probabilities:

KLD(p || q) = 1
N

N∑

i

log
p(xi | ζ )
q(xi | ζ )

= 1
N

N∑

i

log
p(ζ | xi)
q(ζ | xi)

− log
p(ζ )
q(ζ )

. (24)

Assuming that the prior distributions are flat or equal, the KLD is
thus equal to the expectation value of the log of the ratio of posterior
probabilities (for more information, see Kullback 1959).

This leads us to the second step in our procedure, where we com-
pare the action distribution of the best-fitting potential, p( J | ζ 0, ω),
to the action distributions of the other trial potentials, p( J | ζ trial, ω),
by computing

KLD2(ζ ) = 1
N

N∑

i

log
p( J | ζ 0,ω)

p( J | ζ trial,ω)

∣∣∣∣
J=J i

0

, (25)

where both functions are evaluated at J0 = J(ζ 0, ω), i.e. at the
actions computed with the best-fitting potential parameters ζ0 and
phase space ω. In our procedure, we use equation (25) to calculate
the KLD2(ζ ) for each trial potential. In contrast to the calculation of
the KLD1(ζ ), two different sets of actions are used to obtain the prob-
ability density functions in the numerator and the denominator: both
sets of actions are calculated using the same observed phase-space
coordinates ω but two different potentials (the best-fitting potential
with parameters ζ 0 and another trial potential with parameters ζ trial).
We use EnLink to estimate the probability densities for the two sets
of actions J(ζ 0, ω) and J(ζ trial, ω).

Analogous to KLD1(ζ ), we introduce an alternative version of
KLD2(ζ ) that incorporates weights. The weighted KLD2(ζ ) is
defined as follows:

wKLD2(ζ ) =
N∑

i

wi log
p( J | ζ 0,ω)

p( J | ζ trial,ω)

∣∣∣∣
J=J i

0

, (26)

where the weights are calculated using equation (19).
As discussed above, the KLD2(ζ ) values can be interpreted as the

relative probability of parameters ζ 0 and ζ trial, given the data. The
confidence intervals on the best-fitting potential are then derived by
estimating the value of KLD2(ζ ) at which the posterior distributions
become significantly different, i.e. KLD2(ζ ) becomes significantly
different from KLD2(ζ 0) = 0.

We begin by assuming that the posterior probability distributions
are approximately D-dimensional Gaussians with a covariance ma-
trix + that is equal to a D × D identity matrix, where D is the number
of free parameters in our model. We calculate KLD2(ζ ) between two
of these identical Gaussian distributions placed at different positions:
one centred at ζ 0 representing the probability distribution of our best-
fitting model and the other centred at ζ trial representing the probability
distribution of a trial model. Since we are interested in determining
which of our trial models are within 1σ of our best-fitting model, we
use here the limiting case for ζ trial where the Gaussian function for
the trial model is centred exactly at 1σ away from ζ 0. The 1σ contour
in this situation is a D-dimensional sphere, centred at ζ 0 with radius
1σ . The second Gaussian is then centred on a point on this sphere,
i.e. centred anywhere on ‖ζ 0‖ + 1.
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Calculation of the KLD2(ζ ) between these two distributions
results in

KLD2(ζ ) = 1
N

N∑

i

log
e−(ri−‖ζ 0‖)2/2

e−(ri−(‖ζ 0‖+1))2/2
= 0.5, (27)

where r are points drawn from the Gaussian centred on ζ 0. This
corresponds to a 1σ confidence interval. Similarly, the KLD2(ζ )
value that signifies the limiting edge of 2σ confidence can be
calculated using a trial model that is centred at exactly 2σ away
from ζ 0, etc.

The single parameter 1σ confidence intervals are drawn as the full
range of parameter values in the subset of potentials that are within
1σ from the best-fitting potential, i.e. from the subset of potentials
that have KLD2(ζ ) ≤ 0.5 (or wKLD2(ζ ) ≤ 0.5 when the weighted
case is used).

3 ST R E A M C ATA L O G U E

The goal of this work is to use the action-space clustering method on
real data of known stream stars. For this purpose we compiled data
from seven different literature sources (Willett et al. 2009; Koposov
et al. 2010, 2019; Ibata et al. 2017; Li et al. 2017; Koppelman et al.
2019; Price-Whelan et al. 2019) to obtain a data set containing
full 6D phase-space information for stars in the GD-1, Helmi,
Orphan, and Pal 5 streams. When complete 6D information for
individual stars was not available, we made use of the stream’s
track: the measurements of the stream’s mean phase-space position
as a function of a coordinate aligned with the stream. We fit the
tracks with a simple polynomial function in order to find the stars’
missing 6D phase-space components, based on their location along
the stream. We do not assign membership probabilities to the stars
in each stream, but rather treat all of them as certain members. A
perfectly clean selection of stream stars is not crucial for our method,
which can operate without any membership information at all since
it relies on finding the most clustered total action distribution. The
addition of stars incorrectly classified as stream members – as long
as such stars are in the minority – will simply result in slightly
less clustered action space for each of the trial potentials. We do
not expect interlopers to bias the result: since stream membership
is usually determined by making selections in some combination of
positions, velocities, colours, and magnitudes rather than in actions,
it is unlikely that interlopers will cluster with the rest of the stream
in action space near the best-fitting potential.

Nevertheless, to focus on the most informative stars, we perform
cuts on some of the streams after visually inspecting them in µα–
µδ or Lz–L⊥ space (we discuss the possible impact of this cut in
Section 6). Our full data set is available in electronic format online.
In the following, we briefly review each stream’s properties and
compiled data set. For more details on our data assembly process we
refer to Appendices A1–A3.

3.1 The GD-1 stream

GD-1 is a long and remarkably narrow stream first discovered
by Grillmair & Dionatos (2006b) in the SDSS data. It lies at a
distance of ∼15 kpc from the Galactic Centre and ∼8 kpc above
the plane of the disc. Because of its thinness and location high
above the Galactic disc, it is thought to have formed from a tidally
disrupted globular cluster, but no progenitor has yet been found.
Orbits fitted to the available data have shown that GD-1 is moving
retrograde with respect to the rotation of the Galactic disc, and

is currently near pericentre (around 14 kpc), with apocentre 26–
28 kpc from the Galactic Centre (Willett et al. 2009; Koposov et al.
2010).

The GD-1 stream has seen considerable use in studies aiming to
constrain the inner Galactic potential. For example, using a single-
component potential Koposov et al. (2010) find that the orbit that
best fits the GD-1 data corresponds to a potential with the circular
velocity at the solar radius Vc(R#) = 221+16

−20 km s−1 and the flatten-
ing q = 0.87+0.12

−0.03. A more recent work by Malhan & Ibata (2019),
which uses a combination of Gaia DR2, Sloan Extension for Galactic
Understanding and Exploration (SEGUE), and Large Sky Area
Multi-Object Fibre Spectroscopic Telescope (LAMOST) data, finds
a circular velocity at the solar radius of Vc(R#) = 244 ± 4 km s−1,
the flattening of the halo q = 0.82+0.25

−0.13, and the mass enclosed within
20 kpc M(<20 kpc) = 2.5 ± 0.2 × 1011 M#.

We compiled a list of GD-1 members with measured radial
velocities from Koposov et al. (2010), Li et al. (2017), and Willett
et al. (2009). These stars’ measurements are then supplemented
with positions and proper motions from Gaia DR2. Finally, we fit a
polynomial to the stream track distance information from Koposov
et al. (2010) and Li et al. (2018) and use the resulting function
to predict distances to each of our stream members based on their
location along the stream. In total our GD-1 data set consists of
82 member stars with full 6D phase-space information. We further
clean this sample by discarding 13 stars that are not part of the
central clump in either µα–µδ or Lz–L⊥ space, leaving 69 stars (see
Appendix A1).

3.2 Orphan stream

The Orphan stream was discovered by Grillmair (2006) and Be-
lokurov et al. (2006) as a broad stream of stars extending ∼60◦ in the
Northern Galactic hemisphere. Although thought to be the remnant
of a small dwarf galaxy (Grillmair 2006), no suitable progenitor for
the stream has so far been found. Using SDSS DR7 data, Newberg
et al. (2010) obtained a well-defined orbit to the stream and showed
that the stars are on a prograde orbit with respect to disc rotation with
a pericentre of 16 kpc and an apocentre of 90 kpc. At the time, the
detected portion of the stream ranged from ∼20 to ∼50 kpc in the
Galactic frame.

Recently, several discoveries regarding the Orphan stream were
made by Koposov et al. (2019) who traced the track of the Orphan
stream using RR Lyrae in the Gaia DR2 catalogue. They found
that the stream is much longer than previously thought and showed
that it also extends to the Southern Galactic hemisphere: the stream
was found to extend from ∼50 kpc in the north to ∼50 kpc in
the south, going through its closest approach at ∼15 kpc from
the Galactic Centre. They noticed, however, that the stream track
behaviour changes between the two hemispheres. First, a twist in the
stream track emerges soon after the stream crosses the Galactic plane
from south to north. Second, the motion of the stars in the Southern
hemisphere is not aligned with the stream track. Erkal et al. (2019)
show that these effects can be reproduced by adding the contribution
of the Large Magellanic Cloud (LMC) into the Milky Way potential.
These results demonstrate that the assumption that the Orphan
stream stars orbit in a static Milky Way potential would lead to a
bias.

Using the Orphan stream RR Lyrae from Koposov et al. (2019) and
including the perturbation from the LMC, Erkal et al. (2019) find that
the best fit Milky Way potential has a mass enclosed within 50 kpc of
3.80+0.14

−0.11 × 1011 M# and scale radius of the Navarro–Frenk–White
(NFW) halo of 17.5+2.2

−1.8 kpc. As a comparison, when using only the
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northern portion of the stream Newberg et al. (2010) find that the
orbit is best fit to a Milky Way potential that has a mass enclosed
within 60 kpc of about 2.6 × 1011 M#.

We assemble our Orphan stream data in two parts. In both cases
the positions and proper motions are from Gaia DR2, but accurate
individual distances and radial velocities have been measured for
disparate sets of stars.

To compile the first subsample, we begin with a list of stream
members that have accurate distance measurements: the Orphan
stream RR Lyrae from Koposov et al. (2019). We fit a polynomial to
the radial velocity track information from Koposov et al. (2019) and
use it to predict radial velocities to our stream members based on
their location along the stream. Although the RR Lyrae stars stretch
from φ1 ∼ −78◦ to ∼123◦, we discard those that have φ1 < 0◦, i.e.
those in the Southern Galactic hemisphere. We do this because there
are no radial velocity measurements in the negative φ1 section of
the stream (see the bottom right-hand panel of Fig. 1), leading our
estimates to depend too heavily on the selection of the degree of the
polynomial and its fit to the positive φ1 section of the stream. As an
added advantage, this cut-off eliminates the part of the stream that
appears to be most strongly affected by the LMC, which is not in our
potential model.

To compile the second subsample, we begin with a list of stream
members that instead have individual radial velocity measurements:
the stream members from Li et al. (2017) with radial velocities
from SDSS or LAMOST. Next, we fit a polynomial to the distance
track data from Koposov et al. (2019) to find distances for the
stars.

After combining the two data sets, we make an additional cut in
Lz–L⊥ and µα–µδ space, selecting after visual inspection the 129
stars that form a clump in velocity space. More details can be found
in Appendix A2.

3.3 The Palomar 5 stream

The tidal streams around the Palomar 5 (Pal 5) globular cluster
were first found by Odenkirchen et al. (2001). They detected two
symmetrical tails on either side of the cluster, extending in total
about 2.◦6 on the sky. Subsequent data have allowed the stream to
be traced further out and revealed that the two tidal tails are far
from symmetric, the tails having distinctly different lengths and
star counts. The current known length of the trailing trail is 23◦

(Carlberg et al. 2012) while that of the leading tail is only 3.◦5
(Odenkirchen et al. 2003). The reason for the asymmetry is not
clear but possible options include perturbations from spiral arms,
rotating bar, molecular clouds, and dark matter subhaloes (Amorisco
et al. 2016; Erkal et al. 2017; Pearson, Price-Whelan & Johnston
2017). Pal 5 is currently near the apocentre of its prograde orbit,
which ranges from pericentre at 7–8 kpc to apocentre at around
19 kpc from the Galactic Centre (Odenkirchen et al. 2003; Grillmair
& Dionatos 2006a; Küpper et al. 2015). The stream has previously
been used to constrain the Milky Way potential by Küpper et al.
(2015) who found the mass enclosed within Pal 5 apocentre distance
to be M(<19) kpc = (2.1 ± 0.4) × 1011 M# and the halo flattening
in the z-direction to be qz = 0.95+0.16

−0.12.
As before, we use a combination of sources to get full 6D phase-

space information for stars in the Pal 5 stream. We use a list of
27 RR Lyrae member stars with distance estimates from Price-
Whelan et al. (2019) and another 154 members with radial velocity
measurements from Ibata et al. (2017). To find the distances for the
members from Ibata et al. (2017) and radial velocities for members
from Price-Whelan et al. (2019), we use the measurements of the

individual members in the other set, using the same track-fitting
strategy as for the other streams. In other words, we fit a polynomial
to the distances from Price-Whelan et al. (2019) to find distance
estimates for the Ibata et al. (2017) members and, similarly, fit a
polynomial to the radial velocity data from Ibata et al. (2017) to
find radial velocity estimates for the Price-Whelan et al. (2019)
members. As always, the positions and proper motions are from
Gaia DR2.

After the two data sets are then joined, a cut in Lz–L⊥ and µα–µδ

space is performed, resulting in the sample of 136 stars. More details
can be found in Appendix A3.

Note that since we have adopted the distances from Price-Whelan
et al. (2019), our Pal 5 stars are closer than previously reported. Price-
Whelan et al. (2019) find a mean cluster heliocentric distance of
20.6 ± 0.2 kpc, while previous distance measurements are ∼23 kpc
(e.g. Odenkirchen et al. 2001; Carlberg et al. 2012; Erkal et al.
2017). The main cause for this distinction is that the previously
reported distances were computed from distance moduli (Harris
1996; Dotter, Sarajedini & Anderson 2011) that were not corrected
for dust extinction.

3.4 The Helmi stream

The Helmi stream was first detected by Helmi et al. (1999) as a
cluster of 12 stars in the angular momentum space of the local
halo, based on Hipparcos measurements. The orbit of the stream
was found to be confined within 7 and 16 kpc from the Galactic
Centre. While forming a single clump in Lz–L⊥ diagram, in velocity
space the structure separates into two distinct groups: one with
positive vz and the other with negative vz. Helmi et al. (1999)
postulated that the two clumps originate from a common dwarf
galaxy that has since its disruption reached a highly phase-mixed
state. This view explains the observed bimodality of vz as a feature
that arises due to the existence of several wraps of the stream
near the solar neighbourhood (as shown in fig. 5 of Helmi 2008;
see also McMillan & Binney 2008 for further discussion of this
phenomenon).

Using Gaia DR2 data complemented by radial velocities from
the APO Galactic Evolution Experiment (APOGEE), RAVE, and
LAMOST surveys, Koppelman et al. (2019) found 523 new members
of the Helmi stream within 5 kpc of the Sun selected in Lz–L⊥
space. In this work, we include 401 high confidence members that
are within 1 standard deviation of the mean radial velocity from
the Koppelman et al. (2019) sample with their full 6D phase-space
information.

4 R E S U LT S F O R A S I N G L E - C O M P O N E N T
POTENTIAL

In this section, we present our results for a single-component
Stäckel potential with both individual and combined stream data
sets (Sections 4.1 and 4.2, respectively). The best-fitting parameter
values (those that maximize KLD1) and uncertainties (derived from
KLD2) are summarized in Table 1. Here, we focus on the KLD2
distributions, while those for KLD1 can be found in Appendix B.
The KLD1 values associated with the best-fitting parameters are
given in Table B1.

4.1 Results for the individual stream data sets

Fig. 2 shows the individual results for GD-1, Helmi, Or-
phan, and Pal 5 on the enclosed mass–scale length plane. The
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Galactic potential constraints from streams 4177

Figure 1. Phase-space projections of our uncleaned stream data and fits used to interpolate missing distance and radial velocity (RV) data for stream stars. The
coordinate φ1 on the x-axis is the stream-aligned coordinate for the stream portrayed on each particular panel. Measurements used for the polynomial fits are
shown in black (>0.5 membership probability) or grey points (<0.5 membership probability); measurements for individual stars shown as green points are for
comparison only. Polynomial fits are shown in yellow; estimated values we adopt for individual stars are shown as small blue points. Data sources are discussed
in detail in Appendix A. Top left-hand panel: fit to distance estimates along the track of GD-1 from Koposov et al. (2010) (circles) and Li, Yanny & Wu (2018)
(triangles). Second row left-hand panel: RV measurements from Koposov et al. (2010), Li et al. (2017), and Willett et al. (2009). Top centre panel: fit to distances
of individual Pal 5 members from Price-Whelan et al. (2019). Second row centre panel: fit to RVs of individual Pal 5 members from Ibata et al. (2017). Top
right-hand panel: fit to distance estimates along the track of the Orphan stream from Koposov et al. (2019). Individual measurements from Koposov et al. (2019)
(green points) are shown for comparison. Second row right-hand panel: fit to RV estimates along the track of the Orphan stream from Koposov et al. (2019).
Note that the RV estimates in this panel are in the Galactic standard of rest frame. Individual measurements from Li et al. (2017) (green points) are shown for
comparison. Bottom two rows: proper motion measurements from Gaia DR2.

parameter space is colour coded by their KLD2 values. The
smaller the KLD2 value, the more similar the action distribution
of that potential is to the action distribution of the best-fitting
potential. The potentials with values of KLD2 ≤ 0.5 – marked

in Fig. 2 with orange – are the 1σ region, as explained in Sec-
tion 2.4. The grey points stand for discarded potentials, where at
least one star is on a dynamically unbound orbit as discussed in
Section 2.2.
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Table 1. The individual and combined stream results for a single-component potential. Best-fitting parameters are given with their 1σ

confidence intervals. We remind the reader that e > 1 corresponds to an oblate potential, while e < 1 corresponds to a prolate potential.

Streams N∗ M(<20 kpc) × 1011 (M#) a (kpc) e Mtot × 1012 (M#)

GD-1 69 4.73+0.33
−1.05 15.12+2.10

−10.11 0.88+0.07
−0.38 2.65+0.51

−1.88

Helmi 401 9.06+3.20
−6.36 10.24+10.68

−5.23 0.95+0.79
−0.31 2.81+0.35

−2.39

Pal 5 136 2.73+0.60
−0.74 20.92+4.50

−5.80 1.40+0.60
−0.19 1.86+1.30

−1.14

Orphan 117 1.89+1.05
−0.60 27.12+8.05

−12.00 1.26+0.74
−0.17 2.35+0.81

−1.32

GD-1/Orphan/Pal 5 standard 322 2.60+0.39
−0.28 18.37+5.45

−2.24 1.45+0.35
−0.24 1.38+1.43

−0.35

GD-1/Orphan/Pal 5 weighted 322 3.08+0.39
−0.35 20.92+4.50

−4.79 1.40+0.46
−0.19 2.09+1.07

−1.00

GD-1/Helmi/Orphan/Pal 5 standard 723 5.01+2.37
−1.18 11.66+5.56

−3.23 1.86+0.14
−0.60 1.30+1.86

−0.44

GD-1/Helmi/Orphan/Pal 5 weighted 723 4.18+1.63
−0.70 15.12+5.80

−3.46 1.86+0.14
−0.60 1.47+1.69

−0.55

Figure 2. Individual stream results for the single-component potential in the enclosed mass–scale length space. The best-fitting point is marked with a pink
cross, the grey points represent potentials that resulted in unbound stars and were therefore discarded, and other points are colour coded according to their KLD2
value. The orange region shows 1σ contours (defined as described in Section 2.4).

Fig. 2 indicates that the GD-1, Pal 5, and Orphan streams deliver
constraints that are much more precise than those from the Helmi
stream.

The best-fitting values for M(<20 kpc) range from 1.89 × 1011

to ∼9 × 1011 M# between individual streams, with the Orphan
stream returning the lowest and Helmi stream the highest estimates.
Although their best-fitting values differ by an order of magnitude,
their derived confidence intervals are compatible. However, the

confidence intervals from the GD-1 stream are in tension with those
from Pal 5 and Orphan streams. This is likely a manifestation of the
systematic biases affecting single-stream fits.

With the exception of Pal 5 and, to some extent, the Orphan
stream, the individual streams cannot place strong constraints on the
scale length of the potential: the best-fitting values range from 10.24
to 27.12 kpc between individual streams, with the Helmi stream
yielding the lowest and the Orphan stream the highest values. All
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Galactic potential constraints from streams 4179

Figure 3. As in Fig. 2, but showing the weighted combined data results for
the single-component potential. Top: results when combining all four streams.
Bottom: results for the combination of GD-1, Orphan, and Pal 5.

four streams accept a values between ∼15 and ∼17 kpc within a 1σ

uncertainty level.
The best-fitting values for flattening range from 0.88 to 1.40, with

the lowest estimate belonging to the GD-1 and the highest to the
Pal 5 stream. We remind the reader that in the Stäckel convention
flattening is defined as a

c
, so e > 1 corresponds to an oblate potential

while e < 1 corresponds to a prolate potential.
The GD-1 stream provides a strong upper limit to the flattening –

only accepting prolate shapes (e ≤ 0.95) – but it is unable to determine
the lower limit. The Helmi stream accepts almost all flattening values
except the ones corresponding to the most prolate (e < 0.64) and most
oblate (e > 1.74) shapes. The Pal 5 and Orphan streams, on the other
hand, provide a lower limit to flattening, both only allowing oblate
shapes (e ≥ 1.09 for Orphan and e ≥ 1.21 for Pal 5).

4.2 Results for the combined data set

The weighted combined data results are shown in Fig. 3: the
combination of all four streams on the top panel and the combination
of GD-1, Orphan, and Pal 5 on the bottom panel. As a reminder, the
weighted results incorporate the knowledge of stream membership
by (a) calculating the stream-weighted versions of KLD1 and KLD2
(the latter is marked on the relevant figures as wKLD2), and (b)
by artificially separating streams in action space during the density
estimation. This is in contrast to the standard results that assume no

knowledge of the stream membership. In this section, we discuss the
weighted results only. The standards results will be discussed in the
subsequent section.

Constraints from analysing combined data sets are tighter than
those yielded by individual stream data sets. The 1σ constraint on
the enclosed mass for the combination of GD-1, Orphan, and Pal 5
data sets is much tighter than that obtained by combining all four
streams’ data sets. The possible reasons are discussed in more detail
in Section 7.1.

The two different analyses also give results that are somewhat
inconsistent with each other: we find 4.18+1.63

−0.70 × 1011 M# when
analysing the combination of four streams’ data and 3.08+0.39

−0.35 ×
1011 M# for the GD-1, Orphan, and Pal 5 data sets, i.e. the inclusion
of Helmi stream data pulls the consensus result to a higher enclosed
mass.

In contrast, the scale lengths of the two sets of combined data
are in good agreement within the errors: we find 15.12+5.80

−3.46 and
20.92+4.50

−4.79 kpc for the combination of four- and three-stream data
sets, respectively.

Although the flattening parameters of the two combinations are
consistent with one another within their 1σ intervals, their best-fitting
values vary from 1.86 for the combination of four streams to 1.40
for the combination of GD-1, Orphan, and Pal 5. These high best-
fitting values, which correspond to oblate potentials, are likely driven
by the Pal 5 and Orphan streams, which individually disfavour the
lower values of e. Both Pal 5 and Orphan individually accept values of
flattening above 1.2, and the 1σ confidence intervals of the combined
sets clearly reflect this, as both find a lower limit of ∼1.2.

The combined stream results therefore show virtually no improve-
ment over the individual results. We therefore conclude that we can
only weakly constrain the flattening parameter with our data and this
one-component potential.

We do not expect the single-component potential to be a good
representation of the Milky Way’s actual gravitational field for
streams whose orbits intersect the disc, such as the Helmi and Pal 5
streams. Although we give results for these streams and use them in
some combined fits with this model, we caution that the best-fitting
parameters should not be interpreted as representing a particular
component of the Milky Way’s structure. The best-fitting models tend
to respond to the need for a more concentrated central component
(i.e. the disc) than the model will allow by increasing the total mass,
leading to larger circular velocities at large radii.

Fig. 4 shows the total distributions of wKLD2 for the enclosed
mass and flattening parameters that result from the analysis of the
combined data sets (upper panel: four-stream data set; lower panel:
three-stream data set). The black horizontal lines are at wKLD2 =
0.5, the value that corresponds to the 1σ confidence interval for
a single-component potential. The quoted 1σ confidence intervals
correspond to the parameter range on the x-axis in each panel where
wKLD2 ≤ 0.5 (shown with a grey shaded region). It is clear, in
both cases, that the confidence interval of the enclosed mass (a
combination of the scale radius and total mass parameters) is well
defined. In contrast, the flattening is only weakly constrained.

Fig. 5 summarizes the enclosed mass, scale length, and flattening
results with their 1σ confidence limits as presented in Table 1.
For comparison, the results from both the standard and weighted
KLD analysis for combinations of streams are shown. We find
that the difference between the best-fitting values of the standard
and weighted methods is not significant: the results are consistent
within their 1σ confidence limits. Nevertheless, the use of the stellar
membership knowledge clearly affects the results. In the case of the
four combined streams, this has the expected effect of lowering the
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Figure 4. The weighted combined data results for a single-component
potential: marginalized single parameter distributions. The top panel shows
the results from the combination of all four streams, and the bottom panel
shows the results of the combination of GD-1, Orphan, and Pal 5 streams. The
green points show the parameter values against the wKLD2 of the potential
they belong to. The values of the parameters in the best-fitting potentials are
marked with a pink cross. The black lines are drawn at wKLD2 = 0.5 that
signifies the 1σ confidence interval. The light grey bars show the range of
values that are accepted with 1σ confidence.

best-fitting enclosed mass value: the influence of the Helmi stream,
which contains the largest number of stars in our sample, has now
been off-set. The opposite happens for the combination of GD-
1, Orphan, and Pal 5 combination, where the best-fitting enclosed
mass increases, because we counteract the fact that the Orphan and
Pal 5 members outnumber those of GD-1 in our sample. In addition,
no appreciable shift is found for the best-fitting scale length and
flattening between the two approaches.

5 R E S U LT S F O R A T WO - C O M P O N E N T
POTENTIAL

In this section, we present the results of fitting the streams with the
two-component Stäckel potential. The best-fitting parameter values
are summarized in Table 2. As for the single-component potential
(Section 4.1), we focus on the KLD2 results for the confidence
intervals and summarize KLD1 values associated with the best-
fitting parameters in Appendix B and Table B1 and Figs 10 and
B1 give examples of a KLD1 distribution, alongside the action
distributions produced by two different potentials. The analysis of
the single-component model results for stream combinations showed
that the difference between the best-fitting values of the standard and
weighted methods is not significant, so we will only discuss the
weighted results from this point onward.

5.1 Results for individual stream data sets

Fig. 6 presents the results of the individual streams on the enclosed
mass–aouter plane. The 1σ confidence intervals, again marked in
orange. GD-1’s 1σ interval for the enclosed mass forms a relative
narrow stripe well within the allowed parameter space of potentials

producing bound orbits for all stars. In contrast, while the Orphan
and Pal 5 streams also produce clear confidence intervals for the
enclosed mass, their uncertainty regions in the direction of low aouter

are limited by the edge of the allowed parameter space of potentials
producing bound orbits for all stars (see the discussion in Section 6).
Finally, the Helmi stream includes within its 1σ confidence contour
a significant subset of all explored enclosed mass values.

Compared to the single-component case, the best-fitting
M(<20 kpc) values are now in better agreement between individual
streams, ranging from 1.91 × 1011 to 7.93 × 1011 M#. As with the
single-component potential, the Orphan stream returns the lowest
and the Helmi stream the highest estimates of enclosed mass. As
before, the 1σ ranges of Pal 5 and GD-1 are in tension, but this is no
longer true for the GD-1 and Orphan pair.

The mass estimates of individual streams are in good agreement
with the measurements obtained with a single-component potential.

The variation in the best-fitting values is the smallest in the case of
the Orphan stream, whose best-fitting values differ only by 1 per cent
between the two models. It is also notable that the best-fitting values
of the Helmi stream differ only by 12 per cent between the models, in
spite of their large error bars. The best-fitting values of the GD-1 and
Pal 5 streams change by 19 per cent and 26 per cent, respectively,
between the two models.

Pal 5 is therefore the most sensitive to the change of model: this
might be because Pal 5 has the smallest pericentre distance relative
to the Galactic Centre, where the mass in the new inner component
is concentrated. In addition, Pearson et al. (2017) have shown that
Pal 5 was likely affected by the Galactic bar on its pericentre passage
that might add to its sensitivity to the centrally concentrated mass
profile. While the Helmi stream also has a small pericentre distance,
it is not as sensitive to the change in potential model. The possible
reasons for this are discussed in Section 7.1.

Although all four streams have a best-fitting flattening of the outer
component of ∼1, Pal 5 and Orphan data are the only ones that can
actually constrain the flattening of the outer component, limiting it
to be lower than 1.04 in both cases. The GD-1 and Helmi streams
include the entire allowed range of values within their 1σ confidence
contours. We remind the reader that in the two-component potential
we have limited our exploration of the halo to near-spherical and
oblate shapes, which corresponds to e > 1.

The flattening of the single-component model cannot be directly
compared to the flattening of the outer (or the inner) component of the
two-component model. In the single-component case the flattening
parameter reflects the combined axis ratios of the Galactic disc, bulge,
and halo. Therefore, we expect the flattening not to be spherical.
In the two-component case, the two different axis ratios add more
flexibility to our model, but neither of them corresponds fully to the
flattening of the single-component model. We can, however, make
a qualitative comparison in the case of Pal 5: the single-component
model best-fitting flattening is ∼1.40, which may be interpreted as
a synthesis of the two-component results, where the outer flattening
is ∼1, while the inner flattening is 2.55 (as expected if the latter
describes a component that incorporates a disc-like structure).

Although in most cases we cannot constrain the flattening param-
eter, the fact that all streams prefer a nearly spherical halo could
be explained by the limitation of the Stäckel potential. Batsleer &
Dejonghe (1994) found that to produce flat rotation curves they
needed an almost spherical halo. Both the halo and disc potentials
are described in the same spheroidal coordinate system (i.e. they
must have the same foci) but have independent length scales ainner

and aouter. The halo component has the larger scale compared to
which the foci are relatively close together, and the halo thus appears
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Galactic potential constraints from streams 4181

Figure 5. Comparison of best-fitting parameter values for the single-component potential with their 1σ confidence intervals for enclosed mass (left), scale
length (middle), and flattening (right). Results for individual streams are labelled with the stream name. Combined results are labelled with ‘GD-1/Orphan/Pal 5’
for the three-stream combination and ‘All’ for the four-stream combination. In addition, the combined stream labels end with an ‘s’ or a ‘w’ for the standard and
weighted analyses, respectively. We remind the reader that e > 1 corresponds to an oblate potential, while e < 1 corresponds to a prolate potential.

Table 2. The individual and combined stream results for a two-component potential. Best-fitting parameters are given with their 1σ confidence intervals. Note
that e > 1 corresponds to an oblate potential in our convention.

Streams N∗ M(<20 kpc) × 1011 (M#) aouter (kpc) eouter ainner (kpc) Mtot × 1012 (M#) k

GD-1 69 5.64+0.25
−2.56 16.46+46.64

−11.44 1.00+0.94
−0.00 4.69+0.32

−3.69 3.16+0.00
−2.65 0.01+0.29

−0.00

Helmi 401 7.93+3.51
−6.14 12.07+51.03

−7.06 1.00+0.86
−0.00 3.49+1.52

−2.49 2.80+0.36
−2.49 0.02+0.28

−0.01

Pal 5 136 2.01+0.23
−0.63 27.59+1.46

−11.97 1.01+0.03
−0.01 5.01+0.00

−3.08 2.80+0.36
−1.97 0.01+0.09

−0.00

Orphan 117 1.91+1.26
−0.84 39.62+23.47

−24.00 1.00+0.04
−0.00 1.53+3.48

−0.53 3.16+0.00
−1.97 0.04+0.21

−0.03

GD-1/Orphan/Pal 5 weighted 322 2.96+0.25
−0.26 18.25+10.81

−5.54 1.01+0.06
−0.01 3.27+1.74

−2.27 1.95+1.21
−0.89 0.01+0.11

−0.00

GD-1/Helmi/Orphan/Pal 5 weighted 723 3.12+3.21
−0.46 59.92+3.18

−53.75 1.00+0.10
−0.00 2.87+2.15

−1.87 3.16+0.00
−2.33 0.12+0.18

−0.11

almost spherical. On the other hand, the foci are far apart relative
to the smaller scale of the disc potential, giving it a more oblate
shape.

None of the other parameters can be strongly constrained by
any of the streams. As the enclosed mass is a function of all five
potential parameters, we conclude that only combinations of these
five parameters, but not their individual values, can be constrained.

5.2 Results for the combined data set

The results of our analysis of combined stream data sets are shown
in Fig. 7 in the enclosed mass–aouter plane. The top panel shows the
results of combining all four streams, while the bottom panel shows
the results of combining GD-1, Orphan, and Pal 5.

The enclosed mass estimates of the two sets of combined results
are consistent with each other within 1σ . We find M(< 20 kpc) =
3.12+3.21

−0.46 × 1011 M# for the combination of four streams and M(<
20 kpc) = 2.96+0.25

−0.26 × 1011 M# for the combination of GD-1, Or-
phan, and Pal 5. As for the single-component potential, the three-
stream combination returns confidence limits that are smaller than the
limits for the four-stream combination. Notably, the mass estimates
from combined data sets appear robust against the adopted model for
the potential: they are consistent with those obtained with a single-
component potential (∼4.18+1.63

−0.70 × 1011 and ∼3.08+0.39
−0.35 × 1011 M#,

respectively). The change in the best-fitting estimates is 25 per cent
in the case of the four-stream combination and 4 per cent in the case
of the three-stream combination.

The analysis of the combined data sets again shows no significant
improvement over the individual results of Pal 5 and Orphan: the
four-stream combination places an upper limit of eouter ≤ 1.1, while

the combination of GD-1, Orphan, and Pal 5 limits it to ≤1.07, both
with a best-fitting value of ∼1.

The other parameters cannot reliably be constrained with the
current data. As seen in Fig. 7, the limits on the scale length of
the outer component extend almost the entire prior range when the
data of all four streams is used. The same applies for the scale
length of the inner component, the total mass, and the mass ratio
parameters. In contrast, with the combination of GD-1, Orphan, and
Pal 5 data, we see a smaller uncertainty region for aouter. However,
the lower limit of this region is defined by the edge of the allowed
parameter space of potentials producing bound orbits for all stars.
Relaxing this strict constraint would likely increase this region, also
allowing lower aouter (see discussion in Section 6.1). We conclude
that it is the combinations of the five model parameters that give a
fixed enclosed mass, rather than individual parameter values, that are
constrained.

Fig. 8 summarizes the results of the two-component model as
given in Table 2.

6 VA L I DAT I O N

Several types of different tests of this method with mock data have
previously been performed. In Sanderson et al. (2015), the authors
demonstrated that this method works for mock streams integrated
in an isochrone potential when also fitting an isochrone potential.
In Sanderson, Hartke & Helmi (2017), the authors showed that they
could recover a good approximation to a simulated cosmological
halo potential when fitting a simple, spherical NFW potential. This
was a simpler model than the ones we fit in this work, and had a
larger mismatch to the shape of the simulated halo that was being
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4182 S. Reino et al.

Figure 6. As in Fig. 2, but showing individual stream results for the two-component potential.

fitted (which was more triaxial than is expected for real haloes)
and to its radial profile (which was pronouncedly not NFW) than
we expect to be the case for the Stäckel models that we fit here,
which have already been shown to accommodate a Milky Way-like
rotation curve and allow for a variation in the degree of flattening with
radius.

Sanderson et al. (2015, 2017) also studied the effect of observa-
tional errors on the performance of this method extensively. They
found that including the Gaia errors serves to expand the uncertainty
regions slightly, compared to the error-free case, but that otherwise
the results are not significantly affected. This is supported by our
findings, as we will show in this section.

These works also found that the total number of stars used is less
important than the number of different streams represented. Although
it is perhaps a little surprising at first glance that we get good results
with so few streams (for comparison, Sanderson et al. 2017 used
15 streams and Sanderson et al. 2015 showed that about 20–25
streams are needed for the error bar sizes to converge), Sanderson
et al. (2015) also showed that already with five they started to get
a relatively unbiased answer in those tests (see discussion in their
section 7). Moreover, these tests were performed only with satellite
streams that are thicker than the globular cluster streams that we
make use of in this work.

In this section, we further validate our results by discussing the
effect of measurement errors, considering the consequences of clean-
ing our sample to restrict the analysis to the more informative stars,

reviewing our decision to discard potentials that produce unbound
stars, exploring the orbits that our results would produce for the
individual streams, and analysing stream orbital phase information.

6.1 Tests of fitting assumptions

To evaluate the impact that measurement errors would have on our
results, we run a test with the GD-1 sample where the input positions
and velocities are modified in the following manner. We draw the
new sky positions, proper motions, and radial velocities for each
GD-1 star from a normal distribution centred at the their measured
values with a width determined by the measurement uncertainties.
These new values are assigned as the stars’ current observables. The
estimated distances do not have formal measurement errors, but we
evaluate an uncertainty of 0.5 kpc based on the spread of the track
measurements as shown in the top left-hand panel of Fig. 1. We
again draw the new distances from a normal distribution centred at
our estimated distances with the width of 0.5 kpc. We transform
the modified observables to Galactocentric (x, v) and repeat our
analysis for the two-component potential model. The new result is
consistent with the original one. The 1σ region for the enclosed mass
parameter shifts only slightly compared to the original result: while
previously the 1σ region encompassed values from 3.08 × 1011 to
5.89 × 1011 M#, with the perturbed observables it shifts to include
a region from 3.33 × 1011 to 6.07 × 1011 M#. The best-fitting value
itself differs by ∼8 per cent from the result quoted in Table 2.

MNRAS 502, 4170–4193 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/3/4170/6128656 by Sim
ons Foundation user on 03 August 2021



Galactic potential constraints from streams 4183

Figure 7. As in Fig. 2, but showing the weighted combined data results
for the two-component potential. Top: results for our four-stream data set.
Bottom: results for the combination of GD-1, Orphan, and Pal 5.

To see how our results would change when relaxing the strict
condition that no stars must be unbound in accepted potentials, we
repeat our analysis for the GD-1 sample allowing for a maximum of
10 per cent of the stars to be unbound. We find that our results for
all parameters are unaffected: enforcing the strict no-unbound-stars
rule does not have any impact on the GD-1 results.

When we repeat this analysis for other streams, we find the
following.

(i) The enclosed mass parameter is similarly unaffected in the
case of the Orphan and Helmi streams. Pal 5 enclosed mass
region however does shift somewhat. While the original 1σ region
encompasses values from 1.38 × 1011 to 2.24 × 1011 M#, the region
that also allows 10 per cent of the stars to be unbound contains
values from 1.59 × 1011 to 2.83 × 1011 M#. The best-fitting value
itself differs by ∼7 per cent from the result quoted in Table 2.

(ii) The uncertainty regions of Pal 5 and Orphan now reach lower
in aouter as they are no longer limited by the edge of the allowed
parameter space (the grey points in Fig. 7). This confirms once again
that we are unable to meaningfully constrain any parameters besides
the enclosed mass.

To estimate the effect of cleaning up our stream sample by making
selections in angular momentum, we reanalyse the GD-1 stream in
the two-component potential without making any cuts to the original
sample of 82 stars. The most significant change in the results is that

the 1σ region for the enclosed mass has now been slightly extended.
While the previous 1σ region encompasses values from 3.08 × 1011

to 5.89 × 1011 M#, the region resulting from the uncleaned sample
contains values from 3.05 × 1011 to 6.14 × 1011 M#. The best-
fitting value itself differs by ∼6 per cent from the result quoted
in Table 2 that is well within the 1σ region for both fits. This is
consistent with our expectation that minor selections in constants-
of-motion space to clean up outliers slightly improve the constraints
but does not significantly bias the fit. When repeating our analysis
with the uncleaned samples of Pal 5 and Orphan streams, we find
that each stream has at least one star that is unbound across all the
trial potentials. We therefore additionally relaxed the no-unbound-
stars restriction, allowing for a maximum of 10 per cent of the
stars to be unbound as in the previous paragraph. The combined
effect further extends the uncertainty regions while having only a
minor effect on the best-fitting value. For Pal 5 the uncertainty
region now extends from 1.54 × 1011 to 2.96 × 1011 M#, only a
small increase from when we considered the cleaned sample with
10 per cent unbound stars in the previous paragraph. The best-fitting
value experiences ∼0.5 per cent change compared to the previous
case, and a total of ∼8 per cent change compared to the original result
quoted in Table 2. For Orphan, we see the 1σ region increase from
1.07 × 1011 to 3.17 × 1011 M# in the original case to 0.97 × 1011 to
3.42 × 1011 M#. The best-fitting value has changed by ∼7 per cent
from the result quoted in Table 2.

In conclusion, none of the above mentioned choices affect our
main result, the enclosed mass estimates, by more than 8 per cent;
all changes are far below 1σ .

6.2 Predicted orbits

Fig. 9 shows the results of orbit integration using the results of the
combined GD-1, Orphan, and Pal 5 analysis. We track four stars
in each of the GD-1, Pal 5, and Orphan streams. We do not show
the orbits for the Helmi stream because the Helmi stream’s stars
are phase mixed and do not exhibit coherent stream-like structure
in position space. Each shaded region corresponds to the star whose
current position has been marked with a dot of the same colour. The
edges of the shaded regions are defined by the potentials that produce
the highest and the lowest M(<20 kpc) among those that are within
1σ of the best-fitting potential. The figure confirms that the orbits
predicted by our analysis from GD-1 and Pal 5 are locally aligned
with the tracks of these streams.

Even though we see plausible orbits also for Orphan stream’s stars,
we do not expect perfect alignment here for two reasons. First, the
Orphan stream is a remnant of a dwarf galaxy and as such has a
larger energy spread than the GD-1 and Pal 5 streams. Second, the
Orphan stream has been shown to be perturbed by the LMC and any
potential that neglects the influence of the LMC is therefore unlikely
to find a perfect fit to the Orphan stream track.

6.3 Action space and stream orbital phase

In this section, we discuss the action-space characteristics of our
streams and validate the fit with orbital phase information that is not
utilized in our fitting method.

In the left-hand panel of Fig. 10, we show an example of the
KLD1 contours as a function of enclosed mass and scale length
of the outer component, for the GD-1, Pal 5, and Orphan streams
in the two-component model. For each data set, there is a clear
single peak in parameter space; the best-fitting model is marked
with the black cross. To give an idea of the difference in clustering

MNRAS 502, 4170–4193 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/3/4170/6128656 by Sim
ons Foundation user on 03 August 2021



4184 S. Reino et al.

Figure 8. Comparison of the best-fitting parameter values for the two-component potential with their 1σ confidence intervals for enclosed mass (left), scale
length (middle), and flattening (right). Results for individual streams are labelled with the stream name. Combined results are labelled with ‘GD-1/Orphan/Pal 5’
for the three-stream combination and ‘All’ for the four-stream combination. We remind the reader that e > 1 corresponds to an oblate potential in our convention.

associated with a given difference in KLD1, we also mark another
location in parameter space that has KLD1 lower than the best fit
(purple cross) for comparison. In the central panel, we show the
action distribution corresponding to the best-fitting models (black
cross), which should be the most clustered. For comparison, in the
right-hand panels, we show the action distribution corresponding to
the potential with lower KLD1 (purple cross), which shows a visibly
less clustered action distribution. The centroid of the cluster has also
moved, which is expected since the stream will be on different orbits
in the two different potentials.

The middle panel of Fig. 10 should also be compared with the
middle panels of Fig. B1 that shows individual stream best-fitting
action spaces.

Our fit only makes use of the action coordinates, while the
information about the orbital phase of each star is not used. Fig. 11
shows the histograms of the current λ for stars in GD-1 and Pal 5
streams in different potentials. The current λ positions of the stars
have been normalized to lie between the λmin and λmax positions of
each star’s orbit in the considered potential. Since λ corresponds
roughly to the radial direction in our spheroidal coordinate system,
the λmin and λmax can be viewed as the pericentre and apocentre
positions of these stars’ orbits. Fig. 11 then shows the approximate
orbital phase of each star in the given potential. Most of the GD-1
stars are near their apocentre in the best-fitting potential obtained
using GD-1 alone, in tension with other studies that have found GD-
1 to be near its pericentre (see Section 3). We also see that there is
considerable variation in the phases of the stars in the best-fitting GD-
1 potential. These issues disappear when we consider the GD-1 stars
in the potential that was best fit to the combination of GD-1, Orphan,
and Pal 5 data. All stars are now near their pericentre, as expected,
and there is a very clear agreement between the phases of the stars.

A similar, although less striking, behaviour is evident when we
consider Pal 5 stars. If we assume the best-fitting Pal 5 potential,
most of the stars are near the apocentre, as expected, but there are
still quite a few stars near pericentre as well. When switching to the
potential that is best fit for the combination of GD-1 and Pal 5 data,
we once again see a better agreement in the orbital phases of the
Pal 5 stars. The peak at apocentre is much better defined and there
are fewer outliers at all other phases.

These instances are illustrative of the biases to which fits of
individual streams are susceptible. For individual streams, maximal
clustering can occur with the wrong potential exactly because we are
not including any information about the current phase of the stars.
Stars are sorted along the stream based on their energies and this

sorting of energies should also be present in action space: stars that
have higher energies are on slightly larger orbits, and this should be
reflected in action space. However, since we are neglecting the phase
information (i.e. we do not know how far apart the stars are), we
can inadvertently lose this expected sorting of energy and allow the
formation of clusters that are smaller than the ones produced by the
true potential. However, the potential at which such a biased solution
occurs will be different for each different stream. Fitting multiple
streams simultaneously prevents these individual biases from being
confused with the true potential, since no individually biased solution
is preferred by more than one stream.

An example of this can be seen in Fig. B1, where we show a
comparison of the action space corresponding to individual-stream
and three-stream best-fitting potentials and the energy gradient
present in the formed clusters.

The most prominent example is given by the GD-1 stream, for
which maximal clustering is reached when all its stars are compressed
near Jλ ∼ 0 (first row middle panel of Fig. B1). As discussed above,
this is caused by a high enclosed mass that forces the stars to be
positioned at the apocentres of their orbits. However, we also see
that there is no clear energy gradient in the action-space cluster,
leading us to suspect that what we are selecting is not actually the
true potential. Turning to the action distribution of GD-1 in the best-
fitting three-stream potential (first row right-hand panel of Fig. B1),
we see a clear improvement: first of all, the stream is no longer
confined to near Jλ ∼ 0 (which is unreasonable as we expect the
orbit of GD-1 to have some radial variation) and, second, the energy
gradient along the action-space cluster is now evident. The same
effect can be observed in the case of the Orphan stream (third row
in Fig. B1). It is, however, not as obvious in the case of Pal 5 stream
(second row in Fig. B1). The latter is in line with expectation, as
the action space of the Pal 5 stream changes the least between the
two potentials and the KLD1 value also changes the least between
these potentials. That is to say, the KLD1 value of the best-fitting
three-stream potential (purple cross in Fig. B1) also has a fairly high
value in the Pal 5-only analysis, while the difference is greater for
both Orphan and GD-1.

7 C O M PA R I S O N A N D D I S C U S S I O N

In this section, we put our results into a broader context. We first
compare our enclosed mass estimates to those obtained previously
with different techniques, applied to the same stellar streams (Section
7.1). Next, we compare our results with other, more general mass
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Galactic potential constraints from streams 4185

Figure 9. The orbits for the GD-1 (top), Pal 5 (middle), and Orphan (bottom) streams. These shaded regions correspond to the allowed orbits of the stars whose
current position has been marked with a dot of the same colour. The edges of the shaded regions are defined by the potentials that produce the highest and the
lowest enclosed mass within 20 kpc among those that are within 1σ of the best-fitting results of the combined analysis of GD-1, Orphan, and Pal 5 streams.
Other stars in the stream are shown with purple dots. Axes are in the Galactocentric frame.

estimates (see Fig. 12). Then we comment on the overall potential
shape by qualitatively comparing our inferred Galactic rotation curve
with recent data (Eilers et al. 2019), and with the curve obtained from
the widely used potential from Bovy (2015) (Section 7.2).

7.1 Enclosed mass estimates

Our most precisely constrained parameter is the enclosed mass
at 20 kpc from the GD-1 stream 5.64+0.25

−2.56 (4.73+0.33
−1.05) × 1011 M#,

the Pal 5 stream 2.01+0.23
−0.63 (2.73+0.60

−0.74) × 1011 M#, the Orphan
stream 1.91+1.26

−0.84 (1.89+1.05
−0.60) × 1011 M#, and their combined data sets

2.96+0.25
−0.26 (3.08+0.39

−0.35) × 1011 M#. Here we quote our best-fitting val-
ues with 1σ uncertainties for the two-component (single-component)
model. The single-component accepted ranges are smaller and almost
entirely contained within the two-component model accepted ranges.
The relative change in best-fitting values between the two models is
19 per cent, 26 per cent, 1 per cent, and 4 per cent, respectively.

Our two-component model enclosed mass estimates should
be compared with recent mass measurements performed on the
same streams with independent techniques. With the orbit-fitting
method, Malhan & Ibata (2019) find a mass of M(<20 kpc) =
2.5 ± 0.2 × 1011 M# with GD-1 data. Our best-fitting GD-1
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Figure 10. Comparison of actions of GD-1 (orange points), Pal 5 (teal points), and Orphan (yellow points) produced by two different two-component potentials:
the best-fitting potential of the three-stream combination and another potential. Left: KLD1 values of the three-stream combination as a function of enclosed
mass and scale length of the outer component. The higher the KLD1 value, the more clustered the action space. Centre: action distribution of the best-fitting
potential (black cross in left-hand panel). Right: action distribution of a different potential with KLD1 0.46 lower than the corresponding best fit (purple cross
in left-hand panel). All Orphan stars have been shifted up by 2500 kpc km s−1 in Jν for clarity on both panels.

Figure 11. Histograms of the current λ for stars in GD-1 and Pal 5
in different two-component potentials, normalized by the pericentre and
apocentre positions of each star’s orbit to serve as a proxy for the orbital phase,
with pericentre at 0 and apocentre at 1. Top left-hand panel: the approximate
orbital phase of GD-1 stars assuming the best-fitting GD-1 potential. Top
right-hand panel: the position of GD-1 stars assuming the potential best fit
to the combined GD-1, Orphan, and Pal 5 data. Bottom left-hand panel: the
position of Pal 5 stars assuming the best-fitting Pal 5 potential. Bottom right-
hand panel: the position of Pal 5 stars assuming the potential best fit to the
combined GD-1, Orphan, and Pal 5 data.

measurement is more than twice as high as this. However, as
explained in Section 6.3, the measurement we yield with GD-1 data
using our method is a biased one that places all GD-1 stars incorrectly
at apocentre. A more meaningful comparison would be with our
results from the three-stream combined data. This is in agreement
with the Malhan & Ibata (2019) measurement on the low-mass end.

With their streakline modelling Küpper et al. (2015) obtain
M(<19 kpc) = (2.1 ± 0.4) × 1011 M# using Pal 5 data. This should
be compared with our M(< 19 kpc) = 1.81+0.21

−0.53 × 1011 M# when
only Pal 5 data are used or with M(< 19 kpc) = 2.71+0.20

−0.20 × 1011 M#
from the combined three-stream result. The latter is in agreement with
results obtained by Küpper et al. (2015) on low-mass end, while the
Pal 5-only result shows much greater agreement.

Erkal et al. (2019) fit the Orphan stream data using realistic
stream models generated by the modified Lagrange Cloud Stripping
technique and also include the influence of LMC in their Milky
Way potential. Their result of M(< 50 kpc) = 3.80+0.14

−0.11 × 1011 M#
should be compared with our Orphan-only measurement of M(<
50 kpc) = 6.78+2.00

−2.23 × 1011 M#. Our measurement is considerably
higher than that of Erkal et al. (2019). We speculate that the cause
for this could at least partly be the fact that we neglect the effect of
the LMC.

In contrast to the other streams, the Helmi stream stars fail to
find a preferentially high clustered configuration in action space for
our potential models, resulting in very poor parameter determina-
tion. There are several reasons for the strikingly weak parameter
constraints provided by the Helmi stream. First, all stars in our
Helmi stream sample are within the 6D Gaia volume, which is
likely only a small segment of the whole, phase-mixed stream. A
spatially limited ‘local sample’ like this produces a subtly biased
subset in action space (McMillan & Binney 2008) that could be
interfering with the fit for this stream. Given its confinement to the
6D Gaia volume, the Helmi stream also has the most limited range
of Galactocentric distances of any of the streams we include in our
data set. This makes it most susceptible to degeneracies between
total mass and scale radius, as discussed in Bonaca et al. (2014) and
Sanderson (2016). Second, the progenitor of the Helmi stream is a
dwarf galaxy, which are generally hotter (in terms of their velocity
dispersion) than streams from globular clusters. This means that the
Helmi stream stars naturally occupy a larger volume in action space
at lower density, compared to streams from globular cluster origin
such as GD-1 or Pal 5, and thus have a lower maximum value of
the KLD. This in turn places weaker constraints on the potential
parameters. Finally, as discussed in Section 3, of the four streams we
consider in this work, three are selected by standard observational
cuts, where interlopers will likely have quite different actions (for an
illustration, see Donlon et al. 2019). The Helmi stream is however
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Galactic potential constraints from streams 4187

Figure 12. Comparison of our two-component potential results with previous measurements of the enclosed mass at different radii. The light blue shaded area
represents the combined results for all four streams (left-hand panel) and for GD-1, Orphan, and Pal 5 (right-hand panel). The darker shaded regions show the
subset of the potentials that are compatible with the current measurements of the local standard of rest velocity. The black markers signify individual stream
results at their respective average radii. The coloured markers show measurements of the enclosed mass by other authors. The markers showing the results of
Koposov et al. (2010) and Newberg et al. (2010) are slightly offset from 20 and 50 kpc, respectively, for clarity.

identified and selected as a cluster in angular momentum space so
any interlopers remaining are likely to overlap with the true stream
members in action space, also increasing the minimum size of the
action-space cluster.

A visual comparison of our results with previous enclosed mass
measurements is shown in Fig. 12. Our mass estimates agree with
some of the recent measurements, while generally allowing for
masses that are higher than those from other measurements. We
speculate that these systematics are likely due to insufficiencies in
our Stäckel model of the potential and to the limited phase space
explored by the data set of four streams.

7.2 The Galactic rotation curve

To check the global performance of our results, we calculate the
resulting rotation curves for our two-component potentials (shaded
areas in Fig. 13) and benchmark them against the rotation curves of
GALPY’s MWPOTENTIAL2014 (Bovy 2015) (black dashed line) and
McMillan (2017) (cyan dashed line) and the data from Eilers et al.
(2019) (grey points). The average Galactocentric distance of the
stars of each stream is marked with a dot at the rotational velocity
curve of their respective best-fitting potential. At those locations,
we plot ‘error bars’ given by the rotation curve values produced by
potentials with KLD2 values below 0.5. This is also how the shaded
uncertainty regions have been computed for all Galactocentric
distances. The darker shaded regions represent the subset of these
potentials that also go through the local standard of rest. We have
taken the rotational velocity at the Sun’s location to be 232 km s−1

(Koppelman, Helmi & Veljanoski 2018, and references therein) with
an uncertainty of 10 per cent.

The single-component potentials (not shown here) do not provide
a good match to the shape of the Galactic rotation curve: their inner
rising slope is too shallow and their peaks are too far out. The two-
component potentials have much more flexibility and are able to
produce a realistic rotation curve. However, our uncertainties are
large and we note that the overall normalization remains somewhat

high with respect to the data points from Eilers et al. (2019), which
beyond ≥10 kpc are barely included in the lower rim of the shaded
region. When taking into account the additional constraint of the local
standard of rest velocity (marked by the red cross), we are able to fur-
ther resolve the velocity curves by discarding the surplus potentials.

Finally, a related method to the one used here was proposed by
Yang et al. (2020), who utilize the two-point correlation function as a
measure of clustering in the action space. They model the Milky Way
potential as a combination of the disc, bulge, and halo components
and calculate the actions using the Stäckel fudge approximation. As
opposed to this work, only the parameters of the halo component
are explored while others are held fixed. They apply their method
to ∼77 000 halo stars between 9 and 15 kpc with the full 6D phase-
space information from Gaia DR2. So, although using a similar
approach, they apply it to the halo stars rather than individual stellar
streams as we do here. In contrast to our work, they find the best-
fitting circular velocity curve to be 5–10 per cent lower than previous
measurements. We think this discrepancy could be due to two factors.
First, they fix the mass of the disc and bulge and fit only the halo
component, but with a small range of distances the scale radius is
very difficult to constrain, leading back to the total mass–scale radius
degeneracy. Thus if the data prefer a slightly less massive disc/bulge,
their fit would naturally lead to a lower circular velocity at higher
radius, since the halo component will be less massive at the radii of the
fit. Second, Yang et al. (2020) use a cut-off for the two-point function
that effectively limits the action-space size, and therefore the mass, of
clusters in the distribution to structures comparable to or more mas-
sive than Gaia-Enceladus, so their clustering analysis uses essentially
a completely different set of stars from ours. Therefore we do not
consider it too surprising that their result differs somewhat from ours.

8 C O N C L U S I O N S

In this paper, we apply the action-space clustering method to known
stellar stream data for the first time, and obtain constraints on
the Galactic potential. Specifically, we consider members of the
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Figure 13. Rotation curves corresponding to the results of the two-component potential model. The lighter shaded region shows the rotation curves for potentials
within 1σ of the best fit for each data set. The purple, orange, teal, and yellow data points correspond to the results of the Helmi, GD-1, Pal 5, and Orphan
streams, respectively: they show the rotation velocity of the best-fitting potential at the mean Galactocentric distance of the stars in that stream. The darker
shaded region shows the subset of the rotation curves that are compatible with the current measurements of the local standard of rest velocity. For comparison,
the dashed black and cyan lines are the rotation curves from the GALPY MWPOTENTIAL2014 (Bovy 2015) and McMillan (2017), respectively, and the grey dots
represent the data from Eilers et al. (2019).
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GD-1, Pal 5, Orphan, and Helmi streams, both individually and
in combination. The motivation for a simultaneous fit for multiple
streams lies in obtaining more stringent, and above all robust,
constraints on the mass profile over a range of Galactic distances.

Our conclusions are as follows.

(i) The most precise constraints on the parameters are obtained
with the GD-1, Orphan, and Pal 5 streams. In contrast, the Helmi
stream allows a much wider range of models. We speculate why this
is in Section 7.1.

(ii) Even when combining the streams that yield the most precise
constraints, the only parameter we can robustly constrain is the en-
closed mass, which we calculate at 20 kpc (corresponding to the mean
distance for stars in our sample) for comparison across all our fits.
For a two-component potential model we find for the GD-1 stream
M(< 20 kpc) = 5.64+0.25

−2.56, for the Orphan stream M(< 20 kpc) =
1.91+1.26

−0.84, for the Pal 5 stream M(< 20 kpc) = 2.01+0.23
−0.63, and for

their combination M(< 20 kpc) = 2.96+0.25
−0.26. The combination of all

four streams in our sample yields M(< 20 kpc) = 3.12+3.21
−0.46. Our

best enclosed mass results are consistent with recent measurements,
obtained with the same streams.

(iii) We have shown that fits from individual streams can lead to
biases when using the action-clustering method and discussed the
causes for this in Section 6.3. We have also shown that these biases
are cancelled by the simultaneous analysis of multiple streams.

(iv) Some additional bias in the fits to individual streams and
possible tension in their combinations could be introduced by the
insufficiencies in the Stäckel model. However, Sanderson et al.
(2015) showed in tests with mock streams that even if the model
is identical to the form of the true potential, different streams still
show different biases and parameter estimations generally do not
overlap until a sufficient number of streams are included in the
sample. Therefore, these inconsistencies cannot be solely traced
back to the use of the Stäckel potential. What additional bias
the use of the two-component Stäckel potential introduces when
modelling a Milky Way-like galaxy will be investigated in future
work. In particular, we intend to test the method on streams found
in cosmological hydrodynamical simulations from the Feedback in
Realistic Environments (FIRE) suite.

Future developments of this work should incorporate more data
from known streams, spread over a large range of Galactocentric
distances and with reliable 6D information for stellar members.
Moreover, our procedure, as tested here, can more broadly be applied
to a large ensemble of halo stars with 6D information without
knowing stream membership, as originally intended by Sanderson
et al. (2015). Data to do this over a sufficiently broad distance range
are within reach in the near future, thanks to upcoming spectroscopic
surveys, such as WEAVE (Dalton et al. 2012), 4MOST (de Jong
et al. 2019), Dark Energy Spectroscopic Instrument (DESI; Levi et al.
2019), SDSS-V (Kollmeier et al. 2017), and H3 (Conroy et al. 2019),
that will complement the increasingly precise next data releases of
the ESA Gaia mission.
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Peñarrubia J., Koposov S. E., Walker M. G., 2012, ApJ, 760, 2
Posti L., Helmi A., 2019, A&A, 621, A56
Price-Whelan A., 2017, Journal of Open Source Software, 2, 388
Price-Whelan A. M., Bonaca A., 2018, ApJ, 863, L20
Price-Whelan A. M., Mateu C., Iorio G., Pearson S., Bonaca A., Belokurov

V., 2019, AJ, 158, 223
Sanders J. L., Binney J., 2013a, MNRAS, 433, 1813
Sanders J. L., Binney J., 2013b, MNRAS, 433, 1826
Sanders J. L., Binney J., 2016, MNRAS, 457, 2107
Sanders J. L., Bovy J., Erkal D., 2016, MNRAS, 457, 3817
Sanderson R. E., 2016, ApJ, 818, 41
Sanderson R. E., Hartke J., Helmi A., 2017, ApJ, 836, 234
Sanderson R. E., Helmi A., Hogg D. W., 2015, ApJ, 801, 98
Schönrich R., Binney J., Dehnen W., 2010, MNRAS, 403, 1829
Sesar B. et al., 2017, AJ, 153, 204
Sharma S., Johnston K. V., 2009, ApJ, 703, 1061
Shipp N. et al., 2018, ApJ, 862, 114
Sohn S. T., Watkins L. L., Fardal M. A., van der Marel R. P., Deason A. J.,

Besla G., Bellini A., 2018, ApJ, 862, 52
Taylor M. B., 2005, ASP Conf. Ser., 347, 29
Thomas G. F., Famaey B., Ibata R., Renaud F., Martin N. F., Kroupa P., 2018,

A&A, 609, A44
Vasiliev E., 2019a, MNRAS, 482, 1525
Vasiliev E., 2019b, MNRAS, 484, 2832
Vera-Ciro C., Helmi A., 2013, ApJ, 773, L4
Watkins L. L., van der Marel R. P., Sohn S. T., Evans N. W., 2019, ApJ, 873,

118
Wenger M., Ochsenbein F., Egret D., Dubois P., Bonnarel F., Borde S.,

Genova F., et al., 2000, A&AS, 143, 9–22

Willett B. A., Newberg H. J., Zhang H., Yanny B., Beers T. C., 2009, ApJ,
697, 207

Yang T., Boruah S. S., Afshordi N., 2020, MNRAS, 493, 3061

SUPPORTI NG I NFORMATI ON

Supplementary data are available at MNRAS online.

streams table.txt

Please note: Oxford University Press is not responsible for the content
or functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the article.

APPENDI X A: DATA COLLECTI ON

We compile the 6D phase-space data for three of the four streams
used in this work (GD-1, Orphan, and Pal 5) from various lit-
erature sources. In this appendix, we describe in detail the data
assembly process for each individual stream (Sections A1–A3).
To convert from the assembled 6D heliocentric observables to
Galactocentric Cartesian coordinates, we further make the following
assumptions.

(i) The Sun is located at a distance of 8.2 kpc from the Galactic
Centre in the direction of the negative X-axis and 27 pc above the
Galactic plane in the direction of the positive Z-axis (Chen et al.
2001).

(ii) The Sun’s peculiar velocity is (11.1, 12.24, 7.25) km s−1

(Schönrich, Binney & Dehnen 2010).
(iii) The velocity of the local standard of rest is 232 km s−1

(Koppelman et al. 2018, and references therein).

A1 GD-1 data

We combine data from four literature sources to create a list of
identified GD-1 members with full 6D phase-space information.
Koposov et al. (2010) performed spectroscopic measurements for
23 GD-1 members at the Calar Alto Observatory. They also provide
stream track distances, i.e. estimates of constant distance for certain
intervals of the stream’s track. They divide the GD-1 stream into six
sections based on the stream-aligned longitude coordinate φ1 and
derive a distance to each by isochrone fitting using SDSS photometry.
Willett et al. (2009) list a further 48 high-confidence GD-1 members
in their table 2. The table includes individual radial velocities as
measured by the SEGUE survey, but no individual distances. Table 1
in Li et al. (2017) contains another 20 GD-1 stars with radial velocity
information from LAMOST. We select only the 11 stars that were
flagged by the authors as high-confidence members, i.e. candidates
with confidence level 1. In addition, we use the stream track distances
from Li et al. (2018) table 1, determined by fitting isochrones (i.e.
using the same strategy as Koposov et al. 2010) to 18 different
regions along the GD-1 stream. In total, this makes 82 candidate
GD-1 members with measured radial velocities. For these stars we
assemble the full phase-space information in the following way.

(i) The SDSS identifiers given in Koposov et al. (2010) table 1
and Willett et al. (2009) table 2 are matched with the corresponding
Gaia DR2 identifiers using SIMBAD (Wenger et al. 2000).

(ii) The Gaia DR2 identifiers for these two data sets are used to
acquire Gaia DR2 position and proper motion coordinates for each
star.
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Figure A1. Cuts performed to reach the final cleaned sample for GD-1,
Pal 5, and Orphan streams: discarded stars are shown in yellow and the final
sample is shown in purple. Left-hand panels: stars in µα–µδ space. Right-
hand panels: stars in Lz–L⊥ space.

(iii) The candidate members in the third data set, stars with
confidence level 1 in Li et al. (2017) table 1, are cross-matched
with the Gaia DR2 catalogue in TOPCAT (Taylor, 2005) using the
LAMOST right ascension and declination with a 1 arcsec search
radius to find their Gaia DR2 positions and proper motions.

(iv) LAMOST radial velocities have been shown to be underesti-
mated by 4.5 km s−1 (Anguiano et al. 2018). We correct for this by
adding 4.5 km s−1 to the quoted LAMOST radial velocities.

(v) Using the transformation matrix in the appendix of Koposov
et al. (2010) the stream-aligned longitude coordinate φ1 is cal-
culated using Gaia DR2 right ascension and declination for all
stars.

(vi) A polynomial of degree 2 is fitted to the combined stream track
distance data from Li et al. (2018) table 1 and Koposov et al. (2010)
table 3 using the inverted measurement uncertainties as weights.

(vii) The polynomial fit is then used to find distances to each star
based on their φ1 values (see the top left-hand panel of Fig. 1).

Finally, we make a further cut by discarding the 13 stars that are not
part of the central clump in Lz–L⊥ and µα–µδ space (see Fig. A1).

A2 Orphan stream data

We draw from two literature sources to build our Orphan stream
members list.

Koposov et al. (2019) identify 109 likely Orphan stream members
amongst the RR Lyrae stars in Gaia DR2, which are listed alongside
their heliocentric distances in their table 5. The stream track distances
defined according to the distribution of the RR Lyrae members are
given in their table C2. In addition, the stream radial velocity track
(given in the Galactic standard of rest) derived using likely Orphan
stream members found in the SDSS data is presented in their table 3.
We collect the 6D phase-space information for these 109 members
in the following way.

(i) We use TOPCAT to cross-match the stars in table 5 of Koposov
et al. (2019) with the Gaia DR2 catalogue, using a 1 arcsec search
radius.

(ii) We fit a polynomial of degree 2 to the radial velocity track
information from table 3 in Koposov et al. (2019) using the inverted
measurement uncertainties as weights.

(iii) The transformation matrix in appendix B of Koposov et al.
(2019) is used to find φ1 for all stars.

(iv) There are no radial velocity track measurements in the
negative φ1 part of the stream, leading the fit in that region to be
unreliable. Therefore, we neglect the 52 stars with φ1 < 0.

(v) The polynomial function is used to find a radial velocity
estimate for the remaining 57 stars based on their φ1 values (see
the bottom right-hand panel of Fig. 1).

(vi) Finally, since the fit to the radial velocities is done in the
Galactic standard of rest frame, we transform the vgsr assigned to the
stream members back to the heliocentric rest frame using the solar
reflex motion that Koposov et al. (2019) adopted for their transfor-
mation. This is necessary to maintain a uniform transformation of
all stars from heliocentric to Galactocentric Cartesian coordinates
across all samples, using consistent values for the solar position and
velocity.

Li et al. (2017) present 139 Orphan stream members with either
LAMOST or SDSS radial velocities. In this work, we use only the 82
highest confidence members, i.e. candidates with confidence level 1.
We find the full phase-space map for these stars using the following
steps.

(i) We use TOPCAT to cross-match the SDSS or LAMOST right
ascension and declination provided for the stars in Li et al. (2017)
with the Gaia DR2 catalogue, again using a 1 arcsec search radius.

(ii) As for GD-1, LAMOST radial velocities are corrected by
adding 4.5 km s−1 to the quoted values.

(iii) A polynomial of degree 4 is fitted to the points defining the
heliocentric distance track in table C2 of Koposov et al. (2019). We
assume the measurement errors of the RR Lyrae distances from Gaia
DR2 to be of order 5 per cent and use the inverted errors as weights
in the fit.

(iv) The transformation matrix in appendix B of Koposov et al.
(2019) is used to find φ1 for all stars.

(v) The polynomial function is used to find a distance estimate for
each star based on their φ1 values (see the top right-hand panel of
Fig. 1).

A cross-match between the two data sets using Gaia DR2 source
identifiers reveals two common stars: for these two stars we use
distances from Koposov et al. (2019) and radial velocities from Li
et al. (2017).

In summary, our data set consists of two stars with both radial
velocity and distance measurements, 80 stars with radial velocity
measurements and fitted distances, and 55 stars with distance
measurements and fitted radial velocities. The fitted estimates are
consistent with the spread of the measurements both in the case of
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distances and radial velocities, as can be seen in Fig. 1. Lastly,
a cut in in Lz–L⊥ and µα–µδ space is performed to discard
outliers. Our final Orphan sample thus consists of 117 stars (see
Fig. A1).

A3 Palomar 5 stream data

We use two literature sources to create a list of Palomar 5 (Pal 5)
stream members with a full 6D phase-space map.

Price-Whelan et al. (2019) find 27 Pal 5 stream members in the
sample of stars that appear both in the Pan-STARRS1 catalogue of
RR Lyrae stars (Sesar et al. 2017) and the RR Lyrae catalogues of
Gaia DR2 (Holl et al. 2018), presented with derived heliocentric
distances in table 2 of Price-Whelan et al. (2019). We build a full 6D
phase-space map for these 27 members using the following steps.

(i) We use the Gaia DR2 source identifiers in table 2 of Price-
Whelan et al. (2019) to determine Gaia DR2 positions and proper
motions for all stars.

(ii) We calculate the stream-aligned longitude coordinate φ1 using
the transformation matrix provided in Price-Whelan et al. (2017),
applied to the Gaia DR2 right ascension and declination, for all
stars.

(iii) The radial velocity track is created from measurements of
individual Pal 5 stream members in table 2 of Ibata et al. (2017).
We begin by cross-matching the table with the Gaia DR2 catalogue
in TOPCAT, using the right ascension and declination with a 1 arcsec
search radius. We then transform to stream-aligned coordinates using
the rotation matrices provided in Price-Whelan et al. (2017), and
select only the 115 stars that within ±15 km s−1 of −55.30 km s−1,
guided by the fit performed by Ibata et al. (2017).

(iv) A line is fitted to the radial velocities of the retained stars.
We add the uncertainties of the measurements and the membership
probability in quadrature and use the inverted values as weights in
the fit.

(v) The polynomial function is used to find a radial velocity
estimate for each star based on its φ1 value (see the bottom middle
panel of Fig. 1).

Ibata et al. (2017) present a sample of 154 members of the Pal 5
stream alongside their radial velocity measurements in their table 2.
We find the full 6D phase space for these stars in the following way.

(i) A cross-match between the stars in table 2 of Ibata et al. (2017)
and the Gaia DR2 catalogue is performed in TOPCAT using the right
ascension and declination with a 1 arcsec search radius. We find that
not all Ibata et al. (2017) stars cross-match to a unique Gaia star:
some Gaia stars are the best match for two (or in one case even
three) Ibata et al. (2017) stars. If possible, in each pair we select
the star that has a smaller angular distance to their Gaia match, and
discard the other star. In the cases where both stars in the pair have
the same angular distance to the Gaia star, we select one or the other,
randomly.

(ii) Using the transformation matrix provided in Price-Whelan
et al. (2017), we calculate the stream-aligned longitude coordinate
φ1 using Gaia DR2 right ascension and declination for all stars.

(iii) The distance track is created from table 2 in Price-Whelan
et al. (2019) by cross-matching the table with the Gaia DR2 catalogue
using Gaia DR2 source identifiers and transforming to stream-
aligned coordinates using the rotation matrices provided in Price-
Whelan et al. (2017).

(iv) A polynomial of degree 2 is fitted to these distances. The mea-
surement errors on the distances are of order 3 per cent (Sesar et al.

2017). We add these uncertainties and the membership probabilities
in quadrature and use the inverted values as weights in the fit.

(v) The polynomial function is used to find a distance estimate for
each star based on their φ1 values (Fig. 1, top middle panel).

After this procedure, the two data sets are joined (there are no
common stars in the two samples). Finally, we discard outliers in
Lz–L⊥ and µα–µδ space. This cut reduces our final Pal 5 sample to
136 stars (see Fig. A1).

This set of 136 stars contains 10 Ibata et al. (2017) stars that
originally had a duplicate with the same angular distance to their
matched Gaia star, as explained above. Although we use only one
set of these duplicates in our work, we find that if we use the alternate
set of 10 stars instead, our results for Pal 5 would remain virtually
unchanged: for the single-component model the best-fitting value
changes 6 per cent while for the two-component model there is no
change to the best-fitting value. In both cases the range of values that
the 1σ region encompasses remains unchanged.

APPENDI X B: KLD1 EXAMPLE

Here, we briefly discuss the determination of the best-fitting values
using the KLD1 (equations 17 and 20). Fig. B1 shows a comparison
of the action space of individual-stream best-fitting potential and the
three-stream best-fitting potential. In the left-hand panels, we show
the KLD1 contours as a function of enclosed mass and scale length
of the outer component, for the GD-1, Pal 5, and Orphan streams in
the two-component model. The best-fitting model is marked with
the black cross and the location of the three-stream best-fitting
potential is marked with a purple cross for comparison. In the central
panels, we show the action distribution corresponding to the black
cross potential, and in the right-hand panels, we show the action
distribution corresponding to the purple cross potential. Finally, the
stars in action space are coloured based on their energies.

Table B1 summarizes the KLD1 values of the best-fitting results
for all streams and stream combinations. Since these values are per
star, they also serve as a measure of how intrinsically clustered each
stream’s stars are (in the individual fits) and how clustered the total
distribution is (for the consensus fits). We remind the reader that the
higher the KLD1 value, the greater the clustering in action space.

For the individual fits, GD-1 and Pal 5 can achieve the tightest
clustering across all models, while the Helmi and Orphan streams
are less clustered. GD-1 and Pal 5 are thought to originate from
globular clusters (in Pal 5’s case the progenitor is known), while
Orphan and Helmi are more likely disrupted satellite galaxies. The
tighter clustering of the globular cluster streams compared to the
satellite streams is consistent with the smaller total phase-space
volume of globular clusters compared with satellite galaxies. The
Orphan stream is substantially less clustered than Helmi according
to this measure, but this may be partially due to the localized nature
of the sample of Helmi stream stars, which likely do not fully sample
the phase-space volume occupied by its progenitor.

Differences between the KLD1 of consensus fits and the KLD1
for each individual stream provide some indication of the degree of
tension between the best-fitting potentials preferred by each stream
individually. This is another way of understanding the trade-off
between the precision of the individual stream fits and the improved
accuracy of the combined fits.

When combining GD-1, Orphan, and Pal 5, this tension reduces the
information content per star compared to the maximum clustering of
both Pal 5 and GD-1, but increases it compared to Orphan. However,
for the combined fit from all streams, there is more tension: the
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Figure B1. Comparison of action space of GD-1 (top panels), Pal 5 (middle panels), and Orphan (bottom panels) produced by two different two-component
potentials. The action of stars are coloured based on their energies. Left: KLD1 values of corresponding individual stream analysis given as a function of
enclosed mass and scale length of the outer component. The higher the KLD1 value, the more clustered the action space. Centre: action distribution of the
best-fitting individual-stream potentials (black cross in left-hand panel). Right: action distribution of the same stream in the best-fitting three-stream potential
(purple cross in left-hand panel). The KLD1 value of the purple cross potential in a single-stream analysis is reduced by 0.57 (for GD-1), 0.35 (for Pal 5), and
0.52 (for Orphan) compared to the KLD1 value of the black cross potential.

Table B1. KLD1 values for the best-fitting results from individual
and combined streams for single-component (1-comp) and two-
component (2-comp) potentials.

Stream 1-comp 2-comp

GD-1 17.37 16.64
Helmi 13.43 13.43
Pal 5 14.81 13.71
Orphan 9.85 9.84
GD-1/Orphan/Pal 5 standard 11.83 –
GD-1/Orphan/Pal 5 weighted 11.95 11.72
GD-1/Helmi/Orphan/Pal 5 standard 11.57 –
GD-1/Helmi/Orphan/Pal 5 weighted 10.99 11.06

individual KLD1 values for three of the streams are much higher

than the combination value, but are likely offset in this somewhat by
the intrinsically less clustered Orphan stream.

Finally, the difference between the best-fitting KLD1 for different
potentials used for the consensus fits indicates how much more
(or less) clustering per star is achieved by a change to the model,
allowing us to do model comparison. The Akaike information
criterion (Akaike 1974) is based on this concept, although it is
usually expressed in terms of a log-likelihood. Moving from the
one- to two-component model produces little to no increase (and
sometimes a decrease) for each individual stream and for the two-
stream combined model, underlining our finding that most of the
additional parameters are not well constrained.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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