
Linear Algebra and its Applications 574 (2019) 123–152

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Graphs with absorption: Numerical methods for the

absorption inverse and the computation of
centrality measures
Michele Benzi a,∗, Paraskevi Fika b, Marilena Mitrouli b
a Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
b University of Athens, Department of Mathematics, Panepistimiopolis, 15784
Athens, Greece

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 August 2018
Accepted 26 March 2019
Available online 3 April 2019
Submitted by R. Brualdi

MSC:
primary 15A09
secondary 65F20, 05C81, 94C15

Keywords:
Laplacian matrix
Group inverse
Absorption inverse
Centrality measure
Matrix factorizations
Krylov subspace methods
Preconditioning

The absorption inverse, studied in Jacobsen and Tien (2018)
[13], is a generalized inverse specifically introduced for the
analysis of graphs with absorption. In this paper we consider
numerical methods for the efficient computation of the absorp-
tion inverse and related quantities. Both direct and iterative
methods are developed. We also consider different centrality
measures for graphs with absorption, as well as fast updat-
ing/downdating techniques. Numerical experiments show that
computations on graphs with up to 36 million edges can be
performed quickly on a standard laptop.

© 2019 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: michele.benzi@sns.it (M. Benzi), pfika@math.uoa.gr (P. Fika),

mmitroul@math.uoa.gr (M. Mitrouli).

https://doi.org/10.1016/j.laa.2019.03.026
0024-3795/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.laa.2019.03.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:michele.benzi@sns.it
mailto:pfika@math.uoa.gr
mailto:mmitroul@math.uoa.gr
https://doi.org/10.1016/j.laa.2019.03.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2019.03.026&domain=pdf

124 M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152

1. Introduction

Let G = (V, E, w) be a weighted graph, directed or undirected, and let A ∈ Rn×n be
the associated adjacency matrix whose non-zero entries aij correspond to the weight of
the edge from node j to node i. Then, the graph Laplacian matrix L ∈ Rn×n is given
by L = W − A, where the matrix W ∈ Rn×n is diagonal with each entry wii given by
the sum of outgoing weights from the node i, i.e., wii =

∑n
j=1 aji (weighted outdegree).

It is well known that rank(L) ≤ n − 1 and that equality holds if and only if the graph is
strongly connected. If the graph is reducible, the adjacency matrix A (and hence L) can
be permuted to block triangular form (block diagonal if the graph is undirected) with
irreducible diagonal blocks, one for each strongly connected component of the graph;
the considerations and algorithms in this paper can then be applied to each diagonal
block separately. Therefore, unless otherwise specified, we will always assume that G is
strongly connected.

We caution the reader that the convention “aij $= 0 if there is an edge from node j to
node i” differs from that adopted in most papers and books on graph theory. Here we
adopt this convention in order to be consistent with the notation used by the authors of
[13], on whose work this paper builds. The convention implies that for any graph, L has
zero column sums.

Following [13], we consider graphs with absorption, i.e., we suppose that each node of
the graph represents a transient state in a Markov process, and that each transient state
comes with a transition rate di > 0 to an absorbing state (labeled n + 1). Such graphs
arise naturally in many applications, for example in the modeling of disease spreading in
community networks [22]. Let d = [d1, . . . , dn]T be the vector of absorption rates. The
resulting graph with absorption is denoted by (G, d). Let now L be the Laplacian matrix
associated with G. The authors of [13] introduced a generalized inverse of L that captures
much valuable information about transient random walks on the graph by combining
the known node absorption rates di with the structural properties of the underlying
graph G encoded in the Laplacian matrix L. The definition and basic properties of the
absorption inverse are given in Section 2. Among other things, the absorption inverse
can be used to define a notion of distance, as well as a centrality measure for ranking
the nodes in an absorption graph. Furthermore, the absorption inverse can be used for
graph partitioning purposes. The authors of [13] left open the issue of devising efficient
computational approaches for computing the absorption inverse or quantities associated
with it, such as the centrality vector. In this paper we address the efficient computation
of these quantities, as well as other computational aspects, including the problem of how
to perform cheap updates of the quantities of interest when the underlying absorption
graph undergoes a modification (such as the addition/deletion of an edge). In addition,
we propose alternative centrality measures based on the absorption inverse, which give
more weight to the graph topology (compared to the measure proposed in [13]) while
still taking into account the absorption rates associated with the graph nodes.

M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152 125

The remainder of the paper is organized as follows. In Section 2 we provide some basic
definitions and facts about the absorption inverse. Section 3 is devoted to a discussion
of centrality measures based on the absorption inverse. The core of the paper, Section 4,
is devoted to a description of direct and iterative methods for the accurate and efficient
computation of the absorption inverse and related quantities. The updating/downdating
problem and techniques for estimating individual entries of the absorption inverse are
studied in Sections 5 and 6, respectively. Numerical experiments illustrating the perfor-
mance of the various algorithms on both undirected and directed graphs with absorption
are presented in Section 7. Finally, Section 8 contains some conclusive remarks.

Throughout the paper, the superscript T denotes the transpose and ei stands for the
ith column of the identity matrix of dimension n, denoted In. We denote by 1 and 0 the
column vectors of length n of all ones and of all zeros, respectively. The m × n matrix
with all zeros is denoted by 0m,n.

2. Preliminaries and background

Recall that a matrix X− is said to be a {1, 2}-inverse of a matrix X if it satisfies the
first two of the Penrose conditions, namely

XX−X = X, X−XX− = X− , (1)

see [6]. We also recall that a matrix that satisfies the first (but not necessarily the second)
condition in (1) is called a {1}-inverse of the matrix X.

The absorption inverse of L with respect to d, denoted as Ld, is a {1, 2}-inverse X of
L which satisfies the following conditions:

XLy = y, for y ∈ N1,0,

Xy = 0, for y ∈ R1,0,

where

N1,0 = {x ∈ Rn : Dx ∈ Range(L)},
R1,0 = {Dx : x ∈ Ker(L)},

and D is the diagonal matrix whose entries are the absorption rates d1, d2, . . . , dn. We
write X = Ld. Various representations and properties of Ld can be found in [13]. For
later use, we list here three basic results from [13].

Proposition 1. [13, Theorem 2] Let (G, d) be a strongly connected graph with positive
absorption vector d. Then Ld exists and is unique.

Proposition 2. [13, Theorem 3] Under the same assumptions of Proposition 1, the fol-
lowing identity holds:

126 M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152

Ld = (In − V D)Y (In − DV), (2)

where Y is any {1}-inverse of the Laplacian matrix L, V = v1T /d̃, v is a positive vector
in Ker(L) with

∑n
i=1 vi = 1, and d̃ = dTv.

We emphasize that Ld, being unique, does not depend on the choice of the {1}-inverse
Y (there are infinitely many such generalized inverses of L). We also note that the
Perron–Frobenius theorem guarantees the existence of a unique positive vector v ∈
Ker(L) with

∑n
i=1 vi = 1.

Proposition 3. [13, Proposition 2] Under the same assumptions of Proposition 1, the
following identity holds:

Ld = D−1(LD−1)# , (3)

where (LD−1)# is the group inverse of LD−1.

We recall that the group generalized inverse of a square matrix A of index one is the
unique matrix A# such that AA#A = A, A#AA# = A# and AA# = A#A. See [6] for
further details.

Below we prove two simple additional facts about the absorption inverse.

Remark 1. It is a simple consequence of the definition that the absorption inverse Ld

is unaffected under scaling of the absorption rates. This implies that in a graph with
absorption, a node is characterized by its absorption rate relative to that of the others;
i.e., only ratios di/dj (with j $= i) are meaningful, not the actual values di and dj .
Therefore, a graph of type (G, 1) is equivalent to a “standard” graph, in the sense
that only the connectivity properties of the nodes matter, and not their relation to the
absorbing state of the underlying Markov process. In the following, we will refer to this
case as the “equal absorption” case. Note that for such a graph we have Ld = L# by
Proposition 3. Thus, as observed in [13], the absorption inverse can be regarded as a
generalization of the group inverse to the case of graphs with absorption.

Proposition 4. The matrices LLd and LdL are similar under the diagonal transforma-
tion D.

Proof. We give two proofs of this fact.

(1) From Theorem 1 and Lemma 1 in [13] we have that LdL = In − V D and LLd =
In − DV , hence LLd = DLdLD−1 since LLdD = (In − DV)D = D − DVD =
D(In − V D) = DLdL.

(2) By Proposition 3 we have that Ld = D−1(LD−1)#. Then using the third property
of the group inverse and the equality (LD−1)# = DLd, we have that the rela-

M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152 127

tion (LD−1)#(LD−1) = (LD−1)(LD−1)# implies DLd(LD−1) = (LD−1)DLd, i.e.,
DLdLD−1 = LLd. ✷

In the next section we discuss the use of the absorption inverse to define node centrality
measures for graphs with absorption.

3. Graph centrality measures

One of the fundamental problems in the study of real-world networks is the identifi-
cation of the most important nodes in the network [7,19]. Since the notion of importance
is clearly context-dependent, it is not surprising that many different notions of central-
ity have been proposed in the literature. A centrality measure specifically designed for
graphs with absorption has been proposed in [13]. We recall that a (possibly weighted)
directed graph is said to be balanced if for every node i in the graph, the indegree equals
the outdegree:

∑n
j=1 aij =

∑n
j=1 aji. Note that in this case 1TL = 01,n and L1 = 0n,1.

For a balanced, strongly connected graph with absorption the authors of [13] propose to
rank the nodes using the entries of the vector Ld1; that is, the centrality score of the
ith node is given by the ith row sum of the absorption inverse Ld. The reason for this
specific notion of centrality is grounded in the probabilistic interpretation of the entries
of Ld and is related to the behavior of the absorbing random walk associated to (G, d).
Roughly speaking, a node which is “near” the absorbing state of the random walk has low
centrality, since the system being considered is likely to spend little time in such a state.
Conversely, a high centrality node will be “far” from the absorbing state and therefore
the system is likely to spend a relatively large fraction of time in the corresponding state.
We refer to [13] for a more precise discussion.

As noted by the authors of [13], the entries of Ld1 can be negative, which is con-
trast with virtually all other known centrality measures. This, however, is only a minor
drawback: in fact, the resulting ranking of the nodes is still meaningful, with the node
with the lowest (i.e., leftmost) centrality score being ranked at the bottom, the second
lowest just above it, and so on. The authors of [13] argue that the centrality measure Ld1
takes into account both the graph structure and the absorption rates. However, when
the absorption rates are all equal it holds that Ld1 = 0. To see this, note that for D = In
we have Ld = (In − V)Y (In − V) and for a balanced graph

(In − V)1 = 1 − V 1 = 1 − v1T

1Tv1 = 1 − 1 = 0,

since v = 1
n
1. Therefore, when the absorption rates are all equal, this measure is unable

to distinguish between the nodes in the graph. For example (as noted by the authors),
all nodes in any star graph are given the same centrality score. Hence, in the special
case when all the absorption rates become equal, the centrality measure based on Ld1
does not reduce to any known centrality measure for “standard” graphs, since all such

128 M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152

measures would rank the hub of the star graph as the most central node, with all the
other nodes being tied for a (distant) second place. By continuity, if the absorption rates
are all different but close to one another, the centrality scores will also be close and the
centrality measure will have difficulties differentiating between nodes, regardless of the
graph topology. This suggests that the proposed centrality measure gives relatively little
weight to the graph topology, with the absorption rates being far more important for
the ranking of the nodes.

In [13], the authors left open the possibility of defining alternative centrality measures
for graphs with absorption. In this section we introduce some modifications to the mea-
sure proposed in [13] that aim at giving more weight to the topology of the graph, so
that in the limit of equal absorption rates the centrality measure is still able to discrim-
inate between nodes for most types of graph. We also consider centrality measures that
are able to take into account the dual role each node plays in a directed graph, namely,
that of a “broadcaster” (or “hub”) and that of “receiver” (or “authority”). While in a
balanced graph this distinction is less crucial (and disappears in the special case of undi-
rected graphs), here we would like to drop the assumption of balancedness and therefore
it becomes important to be able to account for both roles.

As a motivating example, consider a directed graph representing a communication
or information network. Suppose that in this graph there is an absorbing node, labeled
n + 1. This is also called a “dangling” node or “sink”: information can reach this node,
but the node cannot communicate it to any other node. Nodes 1 through n are assigned
prescribed absorption rates. It is clear that in such a graph, topology plays an important
role, and any centrality measure must properly account for the role each node plays in
the robustness and efficiency of information flow on the network. This requires centrality
indices that strike a balance between the distance from the absorbing state and the
structural properties of the graph G.

Our first proposal is to replace Ld1 with the vector LdW1 = Ldw, where w =
diag(W). This variant is similar to other centrality measures, such as the use of
a “personalization vector” in Google’s PageRank algorithm [16] or the well-known
Katz index [15], which can be written (for a weighted undirected graph) in the form
(In − αA)−1A1 = (I − αA)−1w, with 0 < α < 1/‖A‖2.

As we shall see, this centrality measure is able to discriminate between nodes except
for very special situations such as when the graph is balanced and the diagonal matrix
W is proportional to the absorption matrix D, i.e., W = µD for some µ > 0. In this case
we have

LdW1 = µLdD1 = 0. (4)

Equation (4) follows from

LdD1 = (In − V D)Y (In − DV)D1

M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152 129

and the fact that

(In − DV)D1 = (D − DVD)1 = D1 − D1 = 0.

Indeed, we have

V D1 = v1Td
dTv = (1/n)1Td1

(1/n)dT1 = 1,

due to the already observed fact that v = (1/n)1 for a balanced graph.
The case of W = µD is highly unlikely to occur in practice. For instance, it can

happen in the following cases:

1. All absorptions are equal and the weight matrix W is proportional to the identity,
for example in a cycle graph Cn;

2. In a star graph Sn−1, when the absorption rates are all equal except from the central
node that has absorption rate equal to n − 1 times the others’ rate.

Obviously, the measure LdW1 gives the same node ranking as Ld1 when the weighted
outdegrees of the nodes are all equal, i.e., when W = µIn, such as in the case of the
(unweighted) cycle graph Cn.

An alternative centrality measure can be obtained from the diagonal entries of the
matrix LdW . As argued in [13, page 137], the entry Ld

ij of Ld gives an indication of the
time spent in vertex i in a transient random walk starting at vertex j.1 Since a transient
random walk that starts at an important (highly central) node is likely to return often to
that node, it is reasonable to take Ld

ii as a measure of the centrality of node i in (G, d).
We point out here the resemblance of this measure with subgraph centrality [8], which
consists of taking the diagonal entries of some function of the adjacency matrix, such as
the matrix exponential or the resolvent; this corresponds to taking weighted sums of the
number of walks on the graphs that visit node i, with longer walks being given a smaller
weight.

An advantage of this index is that for a strongly connected graph, it is guaranteed to
be positive (see [13, Corollary 4]). However, it suffers from the same potential drawback
of the row sums of Ld, namely, it tends to discount the role of node connectivity within
the underlying weighted graph. Similar to our previous variant, we propose instead to
take the diagonal entries of LdW as the centralities of the corresponding nodes. This
simply amounts to multiplying the diagonal entries of Ld by the weighted outdegrees
of the corresponding nodes. Clearly, the resulting centrality measure is strictly positive.
Also, it is able to discriminate between nodes in certain situations where LdW1 cannot.

1 Strictly speaking, this interpretation is valid provided that absorption is slow relative to transitions
between vertices, i.e., ‖D‖ $ ‖L‖. However, Remark 1 implies that we can always rescale the entries of D
without affecting the entries of Ld, therefore we can always assume this assumption to be satisfied.

130 M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152

Table 1
Centrality scores of the star graph with absorption rates d = [1, 2, 0.1, . . . , 0.1]T (Case 1), d =
[0.2, 0.1, . . . , 0.1, 0.2]T (Case 2) and d = 1 (Case 3).
Node Case 1 Case 2 Case 3

LdW1 Ld1 diag(LdW) LdW1 Ld1 LdW1
1 1.54e0 9.09e-1 8.40e-1 −1.11e0 −5.56e-1 −1.02e-1
2 −1.89e0 −1.09e0 2.69e-1 2.22e-1 2.22e-1 −1.02e-1
3 4.62e0 2.71e0 1.35e0 2.22e-1 2.22e-1 −1.02e-1
4 4.62e0 2.71e0 1.35e0 2.22e-1 2.22e-1 −1.02e-1
5 4.62e0 2.71e0 1.35e0 2.22e-1 2.22e-1 −1.02e-1
6 4.62e0 2.71e0 1.35e0 2.22e-1 2.22e-1 −1.02e-1
7 3.97e0 1.91e0 2.47e0 5.56e-1 0 6.12e-1

Fig. 1. The star graph S6 with absorptions rates d = [1, 2, 0.1, . . . , 0.1]T (left) and d = [0.2, 0.1, . . . , 0.1, 0.2]T
(right).

A disadvantage of this measure is that for very large graphs it is generally much more
expensive to compute than that based on LdW1.

In the case of unbalanced graphs, we consider as centrality measure the quantity
LdWs1, where Ws = Wo +Wi, Wo is the diagonal matrix with the weighted outdegrees
(its ith diagonal entry being given by

∑n
j=1 aji), and Wi is the diagonal matrix with

the weighted indegrees (its ith diagonal entry being equal to
∑n

j=1 aij). Note that this
yields an overall centrality ranking of the nodes, but it does not differentiate between
the two roles (broadcaster and receiver) a node plays in a directed graph. Therefore
we also consider the measures LdWo1 and LdWi1 for ranking hubs and authorities,
respectively. Along the same lines as in the balanced case, if the matrix D is proportional
to the identity and the same holds for any of the matrices Ws, Wo and Wi, then the
corresponding centrality measures are uninformative.

Example 1. Let us first consider the (unweighted, undirected) star graph S6, with six
peripheral nodes and the 7th node as the center node. This graph was also used in the
numerical examples in [13]. In Table 1 we report the centrality scores of each node using
the LdW1 and Ld1 centrality measures, for two different sets of absorption rates (see
Fig. 1). In the last column of the table, the measure LdW1 is tested for the case of all
equal absorptions (D = In). We recall that in this case Ld1 = 0, therefore the measure
proposed in [13] is unable to differentiate the center node from all the other nodes (thus

M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152 131

we do not include it in the tables). While this is justifiable in terms of the fact that each
node in S6 represents a transient state with equal absorption rate to the absorbing state
(in the underlying absorbing random walk), it may be desirable to also take into account
the obviously prominent role the center node plays in the topology of S6. Put differently,
the measure LdW1 can be regarded as using a somewhat different metric (as compared
to Ld1) when measuring node distances from the absorbing state.

From Table 1 we can see that in the first case, where the center node has the same
absorption rate (= 0.1) as the peripheral nodes 3, 4, 5, 6 while nodes 1 and 2 have absorp-
tion rates 1 and 2, respectively, the LdW1 measure ranks the center node as the second
most important, behind the nodes 3, 4, 5, 6 (all given equal rank); the nodes 1 and 2 are
ranked as the least important ones. Likewise, the Ld1 measure ranks the nodes 3, 4, 5, 6
as the most important, followed by the center node; again, nodes 1 and 2 are ranked
as the least important nodes. In contrast, using the diagonal entries of LdW results in
the center node being ranked as the most important one, followed by nodes 3, 4, 5, 6
(all given equal rank), with nodes 1 and 2 again being ranked as the least important.
It is also worth noting that for star graphs with more than 30 nodes, the center node
becomes the most central node also according to LdW1, when the absorption rates are
again d = [1, 2, 0.1, . . . , 0.1]T . This shows that incorporating the weighted degree matrix
W in the centrality measure results in the connectivity of the graph playing a larger role
than with Ld1.

In the second case, where the center node has the same absorption rate as node 1
(equal to 0.2) and all the other peripheral nodes have absorption rates equal to 0.1, the
measure LdW1 ranks the node 7 as the most important, whereas the measure Ld1 ranks
the peripheral nodes 2 − 6 as the most important (all with the same score), followed
by the center node and finally by node 1. The same ranking is also obtained using the
diagonal entries of LdW (not shown); however, as in case 1, when the number of nodes
n + 1 is large enough, the center node in Sn becomes the most important.

We observe that when using LdW1 to rank nodes in a n-node star graph in which
the absorption rates are equal for all nodes except for the center node, this remains
the most important one as long as its absorption rate is less than n − 1 times that
of the others, whereas it becomes the least important one when its absorption rate is
greater than n −1 times the others’ rate. As already mentioned, the measure is unable to
discriminate among nodes when the absorption rate of the center node is exactly n − 1
times that of the other nodes.

Finally, in the last column of Table 1 we see that the centrality scores obtained using
LdW1 are the expected ones in case of all equal absorptions.

Example 2. Let us consider a path graph and a cycle graph with 8 nodes, again with all
weights equal to 1 (see Fig. 2). In Table 2 we present the centrality scores of their nodes
using the LdW1 and Ld1 centrality measures. In the cycle graph, for the absorption
rates d = 1, it holds W = 2D and thus LdW1 = 0. Therefore, the measure diag(LdW)
is used instead.

132 M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152

Table 2
Centrality scores of the path graph and the cycle graph with absorption rates d = 1 (Case 1) and d =
[1, 1, 2, 1, . . . , 1]T (Case 2).
Node Path Cycle

Case 1 Case 2 Case 1 Case 2
LdW1 LdW1 Ld1 diag(LdW) LdW1 Ld1

1 −8.75e-1 −1.63e0 −4.07e-1 1.31e0 2.96e-1 1.48e-1
2 −1.25e-1 −1.07e0 −5.19e-1 1.31e0 −2.59e-1 −1.30e-1
3 3.75e-1 −9.63e-1 −7.41e-1 1.31e0 −1.04e0 −5.19e-1
4 6.25e-1 2.59e-1 −1.85e-1 1.31e0 −2.59e-1 −1.30e-1
5 6.25e-1 1.04e0 2.59e-1 1.31e0 2.96e-1 1.48e-1
6 3.75e-1 1.37e0 5.93e-1 1.31e0 6.30e-1 3.15e-1
7 −1.25e-1 1.26e0 8.15e-1 1.31e0 7.41e-1 3.70e-1
8 −8.75e-1 7.04e-1 9.26e-1 1.31e0 6.30e-1 3.15e-1

Fig. 2. The 8-node path graph (left) and the 8-node cycle graph (right).

In Table 2 we notice that in the case of all equal absorptions, the measure LdW1
ranks the nodes 4 and 5 as the most important in the path graph. In the case of the
cycle graph, the measure diag(LdW) gives the same centrality scores for all nodes. This
is as expected. In case that all nodes have the same absorption rate equal to 1, except for
node 3 that has absorption rate 2, we observe the following. In case of the path graph, the
LdW1 measure ranks the node 6 as the most important, whereas the Ld1 measure ranks
the node 8 as the most important. This happens because this measure takes into account
the distance from the highly absorbing node. Changing the absorption rate of node 3
to any value > 1 (even for 1.000001 or smaller) the measure Ld1 still gives the node 8
as the most important, whereas, the measure LdW1 is being “adjusted”. For instance,
testing the measure LdW1 by setting d = [1, 1, 3, 1, . . . , 1]T , the node 7 becomes the
most important and for d3 > 7 the node 8 becomes the most important. Actually, for
any n-nodes path graph, when the absorption rates are all equal except for one node,
say node i, one of the two peripheral nodes becomes the most “significant” when the
absorption rate of node i is greater than n −1 times the others’ rate. In case of di = n −1,
then the nodes 1 and 2 have the same centrality scores, as well as nodes n and n − 1.
In case of the cycle graph, the two measures have the same behavior, ranking node 7 as

M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152 133

Fig. 3. A 7-node balanced graph (left) and a 8-node unbalanced graph (right).

Table 3
Centrality scores of the graph of Fig. 3 (left) with absorption rates d = 1 (Case 1), di = 1, i = 1, . . . , 8, i %= 4
and d4 = 1.1 (Case 2), d4 = 2 (Case 3) and d4 = 3 (Case 4).
Node Case 1 Case 2 Case 3 Case 4

LdW1 LdW1 Ld1 LdW1 Ld1 LdW1 Ld1
1 −3.27e-1 −3.12e-1 1.27e-2 −1.25e-1 1.56e-1 1.48e-1 3.46e-1
2 3.88e-1 3.78e-1 −1.39e-3 3.75e-1 3.12e-2 4.81e-1 1.23e-1
3 −3.27e-1 −3.12e-1 1.27e-2 −1.25e-1 1.56e-1 1.48e-1 3.46e-1
4 5.31e-1 4.48e-1 −4.36e-2 −1.25e-1 −3.44e-1 −5.19e-1 −5.43e-1
5 −3.27e-1 −3.12e-1 1.27e-2 −1.25e-1 1.56e-1 1.48e-1 3.46e-1
6 3.88e-1 3.78e-1 −1.39e-3 3.75e-1 3.12e-2 4.81e-1 1.23e-1
7 −3.27e-1 −3.12e-1 1.27e-2 −1.25e-1 1.56e-1 1.48e-1 3.46e-1

Fig. 4. The centrality scores LdW1 (left) and Ld1 (right) as the absorption rate of node 4 increases.

the most important, since the two measures give proportional centrality scores, because
W = 2In.

Example 3. Let us consider the (unweighted) graph depicted in Fig. 3 (left). In Table 3 we
present the centrality scores of its nodes using the LdW1 and Ld1 centrality measures.
In Case 1 we consider absorption rates d = 1, whereas in Cases 2, 3 and 4 we consider
di = 1, i = 1, . . . , 7, i $= 4, and d4 > 1.

The ranking of the nodes that the centrality scores of Table 3 yield, is also depicted
in Fig. 4. We notice that in the case of all equal absorptions, the measure LdW1 ranks

134 M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152

Table 4
Centrality scores of the graph of Fig. 3 (right) with absorption rates
d = 1 (Case 1).
Node Case 1

LdWs1 LdWo1 LdWi1 Ld1
1 −2.34e0 −1.20e0 −1.14e0 −4.31e-1
2 −6.09e-1 −3.38e-1 −2.71e-1 −3.64e-1
3 −2.34e0 −1.20e0 −1.14e0 −4.31e-1
4 5.91e-1 2.62e-1 3.29e-1 −1.64e-1
5 1.52e0 7.29e-1 7.96e-1 1.02e-1
6 3.87e-1 −1.07e-1 4.93e-1 2.53e-1
7 1.33e0 8.98e-1 4.31e-1 2.84e-1
8 1.46e0 9.64e-1 4.98e-1 7.51e-1

Table 5
Centrality scores of the graph of Fig. 3 (right) with absorption rates di = 1, i = 1, . . . , 8, i %= 4 and d4 = 1.5
(Case 2), d4 = 2 (Case 3).
Node Case 2 Case 3

LdWs1 LdWo1 LdWi1 Ld1 LdWs1 LdWo1 LdWi1 Ld1
1 −2.22e0 −1.14e0 −1.08e0 −3.75e-1 −2.02e0 −1.04e0 −9.83e-1 −3.01e-1
2 −7.19e-1 −3.91e-1 −3.28e-1 −3.75e-1 −7.30e-1 −3.94e-1 −3.36e-1 −3.60e-1
3 −2.22e0 −1.14e0 −1.08e0 −3.75e-1 −2.02e0 −1.04e0 −9.83e-1 −3.01e-1
4 −2.19e-1 −1.41e-1 −7.81e-2 −3.75e-1 −8.48e-1 −4.53e-1 −3.94e-1 −5.36e-1
5 1.53e0 7.34e-1 7.97e-1 1.25e-1 1.62e0 7.82e-1 8.41e-1 1.70e-1
6 9.22e-1 1.64e-1 7.58e-1 4.38e-1 1.52e0 4.67e-1 1.06e0 6.37e-1
7 1.39e0 9.30e-1 4.61e-1 3.13e-1 1.49e0 9.79e-1 5.09e-1 3.49e-1
8 1.64e0 1.05e0 5.86e-1 8.13e-1 1.84e0 1.16e0 6.85e-1 8.79e-1

Table 6
Centrality scores of the graph of Fig. 3 (right) with absorption rates di = 1, i = 1, . . . , 8, i %= 5 and d5 = 1.5
(Case 4), d5 = 2 (Case 5).
Node Case 4 Case 5

LdWs1 LdWo1 LdWi1 Ld1 LdWs1 LdWo1 LdWi1 Ld1
1 −1.45e0 −7.58e-1 −6.95e-1 −1.56e-1 −5.71e-1 −3.15e-1 −2.56e-1 1.14e-1
2 4.69e-2 −7.81e-3 5.47e-2 −1.56e-1 7.23e-1 3.32e-1 3.91e-1 5.54e-2
3 −1.45e0 −7.58e-1 −6.95e-1 −1.56e-1 −5.71e-1 −3.15e-1 −2.56e-1 1.14e-1
4 5.47e-1 2.42e-1 3.05e-1 −1.56e-1 6.06e-1 2.73e-1 3.32e-1 −1.21e-1
5 5.47e-1 2.42e-1 3.05e-1 −1.56e-1 −2.18e-1 −1.38e-1 −7.96e-2 −3.56e-1
6 −5.55e-1 −5.74e-1 1.95e-2 1.56e-2 −1.24e0 −9.13e-1 −3.25e-1 −1.52e-1
7 8.98e-1 6.84e-1 2.15e-1 1.72e-1 5.67e-1 5.19e-1 4.84e-2 8.65e-2
8 1.15e0 8.09e-1 3.40e-1 6.72e-1 9.20e-1 6.96e-1 2.25e-1 6.16e-1

the node 4 as the most important, as expected. In case that all nodes have the same
absorption rate equal to 1, except for node 4 that has larger absorption rate, we observe
that the Ld1 measure, taking into account the distance from the highly absorbing node,
ranks the nodes 1, 3, 5, and 7 as the most important, whereas the measure based on
LdW1 is more “flexible”, being adjusted depending on how large is the absorption rate
of node 4.

Let us consider the unbalanced, unweighted graph depicted in Fig. 3 (right). In Ta-
bles 4, 5, 6 and 7 we present the centrality scores of its nodes using the LdWs1, LdWo1,
LdWi1 and Ld1 centrality measures. In Case 1 we consider absorption rates d = 1,
whereas in Cases 2 and 3 we consider di = 1, i = 1, . . . , 8, i $= 4, d4 > 1, in Cases 4

M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152 135

Table 7
Centrality scores of the graph of Fig. 3 (right) with absorption rates di = 1, i = 1, . . . , 7 and d8 = 1.5
(Case 6), d8 = 2 (Case 7).
Node Case 6 Case 7

LdWs1 LdWo1 LdWi1 Ld1 LdWs1 LdWo1 LdWi1 Ld1
1 −1.66e0 −8.77e-1 −7.80e-1 −2.57e-1 −9.06e-1 −5.16e-1 −3.91e-1 −6.25e-2
2 −4.47e-2 −7.08e-2 2.60e-2 −2.25e-1 5.94e-1 2.34e-1 3.59e-1 −6.25e-2
3 −1.66e0 −8.77e-1 −7.80e-1 −2.57e-1 −9.06e-1 −5.16e-1 −3.91e-1 −6.25e-2
4 7.94e-1 3.49e-1 4.45e-1 −1.28e-1 1.09e0 4.84e-1 6.09e-1 −6.25e-2
5 1.25e0 5.74e-1 6.71e-1 1.04e-3 1.09e0 4.84e-1 6.09e-1 −6.25e-2
6 −6.64e-1 −6.55e-1 −9.37e-3 −7.91e-2 −1.48e0 −1.09e0 −3.98e-1 −3.44e-1
7 1.22e0 8.36e-1 3.84e-1 2.42e-1 1.17e0 8.05e-1 3.67e-1 2.19e-1
8 5.10e-1 4.81e-1 2.91e-2 4.68e-1 −3.28e-1 5.47e-2 −3.83e-1 2.19e-1

and 5, di = 1, i = 1, . . . , 8, i $= 5, d5 > 1, and in Cases 6 and 7, di = 1, i = 1, . . . , 7,
d8 > 1. It should be mentioned that the centrality measure given by the row sums of
Ld was proposed in [13] only for the case of balanced graphs. Here we include it only
as a reference point and we do not make any claims as to its suitability for unbalanced
graphs.

In Table 3 we notice that in the case of all equal absorptions, the LdWs1 rank-
ing is 5, 8, 7, 4, 6, 2, 1 and 3, whereas for the case of indegrees (LdWi1), the rank-
ing is 5, 8, 6, 7, 4, 2, 1 and 3 and for the case of outdegrees (LdWo1), the ranking is
8, 7, 5, 4, 6, 2, 1 and 3.

Setting di = 1, i = 1, . . . , 8, i $= 4 and d4 = 2 (Table 5), the LdWs1 ranking is
8, 5, 6, 7, 2, 4, 3, 1, the LdWi1 ranking is 6, 5, 8, 7, 2, 4, 3, 1, and the LdWo1 ranking is
8, 7, 5, 6, 2, 4, 3, 1.

Considering di = 1, i = 1, . . . , 8, i $= 5 and d5 = 2 (Table 6), the LdWs1 ranking
is 8, 2, 4, 7, 5, 1 and 3, 6, whereas the LdWi1 ranking is 2, 4, 8, 7, 5, 1 and 3, 6, and the
LdWo1 ranking is 8, 7, 2, 4, 5, 1 and 3, 6.

If we set di = 1, i = 1, . . . , 8, i $= 8 and d8 = 2 (Table 7), the LdWs1 and the LdWo1
ranking is 7, 4 and 5, 2, 8, 1 and 3, 6, whereas for the case of the LdWi1, the ranking is 4
and 5, 7, 2, 8, 1 and 3, 6.

From this example one can see again that the new centrality measures, while taking
absorption into account, are also able to give connectivity more weight when determining
node importance.

4. Numerical methods for the computation of the absorption inverse

From the above discussion we see how desirable is the efficient computation of the
matrix Ld and of the action of Ld on a vector b, Ldb. In the sequel, we present a direct
approach for the computation of Ld.

4.1. A direct method for the matrix Ld

Let L be a given n ×n Laplacian matrix. We recall that L is a singular M-matrix [4].
We also recall (see [4]) that the LU factorization of an irreducible M-matrix, singular

136 M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152

or nonsingular, always exists. Moreover, it follows from results in [10] that no pivoting
is necessary when computing the LU factorization of irreducible graph Laplacian ma-
trices, since Gaussian elimination is stable for such matrices. Therefore, the following
factorization always exists:

L = LDU ,

where L and U are unit lower and upper triangular matrices, respectively, and D is
a diagonal matrix of the form D = diag(δ1, δ2, . . . , δn−1, 0), with δi > 0 for 1 ≤ i ≤
n − 1. For undirected graphs, L = LT and U =LT . We further note that any symmetric
permutation PLPT (with P a permutation matrix) enjoys the same properties as L.

Let us furthermore recall the following interesting property that holds for the matrix
L [2]. Recall that L is irreducible since we assume that G is strongly connected.

Lemma 1. Let L be a n × n Laplacian matrix. The matrix

L− = U−1D−L−1, (5)

where D− = diag(δ−1
1 , δ−1

2 , . . . , δ−1
n−1, 0), is a {1-2} generalized inverse of L.

Lemma 2. Suppose the Laplacian matrix L is partitioned as

L =
[
Ln−1 u
wT ln,n

]
,

where Ln−1 is (n − 1) × (n − 1). Then,

L− =
[

L−1
n−1 0n−1,1

01,n−1 0

]
.

Proof. A straightforward calculation. ✷

Remark 2. The positive matrix L−1
n−1 is called the bottleneck matrix of L based at vertex

n in [13, p. 129]. Note that L− coincides with matrix M in [13, eqn. (20)].

Formula (2) [13, Theorem 3] forms the basis for a method to compute the matrix
Ld. By considering as Y in (2) the generalized inverse L− of formula (5) we have the
following expression:

Ld = (In − V D)U−1D−L−1(In − DV)

which leads to Algorithm 1 below. In nearly all cases of practical interest, the Laplacian
matrix L is sparse. Exploiting sparsity is crucial for the efficient implementation of

M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152 137

the proposed algorithms. When computing the triangular factorization L = LDU , a
fill-reducing ordering must be used. Hence, the matrix L is first permuted symmetrically
and then factored. If P is the permutation matrix corresponding to the chosen ordering,
then we compute the factorization PLPT = LDU . In case of a nonhomogeneous system
Lx = c, we solve the system PLPTy = Pc, then let x = PTy. We have the following
result.

Proposition 5. The absorption inverse of the permuted Laplacian matrix is the permuta-
tion of the absorption inverse Ld that corresponds to the initial Laplacian matrix L, i.e.
(PLPT)d = PLdPT , where P is the related permutation matrix.

Proof. Let D̂ = PDPT and V̂ = PV . Note that PLdPT = P (In − V D)L−(In −
DV)PT and that (PLPT)d = (In − V̂ D̂)PL−PT (In − D̂V̂) since PL−PT is a {1-2}
inverse of PLPT , because PL−PTPLPTPL−PT = PL−LL−PT = PL−PT and
PLPTPL−PTPLPT = PLL−LPT = PLPT . Additionally, D̂ has as diagonal entries
the absorption rates that correspond to the permuted matrix PLPT . Also, for v ∈ Ker(L)
then Pv ∈ Ker(PLPT) since PLPTPv = PLv = 0. Therefore, V̂ = Pv1T /dTv =
Pv1TPT /dTv, since 1TPT = 1T and thus V̂ = PV PT . Hence, we have (PLPT)d =
(In − PV PTPDPT)PL−PT (In − PDPTPV PT) = (PPT − PV DPT)PL−PT (PPT −
PDV PT) = P (PT − V DPT)PL−PT (P − PDV)PT = P (In − V D)L−(In − DV)PT =
PLdPT . ✷

In the sequel, the steps of the algorithm for computing the matrix Ld are presented.

Algorithm 1: Direct algorithm for Ld.
Input: L ∈ Rn×n a Laplacian matrix, d ∈ Rn a vector of absorption rates
Output: Ld

Obtain the triangular factorization L = L DU
Find the normalized vector v ∈ Ker(L)
Compute the matrices

L− = U−1D−L−1

Y1 = V DL−, Y2 = L−DV and Y3 = Y1DV
Return Ld = L− − Y1 − Y2 + Y3

In the implementation of Algorithm 1 we make use of the colamd and symamd func-
tions in Matlab, for directed and undirected graphs respectively, as permutations. Also,
in the computations of matrices Y1 and Y2 we make use of forward and backward sub-
stitution with L and U .

Remark 3. If the graph is balanced, then the normalized vector v = (1/n)1 ∈ Ker(L)
since L1 = 0. Therefore, d̃ = dTv is the mean value of the absorption rates and the
matrix V has all its entries equal to 1/

∑n
i=1 di.

Remark 4. In case of unbalanced graphs, when looking for a nonzero solution to Lv = 0,
we factor L (or, in practice, a symmetric permutation PLPT of it) as L = L DU and

138 M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152

solve the equivalent system DUv = 0. Since the last equation of this system is the
identity 0 = 0, this is actually an underdetermined system of n − 1 linear equations in
n unknowns. Fixing the value of vn = 1 yields the equivalent upper triangular system
Uv = en, which is easily solved by backsubstitution. Since U−1 is a nonnegative matrix,
so is v. Normalization of v in the 1-norm produces the desired vector in Ker(L).

4.2. Computation of the vector Ldb

Next, we show how to compute the action of Ld on a vector b, i.e. Ldb. The action
of the absorption inverse on a vector Ldb is evaluated through the expression (In −
V D)Y (In − DV)b, by considering as Y the generalized inverse L−, the pseudoinverse
L+ or the group inverse L# of the matrix L. A crucial step in this computation is to
solve the system Lx = c for c = b − DV b. For this system, the following holds.

Proposition 6. The system Lx = c, for c = b − DV b is consistent.

Proof. The system Lx = c for c = b − DV b is consistent since it holds 1T c = 1T (b −
DV b) = 1Tb − 1TDv1Tb/d̃ = 1Tb − 1Tb = 0, as 1TD = dT and dTv = d̃. Hence
c⊥Ker(LT) and therefore c ∈ Range(L). ✷

i. A direct method
In this algorithm, the action of the absorption inverse on a vector Ldb is evaluated

through the expression (In −V D)L−(In −DV)b = (In −V D)L−c, where c = b −DV b,
as follows.

Algorithm 2: Direct method for computing Ldb.
Input: L ∈ Rn×n a Laplacian matrix, d ∈ Rn a vector of absorption rates, b ∈ Rn a vector
Output: Ldb
Obtain the triangular factorization L = L DU
Find the normalized vector v ∈ Ker(L)
Compute the vectors

c = b − DV b and
x = L−c

Return Ldb = x − v(dTx)/d̃

Remark 5. In this Algorithm, the matrix L− is not formed explicitly and the quantity
L−c is computed using the triangular factors of L. In particular, the procedure followed
for solving Lv = 0 is described in Remark 4. In addition, when solving Lx = c with
c ∈ Range(L), c $= 0, we use again the triangular factors of L (or, in practice, of PLPT).
Formally, the solution is given by x = L−c = U−1(D−(L−1c)). Hence, computing x
amounts to performing a forward substitution with L, a diagonal scaling, and finally a
back substitution with U . Additionally, in the implementation of Algorithm 2 we make
use of the colamd and symamd functions in Matlab, for directed and undirected graphs
respectively, as permutations.

M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152 139

ii. Iterative algorithms
In the sequel, the steps of the iterative algorithms are presented for undirected and

directed graphs. In these algorithms, the action of the absorption inverse on a vector
Ldb is evaluated through the expression (In − V D)Y (In − DV)b, by considering as Y
the pseudoinverse L+ of the matrix L. The main computational task in these algorithms
is to solve the system Lx = c for c = b − DV b. Then, by considering the solution x of
the system Lx = c, it follows that Ldb is given by the expression x − v(dTx)/d̃.

Undirected case
We recall that for any symmetric positive semidefinite matrix A and b ∈ Range(A),

b $= 0, the preconditioned conjugate gradients method with x0 = 0 converges to the
pseudoinverse solution A+b of Ax = b [14].

Algorithm 3: Iterative methods for computing Ldb for undirected case.
Input: L ∈ Rn×n a Laplacian matrix, d ∈ Rn a vector of absorption rates, b ∈ Rn a vector
Output: Ldb
Compute the normalized vector v = (1/n)1
Compute the vector c = b − DV b
Solve the system Lx = c using the preconditioned conjugate gradient method
Return Ldb = x − v(dTx)/d̃

As we will see in the section on numerical experiments, good results can be obtained
using an incomplete LU (or incomplete LDLT) factorization of the Laplacian as a pre-
conditioner. It is known [5] that the no-fill incomplete LU factorization of a singular
M-Matrix is well-defined. The effectiveness of this type of preconditioner can be improved
if L is first permuted by a band-reducing ordering, such as a reverse Cuthill-McKee; see,
e.g., [3]. In our implementation we make use of the symrcm function in Matlab to
reorder L prior to computing its incomplete LU factorization.

Directed case
Here, we consider the use of an iterative method for computing the action of Ld on

a vector b for the directed case. In the procedure given in Algorithm 4 below, the two
linear systems are solved using the preconditioned GMRES method [20].

Algorithm 4: Iterative methods for computing Ldb for directed case.
Input: L ∈ Rn×n a Laplacian matrix, d ∈ Rn a vector of absorption rates, b ∈ Rn a vector
Output: Ldb
Solve the system Lv = 0
Compute the vector c = b − DV b
Solve the system Lx = c
Return Ldb = x − v(dTx)/d̃

The convergence properties of GMRES applied to singular systems have been studied
in many papers; see, e.g., the recent report [18]. Laplacian matrices of graphs satisfy the

140 M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152

condition Ker(L) ∩Range(L) = {0}. For such matrices it is known that GMRES applied
to a consistent system Lx = c starting from an arbitrary initial guess x0 ∈ Rn converges
to a solution of Lx = c without breakdowns. Moreover, the computed solution is of the
form x = L#c + (In − L#L)x0. Hence, for x0 = 0 we obtain x = L#c. Since the group
inverse is a particular case of {1}-inverse, this solution satisfies our requirements. It is
easy to see that the same holds when preconditioning is used.

5. Updating/downdating the graph

Let us suppose that we have an updating of the graph, such as the addition of an
edge between two nodes i and j with i $= j. This can be interpreted as a rank-one change
in the adjacency matrix A of the form A1 = A + eieTj in case of directed graphs or a
rank-two change in the matrix A of the form A1 = A + (ei + ej)(ei + ej)T in case of
undirected graphs. Assume that we have a rank-one change in the matrix A. In this case,
the diagonal matrix W is changed into W1 = W + ejeTj and therefore, the Laplacian
matrix of A1, denoted as L1, has the form L1 = W1 − A1 = L − (ei − ej)eTj . Then
we have the following results. The case of a deletion of an edge, i.e. downdating of the
graph, is treated along similar lines.

Proposition 7. The generalized inverse (5) of the Laplacian matrix L1 = L − (ei −ej)eTj ,
denoted as L−

1 , is L−
1 = L− − 1

qj
qL−

j,:, where L−
j,: denotes the jth row of the matrix L−

and q = 1
vn

v. In the case of balanced graphs, the aforementioned expression of L−
1 can

be written as L−
1 = L− − 1L−

j,:.

Proof. Let us consider the formula L−
1 = (In − M)L−, given in [9, page 32], where

M = 1
eTj FFTej

FFTejeTj and F = In − L−L. It follows from Lemma 2 that the matrix

F has all its entries zero except for its last column, which is equal to

[
−L−1

n−1u
1

]
. In

turn, this is equal to the vector q = 1
vn

v. To see this, recall that v is the unique positive
vector in the null space of L with entries adding up to 1. Recall the partitioning of L in
Lemma 2. Our claim is that

1
vn

v =
[

−Ln−1u
1

]
.

Note that the vector on the right hand side is positive, since the entries of L−1
n−1 are

strictly positive and u is a nonpositive, nonzero vector. We have
[
Ln−1 u
wT ln,n

] [
−L−1

n−1u
1

]
=

[
0n−1,1

ln,n − wTL−1
n−1u

]
.

M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152 141

From the (unique) block LU factorization of L,

L =
[
Ln−1 u
wT ln,n

]
=

[
In−1 0n−1,1

wTL−1
n−1 1

] [
Ln−1 u
01,n−1 0

]

we obtain ln,n = wTL−1
n−1u. This shows that the last column of F is in the null space of

L and therefore (up to the normalization factor vn) it must equal v. Then, the matrix
M has only one nonzero column, namely its jth column, which is equal to the vector
1
qj
q. Hence, ML− = 1

qj
qL−

j,:. In the case of balanced graphs, q = 1. ✷

Proposition 8. The absorption inverse of L1, Ld
1, can be computed by updating Ld by the

formula

Ld
1 = Ld − (In − V D)L−DK − KD(In − M)L−(In − D(V +K)),

where M = 1
qj
qeTj and q = 1

vn
v, K = 1

dTv − k1
(V k1 − K2), k1 = dT z, K2 = z1T ,

z = vj
L−
ji − L−

jj − 1
(L−

:,i − L−
:,j), vj is the jth entry of v and L−

:,j denotes the jth column

of the matrix L−.

Proof. The vector ṽ ∈ Ker(L1) can be computed by the formula ṽ = v −
vj

eTj L−(ei − ej) − 1(L
−(ei−ej)) [9, equation (1.4)]. Then, Ṽ = 1

dT ṽ ṽ1
T = V +K, where

K = 1
dTv − k1

(V k1 − K2), k1 = dT z, K2 = z1T , z = vj
ejL−(ei − ej) − 1(L

−(ei − ej))

and vj is the jth entry of v. Therefore, Ld
1 = (In − Ṽ D)L−

1 (In − DṼ) = Ld − (In −
V D)L−DK − KD(In − M)L−(In − D(V +K)), since (In − V D)M = 0n,n. ✷

It can be seen that the absorption inverse of the modified graph is at most a rank-two
modification of the absorption inverse of the original graph.

6. Estimation of individual entries of the absorption inverse matrix for undirected
graphs

In some situations, individual entries of Ld are of interest. It is desirable to be able to
compute or estimate these entries without having to compute the whole matrix Ld. For
estimating specific entries of the matrix Ld we can consider estimates of the bilinear form
yTLdx, x, y ∈ Rn for the specific selection of the vectors y, x to be the ith and the jth
columns of the identity matrix, respectively. In particular, in the case of an undirected
graph, considering formula Ld = (In − V D)L+(In − DV) and x = y = ei we have

Ld
ii = eTi Ldei = (eTi − eTi V D)L+(ei − DV ei) = uTL+u,

142 M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152

where u = ei − DV ei and L+ =
(
L+ 1

n
11T

)−1
− 1

n
11T [24]. Hence, we have

Ld
ii = uT

(
L+ 1

n
11T

)−1
u − 1

n
(uT1)2.

Proposition 9. For an undirected graph, it holds Ld
ii = uT

(
L+ 1

n
11T

)−1
u, where u =

ei − DV ei.

Proof. It holds Ld
ii = uT

(
L+ 1

n
11T

)−1
u − 1

n
(uT1)2, where u = ei − DV ei and

1
n
(uT1)2 = 0 since uT1 = eTi 1 − eTi V D1 = 1 − eTi v1Td/d̃ as D1 = d. Also, we

have 1Td =
∑n

i=1 di, d̃ = dTv =
∑n

i=1 di/n and v = (1/n)1. Therefore, uT1 = 1 −
eTi v1Td/d̃ = 1 − eTi 1 = 1 − 1 = 0. ✷

We can obtain approximations and upper/lower bounds for the quantity

uT

(
L+ 1

n
11T

)−1
u through an approach based on Gauss quadrature rules and the

Lanczos algorithm [11]. Let B = L + 1
n
11T . Note that B is symmetric positive definite.

Consider the spectral decompositions

B = QΛQT , B−1 = QΛ−1QT ,

where Q is orthogonal and Λ diagonal, with the eigenvalues of B in nondecreasing order
down the main diagonal. For u ∈ Rn we have

uTB−1u = uTQΛ−1QTu = pT Λ−1p =
n∑

i=1
λ−1
i p2i ,

where p = QTu. Rewrite this as a Riemann-Stieltjes integral:

uTB−1u =
b∫

a

λ−1dµ(λ),

where the measure dµ is defined via

µ(λ) =






0 λ < a = λ1
∑i

j=1 p
2
j λi ≤ λ < λi+1

∑N
j=1 p

2
j b = λn ≤ λ.

M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152 143

Evaluation of the Riemann-Stieltjes integral requires knowledge of the eigendecomposi-
tion of B, which is not available in general. The integral, however, can be approximated
by means of Gaussian quadrature rules [1,11]. Recall that the general Gauss-type quadra-
ture rule is

b∫

a

f(λ)dµ(λ) =
m∑

j=1
wjf(tj) +

M∑

k=1
vkf(zk) +R[f],

where the nodes tj are the zeros of orthogonal polynomials (with respect to the measure
dµ), the nodes zj (if any) are prescribed, and the weights wj and vk are to be determined.
The error term R[f] is given by

R[f] = f (2m+M)(η)
(2m+M)!

b∫

a

M∏

k=1
(λ − zk)




m∏

j=1
(λ − tj)




2

dµ(λ),

where η ∈ (a, b), assuming that the function f is of class C(2m+M) on [a, b].
More precisely, we have three types of Gaussian quadrature rules:

• Gauss: M = 0,
• Gauss–Radau: M = 1, z1 = a or z1 = b,
• Gauss–Lobatto: M = 2, z1 = a and z2 = b.

The Lanczos algorithm (with starting vector u) can be used to generate the family
of (discrete) orthogonal polynomials with respect to dµ. These polynomials satisfy a
three-term recurrence, the coefficients of which are the entries of the tridiagonal matrix
Jm generated by the Lanczos algorithm after m steps:

Jm =





ω1 γ1
γ1 ω2 γ2

.
γm−2 ωm−1 γm−1

γm−1 ωm




.

The eigenvalues of Jm are the Gauss quadrature nodes, whereas the Gauss weights are
given by the squares of the first entries of the normalized eigenvectors of Jm. Alter-
natively, the Gauss quadrature rule can also be computed as the (1, 1) entry of J−1

m ,
which can be evaluated incrementally for m = 1, 2, . . . (see [11, Section 6.2.4]). When
u = ei − DV ei, we obtain approximations of the (i, i) entry of Ld. From the expression
of the quadrature error term given above and the fact that M = 0 for the Gauss rule, we
see that the error is always positive and therefore the Gauss approximation to the (i, i)
entry of Ld is a lower bound. The Gauss–Radau rule and the Gauss–Lobatto rules can be

144 M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152

used to obtain upper bounds; all these bounds become increasingly tight as m increases.
Taking the mean of these lower and upper bounds results in estimates for the quantities
of interest, together with bounds on the corresponding error. Usually, a few Lanczos
steps (i.e., a few quadrature nodes) are sufficient to obtain very good approximations.

The non-diagonal entries of Ld can be approximated by using the polarization identity

zTB−1y = 1
4((s, B

−1s) − (t, B−1t)), for z, y ∈ Rn, s = z + y, t = z − y. Therefore, for
z = ei and y = ej we have

Ld
ij =

1
4

(
(s, B−1s) − (t, B−1t)

)
+ 1

4n
(
(tT1)2 − (sT1)2

)
,

s = ei + ej − DV (ei + ej), t = ei − ej − DV (ei − ej).

Proposition 10. For an undirected graph, it holds Ld
ij = 1

4
(
(s, B−1s) − (t, B−1t)

)
, s =

ei + ej − DV (ei + ej), t = ei − ej − DV (ei − ej).

Proof. It holds Ld
ij = 1

4
(
(s, B−1s) − (t, B−1t)

)
+ 1

4n
(
(tT1)2 − (sT1)2

)
, s = ei +

ej − DV (ei + ej), t = ei − ej − DV (ei − ej) and
1
4n

(
(tT1)2 − (sT1)2

)
= 0, since

tT1 = sT1 = 0 along the same lines as in the proof of Proposition 9. ✷

Then, estimates for the elements Ld
ij can be obtained by approximating the quadratic

forms on the right hand side of the identity.

7. Numerical examples

In this section, numerical experiments are presented for the computation of the matrix
vector product Ldb, where b is a vector with all ones, through the iterative methods
(Example I) and through the direct method (Example II). In cases that the given graph
is not strongly connected, i.e. rank(L) < n − 1, we consider the largest connected graph
component (LCC). In Example II the matrix Ld is also computed through the direct
approach. Additionally, individual entries of the absorption inverse matrix are estimated
in Example III following the procedure described in section 6. In these experiments,
random absorption rates are considered.

The networks tested in the following Tables are obtained by the SuiteSparse matrix
collection [21]. The computations are performed in matlab R2015b 64-bit (win64), on
an Intel Core i5-6200U with 8 GB RAM at 2.3 GHz.

Example I. Computation of Ldb through the iterative algorithms for directed and
undirected graphs. We compute Ldb for directed (Tables 8-9) and undirected graphs
(Tables 10-13) of fairly large dimension varying from O(104) − O(106) by employing
iterative methods with specific preconditioners and with a tolerance of O(10−6). In par-
ticular, we used the Jacobi (or diagonal) preconditioner, the symmetric Gauss-Seidel

M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152 145

(SGS) preconditioner, the ILU preconditioner with no-fill and the block ILU precondi-
tioner with number of blocks 8, 16 and 32. Here, by block ILU preconditioner we mean a
block Jacobi type preconditioner with a no-fill ILU decomposition of each diagonal block
replacing the exact blocks. Whenever n is not divisible by one of these integers, the last
block will have smaller size than the remaining ones.

Tables 8-13 summarize the attained results as follows. The first columns of the Ta-
bles 8, 10, 12 display the characteristics of the networks, i.e. the name, the number of
nodes n of the network and of the LCC if the network is not strongly connected, as well
as the number of edges of the network or its LCC. In the subsequent columns of these
Tables and in Tables 9, 11, 13 we report the number of iterations required for attaining
the given tolerance and the execution time (in seconds) for each applied preconditioner.
Also, for undirected graphs an algebraic multigrid (AMG) solver of the symmetric lin-
ear system Lx = c is employed with a tolerance of O(10−6) and maximum number of
iterations equal to 2000 [12], [17]. The results are presented in the last two columns of
Tables 11 and 13 and concern the standard V-cycle AMG solver, using the Heavy Edge
Coarsening (HEC) algorithm [23].

All the presented results are averaged and rounded (for the iteration counts) over 5
runs, since we are using random absorption rates. For the results presented in Table 8, the
GMRES method is restarted every 100 iterations. In this Table the iterations required are
reported in brackets [·, ·], where the first number corresponds to the iterations required
for the computation of v ∈ Ker(L) and the second number corresponds to the iterations
required for the solution of the system Lx = c.

In Tables 8-13 we notice that the quantity Ldb can be computed efficiently in seconds
or at most a few minutes of CPU time even for large graphs with up to 36 million edges. In
particular, concerning the directed graphs, the results presented in Tables 8 and 9 show
that the ILU preconditioner attains the fastest convergence and execution time in most
of the test cases. Although the block ILU preconditioners are not as efficient as the ILU
preconditioner, their performance is presented since they can be easily used in a parallel
implementation reducing in this way the execution time of the whole computation. Also,
we observe that for the web-Google network, the method does not converge using the
Jacobi preconditioner (Table 8), considering the maximum number of iterations equal to
50000.

Concerning the undirected graphs, the results presented in Tables 10-13 show again
that the ILU preconditioner results in the fastest convergence and execution time in
the most of the graphs that are tested, whereas the Jacobi preconditioner requires the
most iterations and execution time. In these Tables, the results of the PCG method
using various preconditioners are also compared with those using an algebraic multigrid
(AMG) solver of the symmetric linear system Lx = c. In these experiments we notice
that AMG is generally much slower than the incomplete factorization preconditioned
CG and in several cases it failed to convergence in 2000 iterations.

146 M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152

Ta
bl
e
8

E
xe

cu
ti
on

 ti
m
e
in

 se
co

nd
s a

nd
 n
um

be
r o

f i
te
ra

ti
on

s f
or

 c
om

pu
ti
ng

 L
d
b,

 w
he

re
 b

is
 a

 v
ec

to
r w

it
h

al
l o

ne
s (

di
re
ct
ed

 c
as

e)
. T

he
 sy

m
bo

l +
st
an

ds
 fo

r f
ai
lu
re

 to

co
nv

er
ge

.

N
et
w
or

k
n

N
od

es

of
 L

C
C

E
dg

es

of
 L

C
C

Ja
co

bi
SG

S
It
s

T
im

e
It
s

T
im

e
ca

-H
ep

P
h

12
00

8
11

20
4

23
52

68
[5
7,

86
]

3.
85

5e
-1

[3
2,

56
]

2.
66

2e
-1

em
ai
l-E

nr
on

36
69

2
33

69
6

36
16

22
[4
6,

83
]

7.
31

2e
-1

[3
4,

52
]

5.
73

9e
-1

p2
p-

G
nu

te
lla

31
62

58
6

14
14

9
50

91
6

[3
2,

32
]

1.
11

5e
-1

[1
7,

17
]

7.
19

0e
-2

en
ro

n
69

24
4

82
71

14
73

53
[4
5,

43
]

1.
39

2e
-1

[2
8,

28
]

1.
14

1e
-1

so
c-
E
pi
ni
on

s1
75

88
8

32
22

3
44

35
06

[3
9,

80
]

6.
57

7e
-1

[2
4,

49
]

4.
91

3e
-1

so
c-
Sl
as

hd
ot

08
11

77
36

0
70

35
5

88
86

62
[3
4,

42
]

6.
91

8e
-1

[2
2,

26
]

6.
08

3e
-1

W
or

dn
et
3

82
67

0
13

75
5

37
49

7
[9
8,

13
2]

6.
70

4e
-1

[5
4,

68
]

3.
56

0e
-1

in
te
rn

et
12

46
51

64
37

18
32

7
[4
44

,4
73

]
1.
68

9e
0

[2
01

,1
98

]
8.
87

3e
-1

St
an

fo
rd

28
19

03
15

05
32

15
76

31
4

[2
02

,5
18

]
4.
17

9e
1

[2
01

,3
08

]
3.
20

6e
1

Li
nu

x_
ca

ll_
gr

ap
h

32
40

85
27

60
64

25
[5
1,

50
]

5.
47

0e
-2

[2
6,

25
]

3.
35

4e
-2

cn
r-
20

00
32

55
57

11
20

23
16

46
33

2
[4
01

,1
28

1]
3.
99

5e
1

[2
02

,1
23

7]
5.
29

4e
1

N
ot

re
D
am

e_
w
w
w

32
57

29
34

64
3

17
97

25
[3
03

,6
79

]
6.
63

8e
0

[1
41

,3
34

]
4.
40

8e
0

w
eb

-N
ot

re
D
am

e
32

57
29

53
96

8
30

46
85

[4
01

,9
63

]
1.
33

9e
1

[1
95

,5
12

]
8.
47

8e
0

St
an

fo
rd

_
B
er
ke

le
y

68
34

46
33

37
52

45
09

78
4

[1
41

,2
48

]
5.
72

9e
1

[1
01

,6
91

]
1.
38

6e
2

w
eb

-B
er
kS

ta
n

68
52

30
33

48
57

45
23

23
2

[5
40

,1
40

5]
2.
81

3e
2

[1
97

,4
28

]
1.
03

1e
2

fli
ck

r
82

08
78

52
74

76
93

57
07

1
[1
64

,2
41

]
9.
42

2e
1

[8
2,

11
7]

5.
41

7e
1

eu
-2
00

5
86

26
64

75
27

25
17

93
34

15
[2
24

,9
63

]
4.
17

0e
2

[1
06

,7
15

]
3.
54

2e
2

w
eb

-G
oo

gl
e

91
64

28
43

48
18

34
19

12
4

+
+

[6
65

,4
04

0]
1.
02

9e
3

in
-2
00

4
13

82
90

8
59

36
87

78
27

26
3

[6
74

,2
43

0]
8.
22

0e
2

[5
41

,1
54

3]
6.
37

6e
2

w
ik
ip
ed

ia
-2
00

51
10

5
16

34
98

9
11

03
45

3
18

24
51

40
[3
9,

41
]

2.
77

7e
1

[2
3,

25
]

2.
25

5e
1

w
ik
i-T

al
k

23
94

38
5

11
18

81
14

77
89

3
[2
6,

28
]

7.
83

2e
-1

[1
5,

17
]

7.
81

4e
-1

w
ik
ip
ed

ia
-2
00

61
10

4
31

48
44

0
21

04
11

5
36

12
58

05
[3
9,

36
]

5.
29

7e
1

[2
2,

22
]

4.
27

2e
1

M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152 147

Ta
bl
e
9

E
xe

cu
ti
on

 ti
m
e
in

 se
co

nd
s a

nd
 n
um

be
r o

f i
te
ra

ti
on

s f
or

 c
om

pu
ti
ng

 L
d
b,

 w
he

re
 b

is
 a

 v
ec

to
r w

it
h

al
l o

ne
s (

di
re
ct
ed

 c
as

e)
.

N
et
w
or

k
IL

U
B
lo
ck

-
IL

U
-8

B
lo
ck

-
IL

U
-1
6

B
lo
ck

-
IL

U
-3
2

It
s

T
im

e
It
s

T
im

e
It
s

T
im

e
It
s

T
im

e
ca

-H
ep

P
h

[1
2,

15
]

1.
50

3e
-1

[3
0,

38
]

2.
30

6e
-1

[3
2,

41
]

1.
93

9e
-1

[3
1,

42
]

2.
06

8e
-1

em
ai
l-E

nr
on

[1
4,

19
]

2.
17

6e
-1

[3
8,

59
]

6.
01

5e
-1

[4
0,

67
]

6.
58

5e
-1

[4
0,

61
]

6.
10

2e
-1

p2
p-

G
nu

te
lla

31
[1
2,

12
]

4.
77

5e
-2

[2
9,

29
]

1.
04

2e
-1

[3
0,

31
]

1.
14

4e
-1

[3
1,

31
]

1.
19

6e
-1

en
ro

n
[1
2,

12
]

5.
15

3e
-2

[3
1,

31
]

1.
04

9e
-1

[3
3,

33
]

1.
13

4e
-1

[3
4,

35
]

1.
14

2e
-1

so
c-
E
pi
ni
on

s1
[1
3,

22
]

2.
43

2e
-1

[3
4,

63
]

6.
12

3e
-1

[3
3,

63
]

5.
68

1e
-1

[3
3,

64
]

5.
49

5e
-1

so
c-
Sl
as

hd
ot

08
11

[1
1,

15
]

3.
70

9e
-1

[2
5,

29
]

5.
88

1e
-1

[3
0,

36
]

6.
94

8e
-1

[3
2,

37
]

6.
87

6e
-1

W
or

dn
et
3

[1
7,

18
]

6.
45

2e
-2

[7
9,

93
]

5.
40

6e
-1

[8
2,

98
]

5.
32

8e
-1

[8
6,

10
1]

5.
83

1e
-1

in
te
rn

et
[1
00

,1
01

]
4.
94

3e
-1

[3
59

,2
95

]
1.
34

0e
0

[3
97

,3
39

]
1.
35

6e
0

[4
28

,4
07

]
1.
54

5e
0

St
an

fo
rd

[8
9,

56
1]

4.
14

2e
1

[2
01

,5
13

]
4.
65

8e
1

[1
82

,5
28

]
4.
33

8e
1

[2
02

,6
56

]
4.
53

0e
1

Li
nu

x_
ca

ll_
gr

ap
h

[1
7,

17
]

1.
56

0e
-2

[4
2,

41
]

4.
45

8e
-2

[4
5,

44
]

4.
81

8e
-2

[4
6,

45
]

5.
04

7e
-2

cn
r-
20

00
[1
01

,5
02

]
1.
76

2e
1

[1
42

,1
67

2]
5.
01

1e
1

[1
04

,2
73

3]
6.
97

3e
1

[1
84

,2
71

4]
7.
04

3e
1

N
ot

re
D
am

e_
w
w
w

[8
8,

25
5]

2.
56

0e
0

[1
95

,8
19

]
7.
45

0e
0

[2
00

,1
14

2]
9.
33

5e
0

[2
01

,1
39

6]
1.
12

3e
1

w
eb

-N
ot

re
D
am

e
[9
1,

23
03

]
2.
69

6e
1

[2
01

,1
34

0]
1.
63

2e
1

[2
19

,1
46

1]
1.
84

6e
1

[2
20

,2
22

5]
2.
63

9e
1

St
an

fo
rd

_
B
er
ke

le
y

[1
01

,3
91

]
7.
96

2e
1

[1
01

,4
11

]
8.
21

3e
1

[1
02

,6
07

]
1.
06

7e
2

[1
02

,6
06

]
1.
05

3e
2

w
eb

-B
er
kS

ta
n

[1
27

,4
15

]
8.
63

2e
1

[2
01

,3
81

]
9.
55

8e
1

[2
25

,1
40

2]
2.
46

9e
2

[3
01

,9
73

]
1.
92

1e
2

fli
ck

r
[3
5,

58
]

2.
18

3e
1

[1
01

,2
01

]
8.
37

0e
1

[1
01

,2
01

]
8.
10

1e
1

[1
01

,2
01

]
8.
01

5e
1

eu
-2
00

5
[8
1,

24
9]

1.
31

3e
2

[1
91

,9
06

2]
4.
23

9e
2

[1
92

,7
65

]
3.
62

8e
2

[1
32

,1
00

0]
4.
26

9e
2

w
eb

-G
oo

gl
e

[3
04

,7
81

]
2.
29

1e
2

[6
01

,1
81

8]
5.
08

1e
2

[4
00

,4
03

9]
9.
46

4e
2

[5
00

,4
37

1]
1.
01

8e
3

in
-2
00

4
[2
69

,1
63

5]
5.
81

4e
2

[6
24

,1
77

6]
6.
88

0e
2

[3
19

,9
47

]
3.
48

7e
2

[5
46

,1
46

8]
5.
55

1e
2

w
ik
ip
ed

ia
-2
00

51
10

5
[1
2,

12
]

1.
07

4e
1

[2
9,

31
]

2.
15

1e
1

[3
1,

35
]

2.
25

4e
1

[3
4,

36
]

2.
39

3e
1

w
ik
i-T

al
k

[1
0,

10
]

6.
06

7e
-1

[2
3,

24
]

9.
34

3e
-1

[2
3,

24
]

8.
63

3e
-1

[2
3,

24
]

7.
80

6e
-1

w
ik
ip
ed

ia
-2
00

61
10

4
[1
4,

12
]

2.
63

7e
1

[3
1,

30
]

4.
77

1e
1

[3
5,

33
]

5.
02

5e
1

[3
6,

34
]

5.
03

1e
1

148 M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152

Table 10
Execution time in seconds and number of iterations for computing Ldb, where b is a vector with all ones
(undirected case).
Network n Edges Jacobi SGS ILU

Its Time Its Time Its Time
cs4 22499 87716 220 1.645e-1 86 1.299e-1 77 1.260e-1
as-22July06 22963 96872 62 5.681e-2 30 5.288e-2 22 4.149e-2
fe_tooth 78136 905182 242 9.784e-1 108 9.916e-1 84 8.058e-1
fe_rotor 99617 1324862 278 1.496e0 123 1.543e0 101 1.289e0
fe_ocean 143437 819186 599 4.214e0 212 2.568e0 206 2.478e0
coAuthorsCiteseer 227320 1628268 305 4.107e0 124 3.480e0 48 1.410e0
citationCiteseer 268495 2313294 243 4.224e0 101 3.665e0 79 2.959e0
coAuthorsDBLP 299067 1955352 173 3.163e0 70 2.635e0 34 1.403e0
auto 448695 6629222 433 1.359e1 191 1.285e1 154 1.058e1
coPapersDBLP 540486 30491458 224 1.917e1 93 1.842e1 40 1.076e1
tx2010 914231 4456272 2616 1.304e2 1061 9.956e1 784 7.340e1
NACA0015 1039183 6229636 3712 2.026e2 1529 1.566e2 1132 1.108e2
belgium_osm 1441295 3099940 14722 9.207e2 5462 5.335e2 2613 2.573e2
netherlands_osm 2216688 4882476 25219 2.576e3 9521 1.466e3 5108 7.835e2
M6 3501776 21003872 6261 1.129e3 2478 7.961e2 1827 6.130e2
333SP 3712815 22217266 8876 1.663e3 3599 1.200e3 2653 9.055e2
venturiLevel3 4026819 16108474 10079 1.804e3 3623 1.023e3 3282 9.626e2

Table 11
Execution time in seconds and number of iterations for computing Ldb, where b is a vector with all ones
(undirected case). The symbol † stands for failure to converge due to instability.
Network Block - ILU-8 Block - ILU-16 Block - ILU-32 AMG

Its Time Its Time Its Time Its Time
cs4 103 1.598e-1 122 2.111e-1 162 2.435e-1 121 1.539e0
as-22July06 58 7.939e-2 59 7.221e-2 59 7.334e-2 49 3.268e-1
fe_tooth 161 1.399e0 187 1.497e0 204 1.618e0 285 7.608e0
fe_rotor 159 1.931e0 189 2.083e0 202 2.243e0 + +
fe_ocean 253 3.038e0 278 3.173e0 316 3.548e0 281 1.106e1
coAuthorsCiteseer 106 2.777e0 108 2.698e0 113 2.828e0 + +
citationCiteseer 104 3.301e0 117 3.354e0 150 4.175e0 454 4.398e1
coAuthorsDBLP 79 2.972e0 91 2.916e0 96 3.092e0 517 5.094e1
auto 219 1.461e1 252 1.617e1 318 1.959e1 + +
coPapersDBLP 74 1.340e1 100 1.663e1 105 1.686e1 888 4.149e2
tx2010 902 8.484e1 976 8.914e1 1093 1.005e2 † †
NACA0015 1258 1.234e2 1293 1.242e2 1362 1.317e2 1294 3.567e2
belgium_osm 2851 2.765e2 3050 2.918e2 3526 3.383e2 + +
netherland_osm 5442 8.230e2 5762 8.672e2 6067 9.202e2 + +
M6 2114 6.774e2 2101 6.907e2 2189 7.038e2 + +
333SP 3228 1.071e3 3524 1.261e3 3738 1.240e3 + +
venturiLevel3 3558 1.026e3 3567 1.006e3 3593 1.009e3 + +

Table 12
Execution time in seconds and number of iterations for computing Ldb, where b is a vector with all ones
(undirected case).
Network n Nodes

of LCC
Edges
of LCC

Jacobi SGS
Its Time Its Time

roadNet-CA 1971281 1957027 5520776 8342 7.762e2 3266 5.201e2
roadNet-PA 1090920 1087562 3083028 5665 2.985e2 2098 1.890e2
roadNet-TX 1393383 1351137 3758402 10301 6.601e2 4088 4.492e2
as-Skitter 1696415 1694616 22188418 357 5.575e1 167 5.099e1
hollywood-2009 1139905 1069126 113682432 157 6.429e1 68 7.071e1
packing-500x100x100-b050 2145852 2145839 34976486 1062 1.543e2 388 1.173e2

M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152 149

Ta
bl
e
13

E
xe

cu
ti
on

 ti
m
e
in

 se
co

nd
s a

nd
 n
um

be
r o

f i
te
ra

ti
on

s f
or

 c
om

pu
ti
ng

 L
d
b,

 w
he

re
 b

is
 a

 v
ec

to
r w

it
h

al
l o

ne
s (

un
di
re
ct
ed

 c
as

e)
.

N
et
w
or

k
IL

U
B
lo
ck

-
IL

U
-8

B
lo
ck

-
IL

U
-1
6

B
lo
ck

-
IL

U
-3
2

A
M

G
It
s

T
im

e
It
s

T
im

e
It
s

T
im

e
It
s

T
im

e
It
s

T
im

e
ro

ad
N
et
-C

A
26

44
4.
37

2e
2

27
95

4.
49

2e
2

29
49

4.
67

7e
2

31
54

4.
98

0e
2

14
82

9.
07

3e
2

ro
ad

N
et
-P

A
17

93
1.
69

7e
2

19
31

1.
73

8e
2

19
79

1.
77

2e
2

21
10

1.
88

5e
2

89
2

2.
77

0e
2

ro
ad

N
et
-T

X
32

72
3.
63

8e
2

34
57

3.
83

6e
2

36
00

3.
93

6e
2

37
11

4.
05

1e
2

11
52

4.
59

2e
2

as
-S

ki
tt
er

16
3

5.
27

7e
1

26
5

6.
18

1e
1

30
6

6.
62

3e
1

31
6

6.
53

5e
1

+
+

ho
lly

w
oo

d-
20

09
18

1.
00

8e
2

42
6.
67

5e
1

46
5.
36

4e
1

47
4.
40

9e
1

30
2

1.
26

2e
3

pa
ck

in
g-
50

0x
10

0x
10

0-
b0

50
34

0
1.
03

9e
2

38
2

1.
15

9e
2

39
5

1.
16

8e
2

41
1

1.
22

3e
2

+
+

150 M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152

Table 14
Execution time in seconds for computing Ld and Ldb, where b is a
vector with all ones, through the direct algorithm.

Network n Edges Ld Ldb
email 1133 10902 2.493e-1 3.997e-2
data 2851 30186 1.902e0 1.012e-1
cage9 3534 41594 1.636e1 6.460e-1
uk 4824 13674 5.072e0 2.113e-1
power 4941 13188 4.905e0 2.101e-1
cell1 7055 30082 1.153e1 3.205e-1
wing_nodal 10937 150976 2.217e2 3.918e0

Table 15
Estimation of the ith diagonal entry of the absorption inverse matrix.

Network n Edges i Its Time Rel. error ub
email 1133 10902 10 11 2.054e-1 6.974e-3
data 2851 30186 100 67 1.548e1 9.863e-3
power 4941 13188 20 165 2.240e2 9.755e-3
wing-nodal 10937 150976 5 28 2.448e0 9.353e-3
cs4 22499 87716 50 55 1.037e1 9.811e-3
as-22July06 22963 96872 500 72 2.245e1 9.550e-3
wing 62032 243088 1 74 2.678e1 9.954e-3
fe_tooth 78136 905182 3 72 2.945e1 9.406e-3
fe_rotor 99617 1324862 2 146 1.775e2 9.807e-3
fe_ocean 143437 819186 30 215 4.484e2 9.826e-3

Example II. Computation of Ld and Ldb through the direct algorithm. Let us consider
the undirected networks email, data, uk, power, wing-nodal and the directed networks
cage9 and cell1. In Table 14 we report the execution time in seconds for computing Ld

and Ldb, through the direct algorithm. The first three columns of the Table display the
characteristics of the networks, i.e. the name, the number of nodes n and the number of
edges of each network. We remark that Ld is generally a dense matrix.

From Table 14 we can see that for networks of moderate size the direct methods are
sufficient for the computation of the absorption inverse Ld and of the quantity Ldb. In
particular, we observe that Ldb is computed in less than half second of CPU time, for
graphs with up to 5000 nodes, and less than 5 seconds of CPU time, for graphs with up
to 10000 nodes.

Example III. Estimation of individual entries of the absorption inverse matrix. In this
Example, we estimate individual entries of the absorption inverse matrix for undirected
graphs through the method described in section 6 by using Gauss-Radau quadrature
rule. In Table 15 we report the iterations of the algorithm and the execution time in
seconds for computing certain diagonal elements of the tested networks as well as an
upper bound for the relative error that is attained for this estimation, given by the
absolute value of the difference of the upper and lower bound for the diagonal element
divided by the absolute value of its lower bound. In this Table we keep the upper bound
for the relative error less that 10−2.

M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152 151

In Table 15 we can see that individual entries of the test networks can be approximated
using the Gauss quadrature rules and the Lanczos algorithm. In particular, using the
Gauss-Radau rule we obtain upper and lower bounds for these entries which also give
an upper bound for the relative error of this approximation, in a satisfactory execution
time. It should be observed that the estimation of the ith diagonal entry is independent
of the estimation of the jth diagonal entry; therefore, multiple diagonal entries can be
computed in parallel.

8. Conclusions

We have described and compared different algorithms for the computation of the
absorption inverse and related quantities. Direct and iterative methods with various
preconditioners have been tested and compared for networks of various types. Techniques
for estimating individual entries of the absorption inverse have been also discussed.

Based on the numerical methods developed, we also studied different centrality mea-
sures for graphs with absorption. These measures are compared with the one proposed
in [13] for various graphs such as the star graph, the cycle and the path graph. The
proposed centrality measures take into consideration both the absorption rates and the
structure of the underlying graph and can be applied also when the absorption rates are
all equal.

Furthermore, we have considered the case where the graph undergoes the addition (or
deletion) of an edge. In this case the absorption inverse can be efficiently computed by
updating the absorption inverse of the initial graph with a rank-two change.

Based on the numerical experiments performed, we can conclude that the proposed
methods are efficient and provide easily applied tools for handling large graphs with
several million nodes and edges.

Conflict of interest statement

There is no conflict of interest.

Acknowledgements

The authors acknowledge Junyuan Lin for sharing the AMG code. The work of M.B.
was supported in part by the US National Science Foundation (grant DMS-1719518).
P.F. would like to acknowledge financial support from the Foundation for Education and
European Culture (IPEP) as well as from the Department of Mathematics and Computer
Science of Emory University.

References

[1] Z. Bai, M. Fahey, G.H. Golub, Some large-scale matrix computation problems, J. Comput. Appl.
Math. 74 (1996) 71–89.

http://refhub.elsevier.com/S0024-3795(19)30133-8/bib426169s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib426169s1

152 M. Benzi et al. / Linear Algebra and its Applications 574 (2019) 123–152

[2] M. Benzi, A direct projection method for Markov chains, Linear Algebra Appl. 386 (2004) 27–49.
[3] M. Benzi, Preconditioning techniques for large linear systems: a survey, J. Comput. Phys. 182 (2002)

418–477.
[4] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Society for Indus-

trial and Applied Mathematics, Philadelphia, 1994.
[5] J.J. Buoni, Incomplete factorization of singular M-matrices, SIAM J. Algebr. Discrete Methods

7 (2) (1986) 193–198.
[6] S.L. Campbell, C.D. Meyer, Generalized Inverses of Linear Transformations, Pitman Publishing

Ltd., London, 1979, Reprinted by Dover Publishing Co., New York, 1991.
[7] E. Estrada, The Structure of Complex Networks, Oxford University Press, Oxford, UK, 2011.
[8] E. Estrada, J.A. Rodríguez-Velázquez, Subgraph centrality in complex networks, Phys. Rev. E 71

(2005) 056103.
[9] R.E. Funderlic, R.J. Plemmons, Updating LU factorizations for computing stationary distributions,

SIAM J. Algebr. Discrete Methods 7 (1) (1986) 30–42.
[10] R.E. Funderlic, R.J. Plemmons, LU decomposition of M-matrices by elimination without pivoting,

Linear Algebra Appl. 41 (1981) 99–110.
[11] G.H. Golub, G. Meurant, Matrices, Moments and Quadrature with Applications, Princeton Uni-

versity Press, Princeton, 2010.
[12] X. Hu, J. Lin, L. Zikatanov, An adaptive multigrid method based on path cover, arXiv :1806 .07028,

19 June, 2018.
[13] K.A. Jacobsen, J.H. Tien, A generalized inverse for graphs with absorption, Linear Algebra Appl.

537 (2018) 118–147.
[14] E.F. Kaasschieter, Preconditioned conjugate gradients for solving singular systems, J. Comput.

Appl. Math. 24 (1988) 265–275.
[15] L. Katz, A new status index derived from sociometric data analysis, Psychometrika 18 (1953) 39–43.
[16] A.N. Langville, C.D. Meyer, Google’s PageRank and Beyond: The Science of Search Engine Rank-

ings, Princeton University Press, Princeton, NJ, 2006.
[17] O.E. Livne, A. Brandt, Lean Algebraic Multigrid (LAMG): fast graph Laplacian linear solver, SIAM

J. Sci. Comput. 34 (2012) B499–B522.
[18] K. Morikuni, M. Rozloznik, On GMRES for singular EP and GP systems, SIAM J. Matrix Anal.

Appl. 39 (2018) 1033–1048.
[19] M.E.J. Newman, Networks: An Introduction, Cambridge University Press, Cambridge, UK, 2010.
[20] Y. Saad, M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric

linear systems, SIAM J. Sci. Statist. Comput. 7 (3) (1986) 856–869.
[21] The SuiteSparse Matrix Collection, https://sparse .tamu .edu/.
[22] J.H. Tien, Z. Shuai, M.C. Eisenberg, P. van den Driessche, Disease invasion on community networks

with environmental pathogen movement, J. Math. Biol. 70 (5) (2015) 1065–1092.
[23] J.C. Urschel, X. Hu, J. Xu, L. Zikatanov, A cascadic multigrid algorithm for computing the Fiedler

vector of graph Laplacians, J. Comput. Math. 33 (2) (2015) 209–226.
[24] P. Van Mieghem, Graph Spectra for Complex Networks, Cambridge University Press, 2011.

http://refhub.elsevier.com/S0024-3795(19)30133-8/bib42656E7A694C41413034s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib42656E507265636F6E64s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib42656E507265636F6E64s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib426572506C656Ds1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib426572506C656Ds1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib62756F6E69s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib62756F6E69s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib47494C54s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib47494C54s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib45737472616461s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib457374726164613035s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib457374726164613035s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib46756E506Cs1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib46756E506Cs1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib46756E506C3831s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib46756E506C3831s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib676867s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib676867s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib414D47s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib414D47s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib4C41413138s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib4C41413138s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib4B616173s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib4B616173s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib4B61747As1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib476F6F676C65s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib476F6F676C65s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib4C414D47s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib4C414D47s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib4D52s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib4D52s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib4E65776D616Es1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib53533836s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib53533836s1
https://sparse.tamu.edu/
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib4A4D423135s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib4A4D423135s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib484543s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib484543s1
http://refhub.elsevier.com/S0024-3795(19)30133-8/bib6D696567s1

