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a b s t r a c t

This study assesses the potential of Uniform Manifold Approximation and Projection (UMAP) as an alter-
native tool to t-distributed Stochastic Neighbor Embedding (t-SNE) for the reduction and visualization of
visible spectral images of works of art. We investigate the influence of UMAP parameters—such as, cor-
relation distance, minimum embedding distance, as well as number of embedding neighbors— on the
reduction and visualization of spectral images collected from Poèmes Barbares (1896), a major work by
the French artist Paul Gauguin in the collection of the Harvard Art Museums. The use of a cosine distance
metric and number of neighbors equal to 10 preserves both the local and global structure of the Gauguin
dataset in a reduced two-dimensional embedding space thus yielding simple and clear groupings of the
pigments used by the artist. The centroids of these groups were identified by locating the densest regions
within the UMAP embedding through a 2D histogram peak finding algorithm. These centroids were sub-
sequently fit to the dataset by non-negative least square thus forming maps of pigments distributed
across the work of art studied. All findings were correlated to macro XRF imaging analyses carried out
on the same painting. The described procedure for reduction and visualization of spectral images of a
work of art is quick, easy to implement, and the software is opensource thus promising an improved
strategy for interrogating reflectance images from complex works of art.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Hyperspectral imaging (HSI) enables non-invasive and non-
destructive spatial investigation of pigments and colorants found
in artworks, either pure or in mixture to reach the hue intended
by the artist. At typical spatial resolutions, a single HSI experiment
produces gigabytes of data composed of millions of reflectance
spectra. Such large datasets pose challenges for extracting a maxi-
mum of information. It is clear that traditional methods of spectral
analysis (e.g., as is routinely performed in fiber optic reflectance
spectroscopy [1–15]), that require the careful examination of each

http://crossmark.crossref.org/dialog/?doi=10.1016/j.saa.2021.119547&domain=pdf
https://doi.org/10.1016/j.saa.2021.119547
mailto:marc.walton@northwestern.edu
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individual spectrum, is not possible. Because of the large volume
and complexity of these data, there is an increasing need for
advanced dimensionality reduction techniques, capable of auto-
matically identifying trends and clustering data.

Visualizing the structure of data is a key exploratory step.
Depending on the dataset under study, the visualization of the data
may take several forms such as scatterplots, histograms/distribu-
tions, or tree maps [16–20]. Many of these visualization tools are
difficult to implement on multi-dimensional data. Consequently,
it becomes important to reduce dimensionality by grouping
together comparable features— reflectance spectra in the case of
HSI— prior to visualization, allowing insights into identification
and localization of pigments used by the artists. This is made pos-
sible by embedding the large number of spectra collected into a
lower dimensional space that retains the information and proper-
ties of the original high dimensional dataset.

There are several data reduction methods already widely avail-
able. Amongst these, Principal Component Analysis (PCA) has his-
torically been the most commonly used [19–27]. PCA projects
spectral data onto a variance subspace [28] which retains the glo-
bal structure of the dataset by linearly recombining all spectra into
orthogonal eigenvectors. Local structure (e.g., spectrum to spec-
trum differences) within a given dataset, however, will not be pre-
served by PCA [16]. Also, while linear dimensionality reduction
techniques, such as PCA, have shown satisfactory results in the past
for extracting information from HSI data [24,29–31], these models
presuppose that a linear relationship exists amongst the variables
despite the fact that paint mixtures models are inherently nonlin-
ear [32]. The non-linear chromatic behavior of paint blending and
layering is well illustrated by the Kubelka-Munk (K-M) model, for
which the K-M equations accurately approximate the diffuse
reflectance of pigmented materials like paint, given descriptions
of their constituent pigments and pigment concentrations [33–35].

To overcome the limitations of PCA, nonlinear data reduction
techniques have been developed that better preserve local struc-
ture by embedding spectra with small distances as nearby points
in a low-dimensional graphical representation [36–38]. t-
distributed Stochastic Neighbor Embedding (t-SNE) is one such
method that has proven to be a very valuable tool for HSI data
analysis [39–41]. The t-SNE algorithm evaluates the similarity
between one point and a given number of neighbors by calculating
their distance and modelling a pair-wise probability distribution. t-
SNE is a valuable dimensionality reduction tool because the num-
ber of features that can be captured in the reduced space is not
restricted by the number of output dimensions selected (often
set to 2 or 3). Furthermore, t-SNE maintains the local distances of
the original dataset making it a good contender for data visualiza-
tion. Due to these attributes, t-SNE has become a very popular data
reduction technique well suited for the visualization of high-
dimensional datasets [42–46]. A major drawback of t-SNE and
many other nonlinear dimensionality reduction techniques, how-
ever, is their memory intensive computation. In t-SNE, a large dis-
tance matrix needs to be calculated between pixels, which
consumes available RAM and makes the processing of high-
resolution HSI datasets slow, at least with standard desktop and
laptop computers [36,47]. Furthermore, t-SNE does not retain the
global structure of the original dataset. As a result, two groupings
far away from each other in the embedded space are not necessar-
ily far away in the original data. As a general rule, distances
between embedded groupings in a t-SNE plot lack meaning.

In the case of HSI data, however, finding the distances between
groupings is desirable as this information could indicate similarity
or dissimilarity in pigments or reveal information on pigment mix-
tures. As a result, there is a need for novel data reduction tech-
niques that retain both the local and global geometric structures
of the initial dataset and provides an easy way to interpret visual-
2

ization. To address this gap, Uniform Manifold Approximation and
Projection (UMAP) was recently developed [36,47,48]. Similarly to
t-SNE, UMAP uses graph layout algorithms to arrange data in a
low-dimensional space [49]. The algorithm finds an embedding
by searching for a low-dimensional projection of the data that
has the closest possible equivalent global shape and structure as
the original dataset. This method can be used for visualization pur-
poses in two or three dimensions. Another great advantage of
UMAP over t-SNE is its faster processing time, and ability to handle
larger data set [50,51]. As an example, it was reported in literature
that UMAP processes 429,165 pixels with 399 bands in 857.47 s,
while t-SNE employs 2905.28 s for the same dataset [52].

Since its introduction in 2018, UMAP has found many applica-
tions in the fields of bioinformatics, material and environmental
sciences, and machine learning [36,38,47,51,53–60]. Yet the appli-
cation of UMAP to heritage science has hitherto been limited and,
when used, the optimization of its various parameters has not been
explained in detail [52]. In this paper, we assess the potential of
UMAP for the reduction and visualization of hyperspectral data
obtained on works of art and compare its performance to t-SNE.
We also systematically evaluate the influence of various UMAP
parameters (e.g., distance metric and number of neighbors) on
the reduction and visualization of hyperspectral data obtained on
works of art. Furthermore, we develop an endmember extraction
pipeline which utilizes 2D histogram density maps to identify
groupings and their centroids. Endmember distribution maps are
made by fitting the centroid spectra to the original data using
non-negative least squares. A Jupyter Notebook containing these
scripts is freely available from the Center for Scientific Studies in

the Arts (NU-ACCESS) Github page (https://github.com/NU-

ACCESS/UMAP).
2. Materials and methods

2.1. Dataset

The historical data set used in this study was obtained on one
painting by Paul Gauguin (1848–1903) from the collection of the
Harvard Art Museums. The painting analyzed, Poèmes Barbares
(Fig. 1), is dated 1896 and was painted during Gauguin’s second
trip to French Polynesia. The final dataset, 750 Mb in size, is com-
posed of 1,590,292 pixels (1034 � 1538 pixels), therefore yielding
a ca. 500-mm spatial resolution, common characteristics for reflec-
tance imaging data sets.
2.2. Hyperspectral data acquisition

HSI data in the visible range was acquired using a Resonon Pika
II Pushbroom system (Resonon, Inc., Bozeman, MT, USA) in the
400–900 nm range with spectral resolution of 2.1 nm, with a total
of 240 channels. The system was connected to a stage allowing the
scanning of about 30 cm of the object’s width, with a pixel size of
460 � 420 mm2. During acquisition, the object was illuminated
using two broad spectrum tungsten halogen lamps placed at 45�
of the objects normal. A Spectralon diffuse white reflectance stan-
dard (Labsphere, North Sutton, USA) was used as a calibration tar-
get to convert the image cubes to diffuse reflectance. Hyperspectral
acquisition was performed using the SpectrononPro software
(Resonon, Inc., Bozeman, MT, USA). The raw hyperspectral data
cubes were converted to a tiff stack in Fiji and the six partially
overlapped areas, each with a size of 230 � 240 mm2, were
stitched together using registration and stitching plugins available
in the open source image processing package Fiji suite [61,62],
prior to further processing.

https://github.com/NU-ACCESS/UMAP
https://github.com/NU-ACCESS/UMAP


Fig. 1. ‘‘Poèmes Barbares” (1896), oil on canvas, 64.8� 48.3 cm (unframed), painted
by the French artist Paul Gauguin (1848–1903), Harvard Art Museums/Fogg
Museum, Bequest from the Collection of Maurice Wertheim, Class of 1906. Object
Number: 1951.49 � President and Fellows of Harvard College.
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2.3. MA-XRF data acquisition

The macro XGLab’s ELIO XRF imaging spectrometer system
(MA-XRF) was used in combination with HSI for characterizing
the pigments palette used in the Gauguin painting. The instrument
is equipped with a transmission Rh anode X-Ray tube, the poly-
chromatic beam presenting an incoming angle of 63.5� prior to
the sample plane, and a compact head free of X-ray optics. A colli-
mator allowing a 1 mm diameter focused spot size at the surface of
the object was used to acquire XRF maps at the surface of the
painting. Two laser pointers, mounted in such a way that their
intersection point coincides with the cross-point of the incident
X-ray beam and detector axis, allow for optimizing both excitation
and detection conditions. The X-ray detector element is a large
area (active collimated area is 25 mm2) silicon drift detector
(SDD) equipped with a CUBE preamplifier, with an energy resolu-
tion of 135 eV at the Mn Ka line (5.9 keV). The instrument was
operated at 50 kV and 60 lA. The elemental 2D mapping of the
object surface was achieved using a 100 � 100 mm2 automatic
XY raster scanning stage mounted to a homebuilt
560 � 400 mm2 two-dimensional motorized scanner. This
macro-XRF system allowed the scanning of approximately 70% of
the total surface of the painting. Rastering was executed with
acquisition times of 0.5 s per point and with a step size of
2 � 2 mm2. The various maps were stitched together using regis-
tration and stitching plugins available in the open source image
processing package Fiji suite [61,62].
2.4. Data processing

Manifold learning approaches were used to embed high-
dimensional data into a 2-dimensional space for visualization
and investigation of nonlinear relations in the data. While the main
aim of this article is to assess the application of UMAP for the data
3

reduction and visualization of hyperspectral imaging of works of
art, t-SNE (perplexity of 50, [40]) was applied to the same datasets
in order to compare the visualization outcomes and the running
times of both approaches. In the frame of this study, the data
was reduced to 2 components for both the t-SNE and UMAP
experiments.

UMAP was performed in a Jupyter Notebook running Python 3
[48]. Default parameters were used except for number of neigh-
bors, distance, and the type of distance measured (e.g., Euclidean,
cosine, Manhattan, etc.). Since the reduction of hyperspectral data
aims at visualizing similar reflectance curves, it is necessary to set
the minimum distance parameter to 0. This parameter, as the name
suggests, corresponds to the minimum distance between each
point within the graph. When set to 0, points corresponding to
similar spectra will be placed as close together as possible (on
top of each other if identical) creating high density regions of sim-
ilar spectra within the two-dimensional space of the graph. This
densification of points is of foremost importance for the histogram
clustering methods we employ in the endmember selection steps
indicated below.

One of the first steps in data reduction and visualization is cal-
culating distances between the spectra in the original high-
dimensional space. Distance describes how similar a spectrum is
to all other spectra and choice of the distance metric can have a
considerable impact on the performance of UMAP to group similar
spectra [56,63]. While the Euclidean distance is often used by
default, including in t-SNE [42,53,56,64], the distance metrics eval-
uated in this study included Canberra, Chebyshev, cosine, Eucli-
dean, Manhattan, and Minkowski, as they have been used
previously in reduction of different data types [47,51,54,56,65].
The detailed formulas for each distance metric are given in
Table S1. Also assessed is the influence of the number-of-
neighbors metric which controls how UMAP balances local versus
global structure in the data by constraining the size of the local
neighborhood. As a result, low number-of-neighbors values will
force UMAP to concentrate on very local structure, whereas large
values will push UMAP to look at larger neighborhoods of each
point when estimating the manifold structure of the data. The dis-
tance and number-of-neighbors metrics used for the various
experiments are indicated in the figures’ captions.

The RGB colors used in the UMAP and t-SNE embeddings plots
are calculated from the reflectance spectrum themselves. First, a
Python script implemented in the Fiji image processing suite, col-
lapses the wavelength stack into a 3-band XYZ tristimulus image
by multiplying each wavelength by a CIE color matching function
and summing across all wavelengths. The XYZ image is then trans-
formed into the Adobe sRGB color space as detailed previously
[66,67]. By performing these actions, a per pixel RGB image is thus
registered to each reflectance spectrum in the data cube. The RGB
value of each pixel from the RGB image is then used to color and
plot the UMAP embeddings.

For the determination of endmembers from UMAP, embed-
dings were converted into a 2D histogram by binning pixels to
256. Areas of high density were identified from the histogram
based on user defined threshold (sensitivity to counts of normal-
ized pixels) and nearest-neighbor values (a constraint that indi-
cates how far away a group needs to be - in terms of pixels -
to be considered as a new group). Regions of highest density were
considered as cluster centroids and the associated spectra were
thus taken as endmembers. This method will not differentiate
single pigment and mixtures of pigments and therefore, the end-
members identified will be either pure pigments or pigment mix-
tures representative of what the artists used in their
compositions. Finally, these endmember spectra were fitted to
the original spectral data cube using non-negative least squares
to produce pigment distribution maps.



M. Vermeulen, K. Smith, K. Eremin et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 252 (2021) 119547
UMAP and t-SNE reduction and projection were carried out on a
Dell computer running with Windows 10 with a 1.80 GHz Intel
Core i7 processor, with 16 GB of RAM. This setup allowed for the
UMAP treatment of datasets up to 250,000 pixels. When reduction
and projection tests required more memory, a Dell computer run-
ning with Windows 10 with 3.6 GHz Intel Xenon processor and
72 GB of RAM was used.
3. Results and discussion

3.1. Description of the analytical procedure

The flowchart presented in Fig. 2 illustrates the processing pipe-
line used for data reduction, identification of pigment clusters, and
visualization of pigment distribution in the studied artworks. Data
pre-processing steps, such as the transforming of the raw ‘‘band
interleaved by line” (BIL) data formats into TIFF files, are not
included in the Jupyter Notebook associated with this study but
may be found on the previously mentioned NU-ACCESS Github
page.

3.2. Dataset preparation prior to data reduction

As the first step, the data was reorganized into an n x m matrix
in which n represents the number of wavelength channels and m
the number of pixels. This step also provides the opportunity for
the investigator to remove any zero lines artificially produced
when stitching together two dissimilarly sized data cubes acquired
on large objects under study.

The next step is to reduce the size of the spectral stack which
can become quite large (up to several Gb/several millions of pixels)
depending on the area scanned. Reducing spatial dimensions may
be required, for instance, when using a computer with limited RAM
which can be consumed by the large matrices utilized by UMAP.
One option is to downsize the spatial dimensions of the data cube
by binning pixels (averaging) as can be readily accomplished in
Fig. 2. Processing pipeline for reduction and visualization of hyperspectral data followed
TIFF image stack resulting from the data collection and conversion from the studied work
XYZ and XYZ to RGB macros running in Fiji, (c) pixel selection following the transformatio
the UMAP data reduction, (e) colored scatterplot obtained through the pixel correlatio
histogram density map allowing for the (e) characterization dense clusters/spectral end
least square fitting of the selected endmembers to the original image stack (a).

4

imaging processing suits like Fiji or Photoshop. However, since
averaging can produce undesirable artifacts [40], it is not optimal
when the ultimate goal of the data reduction is to identify the sig-
natures of the ‘‘pure pigments” used by the artist. We find that a
better approach is to randomly select a percentage of pixels which
are expected to represent the variance found in the full data cube,
using a Python implementation of the random sample module. The
exact percentage can be customized to fit constraints of calculation
time and computer hardware. This stochastic method produces
UMAP results very similar to what is obtained for the full non-
reduced cube thus demonstrating its robustness in maintaining
data fidelity. Finally, not all wavelength channels may be required
for data processing, especially when portions of the spectrum are
affected by poor signal to noise ratios (SNR) or stray light within
the spectrometer. Therefore, our code offers the option to choose
wavelength ranges. Typically, UMAP is run with the noisy UV por-
tion of the spectrum eliminated using only 230 spectral bands
between 414 and 892 nm.
3.3. Performance comparison between UMAP and t-SNE

The performance of the UMAP algorithm is compared, using its
default values (2 components, number of neighbors of 15 and
Euclidean distance metric, [68]), to the t-SNE algorithm using the
same optimized parameters selected by Pouyet et. al for spectral
data (2 components, perplexity of 50 and Euclidean distance met-
ric, [40]). Both UMAP and t-SNE were applied to the analysis of the
Gauguin’s Poèmes Barbares. The resulting 2D color scatterplots are
given in Fig. 3a,b.

Points in the t-SNE scatterplot (Fig. 3a) appear more dispersed
than in the UMAP scatterplot (Fig. 3b). This is well illustrated by
the orange points associated with the orange-red background of
the painting. In the t-SNE scatterplot, these points are found both
as a large diffuse group in the upper half of the plot and as smaller
and denser groupings around it. In comparison, all of the orange
points appear as a single dense grouping in the UMAP scatterplot.
by the extraction and mapping of the various endmembers (pigments/colorants): (a)
of art, (b) RGB image obtained from the TIFF image stack using the lambda stack to

n of the image stack into a 2Dmatrix, (d) X and Y 2D embeddings obtained following
n between the 2D embedding and the RGB image of the studied artwork, (f) 2D
members, and (h) endmembers distribution maps created through a non-negative



Fig. 3. Colored 2D scatterplot representation of the embeddings obtained on the Gauguin’s Poèmes Barbares dataset (15% of the total pixels) using (a) t-SNE (Euclidean
distance metric, perplexity of 50) and, (b) UMAP (Euclidean distance metric and number of neighbors of 15). (c) selected extracted endmembers maps for blue groupings
marked with red rectangles on the 2D UMAP colored scatterplots and (d) corresponding reflectance spectra. The various blues were identified as Prussian blue (1 and 3) and
ultramarine blue (2, 4, and 5) based on their reflectance curves presented in (d).
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The main pigment associated with these groupings is mercuric sul-
fide (vermilion, HgS), as suggested by the mercury (Hg) map
obtained with MA-XRF (Fig. 4-Hg). Therefore, based on the charac-
teristic sigmoidal shape the HgS reflectance spectra with inflection
point around 600 nm [1,3], one would expect to find all spectra
with this feature to be grouped closely together as was correctly
observed in the UMAP scatterplot. This clearly illustrate some of
the previously discussed shortcomings of t-SNE compared to
UMAP [36,47,51,56], which also apply to hyperspectral data
obtained on works of art.

Likewise, for the blues, UMAP exhibits only two main groupings
(Figs. 3b-1 and 3b-2) corresponding to the two shades applied to
the wing behind the female figure’s head and her garment
(Figs. 3c-1 and 3c-2). Through comparison of the reflectance spec-
tra (Figs. 3d-1 and 3d-2) with published databases [1,3,16,69],
these groups were identified as Prussian blue, in the garment
(Fig. 3c-1) and ultramarine used for the wings (Fig. 3c-2). The t-
SNE plot, however, produced multiple scattered groupings (around
7) for the blues (Fig. 3a). When examining the spectra from hand
selected groupings just associated with the female figure’s head
(Fig. 3c-4-5), for instance, it may be observed that each group is
formed from spectra with the characteristic shape of ultramarine
(Fig. 3d-4-5), with only subtle differences due to noise and inten-
5

sity variations. However, by separating these groupings in the 2D
scatterplot, t-SNE may tend to indicate that all these groupings
may have been realized using different pigments, which is not
the case based on the extracted reflectance curves. We believe that
the more complex scatterplot produced by t-SNE is due to the lack
of global structure, when using this technique, which places a sub-
optimal emphasis on noise. As a result, it becomes difficult to nar-
row down the number of blue pigments used in the painting by t-
SNE and highlights the poor clustering potential of this method
compared to UMAP.

UMAP may consolidate the data into fewer groupings, but each
grouping has additional localized structure such as color gradients:
e.g., from light to dark orange, from yellow/light green to deep
green and black, from light blue to dark blue. These gradients
can be explained by the use of mixtures of pigments – dilution
with white or black to achieve the various hues - rather than pure
pigments to yield the desired color. This color arrangement, that is
clearly not observed in t-SNE, can be of foremost importance in
understanding the artistic process of pigment mixing. This also
shows one of the primary differences between the t-SNE and
UMAP: t-SNE retains only local structure (all neighboring points
within a grouping are related) while global structure is lost (dis-
tance between clusters is meaningless). UMAP on the other hand



Fig. 4. RGB image and selected MA-XRF elemental maps representative of the composition.
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preserves both local and global structure [36,48,51,70]. Therefore,
all neighboring points within a grouping will be related while
the distribution of the groupings within the 2D representation
and their distance to one another will also bear meaning. For
instance, two groups of points that are found close in the original
complex data should also be found close in the reduced space fol-
lowing the UMAP reduction. It follows that the blue grouping
observed curving between the black and the purple in Fig. 3b-2
most likely corresponds to the blue found on the upper middle part
of the painting, located between the dark hair of the female figure
and the purple from the background. This is confirmed by the dis-
tribution maps for ultramarine blue presented in Fig. 3c-2. There-
fore, UMAP arranges the reduced data in a way that makes it
easier to understand what pigments the artist has been using in
the composition of the painting. In addition, toward the better data
reduction and visualization capabilities of UMAP, a comparison of
the runtimes obtained by the different algorithms (t-SNE and
UMAP) was realized for the Gauguin dataset. Runtimes, 7000 sec
vs. 300 sec for t-SNE and UMAP respectively, proves that UMAP
runs about 20 times faster than t-SNE. Therefore, along with deliv-
ering embeddings with superior readability than t-SNE, UMAP is
also computationally more efficient, as often described in pub-
lished literature [48,59,60,71].

Overall, UMAP shows good runtime performance and, in com-
parison to t-SNE, has the major advantage of compressing the spa-
tial and molecular information into tighter, more defined, and
more meaningful groupings, resulting in easier detailed visualiza-
tion and interpretation.

3.4. Influence of the distance metric and normalization

To assess the influence of the distance metric on the data reduc-
tion of hyperspectral imaging of Gauguin’s Poèmes Barbares, the
number of neighbors was set to its default value of 15.

Fig. 5 presents the UMAP color scatters obtained using Canberra
(Fig. 5a), Chebyshev (Fig. 5b), cosine (Fig. 5c), Euclidean (Fig. 5d),
Manhattan (Fig. 5e), and Minkowski (Fig. 5f) distance metrics.

All distance metrics lead to a clear grouping of the various col-
ors. However, the projections obtained using Canberra, Euclidean,
Manhattan, and Minkowski, all based on L1 or un-normalized L2
norms, appear to be very similar (Fig. 5a,d,e,f). On the contrary,
Chebyshev and cosine distance metrics, respectively L1 and nor-
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malized L2 norms, yield unique projections (Fig. 5b,c). With each
metric there is a clear separation of the red, purple, two distinct
blues, black, green, and yellow colors of the painting. Nonetheless,
purples and greens, and to a lesser extent the blues, appear more
scattered when the Canberra, Euclidean, Manhattan, and Min-
kowski distance metrics are used, whereas all colors appear more
tightly grouped when Chebyshev or cosine distance metrics are
used. In all cases, a color arrangement can be observed and each
color groupings present a gradient, which appear to be indepen-
dent from the distance metric used.

When looking at the associated density maps, it becomes clear
than certain distance metrics allow denser groupings indicating a
better data reduction step and potentially better endmember iden-
tification through density-based cluster identification algorithm.
Looking solely at the highest density groupings, Canberra, Eucli-
dean, Manhattan and Minkowski, all L1 and un-normalized L2 dis-
tance metrics, would appear as the most promising metrics to use,
yielding small groupings as dense as 400 (Fig. 5a), 400 (Fig. 5d),
480 (Fig. 5e) and 350 pixels (Fig. 5f) respectively compared to
225 (Fig. 5b) and 260 pixels (Fig. 5c) for Chebyshev and cosine
respectively. However, when considering the rest of the points,
the groupings are found in the 50–100 pixels range for all L1 and
un-normalized L2 distance metrics whereas Chebyshev and cosine
present more groupings in the 100–200 pixels. Consequently, these
distance metrics (cosine and Chebyshev) appear to form, overall,
denser groupings than all the other distance metrics. As a result,
cosine and Chebyshev may appear to be among the best distance
metrics to use for global endmembers extraction based on cluster
density as they provide a more comprehensive assessment of the
artists’ palette. The other L1 and un-normalized L2 norms metrics
would identify a few high-density groupings but miss much of
the palette. Due to the grouping nature of the data reduction pro-
cess, the tighter and more well-defined groupings observed for
cosine and Chebyshev distance metrics tend to indicate that these
metrics are the most suitable for the purpose of data reduction of
hyperspectral data obtained on art materials. As a result, these dis-
tance metrics were chosen as possible distance metric to be used
with UMAP for data reduction of hyperspectral cubes.

While spectral data acquired is normalized against a diffuse
white standard, fluctuations in intensity may be observed when
pigments are found mixed in various proportions with a white pig-
ment to yield the intended hues. Because the aim here is not to



Fig. 5. UMAP 2D color scatterplots and associated density maps obtained for the Gauguin’s Poèmes Barbares dataset using six different metrics (a) Canberra, (b) Chebyshev,
(c) cosine, (d) Euclidean, (e) Manhattan and (f) Minkowski. Other UMAP parameters were set as follow: n_neighbors = 15, min_dist = 0, and n_components = 2.

M. Vermeulen, K. Smith, K. Eremin et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 252 (2021) 119547
perform a non-linear unmixing of the pigments to understand the
exact composition of the mixtures [32,72], such intensity varia-
tions are less important than identifying the pigments in the mix-
tures themselves. Consequently, pixel-by-pixel normalization of
the spectral data between 0 and 1 was undertaken to reduce the
number of groupings. UMAP reduction of Gauguin’s Poèmes Bar-
bares and mapping of the cluster density were realized using pre-
Fig. 6. UMAP 2D scatterplots and associated density maps for the Gauguin historical pai
metrics. A number of neighbors of 10 and 15% of the total pixels were used to create th
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viously shortlisted distance metrics: cosine, Chebyshev and
Euclidean (the latter being used for comparison purposes with L1
distance metrics). Their scatterplots and associated density maps
are given in Fig. 6. As illustrated, normalization of the spectral
stack prior to reduction and visualization does not have any impact
on the UMAP embedding when using the cosine distance metric
(Fig. 6a) when compared to the non-normalized cube (Fig. 5c). This
nting normalized dataset using (a) cosine, (b) Chebyshev and (c) Euclidean distance
e embeddings.



Fig. 7. UMAP color scatterplots obtained with using the cosine distance metric with number of neighbors varying from 3 to 30 and variation of their associated runtime (in
seconds). Due to the large size of the historical dataset, only a subset of 15% of the total pixels were selected.
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is easily explained by the fact that cosine measures the angle
between vectors so differences in vector magnitude have no influ-
ence (Table S1). However, the resulting embeddings when working
on normalized data with the Chebyshev and Euclidean metrics
(Fig. 6b,c) appears simpler with few groupings than in the non-
normalized dataset (Fig. 5b,d) Even so, the density maps associated
with the normalized dataset do not appear to present denser clus-
ters. For normalized Chebyshev, dense groupings drop down to ca.
160 pixels compared to ca. 220 pixels for the non-normalized data
with most groupings being ca. 40 to 60 pixels. For Euclidean, we
also observe a drop in the density of the denser groupings (ca.
220 vs. ca. 350 for non-normalized data) with a large portion of
the groupings in the 100–125 pixels range. Therefore, data normal-
ization does not appear to be helpful regarding density of the
groupings when working with Euclidean or Chebyshev distance
metric. Based on these considerations we conclude that the cosine
distance metric produces the most consistent and densest reduc-
tion of hyperspectral data obtained on art materials.

3.5. Influence of the number of neighbors

In the literature [49,54,73], it is found that the higher the num-
ber of neighbors (n_neighbors) used for the UMAP algorithm, the
more global structure is preserved, whereas a smaller number will
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force the algorithm to preserve more local structure (and perform
similarly to the t-SNE algorithm). Also, the higher n_neighbors
number will have a corresponding impact on processing time.
Therefore, it is important to find an n_neighbors high enough to
balance global vs. local structure but low enough to allow the data
reduction to be realized in a reasonable amount of time and yield
denser groupings. Here, we tested the influence of the number of
neighbors from 3 to 30 on the Gauguin dataset (Fig. 7).

From the resulting embeddings, the number of neighbors used
for the algorithm appears to have little influence on their 2-
dimensional representation when using values larger than 5 or 7.
Using such values, all colors (and therefore variables) are well
grouped. Nonetheless, for low n_neighbors (<5), the clusters can
be seen as not yet optimal, as points are found loosely scattered
around the groupings. Higher n_neighbors (15 and above) have
however a limited influence on the scatterplot, only creating
slightly tighter groupings, while increasing considerably the pro-
cessing time (Fig. 7). Therefore, while a n_neighbors of 5 would
be suitable for most datasets both in term of embedding and run-
ning time (ca. 300 sec), given the limited processing time for
n_neighbors of 10 (ca. 450 sec), it was decided that such a value
would be a good compromise between global vs. local structure
preservation and processing time for the more complex datasets
obtained from paintings.



Fig. 8. 2D scatterplots for four successive UMAP or t-SNE runs using identical or different 15% sub-sampling of the datasets and selecting or not the UMAP random seed state
in order to test the embedding reproducibility. Reproducibility is measured using the Structural Similarity Index Measure (SSIM). (a) UMAP, no random state, identical
dataset, SSIM: 0.843 ± 0.010, (b) t-SNE, identical dataset, SSIM: 0.578 ± 0.004, (c) UMAP, random state, identical dataset, SSIM: 1, (d) UMAP, random state, different datasets,
SSIM: 0.297 ± 0.005, (e) UMAP, no random state, different datasets, SSIM: 0.286 ± 0.014.
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3.6. Reproducibility

Reproducibility of an experiment over time is very important.
This can be required when reanalyzing an object past its original
investigation. Therefore, reproducibility of the embedding
obtained when using UMAP was investigated.

UMAP embeddings of a single dataset over several repetitions
will present variations. This is due to the stochastic nature of the
UMAP algorithm which makes use of randomness both to speed
up approximation steps, and to aid in solving hard optimization
problems [70,73]. Nonetheless, its strong mathematical founda-
tions ensure a robust, interpretable and stable algorithm [48]. As
a result, the variance between runs is relatively small but different
runs still present variations (Fig. 8). The similarity between the
various embeddings can be quantified using Structural Similarity
Index Measure (SSIM), which value is equal to 1 for identical
embeddings.
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The SSIM over the four runs using the same random selection of
15% of the data cube pixels without using the UMAP random seed
state (Fig. 8a) has been calculated at 0.843 ± 0.010 using a Python
implementation of the algorithm. This reproducibility is much
higher than the one observed for four successive runs of the same
15% sub sampling of pixels using t-SNE (Fig. 8b), for which the
SSIM is of 0.578 ± 0.004. This highlights the poorly reproducible
embeddings of the t-SNE method compared to UMAP, also
described in literature [47,65,74]. To ensure that results can be
reproduced exactly, the UMAP algorithm allows the user to set a
random seed state (the variable referred to as ‘‘random_state”
[68]). Fixing the random seed state to a given value (42 in the case
of this paper), all runs of the same dataset under the same exper-
imental conditions are found to be identical (Fig. 8c). Their struc-
tural similarity index over four successive runs of the same
dataset was calculated to be 1, proving the exact reproduction of
the embedding. However, it is important to keep in mind that,



Fig. 9. 2D histogram(a) and corresponding density-based selected areas (b) for the Gauguin dataset using a threshold value of 0.3 and a minimum distance of 15.

Table 1
Number of identified endmembers upon variation of the threshold and minimum distance values used for the 2D histogram algorithm. 15% of the total available pixels of the
Gauguin dataset were used to compute the embedding with a number of neighbors of 10 used for the UMAP calculation.

Minimum distance Threshold 5 10 15 20 25 30

0.1 72 33 20 16 12 11
0.15 63 32 20 16 12 11
0.2 57 31 20 16 12 11
0.25 48 30 19 15 12 11
0.3 38 25 17 14 12 11
0.35 29 21 16 13 12 11
0.4 20 14 14 12 11 10
0.45 16 12 11 9 8 8
0.5 14 10 10 8 7 7
0.55 13 9 9 7 7 7
0.6 10 7 7 5 5 5
0.65 7 6 6 5 5 5
0.7 6 5 5 4 4 4
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when working with large datasets and subsampling randomly a
certain percentage of pixels in order for the data reduction to run
in an acceptable amount of time, the random seed state will not
be useful as it is very unlikely that two randomly selected sub
datasets will be identical and would therefore lead to embeddings
presenting variations (Fig. 8d-e). This is confirmed by the struc-
tural similarity index of 0.297 ± 0.005 (fixed random seed state
using four different sub sampling of the data, Fig. 8d), which is
comparable to the one obtained for a random selection of pixels
without the use of random seed state (0.286 ± 0.014, Fig. 8e).
Despite a low structural similarity index, the 2D representations
of their scatterplots do not present as much global variations as
the ones observed for the t-SNE scatterplots (Fig. 8b). This is
explained by the UMAP ability to retain the global structure of
the original dataset, which is not the case with t-SNE.

Furthermore, the use of the random seed state in order to reach
a perfect reproducibility of the result will increase the processing
time for the embedding. In the case of the Gauguin dataset, using
15% of the total available pixels, the runtime without the use of
the random seed state was 3 min 58 sec (±2 sec) versus 6 min 30
sec (±9 sec) when the random seed state was used. This is a not
negligible increase in processing time (+60%), which may prove
unnecessary if reproducibility is not required.
10
3.7. Integration of the reduction and visualization steps with 2D
histogram density mapping and non-negative least square fitting

Data reduction and visualization are only the first steps in the
exploration and interpretation of hyperspectral data obtained on
works of art. The ultimate goal is to identify and visualize the dis-
tribution of pigments or mixture thereof. Therefore, we have inte-
grated the data reduction using UMAP with density-based cluster
identification to extract the corresponding endmembers, equiva-
lent to pigments or the most commonly used mixtures of pigments
employed by the artist. This is performed based on the density of
the groupings obtained through a 2D histogram (Fig. 9a). The
detection of the densest hotspots is dependent on the threshold
and minimum distance. The threshold and minimum distance val-
ues to use to extract the endmembers may fluctuate from an
embedding to another. This is left to the user’s discretion based
on the number of endmembers expected and the localization of
the various hotspots on the colored scatterplot. However, it has
been found that the smaller the values for the threshold and min-
imum distance, the larger the number of endmembers identified
(Table 1). For a low threshold value (0.1–0.2) and a large minimum
distance (25–30), the algorithm cannot detect an adequate number
of hotspots and is underestimating the number of endmembers. On



Fig. 10. Distribution maps for the various pigments and mixtures thereof using UMAP, 2D histogram cluster identification and non-linear least square fitting. (a) Prussian
blue, (b) ultramarine blue, (c) cobalt blue, (d) unidentified black, (e) vermilion, (f) iron oxide, (g) cadmium yellow), (h) mixture of Prussian blue and unidentified yellow, (i)
mixture of ultramarine blue and unidentified yellow, (j) and (k) mixture of ultramarine blue and vermilion to yield purple hues and, (l) Prussian blue. (a-k) were obtained
using 2D histogram threshold values and minimum distance of 0.3 and 15 respectively whereas l was obtained using 0.3 and 10 as threshold and minimum distance values.

Fig. 11. Reflectance spectra associated with the distribution maps presented in Fig. 9. The values indicated correspond to the inflection points (marked with an asterisk) and
maximum absorptions, characteristic for each pigment. Identification is done by comparing the spectra and these values to published databases [1,3,77,78].
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the other hand, for a similar threshold and low minimum distance
values (5–10) the algorithm is over evaluating the number of end-
members as 30–70 is much above the expected number of pig-
ments or mixtures of pigments expected. The opposite
observation can be done for high values of minimum distance
and threshold where the algorithm is underestimating the number
of endmembers. Therefore, it is important to choose values for
threshold and minimum distance that will yield reasonable num-
bers of endmembers. Once threshold and minimum distance
11
parameters are set, the algorithm scans the entire data cube with
a given bounding box size (set to 0.4 here). This step will identify
the hotspots in the scatterplot for which all points lie within the
bounding box. An example of the resulting hotspots selection using
a threshold value of 0.3 and a minimum distance of 15, yielding 17
endmembers, is given in Fig. 9b.

After the endmembers are identified based on the densest
regions on the plot, weighted combinations of these endmembers
are fitted to each pixel using non-negative least squares (nnls)



Table 2
Summary of the multispectral imaging, MA-XRF results and pigment tentative identification for Gauguin’s Poèmes Barbares painting.

Color Distribution map(s) Spectral features MA-XRF Tentative pigment identification

Maximum absorption (nm) Inflexion points (nm)

Blue 1 a 600–900 n/a Pb, Sn Prussian blue
Lead white
Carmine lake precipitated on tin substrate

Blue 2 b 600 700 n/a Ultramarine blue
Blue 3 c 480, 580, 620 670 Co Cobalt blue
Red e n/a 600 Hg Vermilion
Yellow 1 f 620, 900 540 Fe, Mn Iron oxide (umber-type)
Yellow 2 g n/a 525 Cd Cadmium yellow
Green 1 h 600–900 530 Fe Prussian blue

Iron oxide yellow
Green 2 i 600 500, 690 Fe Ultramarine blueIron oxide yellow
Purple j, k 620 590, 660 Hg Ultramarine blueVermilion
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algorithm [75,76] from the Python SciPy library. These weights, or
concentrations, shows the contribution of each endmember to a
given pixel and, when spatially addressed, form endmember distri-
bution maps (Fig. 10). Using 0.5 threshold and minimum distances
of 15 pixels allow the investigator to identify the main components
of the composition (Fig. 10a-k). However, running the same
embedding with smaller values for the minimum distance may
create further sub hotspots and therefore highlight finer details
such as the dark outlines of the arm, hands, ear, mouth and chin
of the female figure (Fig. 10l), details that were not visualized in
the previous run using higher values. This proves how crucial the
selection of the values for the threshold and the minimum distance
or the importance of running several instances of the same embed-
ding with variations of these values.

By comparing the overall shape, inflection points and maximum
absorbances the reflectance spectra associated with the distribu-
tion maps (Fig. 11) with published reflectance spectroscopy data-
bases [1,3,77] and with the help of the elemental distribution
maps obtained using MA-XRF (Fig. 4), identification of pigments
used by Gauguin in his composition became possible. A summary
of the results is found in Table 2.

The blue from the garment of the female figure did not yield any
elements characteristic for blue pigments using MA-XRF (Fig. 4),
which often indicate the use of ultramarine blue. This pigment
was however ruled out based on visual observation and infrared
photography (not shown), for which the pigment used proved to
be too absorbent to be ultramarine blue. As a result, Prussian blue
was assumed to be blue pigment used in that area despite the lack
XRF response for iron. HSI allowed to confirm the use of Prussian
blue in in garment of the female figure (Fig. 10a), characterized
by its important absorbance in the 600–900 nm range (Fig. 11a).
MA-XRF also highlighted lead (Pb, Fig. 4-Pb) and tin (Sn, Fig. 4-
Sn) in this area of the painting. Tin oxide has been identified as a
common substrate for red carmine lake in 19th century paintings
[79–81]. Therefore, Sn identified with MA-XRF is most likely asso-
ciated with the substrate of a carmine lake, also identified through
micro analyses (data not shown), while Pb most likely indicates the
use of lead white mixed with the pigments to create a lighter
shade. Prussian blue was also identified in the eyes of Ta’aroa
(the Tahitian deity who is the creator of the universe), highlights
of the wing, and shadows of the lips, hair, and hands of the female
figure. The presence of iron in these areas went undetected in MA-
XRF as suggested by the iron (Fe) elemental map (Fig. 4-Fe). This
may be due to the dynamic range and variations of concentration
between the Prussian blue in the blue garment and the other
iron-based pigments found in the body of the female figure. Prus-
sian blue having a high tinting strength, only small quantities of
the pigment are needed to produce the deep blue colors often
found in artworks. Such low concentration may therefore go unde-
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tected in XRF analysis [82]. The blue found in the wing (Fig. 10b)
was identified as ultramarine blue, characterized by the lack of ele-
ments in the MA-XRF and its characteristic reflectance curve with
reflectance at 470 nm, maximum absorbance around 600 nm and
inflection point around 700 nm [3,78]. Bright shades of blue are
observed in the highlights of the wing (Fig. 10c). Based on the max-
imum absorbance at 480, 580, 620 nm and the inflection point at
670 nm (Fig. 11c), this shade of blue may have been realized with
cobalt blue (CoO � Al2O3). This is supported by the presence of
cobalt (Co) in these areas using MA-XRF (Fig. 4–Co). The cobalt
blue characteristic band at ca. 480 nm is very dim in the reflectance
spectrum but, it has been shown that in dark shades of cobalt blue,
this band can go undetected [77]. As suggested by the MA-XRF,
cobalt blue is also found throughout the dark areas of the deity’s
body and female figure’s hair (Fig. 4–Co). This is suggested by the
distribution map presented in Fig. 10d. However, with these areas
being very dark, it becomes challenging to make identification
based on the reflectance spectra, which will appear flat, close to
0 and for which characteristic features will be dimmed (Fig. 11d).
While the presence of tin (Sn) in these dark areas (Fig. 4-Sn) may
also suggests the use of cerulean blue (CoO � n SnO2), the use of
such pigment is very unlikely and micro-invasive analyses (not
shown) revealed that the Sn in the dark areas of the female figure’s
hair and deity’s body was associated with the tin oxide substrate of
the carmine organic lake. In these dark areas, Gauguin does not
seem to employ a pure black pigment but rather employs an opti-
cal black effect achieved by mixing cobalt blue, carmine lake and
emerald green, as suggested by the Co, Sn, copper (Cu) and arsenic
(As) MA-XRF maps (Fig. 4–Co, Fig. 4-Sn, Fig. 4-As and Fig. 4-Cu).

The mercury (Hg) map obtained using MA-XRF (Fig. 4-Hg) along
with the steep inflection point at 600 nm (Fig. 11e) strongly sug-
gest the use of vermilion in the orange/red areas of the picture
(Fig. 10e).

Identification of yellows is always challenging using HSI alone
as most present a similar sigmoid curve with inflection point
around 550–600 nm. Iron oxide, however, can easily be differenti-
ated from the other yellow pigments due to its characteristic
reflectance curve (Fig. 11f) [3]. This allowed this identification of
iron oxide pigments in the yellow areas of the proper right arm
and body of the female figure (Fig. 10f). The co-localization of the
iron (Fe) and manganese (Mn) maps obtained in MA-XRF (Fig. 4-
Fe and 4-Mn) further suggests the use of a umber-type iron oxide
pigment (Fe2O3 (� H2O) + MnO2�(n H2O) + Al2O3). Along with iron
oxide, cadmium yellow is also identified in the yellow areas of
the arm and body of the female figure, in the radiation and inner
thigh of the deity, and in the fruit in the deities hand (Fig. 10g).
The identification is based on the 525 nm inflection point
(Fig. 11g) along with the cadmium (Cd) MA-XRF distribution map
(Fig. 4-Cd). The location of iron oxide and cadmium yellow in the
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yellow area of the arm suggests that both pigments were used in
mixture. This show the difficulty associated with the identification
of pigments using non-invasive imaging techniques.

The majority of greens appear to have been obtained using dif-
ferent mixtures of yellows and blues. The arm and the proper left
side of the body (Fig. 10h) can be identified as a mixture of yellow
and Prussian blue. The yellow used can be potentially identified as
cadmium yellow due to the 530 nm inflection point whereas Prus-
sian blue is characterized by its large absorption in the 600–
900 nm range with maximum absorbance around 700 nm
(Fig. 11h). Nonetheless, the use of cadmium yellow is not fully sup-
ported by the MA-XRF data. Instead, the Fe map (Fig. 4-Fe) suggests
the use of an iron oxide pigment mixed with the Prussian blue.
Another green can be observed in the female figure’s right-hand
side shoulder, right-hand side arm and part of the face (Fig. 10i).
Based on the maximum absorbance around 600 nm and two inflec-
tion points around 500 and 690 nm (Fig. 11i), the mixture is
hypothesized as being yellow and ultramarine blue. Here again,
the Fe MA-XRF map (Fig. 4-Fe) suggests the use of an iron oxide
pigment rather than cadmium or chrome yellow. The co-
presence of Cu and As in the greenish tones of the female figure’s
skin (Fig. 4-Cu and Fig. 4-As) suggests the use of emerald green.
However, this pigment could not be identified through HSI.

Finally, two shades of purples were identified through the
UMAP and 2D histogram processes. They are present in the red
background (Fig. 10j) and in the table and purple highlight of the
wing (Fig. 10k). Both present similar reflectance spectra with
inflection point at 590 and 660 nm along with maximum absorp-
tion at 620 nm (Fig. 11j-k). Furthermore, the purple found in the
table where the deity stands presents a reflection band at
470 nm, often associated with ultramarine blue (Fig. 11k). There-
fore, it is very likely that the purple hues have been obtained by
mixing ultramarine blue (470 nm, inflection point around
660 nm) and vermilion (inflection point at 590 nm), the latter sup-
ported by the Hg XRF map (Fig. 4-Hg). The 470 nm feature
observed for spectrum k would be due to the deeper blue hue of
the purple associated with this composition.
4. Conclusion

With this article, we showed that Uniform Manifold Approxi-
mation and Projection (UMAP) is a solid and reliable alternative
to current data reduction techniques used in the field of cultural
heritage for hyperspectral data obtained in the visible range. It
yields superior runtimes compared with t-SNE and the embed-
dings produced present less but much tighter clusters than t-SNE
projections, characteristic of a better preservation of the global
vs. local structure balance. Such balanced embeddings are easier
to interpret and will allow a better understanding of the artists’
creative processes.

In addition, we evaluated various parameters such as the dis-
tance metric, the number of neighbors used for the data reduction,
the influence of the normalization of the data. We were able to
conclude that the cosine distance metric was the most appropriate
in terms of data reduction, visualization, creation of tight clusters
and was not influenced by the normalization of the data cube.
While higher number of neighbors are said to help maintain the
global structure of the original data, we concluded that, in the
cases of artistic material hyperspectral data in the visible range,
higher number of neighbors have a limited influence but increase
drastically the processing time. As a result, we found that a number
of neighbors of 10 was a good compromise for global and local
structure conservation and acceptable processing time.

When UMAP is associated with density cluttering recognition
and non-negative least square fitting of the data, the notebook pro-
13
vided and presented in this article allows to extract, identify, and
localize pigments or mixture of, also called end embers, answering
one of the main goals of hyperspectral imaging analysis of works of
art.

While this approach is not completely novel, it is the first time
that data reduction, endmembers identification and extraction as
well as visualization can be done through a single free user inter-
face. With the growing interest and development of UMAP, we
hope this research will pave the way for future research in this
area.
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