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1 Introduction

Since the discovery of the Higgs boson in 2012 [1, 2], experiments at the Large Hadron Col-

lider (LHC) have measured many properties of this new particle, in overall good agreement

with the predictions of the Standard Model (SM) [3]. However, in most models beyond

the SM, one would expect deviations of the Higgs boson couplings at the per-cent level [4],

which is beyond the achievable precision at the LHC.

For this reason, several proposals have been made for so-called e+e− Higgs facto-

ries, operating at center-of-mass energies of 240–250 GeV: the International Linear Collider

(ILC) [5, 6], the Future Circular Collider (FCC-ee) [7], and the Circular Electron-Positron

Collider (CEPC) [8]. These machines would be able to study the Higgs boson through the

process e+e− → HZ in a clean environment and produce per-cent level precision measure-

ments of the dominant Higgs couplings. The HZZ coupling can be extracted from the HZ

production cross-section itself, σHZ , which is anticipated to be measurable with a precision

of about 1.2% at ILC, 0.4% at FCC-ee, and 0.5% at CEPC.

The interpretation of σHZ in terms of the HZZ coupling requires precise theoretical

predictions for the process e+e− → HZ, including radiative corrections. The next-to-

leading order (NLO) corrections within the SM have been known since a long time for

unpolarized beams [9–11], and more recently for polarized beams [12]. Mixed electroweak-

QCD O(ααs) corrections have been computed in refs. [13–15], which required the evaluation

of two-loop self-energy and vertex diagrams. Given the relatively large decay width of the

Z boson, the predictions can be further refined by including the Z-boson decay at the same

order, i.e. by computing corrections to the process e+e− → Hff̄ . The NLO electroweak

contributions to this process for the final states f = νe and f = e have been studied in

refs. [16–18], and the O(α) and O(ααs) corrections for f = µ have also become available

recently [19].

The numerical impact of the one-loop corrections is at the level of 5–10%, with a dom-

inant contribution stemming of initial-state radiation (ISR) of soft and collinear photons.
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These ISR effects are enhanced by logarithmic terms of the form log(s/m2
e). In the soft

and collinear limit, these logarithmic terms are process-independent, and higher-order ISR

contributions can be included through the structure function method [20, 21]. The impact

of ISR on e+e− → HZ has been recently studied [22, 23]. It was found that, when includ-

ing third-order corrections in the structure function [24–26], the uncertainty from missing

higher ISR orders is at the level of 10−4 and thus negligible [23].

The O(ααs) contributions modify the HZ cross-section by about 1.5% when

parametrizing the elecroweak couplings in terms of α, and about 0.4% using the Fermi

constant Gµ instead. These corrections are sizeable and must be taken into account for

analyses at future e+e− Higgs factories. The largest unknown higher-order contribution

stems from electroweak two-loop effects, which are expected to have an impact at the level

of O(1%) [27], and thus also have to be included. Given that the width-to-mass ratio of the

Z boson, ΓZ/mZ ∼ 2.7%, is comparable to one order in electroweak perturbation theory, it

is sufficient to compute these NNLO electroweak corrections for the process e+e− → HZ

with an on-shell Z boson, whereas the full process e+e− → Hff̄ should be treated at

the NLO level. These two contributions can be consistently combined by performing an

expansion about the pole of the Z boson [28–31].

Among the NNLO electroweak corrections, diagrams with closed fermion loops are

typically dominant, due to the large top-quark Yukawa coupling and the large multiplicity

of fermions in the SM.1 Within this class of diagrams, the most challenging piece are

planar and non-planar two-loop box graphs with top quarks inside one sub-loop.2 Even

when neglecting all fermion masses besides the top quark, these contributions depend on up

to four independent mass scales (mH , mZ , mW , mt), as well as two additional momentum

scales (which can be represented by the Mandelstam variables s and t). Therefore it

is difficult to find analytical solutions, since the expressions will be impractically large

and may require the development of new special functions. On the other hand, generic

numerical methods (such as numerical integration over Feynman parameters [33]) are highly

computationally intensive.

In this paper, a more efficient numerical method for the evaluation of two-loop box

integrals is proposed. It is based on a combination of a dispersion relation and Feynman

parameters for one of the two sub-loops [34]. The method of ref. [34] is extended to enable

the direct evaluation of tensor integrals (rather than attempting to reduce them to a set

of master integrals).3 This approach leads to three-dimensional numerical integrals for the

two-loop boxes, which can be evaluated with about four-digit precision within minutes on

a single CPU core.

In the following section, the derivation of the numerical integral representations for the

planar and non-planar two-loop box diagrams is discussed in detail. Section 3 describes

the application of this method to the evaluation of two-loop box diagrams contributing to

the process e+e− → HZ, including several important aspects of the numerical implemen-

1This expectation is corroborated by known examples of NNLO electroweak calculations, see e.g. ref. [32].
2Diagrams without top quarks are negligible due to the small fermion Yukawa couplings.
3See refs. [35, 36] for a similar technique for tensor integrals, which however differs in several techni-

cal details.
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Figure 1. Planar (left) and non-planar (right) two-loop box diagrams with top quarks in the loop.
The bottom row visually illustrates the effect of introducing Feynman parameters for the top loop.
If V1,2 = γ, Z then f ′ = e, q′ = t, whereas f ′ = νe and q′ = b for V1,2 = W .

tation, as well as numerical results for these diagrams. The main findings of this paper are

summarized in section 4.

2 Evaluation of two-loop box diagrams with a top loop

2.1 Planar diagrams

To illustrate the method, let us initially consider a basic scalar planar integral, which

contains the propagators of the diagram in figure 1 (top-left) but simply 1 in the numerator:

Iplan =

∫

dDq1 dDq2
1

[q2
1 − m2

V1
][(q1 + p1)2 − m2

f ′ ][(q1 + p1 + p2)2 − m2
V2

]

× 1

[(q1 − q2)2 − m2
q′ ][q2

2 − m2
t ][(q2 + k1)2 − m2

t ][(q2 + k1 + k2)2 − m2
t ]

. (2.1)

The extension to non-trivial tensor structures in the numerator will be discussed below.

The following approach is based on the technique used in ref. [37], which is makes use

of the basic dispersion relation for the one-loop self-energy function B0,

B0(p2,m2
1,m2

2) =

∫

∞

(m1+m2)2

dσ
∆B0(σ,m2

1,m2
2)

σ −p2 − iǫ
, (2.2)

∆B0(σ,m2
1,m2

2) ≡ 1

π
ImB0(σ,m2

1,m2
2) = (4πµ2)4−D Γ(D/2−1)

Γ(D−2)

λ(D−3)/2(σ,m2
1,m2

2)

σD/2−1
, (2.3)

where D is the space-time dimension and λ(a, b, c) = (a − b − c)2 − 4bc.
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Figure 2. Integration contours for the dispersion relations for the one-loop scalar self-energy
function B0 for the cases m2

1, m2
2 > 0 (left) and m2

1 < 0, m2
2 > 0 (right). The zigzag lines denote

the branch cuts, ending at the branch point (m1+m2)2. The circle sections are understood to have
a radius R → ∞.

This dispersion relation is derived from the analytical properties of the B0 func-

tion: for complex p2, B0(p2, m2
1, m2

2) has a branch point at p2 = (m1 + m2)2, with the

branch cut on the real-axis interval ((m1 + m2)2, ∞). When using Cauchy’s theorem,

B0(p2, m2
1, m2

2) = 1
2πi

∮

C
dσ

B0(σ,m2

1
,m2

2
)

σ−p2−iǫ
, one must choose a contour C that circumvents the

branch cut, as illustrated in figure 2 (left). The discontinuity ∆B0 accounts for the dif-

ference of B0(σ, m2
1, m2

2) for values of σ just below and just above the branch cut. The

contour is closed with a circle at infinity, which gives vanishing contribution for sufficiently

small dimension D.

In order to apply this relation to the planar box diagram, it is useful to introduce

Feynman parameters for the propagators that depend only on loop momemtum q2 [34]:

1

[q2
2 −m2

t ][(q2 +k1)2 −m2
t ][(q2 +k1 +k2)2 −m2

t ]
=

∫ 1

0
dx

∫ 1−x

0
dy

2

[(q2 +k′)2 −m′2]3
, (2.4)

k′ = (1−x)k1 +y k2, m′2 = m2
t −xy(k1 +k2)2 −(1−x−y)(xk2

1 +yk2
2). (2.5)

Then the q2 loop can be expressed as

∫

dx dy

∫

dDq2
2

[(q1 − q2)2 − m2
q′ ][(q2 + k′)2 − m′2]3

=

∫

dx dy
∂2

∂(m′2)2

∫

∞

σ0

dσ
∆B0(σ, m′2, m2

q′)

σ − q̃2
1

=

∫

dx dy

{
∫

∞

σ0

dσ
∂2

m′∆B0(σ, m′2, m2
q′)

σ − q̃2
1

−
[∂m′∆B0(σ, m′2, m2

q′)

σ − q̃2
1

]

σ→σ0

}

, (2.6)
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where we have introduced the short-hand notation

σ0 = (m′ + mq′)2, q̃1 = q1 + k′ + iǫ, ∂m′ =
∂

∂(m′2)
, (2.7)

and used the fact that ∆B0(σ0, m′2, m2
q′) = 0. Unfortunately, the σ integral blows up at

the lower boundary, and the term in [ ] is also divergent for σ → σ0, whereas only the sum

of the two is finite. To circumvent this problem, one can modify the integrand according to
∫

dx dy

{
∫

∞

σ0

dσ ∂2
m′∆B0(σ, m′2, m2

q′)

(

1

σ − q̃2
1

− σ0

σ(σ0 − q̃2
1)

)

+
σ0

σ0 − q̃2
1

∂2
m′B0

(

0, m′2, m2
q′

)

}

. (2.8)

Here the extra term in the integrand of
∫

dσ is added back in integrated form, where the

function ∂2
m′B0 can be expressed in terms of basic logarithms (see appendix). With the

modified integrand, the boundary term in eq. (2.6) evaluates to zero.

Inserting eq. (2.8) into the remainder of the q1 loop integral, one obtains

Iplan = −
∫

dx dy

{
∫

∞

σ0

dσ ∂2
m′∆B0(σ, m′2, m2

q′) (2.9)

×
[

D0(p2
1, p2

2, k′2
2 , k′2

1 , s, t′, m2
V1

, m2
f ′ , m2

V2
, σ)

− σ0

σ
D0(p2

1, p2
2, k′2

2 , k′2
1 , s, t′, m2

V1
, m2

f ′ , m2
V2

, σ0)
]

+ σ0 ∂2
m′B0(0, m′2, m2

q′) D0(p2
1, p2

2, k′2
2 , k′2

1 , s, t′, m2
V1

, m2
f ′ , m2

V2
, σ0)

}

,

where s = (p1 + p2)2, t′ = (p1 − k′
1)2, and D0 is the well-known scalar one-loop box

function [38–40].

Since the double box diagrams are UV finite, all expressions in eq. (2.9) can be com-

puted for D=4 dimensions.

The full diagram respresented by figure 1 (top-left) contains additional terms with mo-

menta q1,2 in the numerator stemming from the Dirac propagators and vertex structures.

For terms depending on q2, it is convenient to perform a Passarino-Veltman decomposi-

tion [40, 41] of ∂2
m′B0(q̃2

1, m′2, m2
q′) after introduction of the Feynman parameters. As a

first step, let us shift the integration momentum to q′
2 ≡ q2 + k′:

∫

d4q2
qµ

2 qν
2 · · ·

[(q2 + k′)2 − m′2]3[(q1 − q2)2 − m2
q′ ]

=

∫

d4q′
2

(q′
2 − k′)µ(q′

2 − k′)ν · · ·
[q′2

2 − m′2]3[(q′
2 − q1 − k′)2 − m2

q′ ]
.

(2.10)

The terms with powers of q′
2 in the numerator can be decomposed according to

∫

d4q′
2

q′µ
2

[q′2
2 − m′2]3[(q′

2 − q1 − k′)2 − m2
q′ ]

= −q̃µ
1 ∂2

m′B1(q̃2
1, m′2, m2

q′) ,

∫

d4q′
2

q′µ
2 q′ν

2

[q′2
2 − m′2]3[(q′

2 − q1 − k′)2 − m2
q′ ]

(2.11)

= gµν ∂2
m′B00(q̃2

1, m′2, m2
q′) + q̃µ

1 q̃ν
1 ∂2

m′B11(q̃2
1, m′2, m2

q′) ,

etc.
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Each of the Passarino-Veltman functions ∂2
m′Bij...((q1 + k′)2, m′2, m2

q′) can then be repre-

sented through a dispersion relation in the same manner as above:

∂2
m′Bij...(q̃

2
1, m′2, m2

q′) =
1

π

∫

∞

σ0

dσ [Im ∂2
m′Bij...(σ, m′2, m2

q′)]

[

1

σ − q̃2
1

− σ0

σ(σ0 − q̃2
1)

]

+
σ0

σ0 − q̃2
1

∂2
m′Bij...

(

0, m′2, m2
q′

)

. (2.12)

Explicit expressions for Im ∂2
m′Bij...(σ, m2

1, m2
2) and ∂2

m′Bij...(0, m′2, m2
q′) are collected in

the appendix.

Similarly, the q1 loop will in general contain terms with different powers of q1 in the

numerator, some of which in fact originate from eq. (2.11). These lead to Passarino-Veltman

functions D1, D2, D3, D00, etc. [41], which can be evaluated numerically by using, for

example, the techniques introduced in refs. [39, 42]. In some cases, there are cancellations

between terms in the numerator and denominator, resulting in C0, C1, C2, C00, . . . and

B0, B1, B00, . . . functions.

For the double-box diagrams in figure 1 tensors up to rank 3 in at least one of the two

loops are encountered.

2.2 Non-planar diagrams

The approach in the previous sub-section can be adapted also to the case of non-planar box

diagrams. Let us begin with the scalar non-planar integral corresponding to the diagram

in figure 1 (top-right):

Inp =

∫

dDq1 dDq2
1

[q2
1 − m2

V1
][(q1 + p1)2 − m2

f ′ ][(q1 + p1 + p2)2 − m2
V2

]

× 1

[(q1 − q2)2 − m2
q′ ][(q1 − q2 + k1)2 − m2

q′ ][q2
2 − m2

t ][(q2 + k2)2 − m2
t ]

. (2.13)

Introducting two Feynman parameters, the q2 loop can be written as
∫

dDq2
1

[(q1 − q2)2 − m2
q′ ][(q1 − q2 + k1)2 − m2

q′ ][q2
2 − m2

t ][(q2 + k2)2 − m2
t ]

=

∫ 1

0
dx

∫ 1

0
dy

∫

dDq2
1

[(q1 − q2 + (1 − x)k1)2 − m′2
1 ]2[(q2 + yk2)2 − m′2

2 ]2

=

∫

dx dy ∂m′

1
∂m′

2

∫

∞

σ0

dσ
∆B0(σ, m′2

1 , m′2
2 )

σ − q̃2
1

=

∫

dx dy

{

1

π

∫

∞

σ0

dσ [Im ∂m′

1
∂m′

2
B0(σ, m′2

1 , m′2
2 )]

(

1

σ − q̃2
1

− σ0

σ(σ0 − q̃2
1)

)

+
σ0

σ0 − q̃2
1

∂m′

1
∂m′

2
B0(0, m′2

1 , m′2
2 )

}

, (2.14)

where

m′2
1 = m2

q′ − x(1 − x)k2
1, m′2

2 = m2
t − y(1 − y)k2

2, σ0 = (m′
1 + m′

2)2,

q̃1 = q1 + (1 − x)k1 + yk2 + iǫ. (2.15)
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In the last step of eq. (2.14), a threshold subtraction has again been utilized to ensure

that the σ integral is convergent at the lower boundary. Together with the q1 integral, Inp

then becomes

Inp = −
∫

dx dy

{

1

π

∫

∞

σ0

dσ [Im ∂m′

1
∂m′

2
B0(σ, m′2

1 , m′2
2 )]

×
[

D0(p2
1, p2

2, k′2
2 , k′2

1 , s, t′, m2
V1

, m2
f ′ , m2

V2
, σ)

− σ0

σ
D0(p2

1, p2
2, k′2

2 , k′2
1 , s, t′, m2

V1
, m2

f ′ , m2
V2

, σ0)
]

+ σ0 ∂m′

1
∂m′

2
B0(0, m′2

1 , m′2
2 ) D0(p2

1, p2
2, k′2

2 , k′2
1 , s, t′, m2

V1
, m2

f ′ , m2
V2

, σ0)

}

, (2.16)

where all components of the integrands are well-known analytical functions.

As before, the extension to tensor integrals can be realized by using dispersion relations

for ∂m′

1
∂m′

2
B1, ∂m′

1
∂m′

2
B00, etc. (see appendix for explicit formulas). Similarly, the usual

Passario-Veltman tensor functions D1, D2, etc. can be used for tensor structures in the q1

loop integrals.

An additional complication arises for the non-planar diagram with W bosons, in which

case mq′ = mb ≈ 0, so that m′2
1 is negative. As a result, the branch point σ0 of the

∂m′

1
∂m′

2
B0 function is in the lower complex half-plane rather than on the real axis (see

figure 2), so that the dispersion relation (2.2) must be modified. One option is to choose a

contour along the real axis, which is closed via a semi-circle in the upper complex half-plane,

leading to

∂m′

1
∂m′

2
B0(p2, m′2

1 , m′2
2 ) =

1

2πi

∫

∞

−∞

dσ
∂m′

1
∂m′

2
B0(σ, m′2

1 , m′2
2 )

σ − p2 − iǫ
. (2.17)

Using this relation, Inp can be expressed as

Inp = −
∫

dxdy

∫

∞

−∞

dσ
∂m′

1
∂m′

2
B0(σ,m′2

1 ,m′2
2 )

2πi
D0(p2

1,p2
2,k′2

2 ,k′2
1 ,s, t′,m2

V1
,m2

f ′ ,m2
V2

,σ−iǫ).

(2.18)

The iǫ in the last mass parameter of the D0 function is important to properly define its

result for all values of σ. In fact, as also discussed in the next section, it turns out to

be necessary to include a small numerical value for ǫ when using LoopTools [46] for the

evaluation of certain Passarino-Veltman functions.

3 Implementation and numerical results

In this section we describe how the approach described in the previous section has been

applied to the calculation of all box diagrams of the form in figure 1. The results presented

in this section are based on two independent realizations of the calculation, in order to

enable cross-checks between the two.

Both implementations employ Mathematica [43] as the framework for algebraic ma-

nipulations and FeynArts 3 [44] for the generation of diagrams and amplitudes in Feyn-

man gauge. One implementation uses FeynCalc 9 [45] for carrying out the Lorentz and

– 7 –
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Dirac algebra and then divides the expressions into individual tensor integral terms, as

discussed at the end of section 2.1. Each of these terms is integrated separately within

C++, using the LoopTools 2.15 [46] package for the Passarino-Veltman functions and

the adaptive Gaussian quadrature integration routine from the Boost library [47]. The

integration results are then added up to obtain full diagram results.

The second implementation performs the Lorentz and Dirac algebra with in-house

routines and then tranforms the expressions for complete diagrams into a single integrand

each. The numerical integration is carried out in C++ using the adaptive Gauss-Kronrod

integration routine from TVID [48], which is based on the Quadpack library [49]. It also

uses LoopTools for the Passarino-Veltman functions in the integrand.

In light of the fact that the double-box integrals are UV-finite, it is advantageous to

perform the Lorentz and Dirac algebra in 4 dimensions, thus avoiding any ambiguities in

the treatment of γ5. Even though the sum of all box diagrams considered here is IR finite,

individual diagrams with photons are IR divergent, and thus an IR regulator is required.

A convenient choice is the use of a small photon mass, mγ , since it is trivially compatible

with the 4-dimensional Lorentz and Dirac algebra.

It is advantageous to implement the three-dimensional numerical integrals in a nested

structure, with the σ integral being the inner-most integral, since this makes the adaptive

integration algorithms most effective. The achievable precision is limited by the double

precision floating point algebra used in the default compilation of LoopTools. In fact,

numerical instabilities are typically encountered near the lower and upper limits of the σ

integration. These can be mitigated by introducing cut-offs at both ends,

∫

∞

σ0

dσ →
∫ Λ

σ0(1+δ)
dσ, (3.1)

where δ ≪ 1 and Λ should be much larger than all mass and momentum scales in the

matrix element. The error due to these cut-offs can be further mitigated by observing

that the integrand approximately behaves like ∼ (σ − σ0)−1/2 near the lower threshold and

∼ (A + B log σ)/σ2 for large σ. Thus one can introduce additional correction terms,

∫

∞

σ0

dσ f(σ) →
∫ Λ

σ0(1+δ)
dσ f(σ) + 2σ0δ f(σ0δ) + Λ f(Λ). (3.2)

For the two-loop box diagrams considered here, suitable choices for δ and Λ are

O(10−4 . . . 10−3) and O(108 . . . 1012 GeV2), respectively. One can verify that the integration

result does not change very much when varying δ and Λ within one order of magnitude, and

this variation can be interpreted as a source of uncertainty for the final results (see below).

For the non-planar diagrams, additional instabilities occur for x ≈ y, when the Gram

determinants for some Passarino-Veltman tensor functions vanish. Our two implementa-

tions use two different strategies for mitigating this problem: (a) splitting one of the two

integration intervals, such that none of the Gaussian points of the x integration lies too

close to the ones for the y integration; or (b) interpolating the y integration across a small

interval, y ∈ [x − ∆x, x + ∆x]. A reasonable comprise between accuracy and stability is
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Parameter Value

MZ 91.1876 GeV

MW 80.379 GeV

MH 125.1 GeV

mt 172.76 GeV

α 1/137

ECM 240 GeV

(a)

V1V2 diagr. class Re{M2M∗
0}

γγ −1.524(1) × 10−7

γZ −1.537(1) × 10−8

ZZ planar −4.402(4) × 10−8

ZZ non-planar 1.724(2) × 10−8

WW planar −1.1392(8) × 10−6

WW non-planar −5.577(5) × 10−7

(b)

Table 1. (a) Input values used for the numerical examples. (b) Results for different classes of
two-loop box diagrams, distinguished by topology and internal gauge-boson species, for scattering
angle θ = π/2. The numbers in brackets indicate an estimate of the intrinsic uncertainty in the last
shown digit (see text for more details).

achieved for ∆x ∼ O(10−2). Both methods yield consistent results, and the impact of

varying ∆x by a factor of a few can be used as a contribution to the final error estimate.

Finally, the evaluation of the non-planar WW box requires an explicit value for the

Feynman iǫ, see eq. (2.18), to avoid instabilities in LoopTools for negative σ. A value

of ǫ = 10−9|σ| is chosen for the results presented below. The results are not significantly

affected when increasing this value by a factor 10 or using a constant value ǫ ∼ 10−5.

In the following, numerical results will be presented for the different classes of box

diagrams, which are distinguished by the gauge bosons V1,2 appearing inside the loops. The

numbers are obtained by contracting the matrix elements for the two-loop box diagrams,

M2, with the tree-level matrix element M0, averaging over e± helicities and summing over

the final-state Z-boson polarization states.

Using the inputs in table 1 (a), we obtain the numbers shown in table 1 (b). For the

diagrams with photons, the dependence on the photon mass regulator only drops out when

adding planar and non-planar diagrams, as illustrated in figure 3. Also shown in table 1 (b)

is an esimate of the precision, as obtained by varying the lower and upper cut-off of the σ

by one order of magnitude each. For the non-planar diagrams, the impact of varying the

width ∆x of the window around y = x by a factor 2 is also considered. The integration

times for each line in table 1 (b) range from a few minutes up to about half an hour on

one CPU core.4

Figure 4 shows the dependence on the scattering angle θ. The differential distributions

are symmetric, since each subset of box diagrams has a t ↔ u crossing symmetry, where

t, u are the usual Mandelstam variables.

One can see that the diagrams with W bosons produce results that are about one

order of magnitude larger than the ones with neutral bosons. This may be explained by

the fact than the effective WWZH interaction (corresponding to the fermion loop in our

4The basic scalar integrals in eqs. (2.9) and (2.16) take a few seconds to evaluate on a single CPU core,

while the non-planar scalar integral with W -bosons in eq. (2.18) requires a few minutes.
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planar

non-planar

sum

-12 -10 -8 -6 -4

-8.×10-7

-6.×10-7

-4.×10-7

-2.×10-7

0

2.×10-7

4.×10-7

6.×10-7

log10(m
2/GeV2)

R
e
{

2


0*
}

planar

non-planar

sum

-12 -10 -8 -6 -4

-2.×10-8

-1.5×10-8

-1.×10-8

-5.×10-9

0

5.×10-9

log10(m
2/GeV2)

R
e
{

2


0*
}

Figure 3. Dependence of the γγ (left) and γZ (right) two-loop boxes on the photon mass mγ .
The lines depict linear fits to the data points.



Z

ZZ

WW × 1/10

0 /4 /2 3/4 

-1.5×10-7

-1.×10-7

-5.×10-8

0



R
e
{

2


0*
}

Figure 4. Dependence of various groups of two-loop box contributions on the scattering angle θ.

two-loop diagrams) can be represented by a dimension-6 operator, whereas γγZH, γZZH

and ZZZH interactions are related to dimension-8 operators. The diagrams with Z bosons

are additionally suppressed by the small Zee vector coupling in the SM.

4 Summary

Box diagrams in 2 → 2 process can be efficiently evaluated with a numerical method

that combines Feynman parametrization and a dispersion relation for one sub-loop, while

standard analytical expressions are used for the other sub-loop. Tensor structures in the

numerator can be handled by adjusting the dispersion relation for the first loop and us-

ing Passarino-Veltman reduction for the second sub-loop. The resulting three-dimensional

numerical integrals can be efficiently evaluated using nested adaptive one-dimensional in-

tegration algorithms.

The efficacy of the technique has been demonstrated by computing planar and non-

planar box diagrams with top quarks contributing to the two-loop electroweak corrections

for the process e+e− → HZ. Infrared divergencies from QED can be controlled with a
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photon mass, without loss of numerical precision. Results with a relative uncertainty of

about 0.1% can be obtained in a few minutes on a single CPU core. The longest run-time

(about half an hour) is required for diagrams with a physical cut in the fermion sub-loop,

which occurs for the non-planar topology in the top-right of figure 1 with V1,2 = W and

q′ = b. In this case a modified version of the dispersion relation is used, with an integration

contour along the entire real axis instead of just the positive real axis.

It should be noted that our current implementation of the other diagrams is limited

to center-of-mass energies below the tt̄ threshold,
√

s < 2mt, because otherwise a physical

threshold would open up in the fermion sub-loop there as well. Nevertheless, an extension to

higher center-of-mass energies could be achieved by using the modified dispersion relation

for all diagrams, even though it may come at the cost of a slight loss of accuracy and

increased integration time.

The numerical precision is primarily limited by the accuracy of the evaluation of the

basic one-loop Passarino-Veltman functions B1, C1,2, C00,11,12,22, D1,2,3, etc. A high level

of numerical precision becomes important (a) for large σ, where the full integrand falls

off ∼ σ−2 but individual terms in the integrand decay only ∼ σ−1, and (b) when the

Gram determinant of some Passarino-Veltman functions vanishes at particular points in the

integration region. In our current implementation, LoopTools [46] with double-precision

floating point arithmetic is used for this purpose. Improvements could be made by using

quadruple precision numbers or by performing expansions in the regions where numerical

instabilities are encountered. However, a relative precision of 0.1% for the evaluation of

two-loop box diagrams is already sufficient for a range of important phenomenological

applications, including the e+e− → HZ process at future Higgs factories.

The techniques described in this paper could, in principle, also be applied for the

calculation of electroweak corrections to other 2 → 2 process, such as e+e− → W +W −.

Acknowledgments

The authors would like to thank Keping Xie for useful feedback on the manuscript. This

work has been supported in part by the National Science Foundation under grant no.

PHY-1820760.

A Integration kernels

In the following, explicit expressions for the dispersion integration kernels for various tensor

integrals are listed. As before, we use the notation ∂m ≡ ∂/∂(m2), and we also make use

of the abbreviation λ = σ2 + m4
1 + m4

2 − 2(σm2
1 + σm2

2 + m2
1m2

2).

Im ∂2
m1

B0(σ, m2
1, m2

2) = −π
4m2

2

σλ1/2
, (A.1)

Im ∂2
m1

B1(σ, m2
1, m2

2) = π
4m2

2σ2 − (m2
1 − m2

2 − σ)(λ − 2m2
2σ)

σ2λ3/2
, (A.2)

Im ∂2
m1

B00(σ, m2
1, m2

2) = −π
λ + 2m2

1σ

2σ2λ1/2
, (A.3)
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Im ∂2
m1

B11(σ, m2
1, m2

2) = 2π
λ[λ + σ(m2

1 + m2
2 − σ)] − 2σ2m2

1m2
2

σ3λ3/2
, (A.4)

Im ∂2
m1

B001(σ, m2
1, m2

2) = π
(m2

1 − m2
2)(λ + m2

2σ) + m2
2σ2

2σ3λ1/2
, (A.5)

Im ∂2
m1

B111(σ, m2
1, m2

2) =
π

σ4λ3/2

{

(m2
1 − m2

2 − σ)[3λ2 + 4m2
2σλ

+ σ2(3(m2
1 − m2

2 − σ)(m2
1 + m2

2 + σ) − 2m2
1m2

2)]

+ 12σ3[m4
1 + m4

2 − σ(m2
1 + m2

2)]
}

, (A.6)

Im ∂m1
∂m2

B0(σ, m2
1, m2

2) = π
2(m2

1 + m2
2 − σ)

λ3/2
, (A.7)

Im ∂m1
∂m2

B1(σ, m2
1, m2

2) = π
4m2

1σ2 − (m2
2 − m2

1 − σ)(λ − 2m2
1σ)

σ2λ3/2
, (A.8)

Im ∂m1
∂m2

B00(σ, m2
1, m2

2) = π
(m2

1 − m2
2)2 − σ(m2

1 + m2
2)

2σ2λ1/2
, (A.9)

Im ∂m1
∂m2

B11(σ, m2
1, m2

2) = π
2m2

1σ2(m2
1 + m2

2 − σ) − λ[2λ + σ(3m2
1 + m2

2 − σ)]

σ3λ3/2
. (A.10)

The integrated functions for zero momentum are given by, in terms of r = m2
2/m2

1,

∂2
m1

B0(0, m2
1, m2

2) =
m−4

1

(1 − r)2

[

1 + r + 2r
ln r

1 − r

]

, (A.11)

∂2
m1

B1(0, m2
1, m2

2) =
m−4

1

2(1 − r)3

[

−1 − 5r − 2r(2 + r)
ln r

1 − r

]

, (A.12)

∂2
m1

B00(0, m2
1, m2

2) =
m−2

1

4(1 − r)2

[

−1 + 3r + 2r2 ln r

1 − r

]

, (A.13)

∂2
m1

B11(0, m2
1, m2

2) =
m−4

1

3(1 − r)4

[

1 + 10r + r2 + 6r(1 + r)
ln r

1 − r

]

, (A.14)

∂2
m1

B001(0, m2
1, m2

2) =
m−2

1

12(1 − r)3

[

1 − 5r − 2r2 − 6r2 ln r

1 − r

]

, (A.15)

∂2
m1

B111(0, m2
1, m2

2) =
m−4

1

12(1 − r)5

[

−3 + 47r − 11r2 + r3 − 12r(2 + 3r)
ln r

1 − r

]

, (A.16)

∂m1
∂m2

B0(0, m2
1, m2

2) =
m−4

1

(1 − r)2

[

−2 − (1 + r)
ln r

1 − r

]

, (A.17)

∂m1
∂m2

B1(0, m2
1, m2

2)) =
m−4

1

2(1 − r)3

[

5 + r + (2 + 4r)
ln r

1 − r

]

, (A.18)

∂m1
∂m2

B00(0, m2
1, m2

2) =
m−2

1

4(1 − r)2

[

−1 − r − 2r
ln r

1 − r

]

, (A.19)

∂m1
∂m2

B11(0, m2
1, m2

2) =
m−4

1

6(1 − r)4

[

−17 − 8r + r2 − 6(1 + 3r)
ln r

1 − r

]

. (A.20)
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