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Abstract. Acoustofluidics, by combining acoustics and microfluidics provides a unique means to 

manipulate cells and liquids for broad applications in biomedical sciences and translational 

medicine. However, it is challenging to standardize and maintain excellent performance of current 

acoustofluidic devices and systems due to a multiplicity of factors including device-to-device 

variation, manual operation, environmental factors, sample variability, etc. Herein, to address 

these challenges, we propose “intelligent acoustofluidics” - an automated system that involves 

acoustofluidic device design, sensor fusion, and intelligent controller integration. As a proof-of-

concept, we developed intelligent acoustofluidics based mini-bioreactors for human brain 

organoid culture. Our mini-bioreactors consist of three components: (1) rotors for contact-free 

rotational manipulation via an acoustic spiral phase vortex approach, (2) a camera for real-time 

tracking of rotational actions, and (3) a reinforcement learning-based controller for closed-loop 

regulation of rotational manipulation. After training the reinforcement learning-based controller in 

simulation and experimental environments, our mini-bioreactors can achieve the automated 

rotation of rotors in well-plates. Importantly, our mini-bioreactors can enable excellent control over 

rotational mode, direction, and speed of rotors, regardless of fluctuations of rotor weight, liquid 

volume, and operating temperature. Moreover, we demonstrated our mini-bioreactors can stably 

maintain the rotational speed of brain organoids during long-term culture, and enhance neural 

differentiation and uniformity of brain organoids.  Comparing with current acoustofluidics, our 

intelligent system has a superior performance in terms of automation, robustness, and accuracy, 

highlighting the potential of novel intelligent systems in bioelectronics and microfluidics 

experimentation. 
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1. Introduction 

During the past three decades, microfluidics or lab-on-a-chip systems have been attracting 

increasing interest and emerging as a formidable tool in basic research and for translational 

applications in chemistry, biology, and medicine.1-3 Compared with traditional laboratory 

techniques, microfluidics technology brings many advantages including reduced sample 

consumption, system miniaturization, low cost, high throughput, rapid turnaround time, and a 

precisely controlled microenvironment.4-6 So far, the innovative design, fabrication, and integration 

of microfluidic devices and/or lab-on-a-chip systems have enabled a wide range of applications 

in disease diagnostics, treatment screening, drug delivery, biomedical assays, artificial organs, 

chemical reactions, combinatorial synthesis, environmental health, microscale energy systems, 

etc.7-11 As an active microfluidic technique, acoustofluidics has been developed to improve the 

versatility and functionality of current microfluidics technologies.12,13 By integrating acoustic waves 

into microfluidic devices or lab-on-a-chip systems, acoustofluidics technology provides a unique 

means to manipulate cells and handle liquids.13-18 For example, acoustic radiation force has been 

employed for the trapping, separation, transportation, sorting, and enrichment of cells and 

particles.19-25 Moreover, acoustic streaming has been used for the pumping, moving, and mixing 

of liquids,26-29 as well as detaching, clustering, and rotation of cells30-34.  Acoustofluidic technology 

offers useful and unique features and advantages: (1) Based on the nature of acoustic waves, 

this method provides excellent biocompatibility, contactless operation, and label-free 

manipulation;35 (2) Acoustofluidic devices consist of simple, compact, and inexpensive 

microfluidic devices and acoustic transducers, which can be fabricated through standardized 

processes in a mass-producible fashion;36-38  (3) Acoustofluidic devices can also be integrated 

with simple and compact power supply and detection systems into a portable and user-friendly 

system allowing portable and daily usage in the research laboratory and hospital.36,37 Therefore, 

intensive ongoing efforts have been made to further push acoustofluidic and microfluidic 

technologies from research labs to real-world applications in daily-life and hospital settings.   

Current acoustofluidic devices and systems, however, have not yet fully exploit their translational 

potential, due to several hurdles: (1) Device-to-device variation: Currently, acoustofluidic devices 

are made through standard MEMS fabrication processes in research labs and manufacturing 

facilities. However, the regulation of device-to-device variation is commonly required among 

devices to meet quality standards.39 For example, to provide good working performance, one 

acoustofluidic device may require slightly different input settings (e.g., frequency, power, phase 

angle, or flow rate) than another device.40-42 The device-to-device variation raises the bar for the 

standardization of acoustofluidic technology. (2) Environmental and temporal factors: The working 

performance of acoustofluidic devices also depends on environmental and temporal factors. 39,43 

Taking the bulk acoustic wave-based cell separation devices as an example, the separation 

device may have an excellent cell separation performance at room temperature, but provide very 

poor separation results at physiological temperatures due to the heating effect of the device. 28,44 

This is because the temperature increase changes the resonant frequency of the separation 

device. Similarly, high or low temperature may also impact the resonant frequency of the 

separation device, resulting in the poor working performance of the device. Therefore, 

considerable engineering effort is needed to mitigate the impact of environmental and temporal 

factors and maintain the excellent performance of acoustofluidics in daily life settings. (3) 

Automation: Tremendous manual operation and intervention are required for most acoustofluidic 

experiments, especially to circumvent the impact of environmental and temporal factors, and 



device-to-device variation.45 These manual operations are labor-intensive, expensive, and 

significantly limit broad applications in an environment outside of a microfluidic research 

laboratory. Thus, there is an urgent need to develop automated and standardized acoustofluidic 

devices and systems for basic research and translational applications in real-world settings. 

Machine learning (ML), a subset of artificial intelligence (AI), may provide new opportunities for 

the development of microfluidic and acoustofluidic technologies because this method enables 

computer algorithms to learn from experience. Recent engineering efforts have been made to 

combine a variety of ML methods (e.g., supervised learning, and reinforcement learning) with 

microfluidic devices and lab-on-a-chip systems for broad applications in biomedical sciences from 

several aspects.46,47  Supervised learning has been used to process and analyze data from high 

throughput microfluidic experiments, addressing the throughput, accuracy, and robustness issues 

of current manual data handling processes.48 Supervised learning is a subset of ML methods that 

learn the mapping function from the input to the output using the training dataset, and then predict 

questions such as image processing and classification. For example, after being trained with 

microfluidic experimental results, convolutional neural network (CNN) algorithms have been 

employed as analyzing tools for cell classification in image-based microfluidic cytometer 

devices,49-51 cell counting in optofluidic devices52 and acoustofluidic chips53, and automated 

detection and sorting of microencapsulation54. Similarly, supervised learning has been employed 

for the optimization and prediction of microfluidic design and experimentation55. For example, 

deep artificial neural network (DNN) algorithms have been utilized to design microchannel 

architectures for customized acoustic field and microparticle patterning,56 microfluidic geometry 

design,57 and flow modeling58. Different from supervised learning that focuses on mapping inputs 

to outputs based on labeled input-output pairs, reinforcement learning (RL) learns from the agent-

environment interaction through maximizing the notion of cumulative reward, enabling the most 

effective method for control problems.59,60 Recently, the RL method has been used to address the 

challenges of dynamic microfluidic system control.61,62 For example, Deep Q-Networks, and 

model-free episodic controllers have been employed to establish an automated control system 

for the precise regulation of dynamic laminar flow and microfluidic droplet generation.61 Compared 

to manual operation, this RL-based system demonstrated a significant improvement in 

consistency, robustness, and repeatability during long-term microfluidic experiments. Despite 

there only being very few attempts, the fusion of RL algorithms and microfluidics has started to 

show promising potential in building automated microfluidic systems and maintaining microfluidic 

performance. Therefore, ML methods, especially RL algorithms, seem to hold a promising 

solution to address the above-discussed challenges in acoustofluidic experiments.  

Herein, we introduce a new concept “intelligent acoustofluidics”, which is an RL-based closed-

loop system for the standardization, optimization, and maintenance of acoustofluidic devices and 

systems. Particularly, we aim to develop proof-of-concept intelligent acoustofluidics enabled mini-

bioreactors to improve human brain organoid culture. As is known, the rotational culture of 

organoids using bioreactors or orbital shakers is a very important step for organoid differentiation 

and maturation.  However, the low rotational speed of organoids may lead to insufficient 

oxygen/nutrient perfusion and poor differentiation, whereas high rotational speed may lead to high 

mechanical shear stress and surface cell death. Current bulk orbital shakers or bioreactors fail to 

provide a uniform rotational culture environment for each organoid, limiting the yield of successful 



organoid formation. The recent advance of miniaturized spinning bioreactor has provided a 

versatile, simple, cost-effective platform by engineering a multi-well spinning device to a standard 

12-well tissue culture plate, providing a better engineering method for brain region-specific 

organoid formation.63 The emerging microfluidic systems also bring new insides for brain 

organoids culture, providing enhanced perfusion as well as reduced necrosis and promoted 

differentiation.64,65 However, challenges remain in improving the organoid culture conditions. The 

organoids are growing from several hundred microns to several millimeters in diameter during the 

spinning or rotational culture. The increased weight of organoids may slow down the rotational 

speed of the suspended organoid cultures, causing inconsistency of organoid culture conditions. 

The increased size of organoids may cause hypoxia and necrosis to further impact the viability of 

the organoids. Therefore, there is a great need to maintain a stable rotational culture of organoids 

(e.g., rotational mode, and speed) and to improve the perfusion of nutrients and oxygen for 

reducing organoid hypoxia and necrosis during the long-term culture of organoids.  

To address these issues to improve organoid cultures, we explore intelligent acoustofluidics 

enabled mini-bioreactors. Compared with current bioreactors and orbital shakers, our intelligent 

mini-bioreactors have several unique advantages for organoid culture. (1) Closed-loop control of 

rotational culture: Current organoid culture systems lack a mechanism to check and maintain 

culture conditions during long-term culture. Through the fusion of a CCD camera, acoustofluidic 

rotors, and a controller, our intelligent mini-bioreactors can track, tune, and maintain the organoid 

culture condition (e.g., rotational speed) in real-time. (2) Mitigation of inconsistency: Current bulk 

organoid culture systems have difficulty in providing a consistent rotational culture condition 

during a long-term culture due to the growth of organoids and manual operations. Through the 

integration of RL algorithms, our intelligent mini-bioreactors minimize system variations to stably 

maintain the rotational speed of organoids with high consistency. (3) Introduction of perfusion 

scaffolds: Through the introduction of 3D printed organoid scaffolds into the rotor device, our 

method enhances medium perfusion to reduce or avoid hypoxia and necrosis within the organoids. 

(4) Incorporation of contact-free rotors: The employment of an acoustic spiral phase plate (ASPP) 
66,67 enables the contact-free rotation of rotors via the regulation of highly biocompatible acoustic 

pressure fields, avoiding organoid damage from mechanical contacts. (5) Generation of better 

organoids: Compared with conventional organoid culture methods, our intelligent mini-bioreactors 

could generate human cerebral organoids with a more uniform size distribution of 

ventricular/subventricular zone (VZ/SVZ), and better differentiation commitment to the forebrain 

identity. Moreover, this novel intelligent system control concept is not limited to acoustofluidics, it 

can also potentially change the technical form of bioelectronics and biodevices. The integration 

of advanced RL algorithms enables the automated operation of different devices and actuators, 

reducing manual intervention and ensuring consistency under a variety of factors including 

device-to-device variation, manual operation, environmental factor, sample variability, etc. 

Compared to current systems heavily dependent on manual intervention, this intelligent system 

can provide better performance in terms of automation, robustness, and accuracy. Most 

importantly, such intelligent systems may significantly contribute to pushing biodevices and 

sensors from the research laboratory to their translational applications in real-world settings. 

2. Experiment 



Fabrication of rotor devices. With the optimized simulation design, ASPP-based rotor devices 

were fabricated using a stereolithography 3D printer with clear resin (Formlabs, Massachusetts). 

The ASPP of the rotor was designed to operate at 2MHz consisting of 2 parts: a cylindrical base 

plate of 14 mm diameter and 0.5 mm thickness, and a spiral phase plate with 4 spiral identical 

portions with diameter 12 mm, angular width π/2, and height 2.2611 mm. Each spiral portion 

ensures a 2π phase delay ramp along the angular direction.  Therefore, an 8π circulation of the 

phase delay is produced around the ASPP axis. 

Experiment setup and operation. During the rotational experiment, an ASPP-based rotor was 

placed at the interface between fluids and air. The ASPP was irradiated from below by a lead 

zirconate titanate (PZT) transducer (dimension, 20 mm x 10 mm x 1mm; resonant frequency, 2 

MHz, PZT-41, Yuhai Electronics Ceramics, Co. Ltd, China). The PZT transducer was immersed 

in water to minimize the power loss during propagation and was driven by a 2 MHz RF signal. 

The RF signal was generated by a function generator (AFG3021C, Tektronix, Oregon) and 

amplified by a power amplifier (LZY-22+, Mini-circuit, New York) to drive the acoustofluidics 

rotational device. The function generator was connected to the computer via a USB interface 

module (NI-VISA, PyVisa) and output signals were controlled by a customized Python control 

program. The rotational status of the ASPP was monitored from above by a CCD camera (Adesso 

CyberTrack H4) connected to the computer as feedback. During the rotational control experiment, 

the frequency and power of the RF signal were selected by the closed-loop controller and 

generated by the function generator, based on the feedback rotational status from the video 

camera.   

Problem formulation. The goal of the RL-based controller is to maintain a stable rotational 

manipulation of organoids (e.g., rotational speed) for long-term culture. We formulate the acoustic 

power and rotational speed as a Markov Decision Process (MDP)68 for maximizing the overall 

reward over time, the details are as below: 

1. State: The state of the MDP is defined as the current RF signal parameters and rotational 

speed of the ASPP-based rotor as 

𝑆𝑡 = (𝐹𝑡
𝑜𝑢𝑡 , 𝑃𝑡

𝑜𝑢𝑡 , 𝑉𝑡) 

where 𝑆𝑡 is the state at time 𝑡, 𝐹𝑡
𝑜𝑢𝑡 , 𝑃𝑡

𝑜𝑢𝑡 are the frequency and power of the output RF 

signal, and 𝑉𝑡 is the current rotational speed of the ASPP-based rotor. 

2. Action: The action of the MDP is defined as the frequency and power of the resetting RF 

signal as 

𝐴𝑡 = (𝐹𝑡
𝑠𝑒𝑡 , 𝑃𝑡

𝑠𝑒𝑡) 

where 𝐴𝑡 is the action at time 𝑡, 𝐹𝑡
𝑠𝑒𝑡 , 𝑃𝑡

𝑠𝑒𝑡 are the frequency and power of the RF signal 

selected by the controller based on the current state observation, can be represented as   

𝐴𝑡 = 𝜋(𝑆𝑡) 

where 𝜋 is the control policy for the rotation system. 

3. Reward: The reward of the MDP can be divided into two parts based on the control goal, 

the penalty for the rotational speed variation from the set goal, and the penalty for the 

influence of acoustic power. Specifically, as the rotational speed deviates from the set 

rotational speed or more power is provided to the PZT transducer (which is undesirable 

for the health of the organoid), the reward decreases. The surrounding microenvironment 



of the BO can be regarded as stable when the rotational speed is within a small range. 

Thus, we set this range as [-D, D], where D is the threshold for the stable environment 

value. Within this range, the penalty from the rotational speed will be zero. Otherwise, the 

penalty will be calculated based on the difference between the set and the current 

rotational speed. By joining the two parts together, we set the overall reward of the MDP 

as 

𝑅𝑡(𝑆𝑡) = −𝛽𝑃𝑡
𝑜𝑢𝑡 + {

0,                       |𝑉𝑡 − 𝑉𝑔𝑜𝑎𝑙| < 𝐷

−|𝑉𝑡 − 𝑉𝑔𝑜𝑎𝑙|, |𝑉𝑡 − 𝑉𝑔𝑜𝑎𝑙| > 𝐷
 

where 𝑅𝑡 is the reward for time 𝑡 and 𝛽 is the weight of the acoustic power. 𝛽 represents 

the importance of acoustic power when compared to rotational speed control. In our case, 

stable rotational speed control is more important than acoustic power. Thus, 𝛽 is set to be 

a small value and will be minimized after achieving the rotational speed threshold.  

4. Reward maximization: Our goal is to maximize the overall discount reward overtime by 

deriving the optimal rotational control policy for acoustic amplitude optimization and stable 

rotational speed control, mathematically, the objective is 

max
𝜋

∑ 𝛾𝑡′

∞

𝑡′=0

𝑅𝑡+𝑡′(𝑆𝑡+𝑡′) 

where 𝛾 is the discount factor. Since the whole system is complex and it is impossible to 

directly solve the problem, we adopt an RL algorithm to optimize the control policy. 

RL for rotational control policy. Rotational control is a continuous problem and requires a 

continuous selection of acoustic parameters. Thus, we adopt Deep Deterministic Policy Gradients 

(DDPG) method,69 which is a natural solution for rotational control. Because the action space of 

DDPG is continuous, we can directly obtain the setting parameters of the RF signal from the 

outputs of DDPG. With DDPG, the network only has two outputs, namely, the real-valued set-

points of frequency and amplitude of the RF signals. We first used the simulation environment to 

learn the optimal policy and reduce the experiment cost. The parameters of the simulation 

environment were adapted from the experiment data. We then transferred the acquired policy to 

the real experiment for further training and optimization. During the acoustic rotation experiments, 

once a frame is captured by the camera, the current rotation speed of the rotor is determined. 

The measured speed is then fed to the controller. The controller calculates the optimal action 

according to the trained policy and selects the acoustic parameters that drive the rotor towards 

the speed setpoint. The signal of selected acoustic parameters is output to the PZT transducer 

until the next image frame is received by the controller. The controller continues maintaining the 

rotational speed by continuously approaching the rotational speed setpoint. 

Human embryonic stem cell culture. Matrigel (Corning) coated 6 well plates were employed to 

culture Human embryonic stem cell line WA01 (WiCell) with mTESR plus medium (Stemcell 

Technologies). The medium was changed every other day. The WA01 cells were passaged every 

week using ReLeSR kit (Stemcell Technologies). WA01 cells before passage 42 were used to 

generate brain organoids. 

Brain organoid culture. Brain organoids were prepared using STEMdiff™ Cerebral Organoid 

Kit. Embryonic bodies (EBs) were generated with ~9,000 cells using a U-bottom ultra-low-binding 



96-well plate (Corning, NY). EBs were prepared from the single-cell suspension of a human 

embryonic stem cell line WA01 (WiCell). Cells were counted and resuspended in EB formation 

media. EBs were fed every other day with EB formation media for 3 days. Subsequently, EBs 

were seeded onto the 3D printed scaffold of rotors and transferred to Induction Medium in a 24-

well Ultra-low Attachment Plate (Corning, NY). EBs were cultured for an additional 2 days and 

were then embedded in liquid Matrigel (Growth Factor Reduced, Corning, NY). Embedded 

organoids were maintained in an expansion medium for 3 days. On Day 10, organoids were 

switched to Maturation Medium and cultured on the acoustic intelligent rotor set at 60 RPM. 

Organoids were fed every 3 – 4 days with a maturation medium. 

Human cerebral brain organoids (hCOs) were fabricated as we previously reported.70-72 Briefly, 

9,000 WA01 cells were harvested from culture and aggregated into embryonic bodies using 

Aggrewell-800 plates (Stemcell Technologies) in EB formation medium (Stemcell Technologies) 

supplemented with 10 µM Y-27632 (SelleckChem). The aggregated WA01 cells form EBs in one 

day. The EBs were then derived into human cerebral organoids using the STEMdiff Cerebral 

organoid kit (Stemcell Technologies) 

Cryo-section of organoids. After 35-days of culture in conventional/intelligent acoustofluidic 

methods, the culture samples were washed three times in 1x Phosphate-Buffered Saline (PBS, 

Gibco) and then fixed in 4% paraformaldehyde in 1x PBS (Thermo Scientific) overnight at 4 oC. 

The samples were rinsed three times with 1x PBS and then transferred into 30% sucrose (w/v) 

solution overnight at 4 ºC for cryoprotect. The organoids were then incubated with 7.5% gelatin 

(w/v) 10% sucrose (w/v) in PBS solution at 37 ºC for 1 hour. Finally, the samples were snap-

frozen onto a cryomold (Sakura Finetek) in a dry ice/ethanol slurry. The frozen samples were then 

sectioned at 30 µm thickness on a cryostat (Leica).  

Immunofluorescence staining. To characterize the brain organoids cultured using conventional 

or intelligent acoustofluidic methods, sectioned samples were placed onto charged glass slides 

and washed three times with 1x PBS. The samples were then treated with 3N hydrochloric acid 

(HCl) for 15 minutes for antigen retrieval. Following HCl treatment, the samples were washed 

again twice with 1XPBS and subjected to blocking (0.3% Triton-X100, 5% normal goat serum in 

1XPBS) for 1 hour, followed by primary antibody incubation in a humidified chamber at 4 ºC 

overnight. The samples were then washed 3 times with 1XPBS followed by secondary antibody 

incubation at room temperature for 1 hour before being washed and coverslipped with gold anti-

fade mounting medium containing DAPI (Invitrogen). Detailed antibody information and dilution 

factors can be found in Supplementary Table S1.  

Gene expression analysis. Mature human brain organoids were lysed for RNA extraction using 

RNeasy Mini Kit (Qiagen). RNA was first reversed transcribed into complementary DNA (cDNA) 

using cDNA synthesis kit (Quantabio). The cDNA was then analyzed by quantitative PCR using 

SYBR green kit (Applied Biosystems). Gene expression fold change was analyzed by normalizing 

against housekeeping gene GAPDH.   

Statistical analysis. Students' t-test in GraphPad Prism 8 was employed to statistical compare 

the two sample groups. Statistical significance was shown as following: * (p<0.05), ** (p<0.01), 

*** (p<0.001). 

 



3. Results and discussion  

Intelligent acoustofluidics enabled mini-bioreactors. The ‘intelligent acoustofluidics' concept 

involves the development of automated systems with the support of acoustofluidic devices, 

sensors, and intelligent controllers to interact and learn from biomedical environments (Figure 

1a). The intelligent acoustofluidic system observes the biomedical environment through its 

sensors and outputs actions to acoustofluidic devices based on the observations. The biomedical 

environment is actively driven by the actions of acoustofluidic devices, and a reward signal 

representing the quality of the action is returned based on the environmental changes. The agent 

repeatedly interacts with an environment and iteratively maximizes the rewards obtained from the 

environment. As a result, the intelligent acoustofluidic system can be automatically maintained at 

the best performance regardless of a multiplicity of variance factors. To improve the organoid 

culture, we developed intelligent acoustofluidics enabled mini-bioreactors consisting of three 

components (Figure 1b): (1) rotors for rotational manipulation via an acoustic spiral phase plate 

(ASPP) which can be digitally regulated by RF signals, (2) a CCD camera for real-time tracking 

of rotational actions and sending dynamic data to the controller of intelligent mini-bioreactors, and 

(3) an RL-based controller of the intelligent mini-bioreactors for tracking and closed-loop 

regulation of rotational manipulation. After trained the RL-based controller in simulation and 

experimental environments, our intelligent mini-bioreactors took in the observations (e.g., the 

rotational speed of rotors) from the camera and outputted actions (e.g., acoustic frequency, and 

amplitude) to control the rotation of the rotors. By maximizing the rewards, our intelligent mini-

bioreactors can improve its performance and control the rotor at the desired rotational speed. By 

using this strategy, our intelligent mini-bioreactors can automatically tune and stably maintain the 

rotational speed of rotors by desire regardless of device-to-device variation, environmental factors, 

and operational variation.  

 

Design and fabrication of rotors. Based on our acoustofluidic simulation and experimental 

experience,70-72 we designed and optimized the ASPP-based rotors. Each rotor consisted of an 

ASPP and a hollow scaffold for organoid culture in one intelligent mini-bioreactor. The ASPP was 

designed as a chiral plate with an azimuthally varying thickness 𝑒 = ℓ𝜀[1 − 𝜙/(2𝜋)], with ℓ an 

integer for topological charge and 𝜙 the azimuthal angle in the transverse plane with respect to 

the beam propagation axis, 𝜀 =
1

𝑓(𝑐1
−1−𝑐2

−1)
, with 𝑓 the frequency of the sound wave, c1 the sound 

speed in the medium surrounding the ASPP and c2 the sound speed in the material. A normally 

incident axisymmetric acoustic wave propagating through the ASPP carried a pressure field with 

an azimuthal dependence of the form exp (𝑖ℓ𝜙), also known as an acoustic vortex with topological 

charge ℓ. Under a plane acoustic field, the ASPP generated orbital angular momentum (OAM) to 

transfer incident acoustic waves into the acoustic vortex (Figure 2a). Due to angular momentum 

conservation, such an acoustical vortex carrying nonzero acoustic OAM induced a nonzero 

acoustic radiation torque exerted on the ASPP. This acoustic torque induced mechanical actions 

to drive rotation around the beam propagation axis. 

A numerical model was used to calculate the field distribution of acoustic pressure and phase of 

the acoustic vortex generated by the ASPP. This model considered the effects of the longitudinal 



vibrations in the liquid and the interface between the ASPP and the liquid in the cell culture well. 

The working frequency of the ASPP was set to 2MHz, within the frequency range of widely used 

medical ultrasonic imaging. The diameter of the ASPP was set to 14 mm to fit in the 24 well plates. 

The parameter that we needed to optimize was the topological charge ℓ. The acoustical phase 

and intensity distributions of ASPPs with different topological charges (ℓ = 1,2,4,6) were simulated 

(Figure 2b). The phase patterns of the acoustical vortex twisted azimuthally at the same number 

of topological charges. While the intensity patterns of the acoustic vortex presented high areas 

surrounding the lowest center. As our ASPPs of different topological charges were able to 

generate acoustic vortex, we further investigated the acoustic torque exerted on the ASPP of 

different topological charges. From the calculation, the acoustic torque applied to the ASPP was 

proportional to the reflection angle of the spiral surface. (Figure 2c, the acoustic torque was 

normalized to  ℓ = 1) The ASPP with the same operation frequency (2 MHz) and diameter (14 

mm), but with different numbers of topological charges (ℓ = 1,2,4,6), were produced to perform 

the experimental validation. As the numbers of identical spiral portions increased before ℓ = 4, 

the corresponding acoustic torque increased correspondingly (Figure 2c). To minimize acoustic 

effects on the biological cultures, we chose an ASPP with a topological charge of ℓ = 4 as our 

design, since this design can generate maximal torque with minimal acoustic power. 

Tracking rotation. To speed up the training process and avoid excessive interaction with the real 

environment, we developed a simulation environment to pretrain the RL algorithm. To build the 

simulation environment, the rotational speeds of rotors were quantified under different input 

frequencies and amplitudes. An ASPP-based rotor was employed to investigate the dependence 

of rotational speed on the input voltage (Figure 3a). When applying acoustic waves, the rotor was 

driven to rotate by the torque generated by the acoustic vortex. At a steady-state, the SPP rotates 

at constant angular velocity Ω in the clockwise direction (when looking at the SPP from the top) 

(Figure 3b). The rotational speed under different voltage inputs was further quantified with this 

setup (Figure 3c). When the voltage is lower than 21 Vpp, the acoustic torque was not enough 

to drive the movement of the rotor. As the voltage increased beyond 21 Vpp, the rotor started to 

rotate and showed a proportional relation with the input amplitude. When the voltage was adjusted 

from 25 Vpp to 32 Vpp, the rotor rotated at a suitable speed range (57~80 RPM) for organoid 

development.65,73,74 A simulation environment for the rotor was developed based on the collected 

data. The simulation environment took the rotational speed and the signal amplitude as the input 

and estimated the resulting rotational speed and acceleration of the rotor as the output. A random 

variation with a standard normal distribution was also added to the output to account for 

disturbances and uncertainty of the system.  

Tuning rotational speed. After optimizing the ASPP-based rotor design, the RL-based controller 

was developed in the simulation and experimental environments and then integrated into the 

acoustic rotational system. The RL-based controller was developed in a Markov decision process 

(MDP) framework. The control agent took in rotational speed (state) as input, and output RF signal 

(e.g., frequency and amplitude) to the PZT transducer as action (Figure 4a). The change of 

amplitude (action) altered the rotational speed (state) and consequently altered the decision of 

the control agent. By narrowing the difference between current rotational speed and speed 

setpoint, the rotational behavior of rotors was controlled by desire. The RL-based controller was 

first implemented and tested in the pre-built simulation environment. During the training process, 



the controller continuously altered the RF signals applied onto the PZT transducer, resulting in 

altered rotational speed. After a fixed number of steps (250 steps in each episode), the 

environment was reset and the rotor was reset to a random rotational speed (0~80 RPM), and 

the controller restarted its controlling task. After each episode, we trained the policy neural 

networks according to the accumulated rewards and learning algorithm and stored the trained 

network. The reward learning curve was acquired from the simulation environment, after 100 

episodes of training, the algorithm maximized the rewards at around 0 (Figure 4b).     

Then, the acquired policy from the simulation environment was transferred to the real 

experimental environment. The rotation speed of the rotor is monitored by the camera using a 

classical object tracking algorithm, giving observation to the computer, and reward is also 

calculated based on the rotation speed. As the rotation speed approaches the desired speed, the 

reward rises. The computer (agent) takes in the observations from the camera and output actions 

to the signal generators to control the rotation of the rotor device. By maximizing the rewards, the 

agent improves performance and controls the rotor at the desired rotational speed. After further 

50 episodes of training in the real environment, the controller successfully controlled the rotational 

speed in the real system. With the further trained policy from the real environment, we 

demonstrated the customized rotational speed control (Figure 4c). With the RL controller, one 

could control the rotational speed of the rotor in the desired pattern.   

After demonstrating the precise tuning of rotational speed, we also investigated the stability of our 

system. It is hard to maintain a constant rotational speed of a developing organoid, because the 

organoid gains weight during the long-term development process. Thus, we tested the stability of 

our intelligent mini-bioreactors by disturbing the rotational speed with a sudden weight load 

(Figure 4d). For example, the intelligent mini-bioreactor was first set and maintained to a 

rotational speed at 60 RPM. After a weight loading on top of the rotor, the rotational speed 

decreased to 40 RPM. Our intelligent mini-bioreactor automatically detected the speed variation, 

tuned the acoustic input signals, and recovered the rotational speed to the initial constant 

rotational speed (60 RPM) within 10 seconds (Movie S1). Thus, we demonstrated our intelligent 

mini-bioreactor can maintain stable rotational speed regardless of weight load, paving the way for 

the stable rotational culture of developing organoids.  

 

Spinning culture of human cerebral organoids. We further applied our system to improve brain 

organoid culture conditions, based on our early experiences of organoid culture protocols.75,76 Our 

intelligent mini-bioreactors were able to spin the brain organoid with a stably controlled axis and 

speed. The EBs were loaded and cultured into the 3D printed scaffold under the rotor on Day 3. 

Each intelligent mini-bioreactor started to spin the 3D printed scaffold that attached with EBs on 

Day 10 with a stably maintained rotational speed (Figure 5a). Here the rotational speed was set 

as 60 RPM for organoid rational culture because this optimized speed range was showed to 

increase oxygenation, reduce "dead cores" of the organoid, and minimize the potential damage 

of the organoid viability.65,73,74  During the long-term culture process, the human cerebral 

organoids were growing and extending on the printed 3D scaffolds of rotors (Figure 5b 

schematics). The extension of organoids on the 3D printed scaffold was recorded on Day 10, Day 

19, and Day 35 (Figure 5b microscopic images). We measured the rotational speed of each rotor 



with the growing organoids on Day 10, Day 19, and Day 35 (Figure 5b plots). We found our 

intelligent mini-bioreactors were able to maintain the rotational speed at 60 RPM regardless of 

the brain organoid growth during the long-term culture process. The intelligent mini-bioreactors 

are compatible with brain organoids generation and maintained stable rotational speed and axis 

for a long period (more than 30 days).  

After cultured within our intelligent mini-bioreactors for 35 days, we characterized human cerebral 

organoids generated by our intelligent acoustofluidic mini-bioreactor (AhCOs) via cryo-section, 

immunofluorescence staining, and gene expression analysis. We also compared the differences 

between AhCOs and human cerebral organoids produced by a conventional method (hCOs). The 

PAX6/MAP2 staining of organoid cryo-section indicated the AhCO had more uniformed VZ/SVZ 

zones than the hCO (Figure 6a). Moreover, we found that the distribution of VZ/SVZ zones within 

AhCOs was more uniformed than that within hCOs via quantitative measurement of more than 10 

organoids (Figure 6b). We further employed qRT-PCR to determine detailed gene marker 

expression differences between AhCOs and hCOs. Organoids at Day 35 (neuron maturation 

stage) were collected, lysed for RNA-extraction, and analyzed for gene expression (Figure 6c,d). 

We found that AhCOs have higher expressions of dorsal neural progenitor marker PAX6 as well 

as cortical neuron marker TBR1 and CTIP1 (P<0.05), indicating enhanced neural differentiation. 

Moreover, compared to hCOs that express heterogeneous differentiation markers indicative of 

multiple brain regions, AhCOs showed a higher forebrain fate commitment, with lower gene 

expression for other brain regions. Thus, our results demonstrated a better differentiation of 

organoids using our intelligent mini-bioreactors than conventional organoid culture methods.  

4. Conclusion  

In this paper, we introduce a novel intelligent acoustofluidic concept that combines acoustofluidic 

device design, sensor fusion, and intelligent system integration. As a demonstration, we 

developed intelligent acoustofluidics enabled mini-bioreactors for human brain organoid culture. 

By integrating this system with an advanced controlling algorithm, we demonstrated stable control 

of the rotational speed of brain organoids over an extended period. The results were quite 

promising in terms of controller stability and convergence over rotational mode, direction, and 

speed of rotors, regardless of the fluctuations of rotor weight, organoid mass, and liquid volume. 

As a brain organoid culture system, the intelligent mini-bioreactors provides excellent control over 

brain organoids rotation and enables the culture of brain organoids with a more uniform VZ/SVZ 

size distribution. Such a system proves the advantageous performance over the conventional 

acoustofluidic experimental setup. The automation, robustness, and accuracy brought by the 

integration of intelligent systems enable optimal experiments regardless of any error factors, 

including device-to-device variations, manual operation, environmental factor, sample variability, 

etc. In the future, we expect that the implementation of novel intelligent systems will offer optimal 

performance over active biomedical devices and advanced fields of microfluidics, bioelectronics, 

and biomedical systems.  
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Figures and captions 

  

Figure 1. Concept of intelligent acoustofluidics. (a) The intelligent acoustofluidics system 
involves acoustofluidic device design, sensor fusion, and intelligent controller integration. The 
agent (RL controller) observes the biomedical environment through the sensors and outputs 
actions to the acoustofluidic devices based on the observations. The biomedical environment is 
actively driven by the actions of acoustofluidic devices, and a reward signal representing the 
quality of the action is returned based on the environmental changes. (b) Illustration of intelligent 
acoustofluidics enabled mini-bioreactors for human brain organoid culture.  

  



 

 

Figure 2. Rotational manipulation via an acoustic spiral phase approach. (a) Illustration of 
the mechanism to generate an acoustic vortex with orbital angular momentum by an acoustic 
spiral phase plate. (b) Acoustic phase and intensity distribution generated by acoustic spiral 
phase plates with different numbers of spiral portions (l=1,2,4,6). (c) Experimental and numerical 
relationships between acoustic torque and spiral portion number. The acoustic spiral phase plate 
with a 4-spiral portion was selected as the optimized design to generate maximal torque with 
minimal fabrication complexity. 

  



 

Figure 3. Tracking rotational speed. (a) Illustration of the imaging setup for tracking 

acoustofluidic rotation. (b) Snapshots of the top view of the acoustic spiral phase plate through a 

full rotation. The rational speed of the rotor can be measured by tracking the red ink mark on the 

rotor (indicated with yellow arrows). (c) Experimental results describe the dependence of the 

rotational speed of the acoustic spiral phase plate on the acoustic amplitude. Scale bar: 2 mm. 

  



 

Figure 4. RL-based control of rotational speed. (a) Illustration of the RL algorithm architecture. 

The agent takes rotational speed from the sensors and outputs the amplitude and frequency of 

RF signal actions. The actions influence the rotational speed, and a reward signal representing 

the quality of action is returned to the agent. The agent learns the optimal control policy by 

maximizing the cumulative rewards. (b) Curve mapping the cumulative rewards in the training 

process.  (c) A representative result showing the customized rotational speed regulation with a 

trained RL controller. (d) A representative result showing the stability of our system under a 

sudden weight disturbance (corresponding to Movie S1). The insert images shows a sudden 

weight load at second 9 (the rotational speed drops to about 40 RPM), and the system recovered 

(the rotational speed comes back to about 60 RPM) within about 10 seconds.  

  



 

Figure 5. Organoid culture using our intelligent mini-bioreactors. (a) The culture protocol of 

human cerebral organoids (hCOs) using our intelligent mini-bioreactor. (b) The schematics and 

experimental results of hCO growth during the culture process of our intelligent mini-bioreactor. 

The hCOs grew on the printed 3D scaffolds of rotors (images at Day 10, Day 19, and Day 35), 

while the rotational speed was precisely controlled at 60 RPM during the whole organoid 

development process. The extent of organoids was marked with the blue dashed curves. Scale 

bar: 500 µm. 

 



 

Figure 6. Comparison of AhCOs and hCOs. (a) Cross-section staining of the neuron (MAP2, in 
green) and neural progenitor cells (PAX6, in red) distribution within human cerebral brain 
organoids (hCOs) regulated by intelligent acoustofluidic mini-bioreactor (AhCOs) and 
conventional hCOs at Day 35. (b) The quantified size distribution of VZ/SVZ inside AhCOs and 
hCOs. (c) Gene markers expression level related to forebrain neural differentiation: PAX6, TBR1 
and CTIP2. (d) Gene markers expression level related to various brain regions: dorsal forebrain 
(dFore), ventral forebrain (vFore), midbrain (Mid), hindbrain (Hind), and derm layers including 
mesoderm (Meso) and endoderm (Endo) inside AhCOs and hCOs on Day 35. Scale bar: 500 µm. 

 

 


