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Abstract

Data-driven methods for establishing quantum optimal control (QOC) using time-dependent
control pulses tailored to specific quantum dynamical systems and desired control objectives are
critical for many emerging quantum technologies. We develop a data-driven regression procedure,
bilinear dynamic mode decomposition (biDMD), that leverages time-series measurements to
establish quantum system identification for QOC. The biDMD optimization framework is a
physics-informed regression that makes use of the known underlying Hamiltonian structure.
Further, the biDMD can be modified to model both fast and slow sampling of control signals, the
latter by way of stroboscopic sampling strategies. The biDMD method provides a flexible,
interpretable, and adaptive regression framework for real-time, online implementation in
quantum systems. Further, the method has strong theoretical connections to Koopman theory,
which approximates nonlinear dynamics with linear operators. In comparison with many machine
learning paradigms minimal data is needed to construct a biDMD model, and the model is easily
updated as new data is collected. We demonstrate the efficacy and performance of the approach on
a number of representative quantum systems, showing that it also matches experimental results.

1. Introduction

Quantum optimal control (QOC) is a comprehensive mathematical framework for quantum control in
which time-dependent control pulses are tailored to specific quantum dynamical systems and desired
experimental objectives [1]. QOC algorithms are critical for emerging new quantum technologies in
scientific and engineering disciplines, including computing, communications, simulation and sensing [2].
For example, algorithm construction in the gate-set model of quantum computation is accomplished by
concatenation from a universal set of quantum logic gates; however, QOC can create more accurate
implementations of commonly used subroutines by leveraging optimal control [3—5]. Despite the unique
challenges of quantum theory [6, 7], standard model-based control optimization procedures have been
developed and refined [1, 8—10]. Many of the seminal innovations in QOC were developed for applications
in nuclear magnetic resonance (NMR) [11]; today there are many numerical methods and tools useful in a
wide range of QOC application areas [12—14]. In QOC, practical control design ultimately depends on an
experimentally-accurate model of the governing quantum dynamics and the action of controls. In this
manuscript, we introduce the data-driven regression framework known as dynamic mode decomposition
(DMD) to construct control models directly from time-series measurement data. Our DMD method is
tailored to the bilinear structure of quantum control dynamics; moreover, it is a completely data-driven
approach that can accommodate both fast and slow (stroboscopic) sampling of control signals.

Many data-driven methods for characterizing quantum devices have been developed under a variety of
modeling assumptions [15]. The quantum-information community often assumes a quantum-process
model of the dynamics. In this case, a fixed quantum process is treated as a black box and is experimentally
characterized using quantum process tomography (QPT) [16—20]. An alternative to the QPT black box is
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Hamiltonian tomography which attempts to identify the generator of the dynamics by connecting the
Hamiltonian parameters to features of the observed dynamics [21-23]. Our approach is similar to
Hamiltonian tomography, but we treat control as an exogenous parameter in order to simultaneously
identify separate generators for the drift and control dynamics. Therefore, our approach directly addresses
the needs of QOC.

The challenges posed by Hamiltonian tomography are well-known [15, 22]. Statistical difficulties can
arise when solving inverse problems involving data. The generated dynamics are a nonlinear function of the
Hamiltonian parameters being sought. There is also the curse-of-dimensionality: computational costs grow
exponentially with respect to the quantum degrees of freedom. Inspiration can be taken from machine
learning methods because they have successfully circumvented many difficulties with high-dimensional and
nonlinear data sets through principled construction of low-dimensional embedding spaces. In quantum
dynamics, reinforcement learning methods have been used for quantum control design [24-26], neural
networks have been used for finding low-rank embeddings of quantum states and processes [27-29], and
the efficiencies of Bayesian methods [30, 31] have been studied. Our new approach is closely connected to
earlier work on the quantum application of linear system identification [32].

Data-driven system identification is a scalable, accurate, and flexible modeling paradigm ubiquitous
throughout science and engineering. System identification algorithms use abundant data collection to
automate modeling tasks—often in frameworks amenable to model-free control design. Koopman theory
for classical system identification and control is one paradigm that even uses the operator-theoretic
language developed for quantum dynamics [33—35]. In Koopman theory, nonlinear classical dynamics are
described by the linear action of Koopman operators on an infinite-dimensional Hilbert space of
observables. The action on observables makes the operators amenable to general data analysis. The DMD
algorithm is a data-driven regression that makes a finite-dimensional approximation to the Koopman
operator [36]. DMD avoids the statistical issues associated with inverse problems by finding low-rank,
interpretable feature spaces in the data. The algorithm can accommodate physical constraints,
delay-embeddings, and multi-scale dynamics [37-39]. With high-dimensional data DMD can make use of
tensor decompositions [40, 41] and compressive sampling [42, 43]. Moreover, the DMD algorithm has been
successfully adapted to provide equation-free control design for non-autonomous dynamical systems
[44-47]. In the present work, we show how the DMD system identification framework can be applied to the
study of quantum control via a bilinear DMD algorithm (biDMD) [46, 47]. We study the biDMD algorithm
as an approach to synthesize numerical optimal control and experimentation. In addition to the innovation
of the biDMD algorithm, we also show how it can be used when sampling is fast or slow relative to the
applied control signals—the latter by stroboscopic sampling. The biDMD architecture is applied in several
examples in a promising demonstration of the possibility of QOC using time-series data alone.

The first two sections serve as background. Section 2 reviews quantum dynamics and recalls the
connection with Koopman—von Neumann classical mechanics. Section 3 reviews the DMD algorithm. In
section 3.3, we introduce biDMD for quantum control. An example is provided for the fast-sample limit
where the data record fully resolves the dynamics. Next, section 4 explores biDMD in the opposite limit of
stroboscopic sampling. In this context, natural interpretations of DMD using Floquet theory and treatments
of biDMD from the perspective of average Hamiltonian theory (AHT) are discussed with examples.

2. Quantum dynamical systems

The first complete formulation of quantum dynamical systems occurred in the 1930s with the
operator-theoretic perspective of the Dirac—von Neumann axioms [48]. This description replaced the
notion of a possibly nonlinear equation of motion defined over a classical phase space with an infinite
dimensional linear operator algebra acting on a Hilbert space. This formulation was not restricted to
quantum mechanics. Indeed, an operator-theoretic linearization of classical dynamical systems was
contemporaneously made using the Koopman—von Neumann theory [33, 34]. We review the dynamics of
quantum states here before transitioning to abstract states of measurement data in section 3.

2.1. Autonomous systems
In quantum mechanics, the state of an N-dimensional physical system is represented by a unit vector, or ket,
|¥)) in a complex vector space CN. The dynamics of a quantum state are given by the Schrodinger equation,

O o) = ity o) = o), (1)

where the Hamiltonian operator, Hy, has been assumed without loss of generality to be traceless, and
Plank’s constant / has been set to unity. More generally, an ensemble of pure quantum states can be
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completely characterized, in the sense of its measurement statistics, by a density matrix p(t); that is, a
non-negative self-adjoint operator in CV*N with trace one. The Liouville~von Neumann, or quantum
Liouville equation, describes the time evolution of a density matrix [49]:

%p(t) = —i[Hoy, p(t)] := Lop(t), p(to) = po. (2)

The quantum Liouville operator L is sometimes known as a super-operator because of its linear action on
the space of operators. There are a number of ways to vectorize the quantum Liouville equation. We will use
the language of the familiar Bloch vector (also known as the vector of coherence) to describe passing to a

. . . . 2_ . 2
vector of differential equations. Writing p(¢) = 1/N + Z}il " T( po;j)oj with {aj}jli ;! as a complete and
orthonormal basis for traceless Hermitian operators, we can then define x;:= Ti( paj) so that (2) becomes
(7, 50]

%x(t) S Lx(®), x(t) = xo. 3)

For a more complete description of this process, see appendix A. Obtaining an expectation value
xj(t) := Tr(p(t)o;) requires a collection of identically-prepared quantum states. In this paper, the
‘measurement’ of a quantum state as represented by x(#) is understood to mean the measurement of such
an ensemble.

In terms of the eigenvectors v; and eigenvalues ); of Lo, the solution to (3) is

N2—1
x(t) = Z A/ eAf(t—tO)cj =V exp(A(t — t9))c, (4)
j=1

where the coefficients ¢; are the coordinates of x, in the eigenvector basis. For continuous dynamics as in
(4), there exists an equivalent discrete time description of the system x(¢) sampled at intervals of At.

2.2. Non-autonomous systems

Many important classical non-autonomous control systems can be formulated as control-affine dynamical
systems. Transforming to the operator theoretic perspective of the Koopman—von Neumann theory, these
are bilinear dynamical systems [51]. In this section, we review non-autonomous dynamical systems and
establish the bilinear formulation of the quantum control problem.

2.2.1. Direct actuation
Direct actuation is a common situation in classical control theory in which an autonomous dynamical
system like (3) undergoes a linear response to control inputs u(t) € RN [44]:

%x(t) L)+ Lsu(®),  x(to) = %o, (5)

Recall that if the control is input under a zero-order hold across At, the discretization
x, = X(fy + (n — 1)At) and u,, = u(to + (n — 1)At) transforms (5) into the discrete-time dynamical system

At
Xpp1 = eH02x, + (/ elo(Ar=9 ds) u,. (6)
0

Significantly, the dynamics remain control-affine for any span At.

2.2.2. Bilinear quantum dynamics

The control of a quantum system can be modeled using N, real-valued control functions, u;(t), coupled to
corresponding time-independent interaction Hamiltonians, Hj, such that the dynamics are described by the
bilinear Schrodinger equation,

Nc
%Iw(t»:—i Ho+Zuj(t)Hj [w(1)), [ (to)) = [tho) - (7)

j=1

Following appendix A like for (3), the bilinear Schrodinger equation induces the vectorized bilinear
quantum Liouville equation [7, 50],

Nc
%X(t) = Lo+ Y _u(OLi | x(r),  x(t) = xo, (8)

=1
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by identifying H, — L, for n = 0,1,...,N. and x € RV~!. This linear differential equation can be
integrated in the usual way to obtain

Ne
x(t) = elolt—f)xy + Z/ elo(=10)=9,. () Lix(s)ds. (9)
j=1 "%

If a discretization is taken such that x, = x(t) + (n — 1)Ar) and u;;, = u;(to + (n — 1)At), then to first

order
Nec

Xup1 = (14 LoADX, + > ujuLiAtx, + O(AF), (10)
j=1
such that the discrete time dynamical system remains control-affine [46]. Note that in this first-order
approximation the computation of derivatives via finite differences and the computation of the discrete
time dynamical system are equivalent.

3. Dynamic mode decomposition

In recent years, a variety of practical computational tools have encouraged more widespread adoption of the
Koopman-von Neumann perspective in the dynamical systems community [35, 52]. The DMD broadly
refers to a suite of numerical methods originating in the fluid dynamics community for the purpose of
studying coherent spatiotemporal structures in complex fluid flows [36]. DMD combines standard
dimensionality reduction via the singular value decomposition with Fourier transforms in time. In
application, all variations of the DMD algorithm involve collecting a time series of experimental
measurements in order to compute a reduced-order dynamical model based on DMD modes and
eigenvalues. The DMD modes identify coherent structures in the measured space and the DMD eigenvalues
define the growth, decay, and oscillation frequency of each mode. The following sections will review the
DMD framework.

3.1. DMD
The standard DMD is a data-driven algorithm defined via the observed trajectories from either
experimental data or a numerical simulation of a dynamical system

%x(t) CLx(®), x(t) = xo, (1)

where x(t) € RN~ to remain consistent with section 2. (DMD ultimately deals with data and is agnostic to
the underling system that produced it.) The first step of the algorithm is to assemble a sequential
measurement record {x(1) = X1, X2, ..., Xp} 11 <ty < ... < t,, into snapshot matrices:

Xi=|x1 X ... Xy_1], Xi=|x x5 ... xu|, (12)

50 X, X' € RN*=1xM=1 Ty this paper we assume uniform sampling with #,, :=t, + (m — 1)At, but this
assumption can be relaxed [37]. In its simplest form, DMD is a regression algorithm that estimates the
propagator matrix

X' ~ AX, (13)

by solving the optimization problem

, (14)

A = argmin HAX -X
A F

where M| = 4/ ]]‘:1 S, mj;. is the Frobenius matrix norm defined for any given matrix M. The

least-squares solution to (14) is A = X'X ™ where + denotes the Moore—Penrose pseudoinverse of a matrix.
From the eigendecomposition A = WQW ', define the DMD modes w; as the columns of W. Future states
can then be predicted as in a discrete analogue to (4) using

N2-1
Xo= Y ww'bj = Wb, (15)

j=1

where b are the coefficients of the initial condition in the eigenvector basis, X = Wb.
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3.1.1. Scalability
The eigendecomposition of A € can easily become numerically intractable for large N.
However, the big data limit is nothing unusual for the problems appearing in data science and fluid
dynamics that DMD has already addressed with success. The DMD algorithm circumvents this problem by
projecting the high-dimensional snapshot matrix X onto a low-rank subspace defined by R modes
computed from the singular value decomposition (SVD) of X (note that because it is computed from the
snapshot matrices, the rank of A is at most M — 1 when N> > M). In this way, DMD determines a low-rank
approximation A € RR®*R to describe the dynamics of the measured trajectories. In the big data limit, the
low-rank approximations in DMD can be computed using randomized algorithms so that the required
computations scale with the intrinsic rank of the data instead of the ambient measurement dimension [53].
This paper introduces DMD for quantum control by way of simple low-rank examples. Therefore, there
are outstanding and important scalability questions that must be addressed. For instance, low-rank
approximations and reduced-order models are not appropriate for capturing the full expression of a generic
quantum dynamical system. However, suitable constraints on the control or Hamiltonian can ensure the
SVD-based DMD is a natural choice for the study of many-body quantum states [54]. As well, DMD
accommodates the use of tensor decompositions [40, 41] and is thereby equipped for those quantum states
represented by tensor networks [55]. Improvements may also be made by incorporating
approximately-known theoretical models; after a straightforward modification of equation (8) our
framework becomes one for bilinear discrepancy modeling. This may allow us to introduce low-rank
assumptions in the discrepancy space that could not be made in the state space [56]. The DMD framework
includes a selection of well-established extensions and improvements beyond the naive algorithms
introduced in this paper—many focus on adapting to situations with meager amounts of noisy time series
data. We discuss some possible directions of future research in our concluding remarks in section 5.

RNZ—IXNZ—I

3.2. DMD with control (DMDc)
Dynamic mode decomposition with control (DMDc) [44] is an algorithm developed for modeling the
special case of direct actuation:

%x(t) L)+ Lu(t),  x(t) = %o, (16)

with u(t) € RNe, Like DMD in (12), the size-M measurement record associated with the trajectory of x is
assembled into snapshot matrices X and X'. This time, the control inputs, u,, := u(t,), are also collected:

U= |uy w ... uy_|. (17)

DMDc is a regression-based approach to system identification that disambiguates the intrinsic dynamics, A,
and the effects of control, B:

X
X' ~AX+BU=|A B =GE. 1
LBU=[A B] M G (18)
The DMDc algorithm achieves this disambiguation by interpreting the best-fit solution according to
[A B] =X'E". (19)

DMDc brings all the benefits of the DMD algorithm to a model-free framework for experimental control
optimization.

3.3. Bilinear DMD (biDMD)
Bilinear dynamic mode decomposition (biDMD, algorithm 1, figure 1) is a data-driven system
identification framework for bilinear non-autonomous control systems:

Nc
Cx(= [ Lo+ 3 w0 | X0, x(0) =% (20)

j=1

Construct the snapshot matrices X, X, and U as in (12) and (17) using the size-M measurement record of
the trajectory x() and the corresponding input record u(#). Additionally, construct the bilinear snapshot
matrix

| | |

UoOoX= uu®x; me&x ... Uy @Xpm_1|, (21)
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Algorithm 1. Bilinear dynamic mode decomposition.

Input: snapshot data X, shifted snapshot data X, control matrix U, and target ranks 7, 7
Output: DMD modes ®, eigenvalues A, and estimates A, B for the drift and control matrices
1: function BIDMD (X, X', U, 7, 7)

A Goldschmidt et al

2: E <+ { X }

UoX
3: I~J, f], Ve SVD(E, 7) >Truncated 7-rank SVD of &
4: [Ijm I~JB] «U >Decompose U according to A and B
5: A X’\~72~]’1I~JL >Estimate for A
6: B+ X'VE-1U} t>Estimate for B
7: U, 3,V « SVDX, #) >Truncated 7-rank SVD of X’
8: A« U'AU >Low-rank approximation for A
9: W, A+ EIG(K) >Eigendecomposition of A
10: P « AUW >DMD modes for A
11: end function

X1, Xg, X3, X4, X5, --- (C)

Data matrices:

Control matrix:
[ |
U= u; U < Upg-1

T T T T T T t

(d) Bilinear DMD:

I
U®X= u; ®X1

U ®Xo

0 2 4
|

up-1@Xp-1

©

X'~ AX +B(U®X)

Figure 1. The trajectory of a qubit driven by a linearly-polarized semi-classical drive u(t) (Hamiltonian: H(t) = wo, + u(t)o,) is
shown on the Bloch sphere in figure (a). The corresponding Pauli-spin measurements are shown in figure (b). Measurements x;,

j=1,2,...,are taken at discrete time steps and assembled into offset snapshot matrices X and X' in figure (c). The bilinear
dynamic mode decomposition (biDMD, figure (d)) is a regression-based algorithm that uses the assembled data matrices and
control input from sufficiently-resolved data to learn the intrinsic dynamics, A and the control, B, for the bilinear dynamics.

where u ® x:= [u1x7, 12, - . .

s UIXN2 15 U2 Xy, UpXD,s - .

,un.xy2_;]T is the Kronecker product and U ® X is

the column-wise Kronecker product of two matrices (also known as the Khatri—Rao product). The discrete
time dynamics of a bilinear dynamical system are well-approximated (for small enough At) [46] by

X' ~AX+B(U®6X),

(22)

where X € RN ~DXM-1 J ¢ RNM-1L J 5 X € RNe(W!-DxM-1 A ¢ RN -IXN’~1 and B @ RN’ 1xNe(W* 1),
In its simplest form, the biDMD algorithm is a regression algorithm in the spirit of DMD (13) and DMDc

(18) such that

/. X | _om
X'~ [A B [U@X] :=GE. (23)
Like DMDc, the biDMD algorithm (algorithm 1) disambiguates the effect of the intrinsic dynamics, A,
from the effect of the control inputs, B, using a factorization of the best-fit solution:
[A B] =XE". (24)
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(a) Off-resonance sample (b) w = 1.001 (c) On-resonance extrapolation —»
(1)53'1‘}’ &R 2 al-sm TIm. e (1) <3) Sim.
¥ ¥ ¥ ¥ [oSample -1 =DMD
11 T o a ol % 11(o9) .
0%)5&@%@ Sim. ol N 0. ,</ Sim.
ol % % ¥ |OSample / =DMD
-1 ' X -1
(1) |(os) Sim. (1) (o3) Sim.
1 p ) OSamp]e S - Re' =DMD
3 ; 10 1 i
t t

Figure2. In figure (a) five periods (T = 1) of highly-resolved Pauli-spin data (At = T/16) with additive Gaussian noise
(o = 0.01) are sampled from simulations of the system H(f) = 7o, + cos(2mwp )0, driven by the slightly off-resonance
frequency wp = 1.1. The biDMD algorithm disambiguates the drift, A, and control, B, dynamical operators. The biDMD
eigenvalues of A are plotted in figure (b). In figure (c) a new control is provided using the resonance frequency, w ~ 1.001,
estimated from the DMD eigenvalues in figure (b). The biDMD model extrapolates using only an initial state and a desired
control. Figure (c) compares the biDMD extrapolation to the known simulation.

3.3.1. Example 1

Consider a two-level quantum system, H(t) = mos + u(t)oy, where {aj}f:l are the standard Pauli matrices.
This can be realized, to take an example from quantum optics, by applying a linearly polarized
semi-classical drive to a dipole-allowed atomic transition AE = 27 [49]. Suppose the dynamics have been
inaccurately characterized so that the system is driven in an experiment by a slightly off-resonant pulse,

u(t) = cos(2mwpt) with wp = 1.1. In figure 2, the biDMD algorithm uses samples from such an experiment
in order to disambiguate the effect of control. The phase of the DMD eigenvalues (15) provide an estimate
of the resonance frequency, w ~ 1.001. The biDMD model can then be used to predict the behavior of the
system under the influence of this estimated-resonance drive without a priori obtaining an accurate
characterization.

Recall the trajectory samples are measured via the expected value of an ensemble of identically prepared
quantum states. Advantageously, the DMD algorithm is based on a least-squares regression that is optimal
with respect to Gaussian measurement noise of the finite statistics. The algorithm does not require much
data. Moreover, if the algorithm is applied to a system with dissipation, then the model extracts the
corresponding modified drift and control operators. An otherwise identical result to figure 2 can be
obtained without any change in procedure.

4. DMD for stroboscopic sampling

Recall that the DMD algorithms in section 3 are applicable only to systems in which the measurement
resolution At is small enough to accommodate the linear approximation to the desired accuracy.
Higher-order approximations to (10) show that improvements to the biDMD model can be made by adding
terms nonlinear in the control [46]. This research direction may be appropriate for cases where the
zero-order hold on the control is extended for the entirety of the interval At. Instead, in this section we
study the case of stroboscopic measurements of the trajectory x(#) separated by time steps T > At during
which the control can change significantly.

The observation of low-frequency dynamics ~ T in a system under the influence of relatively
high-frequency actuation ~ At is a familiar feature of bilinear systems. For example, the classroom
experiment of an inverted pendulum stabilized by the high-frequency vertical drive of its pivot can be
modeled as a bilinear control system (under an appropriate operator-theoretic transformation of Mathieu’s
equation). The two-level quantum system from section 3.3.1 provides another example. The textbook
analysis of the two-level system proceeds via a rotating frame transformation together with the rotating
wave approximation (RWA). Consider H(t) = wo3; + u(t)o; driven by a pure tone u(t) = ug cos(2mvt).
Changing to a frame rotating with the drive frequency about the o5 axis of the Bloch representation,

- ou
H=UHU - iUTE =avl +7(l —v)os + %0’1 + %(cos(zml/t)al — cos(4mvt)osy), (25)

RWA

with U(t) = exp(27vi(T — 03)t/2) where the RWA disregards the contribution of the emergent
high-frequency terms to realize a constant Hamiltonian. The coefficient of o in the RWA is 11y which can be
small relative to 27rv. In this case, the characteristic Rabi cycle of the two-level system is a low-frequency
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oscillation divorced from the high-frequency drive. Motivated by these examples, sections 4.1 and 4.2
discuss DMD strategies for the case of stroboscopic measurements.

4.1. DMD and Floquet theory

In this section, we recall how periodically-driven dynamical systems are connected to the case of
stroboscopic measurements (and rotating frames) using the framework of Floquet theory. We introduce
Floquet theory and show how corresponding re-interpretations of DMD enable an efficient method for
studying stroboscopically-measured, periodically-driven quantum systems.

In Floquet theory (known as Bloch theory in condensed matter physics), the discrete-time evolution of a
periodic quantum dynamical system, H(t 4+ T) = H(?), is given by the time-independent stroboscopic
Floquet Hamiltonian [57],

Ulty + T, ty) = exp(—iHg[to] T). (26)

The dependence on the initial time, #y, is a gauge transformation known as the Floquet gauge. The Floquet
Hamiltonian is a consequence of the observation U(ty + nT,t) = U(to + T, tp)". A classical version of (26)
also exists; for vectorized quantum systems, exchange —iHg[fy] — Lg[tp] in the manner outlined in
appendix A.

Take the eigendecomposition of the Floquet operator such that Lg [to]fj(to) = 6j£j(t0) for
j=1,2,...,N? — 1. Floquet’s theorem is the observation that the T-periodic fast-time dynamics can be
separated from the slow-time dynamics governed by Lg[fy]. The theorem asserts that attaching the periodic
fast-time propagation to the eigenvectors, §;(t + T) = §;(t), provides a complete set of solutions for the
dynamics. In this Floquet basis, the general time-evolution of an initial state x(f) is given by

N2—1

x(H) = Y &(nei g, (27)

=1

where the £() are known as Floquet modes, the €; are known as quasi-energies, and the coefficients ¢; are the
coordinates of x(t).

Comparing (4) with (27), it is evident the DMD algorithm (13) can provide a framework for the
numerical approximation of Floquet modes and quasi-energies using DMD modes and eigenvalues [58].
We refer to this re-interpretation of the DMD algorithm as Floquet DMD. Suppose a size-M measurement
record of the trajectory x(¢) is obtained from a non-autonomous system with a known period T. Further
suppose that the first s measurements are contained within [0, T), the second within [T, 27T), and so on
under the constraint ¢, = t,,y, mod T for r = 1,2, .. .,s. Consider the reshaped snapshot matrices for this
stroboscopically-measured data,

X1 X1 -0 X([M-1)/s]-Ds+1
X — X2 Xst2  o-.- X(((M—l)'/ﬂ—l)s+2 ’
X5 X)s . X(((M,l)'/5},1)5+5
Xt1 X1 - -0 X([(M—1)/s])s+1
X’: X5'+2 x25'+2 X(((Mfl')/s})erz (28)
Xos X3 oo X([(M-1)/s])sts

where X, X' € REN’=Dx[(M=D/s] Iy this way, the columns of X exist in the span of a discretization of the
T-periodic Floquet modes, {£j(t)}]l-\’:2f !, These Floquet modes evolve with a single phase given by the
quasi-energy. From the snapshot matrices, the DMD algorithm constructs an optimal propagator in terms
of DMD modes and eigenvalues that provide numerical approximations to the Floquet modes and
quasi-energies, respectively.

4.1.1. Example 2

Consider the two-level quantum system from section 3.3.1 with H(¢) = wo3 + u(t)o; driven by a control
u(t) = cos(2mwpt) with wp = 1.1. Suppose the system is stroboscopically measured at 4 times per period
over a total 4T (such that M = 16 and s = 4). Construct the snapshot matrices (28) from this measurement
record. In figures 3(a) and (b), the DMD modes and eigenvalues from applying the Floquet DMD algorithm
are compared with the exact Floquet modes, exact quasi-energies, the RWA modes, and the RWA
eigenvalues (see equation (25)). Because wp = 1.1 is close to resonance, the RWA is valid and able to
capture the quasi-energies. However, RWA does so by sacrificing the fast-time dynamics. In contrast, the
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Figure 3. 1 A qubit with intrinsic period 1 is driven by a slightly off-resonance frequency with period T = 1/1.1. Equi-spaced
stroboscopic measurements are sampled at a frequency of 4/ T during a total sampling window of 4T to construct a model using
Floquet DMD. Figures (a) and (b) compare Floquet modes and quasi-energies to the eigenmodes and eigenvalues from DMD
and the rotating wave approximation (RWA). The columns in figure (a) are indexed by the coordinate of the state

x(t) = Tr(po;). The horizontal axes are labeled by 7 = t mod T. Measurement data from a fifth period is used to provide initial
conditions for the model-based extrapolation in figure (c).

Floquet DMD is not constrained to the regime of the RWA and resolves both the fast and slow time-scales
using the stroboscopic measurement data. The Floquet DMD provides a linear reduced order model that
approximates the exact linear dynamics of any periodically-driven quantum dynamical system. This implies
the method is well-suited to extrapolation, as shown in figure 3(c).

The Floquet DMD inherits all the model-reduction advantages of the DMD algorithm. However, one
drawback of Floquet DMD is that control is internal to the constructed model. As such, the solution can
assist control strategies involving switched systems, but cannot generalize to unseen control inputs.

4.2. biDMD and average Hamiltonian theory
AHT [59, 60] is a method with origins in the NMR community that asserts that the dynamics of a quantum
dynamical system driven by a time-dependent control can be described by the average effect of the field over
a period T of its oscillation. In AHT, a known system Hamiltonian is expanded analytically according to the
Magnus series [61, 62]. In this section, we show how AHT can be combined with the ideas of Floquet DMD
from section 4.1 to provide a framework for biDMD (23) in the case of stroboscopic measurement data.
This allows us to extend model-free optimal control to the limit of stroboscopic measurements. We refer to
this interpretation of biDMD as AHT-biDMD (figure 4).

Consider a periodic bilinear dynamical system

%x(t) — L()x(t) = (Lo + u()Ly) (1), (29)

such that L(t + T) = L(¢). Define 2:=27/T. Recall the existence of the constant Floquet operator
Le[to]x(t) = x(fo + T). The main idea of this section is to approximate L [#] using a high-frequency
perturbative expansion which will motivate a way to include control as a parameter in the spirit of biDMD.
There are a number of perturbative methods to find the Floquet operator in the limit of a high-frequency
drive; we will use the familiar Magnus expansion as used in AHT which allows us to represent the constant
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Figure 4. Stroboscopic measurements of a qubit driven by a linearly-polarized semi-classical drive u(t) (Hamiltonian:

H(t) = mo, + u(t)o,) are shown on the Bloch sphere in figure (a). The corresponding Pauli-spin measurements are shown in
figure (b). Control is incorporated by computing Fourier coefficients of each intra-stroboscopic control input [figure (c)]:

@, = [@u1s Auzs - - > uic> b1, by - - - by |- Potentially nonlinear combinations of the control coefficients are assembled into a
control data matrix in figure (d). The stroboscopic bilinear dynamic mode decomposition (biDMD, figure (e)) is a
regression-based algorithm that uses the assembled data matrices and control input from stroboscopic measurements to learn the
intrinsic dynamics, A and the control, B, for the bilinear dynamics.

Floquet operator Lg[f,] as a series of constant operators [57],

Le[to] = > L{[to], (30)
j=0

where Lg’) [#o] means that the operator appears in the series expansion with a pre-factor 2 ". By inserting
the Fourier series u(t) = Zle ar cos(kQt) + by sin(k€)t) into each Lg) [to] in (30),j=0,1,...,]— 1, we
obtain a bilinear model up to terms of order T in which controls enter the Floquet operator as
multinomials of the constant Fourier series coefficients. An analytic example is shown in appendix B. In the
Magnus expansion we presume these coefficients remain constant across a single Floquet period

[(n — 1)T, nT] but allow for changes between periods. For example, if we permit only the resonance
frequency in the Fourier expansion of the control, then our method reduces to an on-resonance carrier with
an envelope under a zero-order hold for the length of the Floquet period. The bilinearization of the
propagator through the basis decomposition of the control is motivated by analytic Floquet—Fourier
methods [63—-65].

To apply AHT-biDMD, construct the snapshot matrices X and X’ as in (12) using the size-M
measurement record of the trajectory x(#) where x, are measured stroboscopically, t, = t, + (n — 1)T.
Additional intra-stroboscopic measurements can be included using the methods outlined in section 4.1.
Next, suppose controls are restricted to u,(t) = Zl,le anr cos(kQt) + b,y sin(k€)t) where n indexes the
relevant step [(n — 1)T, nT] of the applied control. Define a control snapshot in terms of the coefficients,

10
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(a) — Exact OStrobe X DMD @ Initial data (b) 19 =ult) g —ul(t)
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Figure 5. Figure (a) shows the true trajectory compared to the biDMD predictions for a two-level system driven at resonance.
Figure (b) plots the control over a single period and shows an exact match with the truncated Fourier series whose coefficients
make up the control input of the biDMD model. Figure (c) shows the error of (a) and for additional amplitudes of the same
control.
W, = (1> n2> - - - Auk> Uuts by -« - bax]T, such that the snapshot matrix is now

\
U= |a, @ ... dy.]. (31)
| \

Furthermore, define the polynomial library matrix to be

U
0"

OW) = [¢ps | » (32)

(:>

where e.g. U2 denotes all quadratic nonlinearities of the control coefficients,

-2 2 2
an a5 cee aM-11
andap axdxp ... 4AM-119M-12
Fop : : . :
U= = 2 2 2 . (33)
ap a o ar-12
) ) )
L bix by s bk

Note that in many control systems knowledge of the experimental driving pulse is incomplete as distortions
can introduce nonlinear transfer functions of the expected input as f{u(t)). Because this is a data-driven
approach, the AHT-biDMD model implicitly accounts for the appropriate nonlinear transfer function for
the experimental control up to the truncated order of these multinomials. Finally, use the library to

construct the bilinear operator as in (21), ©(U) ® X. Now, AHT-biDMD is the approximation of the
discrete time dynamics by the model

X ~ AX+B (0(0) ©X). (34)
The algorithm proceeds as in biDMD in section 3.3.
4.2.1. Example 3

Consider again the two-level quantum system with H(t) = o3 + u(t)o,. Restrict the control to the span

5
. 127
u(t) = ;ak cos(kQt) + by sin(kQt), € = 3T = . (35)

11
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Figure 6. Figure (a) shows the true trajectory compared to the biDMD predictions for a two-level system driven by a random
control. Figure (b) plots the control over a single period and shows an exact match with the truncated Fourier series whose

coefficients make up the control input of the biDMD model. Figure (c) shows the error of (a) and for additional amplitudes of
the same control.

(a) =— Exact OStrobe X DMD @ Initial data

0 1 2
t
<0’ > N @@ ®C5Q ><® X ® Q® X ) Trained amplitude
2_1 | ® 6Q 6Q s ®6 8\s ® 70 100 4% Error

% Error
of (a)

Amplitude

Figure 7. Figure (a) shows the true trajectory compared to the biDMD predictions for a two-level system driven by a sawtooth
control. Figure (b) plots the control over a single period and compares to the approximation via the truncated Fourier series
whose coefficients make up the control input of the biDMD model. Figure (c) shows the error of (a) and for additional
amplitudes of the same control.

Leveraging the linearity of the biDMD model, assemble the measurement trajectory data as a horizontal
stack of numerical experiments driven by pure tones. Suppose the trajectories are measured over 5 periods
of applied control in which each of a; and by are taken separately to be 0, 0.1, .. ., 1. Include additive
Gaussian noise with ¢ = 1072, From this control data, construct the library snapshot matrix (32) up to
second-order nonlinearities. In the trajectories, we also include additional intra-stroboscopic measurements
using the methods of section 4.1. From all of these horizontally-stacked measurement trajectories and the
polynomially-extended control coefficients, assemble the snapshot matrices according to (34), and apply the
biDMD algorithm to obtain a model for the system.

In figures 5—7 we look at the predictive capabilities of the biDMD model over 10 control periods (twice
the training time) for certain representative control pulses. Part (b) of each figure shows the input control
plotted alongside the Fourier-series signal (35) that best approximates the applied control. Part (c)
quantifies the percent error of the measured versus predicted trajectories over a range of amplitudes
assuming that the input control pulse remains in a fixed shape.

12
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In particular, figure 5 shows the case of a resonance drive. The model is successtul up to a large
amplitude limit. This can be understood by recalling that the validity of the Magnus expansion requires a
control period that is ‘small enough’—a condition that exists in an inverse relationship with the amplitude
of the applied drive. Figure 6 shows a successful prediction for the case of an arbitrary multi-frequency
control in the span of the truncated Fourier series (for simplicity, we hold the same coefficients across all
periods). Finally, figure 7 shows a sawtooth drive that is only approximately captured by the truncated
Fourier series input in the biDMD model; as a result, the model predicts with a reduced accuracy.

5. Conclusion

The success of QOC is critically dependent on accurate quantum system identification. In cases where
theoretical models are inaccurate or unknown, data-driven system identification is essential for practical
QOC. Established ideas from machine learning and regression algorithms like the DMD have advantages
that can be useful to quantum technologies. Like the innovation of the biDMD in this paper, the ideas must
first be adapted to accommodate the underlying mathematics and structure of quantum dynamical systems.
Much like its forerunner, the DMDc algorithm [44] for the case of direct actuation in classical control
systems, biDMD provides a data-driven and equation-free framework for use with QOC strategies. We have
demonstrated the success of the biDMD formulation on a number of quantum systems, showing that it can
successfully leverage time-series data alone to enact control.

The use of the DMD framework for quantum systems brings with it a variety of well-established
extensions and improvements beyond the naive algorithms introduced in this paper. Studying the ways
these improvements fit into the quantum world provides a myriad of future research directions. First, DMD
is by construction a method for reduced-order modeling of high-dimensional systems; however, DMD can
also accommodate tensor-network representations of high-dimensional data [46]. DMD can also utilize
compressive measurements [42, 43]. As such, biDMD should be studied in systems involving multiple
qubits under control. Also, time-delays and their connection to random measurements [53, 66, 67] indicate
ways DMD can increase system dimensionality in the case of sparse sampling and provide a path for DMD
to capture non-Markovian dynamics [68]. Optimization-based DMD algorithms [37, 69] can improve
characterization of the DMD system by relaxing data-collection strategies and by incorporating additional
physical constraints or modeling assumptions. Such strategies can be used to increase the fidelity of
DMD-based models in experimental settings or to adapt the framework to one of discrepancy modeling.
Because control is exogenous, feedback can also be used to increase the DMD fidelity [21]. Ultimately, the
goal is to demonstrate experimentally that biDMD provides one path to data-driven and equation-free
model-based feedback controllers for engineering future quantum technologies. Moreover, it provides a
clear connection to Koopman theory for classical system identification and control, illustrating how
nonlinear classical dynamics are linearized via an infinite-dimensional Hilbert space of observables [33—35].
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Appendix A. Vectorization of open quantum dynamics

In quantum dynamics, a time-independent closed quantum system can be described by a Hermitian
operator Hy (the Hamiltonian) acting on a unit vector [¢)(#)) (the wavefunction) in a complex Hilbert space

13


https://github.com/andgoldschmidt/biDMD-for-quantum
https://github.com/andgoldschmidt/biDMD-for-quantum
https://github.com/andgoldschmidt/biDMD-for-quantum

10P Publishing

New J. Phys. 23 (2021) 033035 A Goldschmidt et al

‘H using the Schrodinger equation,

0 i
57 1P(0) = =3 Ho [ (1), [%(0)) = [tho) - (36)

In this paper we set i = 1, choose Hj to have zero trace, and assume that # = CN has finite dimension.
The control of the system can be realized using control functions, ux(t), coupled to time-independent
interaction Hamiltonians, Hy, leading to a bilinear Schrodinger equation,

% [Y(t) = —i (Ho + Ek:uk(t)Hk> [¥(1)) . (37)

More generally, open quantum dynamics involves mixtures of pure quantum states. The statistics of
measurements of this kind of state can be completely described by a density operator, p, that is any element
in the convex set of all non-negative (p > 0) self-adjoint (p' = p) linear maps on H with Tr p = 1. The
pure state density operator is p(t) = [1(t)) (¢»(¢)|. The case of Markovian dynamics of p can be described
by the action of completely-positive trace preserving maps generated by the
Gorini—Kossakowski—Sudarshan—Lindblad (GKSL) equation [49],

N2—1

9 pl0) = Lp(e) = —iH@), p(0) + %; 6 (1D pOD]] + [Dyp(0), D]]) (38)
k=1

where H(?) is a trace-zero Hermitian operator (the system Hamiltonian), {DJ-}JN:2 ;! is an orthonormal set of
complex matrices with trace zero, and C:= (cj) is positive semi-definite. For a closed quantum system
C = 0, and the equation becomes the quantum Liouville equation.

The Lindbladian, £, is sometimes called a super-operator because of its linear action on the operators p
(in the Liouville limit, £ is instead called the Liouville operator). Several ways to vectorize the GKSL
equation exist. We will use the physics language of the Bloch vector (also known as the vector of coherence)
to describe passing to a vector ODE. Using the trace-one constraint of a density matrix, write

1 N2-1
p(t) = N + Z Tr(poj)o; (39)

j=1

. 2 . .
with {aj}jli ;! as a complete and orthonormal basis for traceless Hermitian operators. Take x;:= Tr( po;) so
that (38) becomes

gx(t) = (Lu + Lp)x(t) + ¢ (40)

. . 2
by projection onto the basis {Uj}jlil ! such that

(L = > Te(Hoo)fi (41)
¢
(Lp)jx = _izcmn (fintg (Fuek — ignek) + fut (e + igmex) ) » (42)
{,myn
(C)j = ﬁzcmn fmnj) (43)

where [O'j, Uk] = iZﬁk/ga/g and {O'j, O'k} = %61-;(1] + Z[gjkmg are the structure constants of the basis [7, 50].
Identifying H(t) = Hy + >, ux(t)Hi with Ly = Lo + >, ux(t)L results in a bilinear GKSL equation for the
vectorized density matrix,

%x(t) = (Lo + > ()L + Lo)x(t) +c. (44)
k

Similarly, the bilinear quantum Liouville equation is

%x(t) Lo+ zkjukmLk)x(t). (45)
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Appendix B. Average Hamiltonian theory example

Recall the two-level quantum dynamical system section 3.3.1 with H(t) = wo3 + u(t)o; where {O’j};:l are
the standard Pauli matrices. The corresponding vectorized Liouville equation is attained via the Bloch
representation discussed in appendix A where x; = Tr(p(t)o;) such that

0
ax(t) = L(t)x(t) = 27wLsx(¢t) + 2u(t)Lx(1). (46)
where
0 -1 0 0 0 1 0 0 O
L=(1 0 0], L, = o 0 0], L;y=10 0 -1 (47)
0O 0 O -1 0 0 0 1 0

are the vectorized Pauli matrices. Consider a fixed-frequency drive u(t) = u cos(k2t) + v sin(k§2t). The goal
is to compute the Floquet operator Lg[0]x(nT) = x((n + 1)T), with T = 27 /{2, to second order in (2 using
the Magnus expansion. Take L(F") [#0] to mean that the operator appears in the expansion with a pre-factor
Q". The first few terms in the Magnus expansion are:

© 1 to+T
Ly [t] = ?/ dtL(t)

to

. 1 t+T fn
L0l) = 1 / d / dn(L(t), L(5)]

t+T 2] [}
0] = 5 / d / d, / dts L(t), [L(t2), L(ts)] + (1 5 3). (48)

The control appears with the same multiplicity as its attached operator in each non-vanishing commutator.
Note that:

[L(1), L(12)] = 47 (u(r2) — u(t1))[Ls, L1]
[L(t1), [L(t2), L(13)]] = 87 (u(t3) — u(t2))[Ls, [L3, Ly]]
+ 8mu(ty) (u(ts) — u(t2))[Ly, [Ls, Lt ]]. (49)
As such, the desired example expansion is computed to be:

4mv 1 -
Le[0] = 27Ly + 7-Lo — 1555 (2m(u® + 307)L; + 87%uLs) + O(Q 7). (50)
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