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One of the exciting activities in searching for non-standard effects in particle physics is the
precision study of the Z—-boson decay in e*e™ collisions. Electron-positron collisions form the Z
resonance at center-of-mass energies around 91 GeV. This process was instrumental in the LEP era,
leading to the detailed knowledge of crucial parts of the Standard Model (SM) [1, 2]. Up to 5x 10'2
Z-boson decays are planned to be observed at the Z-boson resonance with the FCC-ee collider [3, 4],
while it would be about one order of magnitude less at the CEPC [5]. These statistics are about six
orders of magnitude larger than at LEP and may lead to very accurate experimental measurements
of the so-called Electro-Weak Pseudo-Observables (EWPOs), if the systematic experimental errors
can be hold appropriately small. In turn, this means that theoretical predictions must also be very
exact, of the order of 3- to 4-loop QCD and EW effects [6]. This level of accuracy and potential
distortions from the SM predictions will put stringent limits on theory scenarios beyond the SM
with New Physics virtual particles and interactions. A substantial step in this direction of accuracy
within the SM was a recent calculation of the most difficult massive bosonic two-loop contributions
to the Z-boson decay [7-9]. In this way, the Standard Model electroweak two-loop corrections are
completed. The focus can be directed now on the next, NNNLO order of loop calculations. Their
contributions will be necessary in order to meet the anticipated experimental accuracies.

Tab. 1 shows the results of higher order contributions to the Z-boson decay partial widths.
Tab. 2 summarizes the estimation of the errors connected with unknown higher order corrections.
For other EWPOs like sin? Qgﬁ., sin? Gfﬁ, branching ratios, and the hadronic cross section at the
Z-resonance, see [8—10]. The total error for I'z in Tab. 2 amounts to 0.4 MeV, which is at the
level of the CEPC accuracy ( 0.5 MeV), while for the FCC-ee the experimental errors are estimated
at the level of 0.1 MeV. That is why further progress in theoretical calculations is needed. In
what follows we discuss recent developments in the numerical calculation of massive multi-loop
Feynman integrals, in order to finally meet the future experimental demands.

There are still no established general procedures for massive complete perturbation theory
calculations of Feynman integrals beyond one loop. For this reason, numerical integration methods

I; [MeV] I, r, Iy r, I Iy
Born 81.142 | 160.096 | 371.141 | 292.445 | 369.562 | 2420.19
O(a) 2273 | 6174 | 9717 | 5799 | 3857 | 60.22
O(aay) 0.288 |  0.458 1.276 1.156 | 2.006 9.11
O(aa?, mal, a’as, @) | 0.038 | 0.059 | 0.191 [ 0.170 | 0.190 1.20
O(N;az) 0.244 0.416 0.698 0.528 0.694 5.13
O(Nya?) 0.120 | 0.185 | 0493 | 0494 | 0.144 3.04
O(a?,, 0.017 | 0.019| 0.059| 0.058| 0.167 0.51

Table 1: Contributions of different perturbative orders to the partial and total Z widths. A fixed value of

My has been used as input, instead of G,. The Ny and N} refer to corrections with one and two closed

fermion loops, respectively, whereas agm denotes contributions without closed fermion loops. Furthermore,

a; and a are scale-dependent strong couplings. Table from [8].
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Observable aa? aal)  dPa a’ Total

Ie - [MeV] | 0.008 0.001 0.010 0.013 | 0.018
I', [MeV] 0.008 0.001 0.008 0.011 | 0.016
Iy, [MeV] 0.025 0.004 0.08 0.07 | 0.11
Iy [MeV] 0.016 0.003 0.06 0.05 | 0.08
I'y [MeV] 0.11 002 0.13 0.06 | 0.18

I'z [MeV] 023 0035 021 0.20 0.4

Table 2: Leading unknown higher-order corrections and their estimated order of magnitude for various
pseudo-observables. The different orders always correspond to missing higher orders beyond the known
approximations in the limit of a large top Yukawa coupling. The last column gives the total theory error
obtained by adding the individual orders in quadrature. Table taken from [8].

are presently the most promising, if not the only, avenues for addressing those challenges. Analytical
techniques are expected to be important in many respects, but numerical integration methods have
advantages when increasing the number of masses and momentum scales. Fortunately, there has
been impressive progress in recent years in this direction [6]. In 2014 the only advanced automatic
numerical two-loop method was sector decomposition (SD). However, the corresponding software
was not sufficiently developed to evaluate the complete set of Feynman integrals for the massive
electroweak bosonic two-loop corrections to the Z-boson decay with the desired high precision
(aiming at eight digits per integral). The task could be completed successfully with a substantial
development of a competing numerical approach, based on Mellin-Barnes (MB) representations of
Feynman integrals [10]. These calculations are challenging due to the numerical role of particle
masses Mz, My, m;, Mg, leading to (i) an enormous number of contributions, ranging from tens to
hundreds of thousands of diagrams (at 3-loops), and (ii) the occurrence of up to four dimensionless
parameters in Minkowskian kinematics (at s = M. %) with intricate threshold and on-shell effects
where contour deformation fails. In tackling more loops or legs, merging both the MB- and SD-
methods in numerical calculations, was the key for solving the complete massive SM two-loop
case. We illustrate recent advances for multi-loop calculations applied to the Z-boson precision
calculations using both methods.

The non-trivial diagrams which we will discuss are gathered in Fig. 1. The MB representation
for the non-planar diagram on the left hand side is four dimensional. In this case, results obtained
for the constant parts of the e-expansion with different methods and programs in the Euclidean
region are, for (p; + p2)? = —-m* = —1:

Analytical [13] :  —0.4966198306057021
MB(Vegas) [14] : —-0.4969417442183914
MB(Cuhre) [14] : —-0.4966198313219404 1)
FIESTA [15] : —0.4966184488196595
SecDec [16] : —-0.4966198313167105
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Figure 1: Left: Non-planar vertex with one massive crossed line. Right: Planar vertex with a finite part
in the € expansion represented by the single 3-dimensional MB integral of Eqn. (3). Figures generated by
PlanarityTest [11, 12]. Both vertices are special cases for which analytical solutions are available.

In the Minkowskian region, with (p; + p2)? = m? = I:

Analytical [13] : —0.778599608979684 — 4.123512593396311 i
MBnumerics [7, 17] : —0.778599608324769 — 4.123512600516016 - i
MB(Cuhre) : —0.778524251263640 — 4.123498264231095 - i

SecDec : big error [2016],-0.77 —i-4.1 [2017],-0.778 —i-4.123 [2019]
pySecDec + rescaling : —0.778598 —i-4.123512 [2020]

2

The SecDec group discussed this integral in [16]. Using the splitting method the reported result is
—0.77—1i-4.1. For pySecDec with quasi-Monte Carlo integration (QMC) [18] and using rescaling for
107 generated points, the accuracy is much better. Such integral is relatively easy for the MB method,
because it includes only one massive propagator. The result for MB (Cuhre) has been obtained with
the MB.m options: MaxPoints 107, AccuracyGoal 8, PrecisionGoal 8. It took about 5 minutes on a
moderate laptop.

Another interesting case is the planar scalar integral in Fig. 1, right.

The MB representation for the constant term of this diagram is three-dimensional:

| 1 7 211 235 I\ 21
m
I[=——=-= / dz / dza / dzz| —| T(-1-z2)TQ2+z)I'(-1 - z212)T'(-22)
(2mi)3 s -5
—l.OO—ﬂ —[00— 5 —ioo—m
37 211 235
I2(1+z12 = 23)0(1 + 23)0(=23)1% (=21 + 23)0 (=212 + 23) /T (=z)T(1 = 22)I(1 = 21 + 23).

3

The diagram has also an analytical solution [19] which makes it ideal for a non-trivial comparison of
different numerical techniques. Numerical results for Eq. 3 are presented in Tab. 3 for s = m? = 1.

Numerical results obtained for this integral have been discussed recently in [20] with various
transformations of variables and various deterministic and Monte Carlo integrators like the CUHRE
routine, VEGAS routine [21, 22], QMC. The QMC quasi-MC or VEGAS Monte Carlo methods surpass
CUHRE for higher dimensional integrals. The QMC library seems to be especially suitable for the
numerical integration of MB integrals in the Minkowskian region. It will be tested in more detail
at the 3-loop level. The new Vegas+ package [23] will be also studied.
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AS | —1.199526183135 +5.567365907880i
MB | —1.199526183168 +5.567365907904i | Cuhre, 107, 1078
MB | —1.204597845834 +5.567518701898i | Vegas, 107, 1073
MB | —1.199516455248 +5.567376681167; | QMC, 10°, 107>
MB | —1.199527580305 +5.567367345229i | QMC, 107, 107°

Table 3: Numerical results for Eq. 3 with s = m? = 1. AS - analytical solution. For details on different MB
integration routines and transformations of the infinite integration region used, see [20]. Table taken from
there, shortened.

In summary, there is substantial progress in the numerical treatment of multi-loop Feynman
integral calculations with MB and SecDec, approaching now the massive 3-loop diagrams. The
techniques presented here can be extended for the computation of massive three-loop electroweak
Feynman integrals needed for Z-peak physics. It is also worth mentioning that the differential
equations method [24, 25] and the quoted IBP reductions are rapidly developing [26, 27]. They
are expected to be very helpful, if not decisive for solving complete sets of integrals, as the third
numerical method in the forthcoming three-loop studies. Based on initial work in this direction we
see no showstoppers for this specific technical task, and even though much additional work will be
needed to assemble them into phenomenological results, this goal also appears within reach in the
foreseeable future.
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