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are discussed in the context of the strong experimental demands of future 4+4− colliders. The recent

completion of two-loop Z-boson results is summarized and a prospect for the 3-loop Standard

Model calculation of the Z-boson decay pseudo-observable is given.
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One of the exciting activities in searching for non-standard effects in particle physics is the

precision study of the /−-boson decay in 4+4− collisions. Electron-positron collisions form the /

resonance at center-of-mass energies around 91 GeV. This process was instrumental in the LEP era,

leading to the detailed knowledge of crucial parts of the Standard Model (SM) [1, 2]. Up to 5×1012

/-boson decays are planned to be observed at the /-boson resonance with the FCC-ee collider [3, 4],

while it would be about one order of magnitude less at the CEPC [5]. These statistics are about six

orders of magnitude larger than at LEP and may lead to very accurate experimental measurements

of the so-called Electro-Weak Pseudo-Observables (EWPOs), if the systematic experimental errors

can be hold appropriately small. In turn, this means that theoretical predictions must also be very

exact, of the order of 3- to 4-loop QCD and EW effects [6]. This level of accuracy and potential

distortions from the SM predictions will put stringent limits on theory scenarios beyond the SM

with New Physics virtual particles and interactions. A substantial step in this direction of accuracy

within the SM was a recent calculation of the most difficult massive bosonic two-loop contributions

to the /-boson decay [7–9]. In this way, the Standard Model electroweak two-loop corrections are

completed. The focus can be directed now on the next, NNNLO order of loop calculations. Their

contributions will be necessary in order to meet the anticipated experimental accuracies.

Tab. 1 shows the results of higher order contributions to the Z-boson decay partial widths.

Tab. 2 summarizes the estimation of the errors connected with unknown higher order corrections.

For other EWPOs like sin2 \ℓ
eff

, sin2 \1
eff

, branching ratios, and the hadronic cross section at the

Z-resonance, see [8–10]. The total error for ΓZ in Tab. 2 amounts to 0.4 MeV, which is at the

level of the CEPC accuracy ( 0.5 MeV), while for the FCC-ee the experimental errors are estimated

at the level of 0.1 MeV. That is why further progress in theoretical calculations is needed. In

what follows we discuss recent developments in the numerical calculation of massive multi-loop

Feynman integrals, in order to finally meet the future experimental demands.

There are still no established general procedures for massive complete perturbation theory

calculations of Feynman integrals beyond one loop. For this reason, numerical integration methods

Γ8 [MeV] Γ4 Γa Γ3 ΓD Γ1 ΓZ

Born 81.142 160.096 371.141 292.445 369.562 2420.19

O(U) 2.273 6.174 9.717 5.799 3.857 60.22

O(UUs) 0.288 0.458 1.276 1.156 2.006 9.11

O(UtU
2
s , UtU

3
s , U

2
t Us, U

3
t ) 0.038 0.059 0.191 0.170 0.190 1.20

O(#2
5
U2) 0.244 0.416 0.698 0.528 0.694 5.13

O(# 5 U
2) 0.120 0.185 0.493 0.494 0.144 3.04

O(U2
bos

) 0.017 0.019 0.059 0.058 0.167 0.51

Table 1: Contributions of different perturbative orders to the partial and total / widths. A fixed value of

"W has been used as input, instead of �`. The # 5 and #2
5

refer to corrections with one and two closed

fermion loops, respectively, whereas U2
bos

denotes contributions without closed fermion loops. Furthermore,

Ut and Us are scale-dependent strong couplings. Table from [8].
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Observable UU2
s UU3

s U2Us U3 Total

Γ4,`,g [MeV] 0.008 0.001 0.010 0.013 0.018

Γa [MeV] 0.008 0.001 0.008 0.011 0.016

ΓD,2 [MeV] 0.025 0.004 0.08 0.07 0.11

Γ3,B [MeV] 0.016 0.003 0.06 0.05 0.08

Γ1 [MeV] 0.11 0.02 0.13 0.06 0.18

ΓZ [MeV] 0.23 0.035 0.21 0.20 0.4

Table 2: Leading unknown higher-order corrections and their estimated order of magnitude for various

pseudo-observables. The different orders always correspond to missing higher orders beyond the known

approximations in the limit of a large top Yukawa coupling. The last column gives the total theory error

obtained by adding the individual orders in quadrature. Table taken from [8].

are presently the most promising, if not the only, avenues for addressing those challenges. Analytical

techniques are expected to be important in many respects, but numerical integration methods have

advantages when increasing the number of masses and momentum scales. Fortunately, there has

been impressive progress in recent years in this direction [6]. In 2014 the only advanced automatic

numerical two-loop method was sector decomposition (SD). However, the corresponding software

was not sufficiently developed to evaluate the complete set of Feynman integrals for the massive

electroweak bosonic two-loop corrections to the Z-boson decay with the desired high precision

(aiming at eight digits per integral). The task could be completed successfully with a substantial

development of a competing numerical approach, based on Mellin-Barnes (MB) representations of

Feynman integrals [10]. These calculations are challenging due to the numerical role of particle

masses "/ , ", , <C , "� , leading to (i) an enormous number of contributions, ranging from tens to

hundreds of thousands of diagrams (at 3-loops), and (ii) the occurrence of up to four dimensionless

parameters in Minkowskian kinematics (at B = "2
/

) with intricate threshold and on-shell effects

where contour deformation fails. In tackling more loops or legs, merging both the MB- and SD-

methods in numerical calculations, was the key for solving the complete massive SM two-loop

case. We illustrate recent advances for multi-loop calculations applied to the Z-boson precision

calculations using both methods.

The non-trivial diagrams which we will discuss are gathered in Fig. 1. The MB representation

for the non-planar diagram on the left hand side is four dimensional. In this case, results obtained

for the constant parts of the n-expansion with different methods and programs in the Euclidean

region are, for (?1 + ?2)
2
= −<2

= −1:

Analytical [13] : −0.4966198306057021

MB(Vegas) [14] : −0.4969417442183914

MB(Cuhre) [14] : −0.4966198313219404

FIESTA [15] : −0.4966184488196595

SecDec [16] : −0.4966198313167105

(1)
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Figure 1: Left: Non-planar vertex with one massive crossed line. Right: Planar vertex with a finite part

in the n expansion represented by the single 3-dimensional MB integral of Eqn. (3). Figures generated by

PlanarityTest [11, 12]. Both vertices are special cases for which analytical solutions are available.

In the Minkowskian region, with (?1 + ?2)
2
= <2

= 1:

Analytical [13] : −0.778599608979684 − 4.123512593396311 · 8

MBnumerics [7, 17] : −0.778599608324769 − 4.123512600516016 · 8

MB(Cuhre) : −0.778524251263640 − 4.123498264231095 · 8

SecDec : big error [2016],−0.77 − i · 4.1 [2017],−0.778 − i · 4.123 [2019]

pySecDec + rescaling : −0.778598 − 8 · 4.123512 [2020]

(2)

The SecDec group discussed this integral in [16]. Using the splitting method the reported result is

−0.77− 8 · 4.1. For pySecDec with quasi-Monte Carlo integration (QMC) [18] and using rescaling for

107 generated points, the accuracy is much better. Such integral is relatively easy for the MBmethod,

because it includes only one massive propagator. The result for MB(Cuhre) has been obtained with

the MB.m options: MaxPoints 107, AccuracyGoal 8, PrecisionGoal 8. It took about 5 minutes on a

moderate laptop.

Another interesting case is the planar scalar integral in Fig. 1, right.

The MB representation for the constant term of this diagram is three-dimensional:

� =
1

(2c8)3

1

B2

8∞− 47
37

∫

−8∞− 47
37

3I1

8∞− 44
211

∫

−8∞− 44
211

3I2

8∞− 176
235

∫

−8∞− 176
235

3I3

(

<2

−B

) I1

Γ(−1 − I1)Γ(2 + I1)Γ(−1 − I12)Γ(−I2)

Γ
2(1 + I12 − I3)Γ(1 + I3)Γ(−I3)Γ

2(−I1 + I3)Γ(−I12 + I3)/Γ(−I1)Γ(1 − I2)Γ(1 − I1 + I3).

(3)

The diagram has also an analytical solution [19] which makes it ideal for a non-trivial comparison of

different numerical techniques. Numerical results for Eq. 3 are presented in Tab. 3 for B = <2
= 1.

Numerical results obtained for this integral have been discussed recently in [20] with various

transformations of variables and various deterministic and Monte Carlo integrators like the CUHRE

routine, VEGAS routine [21, 22], QMC. The QMC quasi-MC or VEGAS Monte Carlo methods surpass

CUHRE for higher dimensional integrals. The QMC library seems to be especially suitable for the

numerical integration of MB integrals in the Minkowskian region. It will be tested in more detail

at the 3-loop level. The new Vegas+ package [23] will be also studied.
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AS −1.199526183135 +5.5673659078808

MB −1.199526183168 +5.5673659079048 Cuhre, 107, 10−8

MB −1.204597845834 +5.5675187018988 Vegas, 107, 10−3

MB −1.199516455248 +5.5673766811678 QMC, 106, 10−5

MB −1.199527580305 +5.5673673452298 QMC, 107, 10−6

Table 3: Numerical results for Eq. 3 with B = <2
= 1. AS - analytical solution. For details on different MB

integration routines and transformations of the infinite integration region used, see [20]. Table taken from

there, shortened.

In summary, there is substantial progress in the numerical treatment of multi-loop Feynman

integral calculations with MB and SecDec, approaching now the massive 3-loop diagrams. The

techniques presented here can be extended for the computation of massive three-loop electroweak

Feynman integrals needed for Z-peak physics. It is also worth mentioning that the differential

equations method [24, 25] and the quoted IBP reductions are rapidly developing [26, 27]. They

are expected to be very helpful, if not decisive for solving complete sets of integrals, as the third

numerical method in the forthcoming three-loop studies. Based on initial work in this direction we

see no showstoppers for this specific technical task, and even though much additional work will be

needed to assemble them into phenomenological results, this goal also appears within reach in the

foreseeable future.
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