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HOW MANY OBSERVATIONS

Abstract

Observations are widely used in research and evaluation to characterize teaching and learning
activities. Because conducting observations is typically resource intensive, it is important that
inferences from observation data are made confidently. While attention focuses on interrater
reliability, the reliability of a single-class measure over the course of a semester receives less
attention. We examined the use and limitations of observation for evaluating teaching practices,
and how many observations are needed during a typical course to make confident inferences
about teaching practices. We conducted two studies based in generalizability theory to calculate
reliabilities given class-to-class variation in teaching over a semester. Eleven observations of
class periods over the length of a semester were needed to achieve a reliable measure, many
more than the one to four class periods typically observed in the literature. Findings suggest
practitioners may need to devote more resources than anticipated to achieve reliable measures

and comparisons.

Keywords: observation, generalizability studies, reliability, teaching practice, social

science research methods, higher education
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When Seeing is Believing: Generalizability and Decision Studies for Observational Data in

Evaluation and Research on Teaching

Direct observation is a widespread practice in the evaluation community, especially in the
evaluation of teachers (Wragg, 2013). Evaluators use observations across numerous settings,
including medical education where direct observation is used to assess diagnostic, basic care, and
surgical skills (Iobst et al., 2010; Naecem, 2012). Others use observations in a diverse range of
non-educational areas such as evaluating the effectiveness of assistive technology for dementia
patients (Nolan et al., 2002), the quality of parent-child interactions (Gardner, 2000), and
consumer behavior (Carins, 2016). Teachers use direct observations to assess student skills,
performance and understanding as an alternative form of testing (Mertler, 2016). In K-12
education, direct observation is used in teacher evaluation as principals and peer teachers visit
classrooms to assess teachers and college faculty (Darling-Hammond et al., 2012). In many
cases, assessments drawn from observations have consequences for employment (Cohen &
Goldhaber, 2016). While observations are used as a component of a wider system that employs
student outcomes and other measures, their use in practice is often problematic due to the lack of

reliability in these measures (Marcoulides, 1989).

In higher education, structured classroom observations are also an increasingly important
tool for evaluation of teaching in higher education, the focus of our study (Smith et al., 2013).
This is common in the evaluation of science, technology, engineering, and mathematics (STEM)
teaching (American Association for the Advancement of Science [AAAS], 2013), and
professional development for college faculty (Ebert-May et al., 2011). Observational protocols
are used to describe teaching and learning activities in classrooms, especially in situations where

instructors implement new teaching methods (Smith et al., 2013; Laursen et al., 2014).
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Observations are also used extensively in the evaluation of professional development programs

and interventions in teaching in higher education (Stains et al., 2015; Pilburn et al., 2000).

Unlike surveys, observations have the advantage of not depending upon self-reports of
behavior; instead observers directly witness what teachers and students do in the classroom
(Stains et al., 2018; Ebert-May et al., 2011). While observations provide a way around
dependence on self-report, they also have problems of their own. Most are time and resource
intensive and are prone to their own kind of observer subjectivity, especially when it comes to
rater agreement (Waxman & Padron, 2004). Additionally, the representativeness of observations
can be in doubt when claims are made about teaching style from low numbers of observations, as

is often the case in research and teacher evaluation (Cohen & Goldhaber, 2016; Hill et al., 2012).

As these examples show, evaluators, researchers, and professional development experts
all use observation to describe and assess teaching, and thus need accurate and reliable
descriptions of what instructors do in college classrooms (Cohen & Goldhaber, 2016; West, et
al., 2013). Observations are used in evaluation and research studies to assess interventions such
as teacher-scientist collaboration (Campbell et al., 2012), co-teaching (Beach et al., 2007), and
faculty development workshops (Adamson et al., 2003; Ebert-May et al., 2011; Stains et al.,
2015). Observations also play a part in understanding the relationship between faculty
demographics and teaching style (Budd et al., 2013) and the efficacy of pedagogies on student
engagement (Lane & Harris, 2015). Others use observation scores as independent variables for
comparing teaching methods with their effects on student outcomes (Bowling et al., 2008; Budd,
et al., 2010). In all of these efforts, direct observation studies make descriptions or comparisons
of teaching practice, and often make evaluative judgments about the efficacy of interventions

based on observations.
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The impetus for developing observational protocols for STEM (and other classrooms
comes in part from educational reform efforts meant to improve teaching in classrooms using
research-based instructional methods (Blanchard et al., 2010; Michael, 2006). Recent reports
(Freeman et al., 2014; Brewer & Smith, 2011) present multiple studies supporting the efficacy of
reform-based teaching methods and advocate their use in undergraduate STEM classes. Most of
these methods emphasize less lecture and more student participation using broadly defined
approaches such as active learning (Chi & Wiley, 2014), inquiry-based learning (Laursen et al.,
2014), active-inquiry teaching (Hake, 1998), and interactive engagement (Turpen & Finkelstein,
2009). More research is needed about these emerging practices, and observations are one tool for

conducting rigorous and meaningful studies.

Moreover, evaluators and researchers are increasingly using observations to make
consequential claims: Did teachers change their practices in response to professional
development? Do instructors accurately report their teaching practices on surveys when
compared to observations of actual teaching? Are individual teachers incorporating new
instructional methods in their practices? Making claims about a teacher’s practice, especially
over a semester or term, depends upon using measures from observations in an appropriate and
valid manner. However, in many cases claims based on observational data are made without

sufficient evidence (Hill et al., 2012).

This study examines the use and limitations of observational protocols for evaluating
teaching practices in undergraduate courses. We pay particular attention to how many
observations are needed during a typical course to make confident inferences about teaching
practices. We then define statistical criteria for characterizing measurement error for entire

courses drawn from a set of observed classes and test these criteria against an empirical data set
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from college mathematics courses. We also discuss the implications of our findings for the

design of studies that seek to use observations to draw conclusions about teaching and learning.

Review of Observation Protocols and Practices

In this section we review the characteristics of observation protocols and their use in
practice in education research and evaluation, emphasizing considerations that affect the

confident use of observations to make inferences about teachers’ practice.

In the literature, several terms are sometimes used interchangeably or have ambiguous
meaning; here the differences are important. We use class to refer to an individual meeting or
class session, and course to refer to the set of all class sessions in a course. A course may consist
of 15-60 classes, depending on the length of the term and the number and duration of weekly
class meetings. Some studies classify instructors by their teaching profile or teaching style,

which is a broad concept referring to patterns of practice across multiple courses.

Measurement Characteristics of Observational Protocols

Observations have long been used in anthropology and sociology to observe cultural
interactions, religious rituals, and customs, and events; with observations on a continuum from
full participant observation to the “fly-on-the-wall” observer who has no interaction with
participants (Tashakkori & Teddy, 2010). Observers in the ethnographic tradition capture
descriptions in field notes and devote extensive time to observations and their analysis; typically
these researchers are not using their data to make quantitative comparisons. In educational

research, observations commonly straddle qualitative and quantitative methods (Wragg, 2013).

However, the products of structured teacher observations are decidedly quantitative

(Pianta & Hamre, 2009). These data are subject to the same measurement standards around
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sampling, inference, and reliability that are inherent in any use of numerical data used to describe
or compare (Cohen & Goldhaber, 2016). An observation protocol specifies the procedure for
gathering data: what is to be recorded, when, and how, in order to standardize data gathering as
much as feasible. Existing classroom observation protocols are each designed to fit different
needs for research, professional development, or evaluation, but can be classified according to
common characteristics; current protocols exemplify these characteristics in many different

combinations.

One fundamental design variation in observational instruments is between holistic and
segmented observations (Lund et al., 2015). Holistic protocols ask observers to rate teachers or
teaching at the end of a class session by answering a series of survey-like questions. In one of the
earliest holistic protocols, the Teaching Behavior Inventory (TBI) (Murray, 1991), the observer
is asked to make ratings at the end of class noting the presence or absence of specific teaching
qualities such as “clarity” or “enthusiasm.” The Reformed Teaching Observation Protocol
(RTOP) (Pilburn et al., 2000; Sawada et al., 2002) also uses a holistic protocol where observers
make judgments about the quality of the teaching using 25 Likert-like scale items that rate lesson
design and classroom culture. The RTOP is now widely used and provides a scale that classifies

teachers as more or less student-centered.

Segmented observational protocols are more granular and divide a class into timed
segments with the observer observing teachers and students and recording behaviors within short
intervals (e.g., two minutes). The Teaching Dimensions Observation Protocol (TDOP) (Hora &
Ferrare, 2013) is a popular segmented instrument and the model for similar protocols. Other
segmented protocols include the Flanders Interaction Analysis (FIA), the VaNTH Observation

System (VOS), and the Classroom Observation Rubric; each designed for different classroom
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contexts and focusing on different activities and behaviors (AAAS, 2013). Segmented protocols
provide copious numerical data that lend themselves to sophisticated quantitative analytic

techniques such as cluster and latent class analyses (Lund et al., 2015; Halpin & Kieffer, 2015).

Protocols differ also on how their items are designed (Lund et al., 2015). Some
observational items ask for evaluative judgments of the quality of teaching, while others are
more descriptive using simple observations of behaviors. Quality ratings are more subjective and
call on observers’ expert knowledge about pedagogy to make judgments of a teacher’s efficacy,
while descriptive items simply mark the presence or absence of practices. Yet even descriptive
protocols seek to reduce subjectivity in coding by providing codebooks that differentiate similar
codes and standardize the use of individual codes across different raters (Hora et al., 2013).
Protocols can measure the same things in different ways based on whether they are segmented or
holistic, evaluative or descriptive. For example, both the TDOP and the RTOP have been used to
assess active learning (Sawada et al., 2002; Hora & Ferrare, 2014). The TDOP uses a segmented
and descriptive approach, asking observers to mark the presence or absence of specific activities
in 2-minute intervals throughout the class, including things such as “small group work” or “desk
work.” The RTOP uses a holistic and evaluative approach. Observers take structured notes
throughout the class, then, at the end of the class, rate the class on items such as “There was a
high proportion of student talk and a significant amount of it occurred between and among
students” or “Active participation of students was encouraged and valued.” Observers are told to
use their judgment to assign a value from 0, (never occurred in class) to 4, (very descriptive of

the lesson).

Items also differ in the amount of inference observers need to make about non-observable

teacher or student phenomena such as cognition, motivation, or engagement. Some items from
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the TDOP, for example, ask the observer to infer students’ level of interest or engagement from
their general affect or other behaviors (Hora et al., 2013). Research has shown that independent
observers experience more difficulty agreeing on ratings for both quality and inferential items
than for descriptions of behavior, although observers also vary substantially in their agreement
across different behaviors (Cohen & Goldhaber, 2016; West et al., 2013; Amrein-Beardsley &

Popp, 2012).
Obstacles to Confident Use of Observations in Research

Practitioners who use observational instruments for evaluation, research, or professional
development confront several obstacles in their operational use. One oft-discussed obstacle is
establishing interrater reliability, not only as a characteristic of the instrument itself, but for the
instrument as used for a specific purpose. In fact, many discussions of measurement rigor in
observations focus exclusively on reducing this error (Cash et al., 2012). Instrument developers
publish the reliability of their measures to provide information about interrater agreement (Hora
et al., 2013; Sawada et al., 2002). More sophisticated analyses of reliability use generalizability
theory (Webb et al., 2006), which take into account different sources of variability that affect
agreement and assesses how agreement varies across different item types, settings, teachers, and

occasions.

While the confident use of a protocol does depend upon the characteristics of that
instrument, the actual interrater reliability of raters in practice depends upon the amount and type
of training given to raters, and on ongoing calibration of raters over time (Cash et al., 2012). In
many settings, raters are trained to meet a standard of agreement, and to meet an expert standard
of accurate observation (Gittomer et al., 2014) by practicing on video-recorded classes or in

classrooms until adequate agreement is attained. For instance, when Hora et al. (2013)
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established rater agreement for the TDOP, “the researchers participated in an extensive three-day
training process” (p. 6), using the protocol with video-recorded classes and discussing the
meaning of specific codes before rating classes independently. The developers of the Real-time
Instructor Observing Tool (RIOT) (West et al., 2009) established agreement with two researchers
who met three times, then observed in the same classroom each week. The Classroom
Observation Protocol for Undergraduate STEM (COPUS) (Smith et al., 2011) was designed
purposefully to reduce the training raters needed: participants met for 1.5 hours of video training
and discussion, then visited pilot classrooms to practice. For all these observational studies,
establishing interrater reliability for a specific context was an important first step before actual

measurement could be conducted.

The practical logistics of observational studies pose additional obstacles, so
implementing observations is logistically daunting when compared to surveys or test data (Hill,
et al., 2012). Conducting a single classroom observation requires significant planning, time,
resources, and coordination. Instructors and their institutions may limit access to classrooms or
require cumbersome consent procedures. Then, observers must physically get to the site, observe
for an hour or more, and then collate data from multiple observers and sites (Cash et al., 2012).
Video-recording can allow for more observations and less time traveling, but raters must still
watch and code the videos (Lee et al., 2017). A fixed video camera may also miss student
activities and more subtle interactions taking place in a classroom. Overall, observation is one of
the least efficient of all social science data collection methods. For these reasons, it is important
to know whether and how observation data can be used confidently to make comparisons in

research, professional development, and evaluation.
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Reliability of Observations Over Time

Interrater reliability and logistical considerations are commonly recognized as significant
challenges for the confident use of observational protocols. Less attention is given to the
reliability of observations over time, sometimes called “occasions” in reliability studies. If
instructors are observed only once or twice, they may be tempted to put their best foot forward
for the observer, leading to “dog and pony” or Hawthorne effects (Weisberg et al., 2009).
Instructors may not act naturally when they are being watched (Hill et al., 2012; Cook et al.,
1979), or the observer may attend on a day with an unusual class activity, such as a guest
presenter, demonstration, or an assessment. Some activities critical to evaluating teaching style
and quality, such as group work or interactive discussion, may vary in frequency from class to
class (Grossman, et al., 2015). For these reasons, observing only a handful of class sessions may
not give a true representation of the course or the instructor’s teaching style. Characterizing the
average frequency of specific activities and variation from class to class may necessitate multiple

observations.

When observations are not representative, and no inference is attempted about an
individual’s teaching over the course of a term, the data are suitable for certain purposes only.
Low numbers of observations can be used if the observations are not linked to consequential
decisions, or if they are used to classify or cluster teaching styles seen in a larger population of
teachers (Hora & Ferrare, 2014). Stains et al. (2018) provides a good example of how different
types of teaching can be categorized and profiled with relatively few observations per teacher.
This study used between one and four observations in over 2000 courses and showed the

continuing predominance of didactic teaching across STEM disciplines.
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Less frequent observations can be also valuable for formative evaluation and professional
development when the data are fed back to instructors to improve teaching (Amrein-Beardsley &
Popp, 2012). Kane et al. (2012) argued that low numbers of observations can be used effectively
for low-stakes feedback that is meant to improve practice, and that different evidentiary

standards are appropriate given the differing consequences of decisions.

However, using small numbers of observations is less defensible when observations are
used to make evaluation or research claims, inferences and comparisons, or to make decisions
based on teachers’ classroom performance about retention, compensation, or promotion (Hill et
al., 2012; Van der Lans et al., 2016). Yet very low numbers of observations seem to be the norm
for many studies. Ebert-May et al. (2011) compared college teachers’ self-report of their
teaching methods to their self-reported activities from surveys using two observations per
semester, as did Lewin et al. (2016) in a similar study. West et al. (2013) used two observations
to make conclusions about how graduate students implemented reform-based curriculum over
multiple sections of the same class. Smith et al. (2014) observed two classes over a term to
characterize teacher and student behavior in large and small classrooms, as did Sawada et al.
(2002), who evaluated a program for encouraging the adoption of new teaching methods.
Auerbach & Schussler (2016) observed classes once per month during a semester (4-5 times) to
compare instructors using alternative teaching methods, and Nadelson et al. (2013) used one
observation per semester to make a pre/post comparison about the frequency of teaching
practices. Stains et al. (2015) sampled one week of a college class for their study of the impacts

of professional development on teaching practices.

Low numbers of observations are the norm even for high-stakes decisions about teacher

retention and promotion, such as those required by recent accountability efforts in K-12
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education. School principals may be required to make just a handful of observations, or only one
(Hill et al., 2012). Cohen & Goldhaber (2016) report that the average number of class
observations for non-tenured K-12 teachers was 3.4 over a school year, with large variations
among schools in different states. While other researchers (Pianta & Harmer, 2009) have called
for more observations, with some exceptions (Darling-Hammond et al., 2012), few researchers,

states, or colleges have consistently implemented this practice.

Generalizability Studies

This review of literature shows that the question of how many observations are needed to
confidently characterize teaching is both open and important. This issue is usually addressed
through generalizability studies (G-studies) (Webb et al., 2006; Brennan, 1992; Marcoulides,
1989), which quantify the reliability of a measure (in this case generalizability) over multiple
facets such as raters, teachers, or items. As noted above, many observational studies examine
measurement error for interrater agreement, and this is often treated as a feature of the protocol
that should be checked when using the protocol in a new study. Some studies also consider the
reliability of observations over multiple occasions; essentially asking how many observations are
needed for a reliable measure (Hill et al., 2012). However, few if any science education
researchers have applied these methods to evaluation and research on teaching and professional

development in higher education.

As stated, observations are an almost universal method of teacher evaluations (Darling-
Hammond, 2015). Researchers using G-studies in K-12 contexts have found that teachers vary
what they do in classrooms across observations, with the duration and quality of specific
teaching activities changing from class-to-class. In all these studies, reliability is based on

generalizability coefficients. Hill et al. (2012) found that even with four raters rating four
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lessons, the observations did not meet their high evidentiary standard of 90% reliability for
summative evaluation decisions. Variation in class lessons accounted for up to 39% of total
variability for some measures. Adequate reliabilities for four lessons were only achieved when
multiple raters were used, in most cases not a practical condition for actual classroom evaluation.
In a similar study of classroom teachers, Newton (2010) found that 17% of total variability was
due to class-to-class variability; adequate reliability could only be reached with 4 raters and 6
visits to classrooms. Van der Lans et al. (2016), studied primary and secondary teachers in the
Netherlands, and reached a reliability standard of .90 with ten classroom observations of lessons
with one observer. The authors admit that this is (at best) impractical in public school settings

and would take four years to complete using their current observational schedule.

Other classroom studies have produced similar results. In a comprehensive review of
teacher evaluation for the Gates Foundation conducted with over 1000 teachers in grades 4-8,
Kane et al. (2012) found that four visits to classrooms only produced a reliability of .65, and that
adequate reliability could only be achieved with multiple raters. In other teacher accountability
studies (Halpin & Kieffer, 2015), observations of classes taken at different occasions likewise
varied substantially; these researchers recommended eight or more observations of teachers to
create reliable teaching profiles. Mashburn et al. (2013) looked at the quality of teacher-student
interactions in 5" and 6" grade and saw that these interactions not only varied between days, but
also at different times within days with 17% to 22% occasion variance depending upon which
observational measure was used. With one rater, reliabilities remained in the .70 range with four
classroom visits. In a G-study of high school history teachers, Huijgen et al. (2017) had much
lower lesson variability with 2% variation. In their study, adequate reliabilities could be reached

with only four observations.
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G-studies have also been conducted in other areas such as psychology and child
development. In an observational study of infant behaviors, Lei et al. (2007) achieved adequate
reliability with 10 observations and two raters. These authors did not report variance
percentages, but variance components for occasions were over ten times larger than those for
observers. Hintze et al. (2000) used ten observations of reading fluency and saw 8% of total

variability due to observations.

Most of the G-studies cited above are found in K-12 contexts and are thus oriented
toward the practical realities of evaluating teachers in public schools. Due to resource
limitations, in many cases it is impossible to visit any given classroom more than a few times per
year (Huijgen et al., 2017). Having more than one observer visit a classroom is another way to
improve reliability but is also difficult to implement. In some cases, video can be substituted for
an in-person visit making multiple raters more feasible, but still requires equipment and logistical
work to record class sessions (Lee et al., 2017). For research and evaluation purposes in higher
education, it may be easier to make more frequent visits than is possible in K-12 teacher
evaluation (Smith et al., 2014). However, it is important to know how many visits are necessary
for a reliable measure, given the still limited resources available for evaluation and research on

teaching, especially in higher educational contexts.
Research Questions

This study was part of a larger effort carried out to compare classroom observations of
teaching with instructor self-characterizations of their teaching on a survey. We sought to
characterize and quantify the extent of particular classroom activities, such as lecture and group

work, in a sample of college mathematics classes. In order to confidently make course-level
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estimates of teaching from class observations, we sought to answer the following research

questions:

1. How did rater agreement and bias differ for different activity codes? How much rater
error was present when codes were combined?

2. How many observations are needed to make a reliable measure over a semester?

The study occurred in two stages. First, we wanted to know if our raters had been trained to a
standard high enough so that evaluation could be conducted with one rater. At the same time, we
also wanted to learn if rater agreement varied substantially given which activity code or teaching
behavior was observed. The primary emphasis of our study (research question two) was to
examine class-to-class variability with a generalizability study. We wanted to know how many
observations were needed in our data to provide a reliable estimate of instructors’ teaching over a

semester.

Research Methods

Instruments

We gathered data for multiple math instructors involved in a validity study comparing
teacher survey responses to observed teaching. Our observational protocol is part of a broader
study matching survey responses to observational data. After reviewing various observation
protocols, we started with the COPUS (Smith et al., 2013), which draws heavily from the TDOP
protocol (Hora et al., 2013). We modified these protocols to reflect teaching practices common
in undergraduate mathematics classrooms, but kept the TDOP’s segmented, descriptive
approach. The resulting protocol is the Toolkit for Assessing Mathematics Instruction (TAMI-

OP) (Hayward et al., 2018). At two-minute intervals during the class, observers coded for the
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presence (yes/no) of 11 student behaviors and 9 instructor behaviors. We called these categories
activity codes or more generally, observation items. In addition, observers counted the
frequencies of three types of student questions and answers, and three types of instructor
questions and answers. We finally decided upon eight activity codes in the analysis for the rater
study, and ten codes for the occasions study; the remaining codes were absent or seen very
infrequently in the data. We were able to add items in the occasions study by separating types of
questions (informational and reasoning) asked by teachers and answered by students, but needed
to combine question type in the rater study due to the smaller amount of data available for this
study. Observers also completed 12 information questions that identified and described the class
being observed, such as the date, the class name, and the day of the week. Table 1 lists the

activity codes and their description for our study.
Samples and Research Design

Our wider sample included 177 in-person class observations from 16 courses and 15
teachers. This included 4789 two-minute observations, or nearly 160 hours of observations.
Observations were carried out over two terms at three public universities. Courses included
College Algebra, Calculus, Geometry, Statistics, and Advanced Mathematical Modeling. All
courses were on semester schedules. The work here reflects two phases of the wider study. In our
rater study, we used the observational protocol with two raters to establish interrater reliability.
Then, in the occasions study, one rater observed teachers to gather data to learn how many

observations were needed for a reliable measure.

For our generalizability studies, we randomly sampled within the wider data set to create
two balanced datasets. The first dataset (rater study) included 2 raters (r), 4 teachers (t), 8 items

(I) and 4 classes nested within each teacher’s course (c:t) with 25 two-minute observations
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within each class (d). The second data set (the occasions study) examined teachers (13), classes

(9), items (10), and observations (23). Table 2 presents our G-study design.
Generalizability and Decision Studies

Generalizability theory is a complex method of determining the reliability of measures
and the source of variability in a measure (Brennen, 1992; Marcoulides, 1989). Similar to
Analysis of Variance (ANOVA), G-studies calculate variance components, or the amount of
variance attributable to different sources. G-studies have specific nomenclature and notation that
is used in our study. The elements of generalizability and decision studies are described below

with our methods.
Facets

Similar to factors in ANOVA, facets are the main sources of variability in a score or
summative observation. In our study, we used facets for raters, teachers, and class sessions. The
objects of measurement are the actual two-minute observations coded 0 and 1; these are denoted

“d” for data in our analyses, although technically they are not a facet.
True and Error Score Variance

Some sources of variance (such as teachers) are considered “true” variance, with
naturally occurring differences between teachers and items. In contrast, “error” variance is
considered spurious or “noise”, such as the differences in judgments between two independent
raters scoring the same test. In our study, rater variation is considered error because raters may
disagree if an activity is present or not during a two-minute period, and one rater may tend to see
the activity during a class consistently more than another rater (sometimes called rater bias). We

also considered class-to-class variation as error in our analysis. While nominally class-to-class
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variation is to be expected, here it is considered error given that we are attempting to generalize
what we see in a few class sessions to a whole course term. As noted, this is a common practice
in other generalizability studies that examine the number of occasions classes have been
observed (Hill et al., 2012; Briggs & Alzen, 2019). Some researchers also call these
“differentiation” and “instrumentation” sources of variance corresponding to true and error

variance (Cardinet et al., 2011).

Fixed and Random Variables

Variables used in G-studies can be fixed, random, or finite random depending upon the
“universe of generalization” posited by a researcher. Fixed variables have a finite number of
levels such as gender, race/ethnicity, or grade level. The elements of a random variable are (in
theory) interchangeable and the observed units sampled are meant to generalize to an infinite
universe of similar units. Raters and teachers were considered random in our study. Finite
random variables have a universe of a known size. In our case, we knew that semesters have 45
class sessions, so we considered classes sampled from this universe as a finite random variable.
We considered activity codes or items as fixed variables given that the observations did not
obviously come from a wider generalizable universe of similar activities, and the activities and
behaviors in any given class are finite in number. In the notation, random and random finite

variables use lower case letters and fixed variables are capitalized.

Crossed and Nested Variables

As in ANOVA, facets can be crossed with each other or nested. For instance, for crossed
variables, all levels of one facet are seen in another variable. In our study, all teachers (t) in our
sample are observed for each activity code (I), signified by the notation tl, “teachers crossed with

items.” The number of crossed terms can be numerous with three- and four-facet combinations
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(e.g. rlt). Nested variables are contained within the levels of other variables. In our study, class
sessions (¢) are nested within teachers (t), written c:t, or “classes nested within teachers.” This

means that each teacher instructs only their own students in multiple classes during a semester.
Reliability Coefficient

The reliability coefficient summarizes (on a scale of 0 to 1) the proportion of true score

variation to total variation.
We use coefficient G (G), found by the formula:
G =1—(c%/(c% + c%)

where o is error variability (in our case all error due to (and interacting with) raters and class

sessions and residual error, and 6% is true score variability from teachers and items:
2 __ 2 2 2 2 2
G“¢= O residual T O rater T O c:t T O rater x class:teacher T O rater x item
2 _ 2 2 2
Ot = O teacher T O item T O item x teacher

The G-coefficient is derived from variance components for each facet and facet interaction given
the empirical units in each facet. This means we report the G-coefficient for the G-study as

performed, in our case with 2 raters or 9 class observations.
Decision Studies

Decision, or D-studies are extrapolations of empirical results adjusting for differing
numbers of raters or class sessions. D-studies are possible given the mathematical structure of G,
which segments each source of variance and then divides this variance by the number of units
used to compute the variance. Extrapolations are made by substituting the existing numbers for

the empirical estimate with an extrapolated value in the denominator of the formula. We made
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estimates of reliability for one to four raters, and two to 14 class sessions to learn how many
raters or classes are needed to achieve a reliable measure. One aspect of D-studies that can be
counterintuitive is the concept of “reliability of one rater.” In practice it is impossible to gauge
agreement or rater bias with one observer, so the estimate of one rater’s reliability is necessarily
a purely mathematical concept. Also, in research studies like ours with one rater visiting multiple
classrooms, the extent of the rater’s bias in practice is unknowable without sending different

raters to the same classrooms. The elements of our G-study are listed in Table 3.
Other Methodological Considerations

The standard of reliability we used is a G equal to or above .80. This is more of a rule of
thumb than a hard-and-fast standard, but is common in many research studies gauging rater
reliability, reliability of survey composite variables, and tests involving rater agreement,
especially in group versus individual contexts (Kottner et al., 2011). As mentioned above (Van
der Lans et al., 2016), some researchers use a higher standard of .90 for summative studies,

especially in high stakes contexts where consequential decisions are made about individuals.

All analyses were conducted in EduG 6.0 (Cardinet et al., 2011), a software package

designed for conducting G- and D- studies.
Results

We examined two models. The rater study examined only rater variability across activity
codes and teachers depending upon what is observed. The occasions study used all available data
to examine variability due to class-to-class variation. Results of both G-studies (the reliability of
the empirical data), and D-studies, extrapolations of reliability for different numbers of units for

each facet are presented.
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Rater Study

The first G-study found reliabilities for the rater by teacher design for each activity code.
We wanted to learn how reliability varied by each activity code given that the ability for raters to
agree varies substantially given what is observed. The D-study examined how reliability changed
for one to four raters for each individual activity code. Figures 1 and 2 show that rater reliability
increased substantially for all items from one to two raters, then leveled off with three, four and
five raters. All eight activity codes meet the G = .80 standard for two raters; the four activity
codes for lecturing, moving and guiding, working in groups and real time writing by instructor

met the .80 standard with one rater.

Reliabilities for one rater ranged from G = .67 for Student Questions to G = .94 for
Moving & guiding. Differences in rater variance are driven mainly by differences in the error
component of the residual term (rtd), reflecting differing rates of agreement by raters, rater bias,
and differences in rater agreement across teachers. Figures 1 and 2 present the reliability of raters

for each activity code and Table 4 lists all variance percentages for each activity code separately.

We then examined the reliability of all codes combined using the “items” facet which
represents all items combined. In this study we examined overall reliability due to raters and any
interactions with items or teachers. The G-coefficient for this study was .91 for two raters, with
reliability for one rater .84, meeting the .80 standard we set for our evaluation practice. Table 5
lists the variance decomposition for each facet for all combined activity codes in the rater study,

and Figure 3 shows generalizability for number of class sessions for the combined activity codes.
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Occasions Study

The occasions study examined the reliability of observations over items, teachers and
classes. We used the larger dataset for this study with facets for occasions, teachers, classes, and
activity codes. These data are meant to reflect real life research and evaluation on teaching with
one rater visiting numerous class sessions and courses. We assume with this study that an
acceptable level of rater reliability has been reached through training and piloting, as was the
case for our study. The occasions study also has the advantage of having a larger sample of

classes, teachers, and items than was possible with the rater study.

The percentage of variance for each facet of the study is shown in Table 6, and reliability
across observations in Figure 4. Researchers would need 11 observations needed to reach the .80
standard. Again, most error in this model (19.6%) is due to class-to-class variability across items
(Ic:t). The large error component (76.9%) reflects the “worst case” scenario of only having one

classroom observation.

Discussion

Summary

We examined how many raters and class observations are needed to reach an adequate
standard of reliability for direct observation of undergraduate mathematics teaching faculty. We
first established that observations could be made reliably with one rater (G = .84). In the
occasions study we then found that one rater needed 11 classes to reliably observe all eight

activity codes. We believe the latter model provides a good estimate of conditions experienced in
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many research and evaluation contexts where observations are used and one rater is sent out to

collect observations.

We also found that rater reliability varied depending upon what activity is being
observed. For single activity codes, rater reliability (without the class-to-class error component)
varied; four codes did not reach the .80 reliability standard for one rater. Activity codes with
lower reliabilities primarily concerned those requiring agreement on what counted as a teacher or
student question. It was more difficult to agree on what constituted a valid observation of a
question during any given two-minute period for these activities, perhaps because of the short
duration of most teacher or student questions, teachers’ use of rhetorical questions, and
discrepancies in coding when instructors rephrase the same question in multiple ways. Observers
may also see discrepancies in coding when instructors rephrase the same question in multiple
ways. Higher reliability activities included more continuous activities such as lecture or group
work. It should be noted that in field conditions, the reliability of a score would be evaluated by
all observations bundled together. The activity codes with higher reliability would (in effect) pull
up the overall quality of the measure. Being aware of these differences in reliability across
activity codes can inform practice such as directions in technical manuals (Hora et al., 2013);
observers using related observational protocols may want to be aware that some activity codes

are more difficult to reliably observe than others.

Comparison with other generalizability studies provides some context to our findings.
The number of observations needed to reach a reliable measure is a function of the variability of
class-to-class averages for activity codes as well as the overall design of the G-study. For our
study, the amount class-to-class variance was 19% for the occasions study. In Table 7 we

compared our variance components with those from other published studies. The percentage of
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occasion variance in many of the studies was similar to our current research. For instance, the
amount of variability due to occasions was between 6% and 39% in the Hill et al. (2012),
Masburn et al. (2014), Newton (2010) and Kane et al. (2012) studies. The Huijgen et al. (2017)
study stood out as showing very little variance over occasions. Overall, the preponderance of
studies pointed to the fact that teachers vary what they do in classrooms from day-to-day, and

that our current study is similar to others in the amount of variability we observed.

Information about the number of classes needed for a reliable measure was less
straightforward to compare. Many studies juggle the number of raters and occasions when
conducting decision studies. In separate studies by Hill, Newton, and Kane referenced below,
four or six occasions were needed to reach adequate reliability, but this level of reliability was
only possible with four raters. In studies with one rater, the number of occasions were similar to
ours, with eight or 10 observations needed; and in some cases adequate reliability was not

reached even with 10 observations (Mashburn et al., 2014).

Implications for Research and Evaluation Practice

These results show that the numbers of observations needed still remain much higher
than is seen in general research and evaluation practice (Cohen & Goldhaber, 2016). Anyone
contemplating conducting consequential teacher evaluation or research based on observational
studies should consider that a substantial number of observations may be needed to reliably

estimate the frequency of specific teaching activities over a semester.

Calling for more observations has serious implications for research and evaluation
designs used to assess teaching methods when the intent is to generalize to a semester, or even to
generalize to overall teaching style. Our findings are most relevant to those using observational

data for comparative research or evaluation studies in mathematics higher education because the
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protocol we used was designed for that purpose, but could also apply to faculty evaluation by
department heads or others visiting classrooms. Using observations as an outcome measure (or
even as an independent variable) raises the standard for the rigor and statistical power needed to
make confident claims. Observational data can be used in most of the common comparative
research designs to evaluate the effect of an intervention (such as professional development),

“before and after” comparisons, or compare outcomes of participating and comparison groups.

Consider a (fictional) study where researchers are evaluating the effects of a summer
workshop on inquiry-based learning. The researchers have made baseline observations of
instructors’ teaching style during the spring semester using a segmented observational protocol.
After the teachers participate in the workshop, observers visit classrooms during the fall and
spring semesters to learn if instructors did in fact change their teaching, and if so, what changes
they made. While the ability to detect a pre-to-post difference in overall teaching is a function of
the number of teachers participating in the study (statistical power), the actual comparison is
only as good as the reliability of the measure used. As the present analysis demonstrates, if the
researcher only uses two or three observations to calculate an average, reliabilities are so low as
to be essentially meaningless as an estimator for a semester-long course. Another way of framing
this is by creating confidence intervals based on class-to-class variability as characterized by the
standard deviation of class-to-class variation in an activity code. Even with a conservative
standard deviation of 15% among classes over a semester, if an instructor was estimated to
lecture 50% of the time, the real percentage over a semester could be between 33% and 67% if
only three observations are used.! This would be a wide range to work within, and low and high

estimates would give qualitatively different pictures of how much an instructor lectured. When
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unreliable measures are used in comparative research designs, compounding measurement error

over multiple individuals and groups does nothing to improve a study.

Also affected by these findings are validity comparisons between teachers’ self-report
about their practices, and observations of their actual teaching (Ebert-May et al., 2011; Lewin et
al., 2014), the original impetus for our study. For example, in our ongoing study we wanted to
know if teachers accurately report their practices on a survey, and if a survey could be used as a
proxy for more costly observations when evaluating professional development programs.
Because the comparison rested on the assumption that we had a trustable criterion measure in the
observations, that criterion had to be highly reliable. The primary danger in using a measure with
poor reliability in comparing survey and observation data is the possibility of inaccurate
characterizations of teaching if the observer only sees a teacher on a day (or days) when they do
an atypical activity. If the criterion measure is not trustable and reliable, it is essentially
impossible to know if an instructor’s survey report of their activity does or does not represent
their practice over a course term. To validate survey items characterizing course-level teaching
against observations, we must ensure that the observations are themselves trustworthy reports of
teaching practice by observing a sufficient number of classes to achieve a representative and

reliable measure.

Another common use of observations, as stated, is to describe or assess an individual
instructor’s teaching methods for personnel evaluation. Increasingly for undergraduate faculty,
observations are part of a teacher evaluation with supervisors (or peers) rating an instructor’s
overall teaching style, their interaction with students, or their use of technology in the classroom

(Smith et al., 2017). For teacher or faculty evaluations with consequences such as promotion, pay
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raises, or retention, sufficient rigor in reliability is required to make fair assessments; although in

many cases frequent observations may not be logistically, financially or politically feasible.

We believe that in some cases triangulation with other methods can be used to leverage a
reliable measure with fewer observations. For instance, we can ask instructors to provide a
syllabus or schedule of activities for a semester that provides information about scheduled
activities such as group work or presentations. We have found that this can provide a better
source of information about the relative frequency of these broadly defined activities than
observations made throughout the semester. Instructors can also be interviewed about their
teaching methods and the amount of class-to-class variability that they believe is present. As
shown above (Kane et al., 2012), increasing the number of raters will also increase reliability and
lower the number of observations needed; this is made easier in practice with video coding than
in-person classroom visits. However, adding raters only works to increase reliability if there is no
ceiling for improvement. For our study, adding third or fourth raters did not make the

observation substantially more reliable.

For many purposes, statistical considerations for reliability and sampling may be relaxed.
For example, department heads, faculty peers, or pedagogical experts may observe teachers and
provide feedback from coding or rating schemes augmented with expert assessments and
qualitative descriptions of how effectively instructors are implementing their instruction, while
suggesting ways to improve practices. Fewer observations raise less concern for these purposes
because the quantitative data are used to support qualitative descriptions and spark discussion,
not to make high-stakes decisions (Kane et al., 2012). Additionally, both instructors and
observers can place the observation in context during the discussion, so ensuring that the sample

of observations is representative of the full course is less of a concern. Still, expanding the
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number of observations for classroom observations may be a good idea even in these cases, not
only to provide more stable and reliable assessments of the frequency and nature of teaching
activities, but also by overcoming possible reactive effects with teachers who may experience
difficulty performing in front of an observer, or who put their best foot forward for a one-time

observer.

Limitations of our study

Our study has three primary limitations. First, these are the results of a single research
study; others conducting similar studies may encounter different conditions that lead to higher or
lower reliabilities and number of observations needed. However, as shown above, other decision
studies using class occasions as a facet have found somewhat similar results to ours, suggesting
that our findings are not atypical. Secondly, our study is conducted with a small group of
teachers which may not have the power to generalize to undergraduate STEM mathematics
instructors in the US. Third, our rater study was, in all likelihood, too small to fully and
accurately represent the class-to-class variation we later saw during our occasions study. Our
presentation of class variation in the one-rater studies is a better estimate of class-to-class error

variance, but did not include the rater facet.

We believe that overcoming rater disagreement and bias is possible through training and
piloting. Findings in the first result section show that we reduced this amount of error through
training, and in fact, rater error is less of a concern than class-to-class variability in making

reliable estimates of a teacher’s activities over the course of a semester.
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! This is based on the standard error for the mean adjusted for a finite sample of 45 class sessions in a semester. The
standard deviation is for the class-to-class variability of observations. We found that the standard deviation for
lecture was 22%. Making a more conservative estimate of a 15% standard deviation with 3 observations would give
a standard error of 15/1.73 =5.7. The 95%CI is 1.96 * 5.7 =16.97. Adjusted for a finite sample this is reduced
slightly to 16.58.



HOW MANY OBSERVATIONS

Table 1

Activity Codes and Their Descriptions Used in Study

Activity Code

Description

Instructor question (combined for
rater study)

Student answers question
(combined for rater study)

Student question

Reviewing content

Realtime writing by instructor

Moving & guiding

Instructor asks question

Students answers teacher question

Students ask question of teacher

Instructor reviews students’ previous
work (e.g. homework, group activity)

Instructor writes on board, overhead or
whiteboard

Instructor works with students in
groups

(For occasions study, replaces combined instructor question and student

answer)

Instructor asks informational
question

Instructor asks for reasoning

Student answers with information

Student answers with reasoning

Instructor question asking for specific
information or answer

Instructor question asks for students to
explain answer to problem

Student answers with specific
information or answer

Student answers with explanation of
problem or concept
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Table 2

Design and Numbers in Each Facet of G-studies
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Facets
Study Raters Teachers Items Classes  Observations Total
within within class  data
teacher elements
Rater 2 4 (8) 4 25 800
Occasions 1 13 10 9 23 26910

Note. Observations within class are the objects of measurement.
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Table 3

Elements of the G-study

Facet Notation  Type True/Error Crossed or nested

Rater r Random Error Interacts with all
other facets

Activity code [ Fixed (I) True Crossed with all other

(“item™) facets

Teacher T Random True Crossed with all other
facets

Class c, c:t Finite Error Nested within teacher

random

Data/ d Finite Object of

Observations random measurement,

(object of observations are

measurement) nested within each
class.

Note. We avoided using the letter “0” for the object of measurement given to differentiate
between classroom observation (how many classes observed) and how many two-minute
observations within each class.
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Table 5

Variance Decomposition for Each Facet All Combined Activity Codes in Rater Study

Facets

Variance Teacher Item Teacherby Item  Teacherby  Data  Teacher
percentage (t) D item (tI) by item by ) by data
data data
(Id) (tId)
True 0.1%  7.4% 6.8% 1.2% 61.5% 1.1% 5.7%
(83.8%)
Rater = Rater  Rater by Rater Item by Item by rater by
(r) by teacher by by rater by data within
item data data teacher teacher
() (rtd) (rd) (Irt) (Irt:d)
Error 0.2% 2% 1.9% 1% 2% 13.7%
(16.2%)

G = .91 (Two raters)
G = .87 (One rater)

Note. Facets are raters = 2, teachers = 4, Items = 8, data =100.
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Table 6

Variance Decomposition for Each Facet for Occasions D-study.
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Facets
Variance Teacher (t) Item (I) Data(d) Teacher Itemby Teacher
percentage by item data by item
(th) (1d) by data
(tId)
0.1% 5.5% 0.2% 12.4% 1.1% 3.8%
True
(23.1%)
Class within  Itemby  Class by Item by
teacher (c:t)  class data class by
within within data
teacher  teacher  within
(Ie:t)  (cdity ~ reacher
(Icd:t)
0% 19.6% 3.1% 54.2%
Error
(76.9%)

G = 0.77 (raters = 1, classes within teachers = 9)

Note. Percentage of total variance due to each source. Teacher considered random variable, class

within teacher random finite (n = 45 for whole semester). Some facet interactions with zero

percentages removed from table. Facets are raters = 1, teachers = 13, classes within teachers =9,

items = 10, data = 23.
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Table 7

Comparison of G-studies for Variance Due to Occasions and Raters
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Study author(s) Sample Variance % due Number of
to occasions observations needed for
reliable measure at G =
.80
Current study Undergraduate 19% class 11
teachers in within teacher
mathematics variance over
items
Van der Lans et al. (2016) K-12 teachers in the Not provided 10 (.90 criteria for
Netherlands across reliability)

Lei et al. (2007)

Halpin & Kiefer (2015)

Mashburn et al. (2014)

Newton (2010)

subjects

Infant behavior

Middle school
Language Arts
(ELA) teachers

Quality of teacher-
student interactions
in 5% or 6™ grade
classrooms

Elementary through
high school
teachers across
subjects

8% observation
variance

Not given

17% —22%
day- to-day
occasion
variance, 3% -
7% within day
occasion
variance for
three
observational
measures

23% due to
occasions

10 observations used

& or more

8 observations with one
rater only reached
reliabilities .70 to 0.74

6 visits with 4 raters —
no estimate for single
rater available
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(Table 7 cont.)
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Study author(s)

Sample

Variance % due
to occasions

Number of
observations needed for
reliable measure at G =
.80

Hill et al. (2012)

Kane et al. (2012)

Huijgen et al. (2017)

Middle school math

teachers

Over 1000 teachers

in grades 4 — 8

High school history

teachers

Ranges from
6% to 39% for
three
observational
dimensions

27% variance
for CLASS
measure, 15%
UTOP measure

2% observation
variance

4 observations with 4
raters.

Extrapolation of D-
study estimates number
of observations needed
for one rater between 5
and 12 depending on
which dimension
observed.

4 observations, 4 raters
gave reliability of .65

4 observations

Note. Above studies sorted for number of observations needed for a reliable measure.
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Figure 1

Reliability (G) By Number Of Raters for Each Activity Code, Rater Study (Part 1)
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Note. Activity codes : Moving and guiding, group work, realtime writing, and reviewing content.
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Figure 2

Reliability (G) by Number Of Raters for Each Activity Code, Rater Study (Part 2)
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Note. Activity codes: Lecturing, instructor question, student answers, and student questions.



HOW MANY OBSERVATIONS

Figure 3

Reliability (G) for Number of Class Sessions for Rater Study
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Note. Includes both raters and items as facets.
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Figure 4

Reliability (G) for number of class sessions for occasion study
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Note. Includes teachers, items and number of class sessions as facets.



Table 4

Variance Decomposition Percentages for Each Facet or Each Activity Code in Rater Study

Percent of variance for each facet

Lecturing Instructor Working in Student Student Reviewing Real- Moving
question groups question answers content time &
writing guiding
Facet
Rater (1) 0 1.2 0 1.2 1.3 1.3 0.6 0
Teacher (t) 7.6 4.1 13.9 3.3 2.5 2.5 33 14.8
Data (d) 0 21.3 2.1 1.4 14.9 14.9 0 0.9
Rater x teacher 0.2 0.1 0.3 0 0.2 0.2 0 0
(rt)
Rater by data (rd) 0 0.9 0.9 0 0 0 0.8 0
Teacher by data 81.7 49.5 70.2 63.3 52.9 52.9 79.6 78.1
(td)
Rater by teacher 10.5 23 12.5 30.8 28.2 28.2 15.7 6.1
by data (rtd)
Rater agreement 94% 92% 95% 92% 88% 97% 92% 98%
G (two raters) .94 .85 .93 81 .82 .83 91 .97
G (one rater) .89 75 .86 .68 .70 .70 .83 94




Note. Values are percentages. Rater and teacher considered random variables. Data is finite random. Facets are raters= 2, teachers = 4,
classes within teacher = 4, data = 25
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