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Abstract—The ability to perform data analysis on large data
sets initially requires the data to be in a prescribed format.
Transforming data from its initial form into the desired form is
becoming more and more of an overall performance bottleneck.
We explore the use of near-memory processing to both accelerate
the execution of data transformation workloads and reduce their
energy needs. Relative to a traditional architecture, average
speedups are 3.5× with 76% energy savings across a benchmark
of 12 data integration applications.

I. INTRODUCTION

Not only is big data voluminous, it is varied. Individual
data analysis tasks must first collect data sets that are often
in disparate locations and a wide variety of formats. These
data sets almost always need some form of transformation
applied to them prior to the analysis task itself, such as for-
mat normalization, data cleansing, type checking, and outlier
detection. These data integration activities typically consume
an inordinate amount of time and effort both on the part of
the data analyst and the computing systems that execute them.

Data Integration is a term frequently used for the general
problem of taking data in some initial form and transforming
it into a desired form. While the individual transforms are each
(mostly) quite straightforward, the task is quickly complicated
by the fact that individual data streams can be quite large
and there are frequently many streams, each requiring a dis-
tinct transformation specification. Tens to hundreds of multi-
gigabyte data streams must be concurrently integrated, and
this must be done prior to the real data analysis, the ultimate
goal. The issue of how to effectively achieve data integration
is a pain point for enterprise data, sensor data, scientific data,
financial data, to name a few.

Here, we investigate the use of near-memory processing to
execute data integration tasks. In particular, we seek to exploit
two properties that are common to many data integration
workloads and are well-suited to execution on near-memory
processing architectures.

1) Abundant parallelism – data integration workloads
are, for the most part, embarrassingly parallel, so their
performance scales well with large numbers of processor
cores. Relative to traditional computing systems, the ma-
jority of near-memory processing architectures employ
a larger number of smaller cores.

2) Substantial data movement – they are also character-
ized by having a large fraction of their operations data
movement instructions, implying a strong sensitivity to
the architecture of the memory subsystem. A central fea-
ture of near-memory processing systems is the proximity
of the processor cores to the memory.

We explore the impact of each of these properties, quantifying
both the performance implications and energy savings achiev-
able though the use of near-memory processing architectures
for executing data integration workloads.

We do not propose any new near-memory processing archi-
tecture, but rather utilize approaches that have been previously
described. We make the following contributions in this work:

• We characterize data integration workloads to gain in-
sights on the suitability and potential performance bene-
fits of executing data integration near the memory.

• We quantitatively evaluate near-memory processing for
the execution of data integration workloads.

• We assess both the performance improvement and energy
savings that are achievable, and separately examine the
distinct implications of wider parallelism (i.e., a larger
number of simpler cores) and lower memory access
overheads (i.e., physical location of the cores near the
memory).

Overall, for the particular near-memory processing system
modeled, the performance improved an average 3.5× and the
energy reduced an average 4.2× (76%) relative to a traditional
baseline system.

II. BACKGROUND AND RELATED WORK

A. Data Integration

As an illustration of the importance of data integration,
consider the following two examples from graph analysis and
cloud micro-services. In graph analysis, Malicevic et al. [6] de-
scribe an improvement to a breadth first search algorithm that
results in a 3× improvement in execution time for the breadth
first search in isolation. However, it requires the graph data to
be in a different form, and when one includes the necessary
pre-processing in the performance measurement, the overall
execution increases by 1.5×. Second, in cloud micro-services,
Pourhabibi et al. [8] report that up to 30% of execution time
is currently spent in the data format transforming process, and
as protocol processing is improved by the use of smart NICs
that fraction will only increase. They propose using a custom
accelerator to execute these workloads.

B. Near-Memory Processing

The emergence of 3-D stacked memory technology has
opened the door for practical deployment of processor cores
near the physical DRAM. The structure of these memories has
multiple DRAM chips stacked on top of a single logic chip.
These chip layers are connected by vertical high-bandwidth
and low-power through-silicon vias (TSVs). The logic layer
at the bottom consists of both interconnections and controller



logic. In current commercial implementations, the logic layer
is not fully utilized (i.e., there is a portion of unused area on
the chip). Therefore, the research community has considered
integrating general-purpose processor cores or custom accel-
erators into the logic layer as an approach to implementing a
near-memory processing strategy.

There have been a number of proposed near-memory pro-
cessing (NMP) architectures. Drumond et al. [3] proposed
an architecture that utilizes general-purpose Arm Cortex-A35
CPUs as near-memory processing cores. In addition, they
altered the execution of common data analytics operators to
be more NMP-friendly by optimizing for sequential mem-
ory accesses over random memory accesses. Boroumand et
al. [1] proposed a near-memory processing architecture with
either general-purpose cores or programmable accelerators for
Google workloads. Peng et al. [7] explored the suitability
of HPC scientific applications on an NMP architecture with
general-purpose cores as the execution unit. Our work also uti-
lizes general-purpose programmable cores with small caches
in the NMP architecture. However, compared to these prior
works, we focus on a different application domain. There
has also been recent work utilizing custom logic as execution
units. For example, Jang et al. [4] present a accelerator-based
NMP architecture for a set of primitives in garbage collection
workloads. Singh et al. [10] recently published a survey of the
field.

The present work seeks to exploit these ideas for accelera-
tion of data integration workloads.

III. WORKLOAD CHARACTERIZATION

For the empirical work in this paper, we use the the Data
Integration Benchmark Suite (DIBS) [2] as representative
workloads. We characterize them using four metrics: temporal
locality, spatial locality, memory access rate, and arithmetic
instruction rate. These workloads have a high degree of
data movement, motivating the emphasis on memory in the
application characterization.

Temporal and spatial locality are quantified using the tech-
niques proposed by Weinberg et al. [12]. Each locality score
is on a normalized range [0,1], with higher scores indicating
a greater degree of locality.

Figure 1(a) shows the temporal and spatial locality of each
of the DIBS applications. We classify the applications into
3 classes: (1) low spatial and low temporal locality, (2) low
spatial and high temporal locality, and (3) high spatial locality.

The fix float application, with relatively low spatial locality
and lowest temporal locality belongs to class 1. Others have
shown that this type of workload can benefit from near-
memory processing techniques, e.g., see [10].

The edgelist csr application, with low spatial locality and
high temporal locality, belongs to class 2. In this case, the
high temporal locality implies that a deep cache hierarchy can
benefit performance, so it might not do as well on a near-
memory architecture.

The remaining 10 out of the 12 applications, belonging to
class 3 with high spatial locality, lie at the right of Figure 1(a).
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Fig. 1. Workload characterization of data integration workloads. (a) Temporal
and spatial locality scores. (b) Memory data rate vs. arithmetic instruction rate.

These locality scores give mixed signals as to the suitability
of these workloads for near-memory processing techniques.

We measure the memory accesses and arithmetic instruc-
tions to further characterize our data integration workloads. In
addition, we will discuss this characterization in terms of their
ratio, which we call the memory/ops ratio.

Figure 1(b) shows the memory data rate and arithmetic
instruction rate in the two-dimensional space. From the figure,
it can be observed that fix float has the highest memory/ops
ratio, indicating that this workload is the most promising one
that could benefit from a near-memory processing architecture.

Consistent with the locality characterization of Figure 1(a),
10 workloads with relatively high spatial locality scores also
show medium memory/ops ratios. Among these 10 workloads,
ebcdic txt, fa 2bit, and idx tiff have higher memory/ops ra-
tios.

The edgelist csr application is the most computationally in-
tensive workload, making it an outlier in both characterizations
(a fact it has in common with fix float).



To distinguish the workloads by the potential benefits pro-
vided by near-memory processing, we draw a dashed line in
Figure 1(b). The workloads above the line are more memory
intensive and have the greater chance for performance im-
provement. While the particular slope of the line is arbitrary,
we return to this point in Section VI.

IV. PROPOSED NEAR-MEMORY SYSTEM

The high-level architecture of our near-memory processing
system is illustrated in Figure 2. As previously proposed by
Pugsley et al. [9], a number of memory channels (four in
Figure 2(a)) are used to connect the host multicore chip to
a set of 3-D memory stacks (eight in the figure), using the
“far memory” topology described by Micron for HMC. In the
performance analysis that follows, we assume that the host
multicore chip contains 16 traditional, out-of-order processor
cores with private L1 I&D caches, private L2 caches, and
a shared L3 last-level cache (for the time being, ignore the
dashed wide-parallel box in the figure).
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Fig. 2. Architecture of near-memory processing system. (a) Stacked memory
connection diagram (adapted from [9]). (b) Near-memory processor diagram
in each vault.

Figure 2(b) shows the design of the near-memory processing
subsystem. Associated with each vault is a low-power, in-order
core that has immediate access to the memory within the vault,
talking directly to the vault controller. This in-order core is
fabricated on the logic layer chip, using previously empty chip
area. It has L1 I&D caches, but no L2 or L3 cache. This
arrangement yields 16 near-memory cores for each memory
stack, resulting in 128 near-memory cores for a system with
8 memory stacks. The link/vault crossbar and vault controller
are unchanged from a typical HMC-like memory stack.

If we are to utilize otherwise empty chip area on the logic
layer, we must ensure that not only area, but power constraints

are not exceeded. Jeddeloh and Keeth [5] report 68 mm2 of
area on the logic layer, or 4.3 mm2 per vault. Using the Arm
Cortex-A7 as a candidate near-memory processor core, the
core plus 32 KB L1 I&D caches have an area of 0.45 mm2 and
a total power consumption below 100 mW.1 This represents a
usage of only about 10% of the available area.

A traditional HMC stack has 4 memory channels that
consume a total of 5.8 W [9]. However, the far memory
topology illustrated in Figure 2(a) only utilizes 2 channels per
memory stack. If the remaining 2 channels are powered off
(or not fabricated at all), this makes 2.9 W available for the
near-memory cores. 16 cores at 100 mW each only requires
1.6 W, which is well within the power budget.

The advantages of this architecture for executing data inte-
gration workloads are two-fold. First, because the workloads
are straightforward to parallelize, a larger number of smaller
cores are well matched to the computational requirements. Us-
ing the same reasoning as the designers of the IBM BlueGene
family of supercomputers, a larger number of smaller cores
can yield both performance benefits and energy savings if the
problem has sufficient parallelism. This is the same notion
that motivated the big.LITTLE systems from Arm. Second,
because the memory access patterns of the workloads are
primarily local, associating a near-memory core with each
memory vault results in the bulk of memory accesses being
local. Not only do the accesses not have to traverse the
memory channel(s) across the circuit board, but most don’t
even have to traverse the internal crossbar of the memory
stack.

To execute the data integration workloads, the data are di-
vided into smaller partitions and mapped to each computation
unit by the host processors. As each partition is independent,
they can be processed by the near-memory cores in parallel.
After the data integration computations are complete, the
transformed data will be aggregated and processed by the host
processors. This allows the downstream application processing
to take advantage of the complex cache system and high
computation ability available on the host side.

V. METHODOLOGY

We evaluate the performance and energy consumption of
data integration workloads via architectural simulation (using
the gem5 simulator). First, we describe three distinct archi-
tectures that we use to perform the evaluations: (1) the near-
memory processing system that is the primary target of the
investigation, (2) a traditional, out-of-order core system used
as the baseline/host for comparison purposes, and (3) a wide-
parallel system that utilizes low-power, in-order cores which
serves as an intermediate system between the baseline/host
system and the near-memory processing system. It is used
to distinguish between various factors in the performance
assessment. After this, we describe additional details of the
simulation, including the methods for performance calibration
and energy estimation.

1https://developer.arm.com/ip-products/processors/cortex-a/cortex-a7



A. Near-Memory Processing System

The structure of the architectural simulation model for the
near-memory processing system essentially follows Figure 2.
The particulars of the host processor cores and memory stacks
are described below in Section V-B. Here, we provide the
particulars of the near-memory processors.

As alluded to in the previous section, we use an Arm Cortex-
A7 in-order, pipelined core as the processor model for the
near-memory computation. Each core is clocked at 1.2 GHz
and has 32 KB L1 I&D caches, and each vault of the memory
stack is allocated one near-memory core. With 8 memory
stacks and 16 vaults per stack, there are 128 near-memory
cores.

The close association of each near-memory core with a
particular vault of the memory stack implies a non-uniform
memory access (NUMA) latency. Accesses to remote vaults
on the same stack must traverse the on-logic-chip crossbar, and
accesses to vaults on remote stacks must access the topological
path(s) shown in Figure 2(a). On the other hand, accesses to
the local vault need only talk to the local vault controller.
Each vault has a 32-bit vertical interface with 2 Gb/s TSV
signaling rate [5]. Thus, an internal bandwidth of 8 GB/s can
be achieved in each vault, and overall memory bandwidth is
1 TB/s.

We do not assume coherent caches across the near-memory
cores, but rather insert explicit cache flush instructions to
enforce memory consistency.

B. Baseline/Host System

The baseline/host processors have a common design, but
serve two distinct purposes in our evaluations. First, they serve
as the baseline for both performance and energy comparison
purposes. As such, the quantitative evaluation is normalized
to the baseline system’s performance and energy usage. Fig-
ure 2(a) illustrates this baseline system if one assumes there
are no near-memory cores in the logic layer of the memories.
Second, they serve as the host processor(s) for the near-
memory processing system. In this circumstance, they are
available to execute other tasks concurrently with the near-
memory subsystem.

To maintain a common ISA across the entire system, we
employ 16 Cortex-A15 out-of-order cores as the processor
model for the baseline/host computation. Each core is clocked
at 2 GHz and has its own 32 KB L1 I&D caches, 256 KB L2
cache, and shared L3 8 MB last-level cache. Cache coherence
is maintained using the traditional MESI-style protocol.

The baseline/host multicore chip has 4 memory channels,
each modeled after HMC stacked memory, giving a total mem-
ory bandwidth of 160 GB/s. With 8 memory stacks of 4 GB
each, the memory capacity is 32 GB. This is straightforward
to alter given the flexibility of the “far memory” topology.
The bandwidth to/from the baseline/host cores, however, is
limited by the number of memory channels available on the
baseline/host.

C. Wide-Parallel System

When comparing the proposed near-memory processing
system with the traditional baseline system, there are two
substantial differences that can (and should) be evaluated
separately. One, a larger number of simple cores are utilized
in place of a smaller number of complex cores, and two, each
simple core has lower-latency, higher-bandwidth access to (a
subset of) the memory. To give us the ability to query the
performance and energy usage implications of each of these
two features separately, we consider an intermediate, wide-
parallel system that only includes the first of the above two
substantial differences from the baseline system.

The wide-parallel system has the same cache and memory
configurations as the aforementioned host/baseline system.
However, this system replaces the 16 Cortex-A15 cores with
128 Cortex-A7 cores, the same type and number of cores used
in the near-memory system. Figure 2(a) illustrates this wide-
parallel system via the dashed box showing a near-memory
core.

Fortunately, the two substantial differences between the
near-memory processing architecture and the baseline tradi-
tional architecture also correspond closely to the two primary
characteristics that are common across the target data integra-
tion workloads. The abundant parallelism in the workloads
can benefit from the larger number of simple cores, and
the substantial (local) data movement can benefit from the
positioning of those cores close to memory.

By comparing the baseline system to the wide-parallel
system, we can discern the impact and importance of the
parallelism in both the workloads and the execution archi-
tecture. By comparing the wide-parallel system to the near-
memory system, we can discern the impact and importance of
the memory bandwidth and latency. Finally, we can see the
overall impact of the near-memory system by comparing it to
the baseline system.

The parameters of all three of these systems are shown in
Table I.

D. Simulation

All of our simulation models are built in gem5. The
standard distribution contains a stacked memory model
based upon HMC and processor core models for both the
Cortex-A15 cores (ex5_big.py) and Cortext-A7 cores
(ex5_LITTLE.py).

The data integration workloads come from DIBS [2], which
provides both source code and input data sets. All are com-
piled with gcc version 5.4.0 utilizing -O3 optimizations. To
enforce cache coherence between the host caches and the near-
memory caches, we extended the core model to support cache
flushing. In the cache flushing API, the corresponding cache
block is determined based on the physical address which is
re-translated from the virtual address. If dirty, the cache block
is flushed to the memory stack.

The energy model computes the energy due to dynamic
power consumption by summing the contributions from the
following elements: cores, caches, NoCs, memory channel



TABLE I
EVALUATED SYSTEM CONFIGURATIONS.

Baseline/Host System

Core configuration Arm Cortex-A15, out-of-order, 2 GHz
Number of cores 16

L1 cache 32 KB I&D private
L2 cache 256 KB private
L3 cache 8 MB shared
Memory 32 GB

Wide-Parallel System

Core configuration Arm Cortex-A7, in-order, 1.2 GHz
Number of cores 128

Caches & memory same as baseline

Near-Memory System

Host cores & caches same as baseline
Near-memory cores Arm Cortex-A7, in-order, 1.2 GHz

Number of cores 128
L1 cache 32 KB I&D private
Memory 32 GB

transceivers, logic layer of the memory stack (without the near-
memory processing elements), and the memory stack DRAM
layers. Processor core energy (both for Cortex-A7 and Cortex-
A15) is computed using energy per instruction measurements
provided by [11] and instruction counts from gem5. Cache
and NoC energy is modeled using McPAT assuming a 28 nm
process node.

The memory subsystem is based upon an HMC model,
using energy data provided by [5]. The total memory stack
energy is 10.38 pJ/bit accessed. Of this, the DRAM layers
consume 3.7 pJ/bit and the logic layer consumes 6.78 pJ/bit
(of which, 43% is consumed by the transceivers) [9].

VI. EVALUATION

In this section, we examine how data integration workloads
benefit from the near-memory processing system described
above. We compare both performance and energy consump-
tion for the baseline, wide-parallel, and near-memory target
systems.

A. Performance Improvement

We first examine performance improvement by showing
speedup relative to the baseline in Figure 3. The applications
to the left of 2bit fa on the graph are above the dashed line
in Figure 1(b) and those to the right of 2bit fa are below the
line.

Examining the middle bar for each application (the speedup
of the wide-parallel system), we observe that all of applica-
tions improve. While the geometric mean speedup (for all
applications) is 3.04× and the minimum speedup is 2.48×,
5 of the applications exceed 3.4× speedup. We can conclude
that the abundant parallelism in the data integration workloads
can effectively be exploited by a larger number of individually
less-powerful cores, and that the effectiveness of this approach
is strong for all of the applications.

Note that while this wide-parallel system is used to assess
the degree to which parallel execution can benefit data inte-
gration applications, it does not represent a realistically viable
system in any practical sense for general workloads. At this
scale, cache coherence overheads are often dominant, a fact
that isn’t an issue here simply because the data integration
applications are, in effect, embarrassingly parallel, so they
generate minimal coherence traffic.

The right-most bar for each application indicates the
speedup for the target near-data processing architecture relative
to the baseline architecture. During this execution, the host
cores are essentially idle (only responsible for startup and
termination) and therefore available to execute other appli-
cations such as the data analysis task that is downstream of
data integration in the workflow of interest.

Again, the overall results reflect significant performance
improvement. The geometric mean speedup is 3.46×, and
the individual application speedup ranges from 2.57× up to
5.82×. The 4 applications with the largest memory/ops ratio
exhibit the greatest performance improvement relative to the
wide-parallel system, each improving an additional 1.21× or
more relative to the wide-parallel system. In other words, they
benefit from the cores’ close proximity to memory and are not
hurt by the lack of L2 and L3 caches associated with each
near-memory core.

The outlier here is edgelist csr. Its performance is slightly
worse (0.99×) when transitioning from the wide-parallel sys-
tem to the near-memory system, mostly due to the lack of L2
and L3 caches for the near-memory cores. This however is not
surprising and predicted by its outlier position in Figure 1(a).

Across the board, we see fairly good performance gains for
the near-memory processing architecture by leveraging highly
parallel near-memory computing units and accounting for the
impact of small memory-side caches. It is also worth noting
that a large fraction of this performance gain is attributable
to the benefits of parallelism and a smaller fraction due to
the benefits of the processor cores’ physical proximity to the
memory.
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Fig. 3. Speedup of data integration workloads for wide-parallel and near-
memory system relative to baseline.

We next return to the point that, in the near-memory



system, the host cores are essentially idle while the data
integration application is executing, freeing them up for other
tasks. For example, when executing the initial data analysis
algorithm described by Malicevic et al. [6], three-quarters of
the execution time is consumed by pre-processing (i.e,. data
integration) and one-quarter of the execution time is consumed
by the algorithm (i.e., data analysis). If the data integration is
accelerated by a factor of 3 (less than the geometric mean of
our benchmark applications), the overall memory bandwidth
is underutilized (TSV utilization is no more than 5% across
the board), and the data analysis is executed concurrently
with data integration (in a pipelined manner), then the overall
performance gain is a factor of 4. In other words, the entire
execution time of the data integration is overlapped by the data
analysis time. Given that the near-data cores were integrated
onto otherwise unused chip area on the logic layer of the
stacked memory, this is almost “data integration for free.”

B. Energy Consumption

We next quantitatively examine the energy consumption
benefits of the near-memory architecture. Figure 4 shows the
energy savings for the wide-parallel and the near-memory
architectures. The relative energy improvement (number above
each bar) is computed by dividing the baseline system energy
consumption by the wide-parallel system energy or the near-
memory processing system energy, respectively.

Focusing first on the comparison between the baseline
system and the near-memory target system, we see that the
overall energy reduction is quite significant, with a geometric
mean of 4.23×. Even the application with the least benefit,
2bit fa, requires just over one-third of the energy of the
baseline system, for an energy savings of almost 3× when
executed on the near-memory system.

Turning our attention to how that energy savings is at-
tributable to the wide-parallel aspects of the system versus the
processing proximity to the memory, we once again observe an
important relationship between applications with a high mem-
ory/ops ratio and energy reduction attributable to the physical
proximity of the memory. The four applications that sit above
the dashed line in Figure 1(b) all have less energy savings for
the intermediate wide-parallel system with improved energy
savings when transitioning to the near-memory target system.
The remaining applications show substantial energy savings,
with the majority of that savings being attributable to the wide-
parallel nature of the applications’ execution.

We can discern why this is the case by examining the energy
breakdown, shown in Table II. The table decomposes the
energy consumption into 6 categories: cores plus L1 caches,
L2 caches, L3 caches, NoC, transceivers for the memory
channels, and memory stack (including both vault controllers
and the DRAM chips). They are indicated as a percentage
relative to the total energy.

The energy that is saved by moving from the wide-parallel
design to the near-memory design is primarily energy at-
tributed to L2 and L3 caches and memory channel transceivers.
This is largest in the applications with the highest memory/ops

ratio, and is much smaller in those applications with a lower
memory/ops ratio.

A final observation is that, across the board, all of the
applications’ energy consumption is dominated by core+L1
energy, a fact that is true for all three architectures we consider.
This points to a potential approach (left for future work) for
executing data integration workloads that exploits alternative
computational platforms, such as reconfigurable logic.

VII. CONCLUSION

Data integration is an important yet not well-explored
bottleneck for data analysis flows. In this paper, we char-
acterize data integration workloads based on localities and
memory/arithmetic operation intensity. Our characterization
reveals that most of data integration workloads have regular
memory access patterns and varying computation intensity.

We find that a near-memory processing architecture can ben-
efit data integration workloads both in terms of performance
and energy consumption. Our proposed near-memory system
outperforms the baseline/host system with 16 Arm Cortex-
A15 cores, exhibiting an average 3.5× speedup and 4.2×
energy efficiency improvement, by utilizing its highly parallel
128 Arm Cortex-A7 cores inside the stacked memory logic
layer. In addition, by comparing the baseline system and near-
memory system with an intermediate wide-parallel system, we
are able to attribute benefits separately to the availability of
abundant parallelism and memory proximity. While all of the
applications benefit from wide-parallel execution, the benefits
of memory proximity are more concentrated on applications
that have a high memory/ops ratio.

We conclude that near-memory processing is a promis-
ing strategy to improve the performance and reduce energy
consumption for data integration workloads. In the future,
we expect that a custom near-memory accelerator tailored to
these workloads will have even higher performance and lower
energy requirements.
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TABLE II
ENERGY CONSUMPTION OF DATA INTEGRATION WORKLOADS, EXPRESSED AS A FRACTION.

Core+L1 L2 L3 NoC SerDes Link Memory Stack

fix float
Baseline 71.6% 0.6% 0.6% 4.4% 9.8% 13.0%
Wide-Parallel 31.2% 2.2% 2.5% 13.0% 22.0% 29.1%
Near-Memory 48.3% 0.0% 0.0% 2.0% 0.0% 49.7%

ebc txt
Baseline 92.5% 0.2% 0.3% 1.4% 2.4% 3.2%
Wide-Parallel 73.2% 1.3% 1.5% 6.0% 7.7% 10.2%
Near-Memory 86.5% 0.0% 0.0% 0.7% 0.0% 12.7%

fa 2bit
Baseline 90.3% 0.1% 0.0% 3.7% 2.5% 3.3%
Wide-Parallel 65.0% 0.5% 0.2% 15.7% 8.0% 10.6%
Near-Memory 70.4% 0.0% 0.0% 1.2% 0.0% 28.4%

idx tiff
Baseline 90.3% 0.3% 0.4% 1.7% 3.2% 4.2%
Wide-Parallel 56.0% 2.0% 2.4% 9.1% 13.1% 17.4%
Near-Memory 73.9% 0.0% 0.0% 1.4% 0.0% 24.7%

2bit fa
Baseline 94.9% 0.2% 0.1% 2.0% 1.2% 1.6%
Wide-Parallel 81.1% 1.8% 0.8% 7.9% 3.6% 4.8%
Near-Memory 81.5% 0.0% 0.0% 0.9% 0.0% 17.6%

uni tiff
Baseline 93.9% 0.2% 0.2% 1.9% 1.6% 2.1%
Wide-Parallel 69.5% 1.5% 1.6% 10.9% 7.1% 9.4%
Near-Memory 74.0% 0.0% 0.0% 1.3% 0.0% 24.7%

fits tiff
Baseline 95.8% 0.2% 0.1% 1.7% 0.9% 1.2%
Wide-Parallel 80.4% 4.1% 0.7% 7.6% 3.1% 4.1%
Near-Memory 81.1% 0.0% 0.0% 0.8% 0.0% 18.1%

go csv
Baseline 97.0% 0.2% 0.2% 0.5% 0.9% 1.2%
Wide-Parallel 84.6% 1.2% 1.4% 3.0% 4.2% 5.6%
Near-Memory 90.5% 0.0% 0.0% 0.4% 0.0% 9.1%

opt tiff
Baseline 97.2% 0.1% 0.1% 0.5% 0.9% 1.2%
Wide-Parallel 86.1% 0.6% 0.7% 3.1% 4.1% 5.4%
Near-Memory 91.1% 0.0% 0.0% 0.3% 0.0% 8.6%

plt csv
Baseline 97.3% 0.1% 0.2% 0.5% 0.8% 1.1%
Wide-Parallel 86.2% 1.1% 1.3% 2.7% 3.7% 5.0%
Near-Memory 91.8% 0.0% 0.0% 0.4% 0.0% 7.8%

tst csv
Baseline 98.1% 0.1% 0.1% 0.3% 0.6% 0.8%
Wide-Parallel 89.7% 0.7% 0.8% 2.0% 2.9% 3.9%
Near-Memory 93.9% 0.0% 0.0% 0.3% 0.0% 5.9%

edge csr
Baseline 99.7% 0.0% 0.0% 0.2% 0.1% 0.1%
Wide-Parallel 97.4% 0.2% 0.1% 1.4% 0.3% 0.5%
Near-Memory 97.6% 0.0% 0.0% 0.1% 0.0% 2.3%


