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a b s t r a c t 

We revisit the classical problem of steady-state heat transfer from a single particle in a uniform laminar 

flow with the assumption that the thermal conductivity of the fluid changes linearly with the temper- 

ature. We use a combination of asymptotic and scaling analyses to derive approximate expressions for 

the dimensionless heat transfer coefficient, i.e., the Nusselt number Nu , of arbitrarily shaped particles. 

The results cover the entire range of the Peclet number Pe . We find that, for a constant temperature 

boundary condition and fixed geometry, the Nusselt number is essentially equal to the product of two 

terms, one of which is only a function of Pe while the other one is nearly independent of Pe and mainly 

depends on the proportionality constant of the conductivity-temperature relation. We also show that, in 

contrast, when a uniform heat flux is imposed on the surface of the particle, Nu can be estimated as a 

summation of a Pe -dependent piece and one that solely varies with the proportionality constant. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Heat transfer from a hot or cold object exposed to an exter- 

al fluid flow is arguably the most basic form of forced convec- 

ion heat transfer encountered in industrial processes and techno- 

ogical applications. When analyzing this category of heat trans- 

er problems, in many cases, it is well justified to assume that the 

uid properties such as density ρ, viscosity μ, specific heat c p , 

nd thermal conductivity k are constant. In general, this assump- 

ion renders the energy equation (the partial differential equation 

hat governs the distribution of the fluid temperature) linear and 

ecoupled from the Navier-Stokes equations (from which the fluid 

elocity field is determined). 

There exist, however, practical cases where at least one of the 

uid properties cannot realistically be considered constant. For in- 

tance, it has been shown that the effective thermal conductivity of 

anofluids increases considerably with the rising temperature (see 

.g., [1] ) or, for liquid metals, k has been found to vary roughly 

inearly with the temperature in a wide range of operating condi- 

ions (see, e.g., [2] ). The energy equation in these situations is no 

onger linear and, therefore, becomes more challenging to solve, 

hich is the cost of adding realism to the mathematical model of 

he underlying transport phenomenon. Perhaps for this reason, the 
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ajority of textbook examples and classical problems in convec- 

ive heat transfer from objects are solved under the assumption 

hat the fluid properties are constant. Hence, it is of both academic 

nd practical interest to revisit those problems with the goal of ex- 

ending their solutions to cases with variable fluid properties. To 

his end, here, we examine the steady-state transfer of heat from 

 particle via an externally driven laminar flow, with the premise 

hat the thermal conductivity of the fluid is a linear function of the 

emperature. 

Building on previous theoretical effort s on the subject (see, e.g., 

3–16] ), we derive approximate expressions for the Nusselt num- 

er of particles of arbitrary geometry. The derivations are based 

n asymptotic and scaling analyses. For completeness, we consider 

oth constant temperature and uniform heat flux boundary condi- 

ions on the surface of the particle. The results are presented for 

he full range of Peclet number Pe . In what follows, we first de- 

cribe the problem we wish to solve ( Section 2 ). Then, we present

he solutions for the above-mentioned surface conditions ( Section 

 and Section 4 ). The validity ranges of the solutions are discussed 

ext ( Section 5 ) and a brief summary is given in the end ( Section

 ). 

. Problem statement 

Consider a laminar, steady-state, incompressible flow with ve- 

ocity u past a stationary object of arbitrary geometry and char- 

cteristic length � . Suppose that the free-stream velocity takes the 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121067
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orm of U ∞ = U ∞ e , where U ∞ = | U ∞ | is a constant and e is a unit
ector, and that the temperature approaches a constant value, de- 

oted T � ∞ 
, at large distances from the particle. Also, let the thermal 

onductivity of the fluid vary with the dimensionless temperature 

s k = k 0 ( 1 + βT ) , with k 0 and β being the far-field conductiv- 

ty and a constant parameter, respectively. Then, neglecting viscous 

issipation, the equation that governs the steady-state distribution 

f T outside the particle is 

e u · ∇ T = ∇ · [ ( 1 + β T ) ∇ T ] , (1) 

here the Peclet number is defined as Pe = ρU ∞ c p �/k 0 . The 

oundary conditions associated with Eq. (1) are 

 = 1 for r ∈ S p and lim 

r→∞ 

T = 0 (2) 

or the case in which the surface of the particle S p is held at a

onstant temperature T s , and 

 1 + β T ) 
(
n · ∇ T 

)
= −1 for r ∈ S p and lim 

r→∞ 

T = 0 (3) 

or the one where a uniform heat flux q s is applied on S p . Here,

 is the position vector with magnitude r = | r | and n is the unit 
ector outward normal to the surface of the particle. Furthermore, 

he length and fluid velocity are non-dimensionalized, respectively, 

y � and U ∞ , whereas the dimensionless temperature is defined as 

ither 

T � − T � ∞ 

T � s − T � ∞ 

or 
T � − T � ∞ 

q s �/k 0 
, (4) 

onsistent with the boundary conditions in Eqs. (2) and (3) . The 

tar superscript is used to denote the dimensional temperature. 

A key dimensionless quantity in analyzing the boundary-value 

roblems described by Eqs. (1) –(3) is the average Nusselt number, 

hich can be defined as 

u 
T 

= −1 + β

2 π

∫ 
S p 

n · ∇ T d S (5) 

or the problem with a prescribed temperature on the surface of 

he particle (see Eq. (2) ) and as 

u 
Q 

= 

S p 

2 π T 
(6) 

or the one with a prescribed heat flux on S p (see Eq. (3) ), where

 p represents the dimensionless surface area of the particle and T 

s the mean value of T on S p . In the following sections, we seek to

evelop approximate formulas for the variations of Nu 
T 
and Nu 

Q 

ith Pe and β . 

. Variation of Nu 
T 
as a function of Pe and β

We begin the derivation of Nu 
T 
by first considering the asymp- 

otic limits of small and large Peclet numbers and then bridging 

he gap between the two limits by introducing a smooth transition 

unction. Our approach builds on ideas presented in the classical 

orks on the topic of heat and mass transfer from an isolated par- 

icle in uniform flows (see, e.g., [5–7,17–19] ). 

.1. Limit of conduction-dominated heat transport 

Suppose conduction is the dominant mode of heat transport, 

.e., Pe � 1 , but finite. In this limit, an effective approach for deal- 

ng with the nonlinearity of Eq. (1) is to make a change of variable

rom T to θ such that 

= 

1 

k 

∫ T 
k ( T ) d T = 

∫ T 
( 1 + βT ) d T = 

β

2 
T 2 + T . (7) 
0 0 0 

2 
his is known as the Kirchhoff transformation (see, e.g., [6,10] ), 

ith the reference temperature set to T = 0 for convenience. It fol- 

ows from Eq. (7) that 

u 
T 

= − 1 

2 π

∫ 
S p 

n · ∇ θ d S, (8) 

here 

e u · ∇ θ√ 

1 + 2 β θ
= ∇ 

2 θ, with 

= 1 + β/ 2 for r ∈ S p and lim 

r→∞ 

θ = 0 . 

(9) 

Our goal is to obtain an asymptotic expression for Nu 
T 
, and, to 

hat end, we proceed with a singular perturbation expansion of θ
n terms of Pe (see, e.g, [6,17,20] ). In particular, we assume that, in 

he vicinity of the particle, θ can be expressed as 

= θ (0) + Pe θ (1) + o( Pe ) , (10) 

hich is known as the inner expansion of θ . Upon substitution of 
q. (10) into Eqs. (8) and (9) , we obtain 

u T = Nu ( 0 ) 
T 

+ Pe Nu ( 1 ) 
T 

+ o ( Pe ) 

= − 1 

2 π

[∫ 
S p 

n · ∇ θ ( 0 ) d S + Pe 

∫ 
S p 

n · ∇ θ ( 1 ) d S 

]
+ o ( Pe ) , 

(11) 

 
2 θ ( 0 ) = 0 with θ ( 0 ) = 1 + β/ 2 for r ∈ S p . (12) 

ar from the particle, on the other hand, we consider θ to take the 

orm of 

˜ = Pe ˜ θ (1) + o( Pe ) . (13) 

his is called the outer expansion of θ, where the tilde overbar de- 

otes that the transformed temperature field is written as a func- 

ion of the rescaled position vector 

˜  = Pe r with ˜ r = | ̃ r | . (14) 

ewriting Eq. (9) in terms of ˜ r and replacing Eq. (13) for ˜ θ, we find

 · ˜ ∇ ̃
 θ (1) = 

˜ ∇ 
2 ̃  θ (1) with lim 

˜ r →∞ 

˜ θ (1) = 0 , (15) 

ith ˜ ∇ and ˜ ∇ 
2 operators representing derivatives with respect to 

he stretched coordinates. The inner and outer expansions are re- 

uired to match asymptotically, i.e., 

lim →∞ 

θ = lim 

˜ r → 0 

˜ θ . (16) 

nforcing the above equation at every order of Pe furnishes the 

issing boundary conditions of Eqs. (12) and (15) . Following Bren- 

er [17] , the zeroth-order inner solution away from the particle 

nd the first-order outer solution can be written, respectively, as 

(0) = 

Nu (0) 
T 

2 r 
+ O (r −3 ) = Pe 

Nu (0) 
T 

2 ̃ r 
+ O ( Pe −3 ) , (17) 

˜ (1) = 

Nu (0) 
T 

2 ̃ r 
exp 

[ 
−1 

2 
( ̃ r − e · ˜ r ) 

] 
, (18) 

here r is measured from a proper origin located at the particle’s 

heat center”. 

Now, we take a shortcut approach that allows us to calculate 

u (1) 
T 

without directly solving for θ (1) . The technique is based 

n Greens second identity and falls under the general framework 

f the reciprocal theorem (see, e.g., [20–23] ). First, we multiply 

q. (12) by θ and Eq. (9) by θ (0) . Next, we subtract the resulting 

quations and make some rearrangements to arrive at 

 ·
(
θ ∇ θ (0) 

)
= ∇ ·

(
θ (0) ∇ θ

)
− Pe u · θ (0) ∇ θ√ 

1 + 2 β θ
. (19) 
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hen, we integrate Eq. (19) over the fluid domain V and use the 

ivergence theorem to reach 

 

S p 

θ n · ∇ θ (0) d S = 

∫ 
S p 

θ (0) n · ∇ θ d S + Pe 

∫ 
V 

u · θ (0) ∇ θ√ 

1 + 2 β θ
d V. 

(20) 

ote that the contributions from surfaces at infinity (denoted by 

 ∞ ) vanish because the integrands decay faster than d S grows at 

arge distances from the particle. Eq. (20) can be simplified to 

u 
T 

= Nu ( 0 ) 
T 

+ 

Pe 

2 π( 1 + β/ 2 ) 

∫ 
V 

u · θ ( 0 ) ∇ θ√ 

1 + 2 β θ
d V (21) 

y applying the boundary conditions on S p . 

Inspecting Eqs. (21) , (13), (11) , and (10) , we determine that 

u (1) 
T 

= 

1 

2 π( 1 + β/ 2 ) 

×
[ ∫ 

V 

u · θ (0) ∇ θ (0) √ 

1 + 2 β θ (0) 
d V + e ·

∫ 
R 3 

˜ θ (0) ˜ ∇ 

(
˜ θ (1) − ˜ θ (0) 

)
d ̃ r 

] 

,

(22) 

here the second integral on the right-hand side is over the entire 

hree-dimensional real space R 
3 and ˜ θ (0) = Nu (0) 

T 
/ 2 ̃ r . We proceed 

ith evaluating the integral appearing first on the right-hand side 

f Eq. (22) . To that effect, we convert this volume integral into a 

air of surface integrals as 

 

V u · θ ( 0 ) ∇ θ ( 0 ) √ 

1 + 2 β θ ( 0 ) 
d V 

= 

1 

3 β2 

∫ 
V 

∇ ·
[ √ 

1 + 2 β θ ( 0 ) 
(
βθ ( 0 ) − 1 

)
u 

] 
d V 

= − 1 

3 β2 

[∫ 
S p 

√ 

1 + 2 β θ ( 0 ) 
(
β θ ( 0 ) − 1 

)
n · u d S 

+ 

∫ 
S ∞ 

√ 

1 + 2 β θ ( 0 ) 
(
β θ ( 0 ) − 1 

)
n · u d S 

] 
. 

(23) 

ue to no penetration condition, n · u = 0 on S p . Also, 
 

S ∞ 
n · u d S = 0 (24) 

ecause the flow is incompressible (i.e, ∇ · u = 0 ). Therefore, the 

alues of both surface integrals in Eq. (23) amount to zero, which 

eans that the volume integral is zero, too. Additionally, 

 ·
∫ 
R 3 

˜ θ (0) ˜ ∇ ̃
 θ (0) d ̃ r 

= −
(
Nu (0) 

T 

)2 
4 

∫ ∞ 

0 

1 

˜ r 

∫ π

0 

sin 
2 θ

∫ 2 π
0 

cos ϕ d ϕ d θ d ̃ r = 0 . (25) 

ncorporating these results, we find (after algebraic manipulations) 

hat 

u (1) 
T 

= 

(
Nu (0) 

T 

)2 
8 π( 1 + β/ 2 ) 

∫ 
R 3 

e · ˜ r 
˜ r 4 

exp 

[ 
−1 

2 
( ̃ r − e · ˜ r ) 

] 
d ̃ r 

= 

(
Nu (0) 

T 

)2 
4 ( 1 + β/ 2 ) 

. (26) 

he evaluation of the volume integral over R 
3 is detailed by 

ehdashti and Masoud [20] . 

Replacing for Nu (1) 
T 

in Eq. (11) , we have 

u 
T 

= ( 1 + β/ 2 ) 

[ 

Nu (0) 
T 

1 + β/ 2 
+ 

Pe 

4 

(
Nu (0) 

T 

1 + β/ 2 

)2 

+ o( Pe ) 

] 

= ( 1 + β/ 2 ) 

[ 

Nu (0) 
T, 0 

+ Pe 

(
Nu (0) 

T, 0 

)2 
4 

+ o( Pe ) 

] 
3 
= ( 1 + β/ 2 ) Nu T, 0 
+ o( Pe ) , (27) 

here Nu 
T, 0 

and Nu (0) 
T, 0 

are the Nusselt numbers corresponding, re- 

pectively, to β = 0 and to β = 0 and Pe = 0 . In other words, the

ormer is the constant conductivity Nusselt number and the lat- 

er is the constant conductivity pure conduction Nusselt number. 

emember that Eq. (12) describes a linear boundary value prob- 

em and, therefore, changing its boundary condition on S p from 

= 1 + β/ 2 to θ = 1 alters the respective Nusselt number by a fac-

or of ( 1 + β/ 2 ) 
−1 

. 

Eq. (27) indicates that, to the leading order in Pe , Nu 
T 

is the 

roduct of a β-dependent term and the constant-conductivity Nus- 

elt number, which depends on Pe and the geometry of the parti- 

le. It is worth emphasizing that this relation was derived with no 

estriction on the flow Reynolds number, defined as Re = ρU ∞ �/μ. 

ven no-slip condition was not necessary. The only conditions en- 

orced were the flow incompressibility and no flow penetration 

nto the particle. Lastly, we note that Eq. (27) recovers the clas- 

ical result of Brenner [17] for β = 0 and generalizes the work of 

olyanin [6] for the special case of Stokes flow (i.e., Re = 0 ). 

.2. Limit of advection-dominated heat transport 

Suppose the transport of heat is dominated by advection, i.e., 

e � 1 . In this limit, the temperature outside the particle ap- 

roaches T ∞ at short distances from S p . In other words, the tem- 

erature variations are confined to a narrow layer next to the 

oundary of the particle. Here, similar to Section 3.1 , we aim for 

eveloping an asymptotic approximation for the Nusselt number. 

Assuming that S p is smooth, we follow Polyanin [5] and adopt 

 generalized boundary layer coordinate system ( x , y , z ) , with the 

orresponding unit vectors e x , e y , and e z , and associated metric 

oefficients h x , h y , and h z . Remember that, throughout the paper, 

ll lengths are non-dimensionalized by � . The y component in this 

ystem measures the distance from the surface of the particle and, 

hus, e y = n at y = 0 (i.e., at S p ). The direction of the x coordinate 
s chosen to be the same as the component of the fluid velocity 

ector projected onto the plane normal to e y . The direction of the 

hird coordinate is then determined by e z = e x × e y . 

Eq. (1) , written in terms of the ( x , y , z ) coordinates, takes the
orm of 

e 

(
u x 

h x 

∂T 

∂ x 
+ 

u y 

h y 

∂T 

∂ y 

)
= 

1 

h x h y h z 

{
∂ 

∂ x 

[
h y h z 

h x 

∂ 

∂ x 

(
T + 

β

2 
T 2 

)]

+ 

∂ 

∂ y 

[
h x h z 

h y 

∂ 

∂ y 

(
T + 

β

2 
T 2 

)]
+ 

∂ 

∂ z 

[
h x h y 

h z 

∂ 

∂ z 

(
T + 

β

2 
T 2 

)]}
ith T = 1 at y = 0 and lim 

y →∞ 

T = 0 . (28) 

n the above equation, 

 x = 

1 

h y h z 

∂


∂ y 
and u y = − 1 

h x h z 

∂


∂ x 
(29) 

re the velocity components in the x and y directions, respectively, 
here 
 is a pseudo stream function. Note that u z is zero per 

he definition of the generalized boundary layer coordinate system. 

iven that the distribution of temperature is restricted to a thin re- 

ion close to S p , it is convenient to expand the metric coefficients 

nd 
 about y = 0 as 

 x = h x , 0 ( x , z ) + h x , 1 ( x , z ) y + · · · , (30) 

 y = 1 , (31) 

 z = h z , 0 ( x , z ) + h z , 1 ( x , z ) y + · · · , (32) 
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T

= 

1 

2 

2 ( x , z ) y 2 + · · · , (33) 

here 

2 = 

(
h z 

∂u x 
∂ y 

)
y =0 

= h z , 0 τ0 , (34) 

ith τ0 being the dimensionless shear stress at the surface of the 

article. To ensure the validity of Eq. (33) , the Prandtl number Pr = 

 p μ/k 0 is assumed to be large. Needless to say, both 
 and ∂
/∂ y 
re zero at y = 0 , due to the no-slip condition. 

The thickness of the temperature boundary layer is known to 

cale with Pe −1 / 3 
, which results from equating the order of mag- 

itude of the advective and conductive terms within the boundary 

ayer (see, e.g., [18,19] ). Considering this scaling and the structure 

f Eq. (28) , we proceed with expanding T and Nu 
T 
as 

 = T (0) ( x , ̃  y , z ) + O ( Pe −1 / 3 ) , (35) 

u 
T 

= Pe 1 / 3 Nu (0) 
T 

+ O (1) (36) 

nd with making the following change of variables: 

 = Pe 1 / 3 y , (37) 

 = 

∫ x 

x 0 
h x , 0 h z , 0 d ̂ x . (38) 

ext, we rewrite Eq. (28) to the leading order in Pe as 

 
2 
∂T (0) 

∂ X 
− Y 2 

2 

∂
2 

∂ X 
∂T (0) 

∂ Y 
= 

∂ 2 

∂ Y 2 

[
T (0) + 

β

2 

(
T (0) 

)2 ]
ith T (0) = 1 at Y = 0 and lim 

Y →∞ 

T (0) = 0 . (39) 

q. (39) can be further simplified to its self-similar form 

d 2 

dη2 

[
T (0) + 

β

2 

(
T (0) 

)2 ] + 3 η2 dT 
(0) 

dη
= 0 with 

 
(0) = 1 at η = 0 and lim 

η→∞ 

T (0) = 0 , (40) 

here the new independent variable η is defined, according to the 

on Mises transformation, via 

= 

√ 


2 

(
9 

∫ X 

X 0 

√ 


2 d ̂ X 

)−1 / 3 

Y . (41) 

aking everything into account, the leading-order term in the Nus- 

elt number expansion can be expressed as 

u ( 0 ) 
T 

= −
(
1 + β

2 π

)∫ 
S p 

∂T ( 0 ) 

∂ ̃  y 

∣∣∣∣
˜ y =0 

d S 

= −
(
1 + β

4 π

)
dT ( 0 ) 

dη

∣∣∣∣
η=0 

∫ z max 

z min 

(∫ X max 

X min 

√ 

3 
2 d X 

)2 / 3 

d z 

= ( 1 + β) 
dT ( 0 ) 

dη

∣∣∣∣
η=0 

( 

dT ( 0 ) 

dη

∣∣∣∣
η=0 , β=0 

) −1 

Nu ( 0 ) 
T, 0 

= −

(
4 

3 

)
( 1 + β) 

dT ( 0 ) 

dη

∣∣∣∣
η=0 

Nu ( 0 ) 
T, 0 

, 

(42) 

here Nu (0) 
T, 0 

represents the value of Nu (0) 
T 

corresponding to β = 

 . Of course, Eq. (42) reproduces the classical results of Lighthill 

24] and Acrivos [25] . We demonstrate, in Appendix A , that the 

refactor c is 

 = −

(
4 

3 

)
( 1 + β) 

dT (0) 

dη

∣∣∣∣
η=0 

≈
(
1 + 

3 β

5 

)2 / 3 

. (43) 
4 
ence, we obtain 

u 
T 

≈
(
1 + 

3 β

5 

)2 / 3 

Nu 
T, 0 

+ O (1) , (44) 

ith Nu 
T, 0 

denoting the Nusselt number for the case of β = 0 . 

.3. Bridging results for limits of low and high Peclet numbers 

The results of the previous two subsections can be described 

uccinctly as 

Nu 
T 

Nu 
T, 0 

≈
(
1 + 

β

2 

)
for Pe � 1 

Nu 
T 

Nu 
T, 0 

≈
(
1 + 

3 β

5 

)2 / 3 

for Pe � 1 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

⇒ 

Nu 
T 

Nu 
T, 0 

≈ ( 1 + a β) 
b 
, 

(45) 

here 1 / 2 � a � 3 / 5 and 2 / 3 � b � 1 . The functional dependency

f these two parameters on the Peclet number may be formulated 

s 

 ≈ ( 3 / 5 ) 
√ 

Pe + a 0 √ 

Pe + 2 a 0 
, (46) 

 ≈ ( 2 / 3 ) 
√ 

Pe + b 0 √ 

Pe + b 0 
, (47) 

here 

 0 = 5 . 78 and b 0 = 5 . 90 . (48) 

he above relations are motivated by the full numerical solution 

f Eq. (1) , subject to the boundary conditions in Eq. (2) , for sev-

ral basic particle shapes. The accuracy of the predictions made by 

qs. (45) –(48) and the details of the numerical solutions will be 

iscussed in Section 5 . Note that, for some simple geometries, ap- 

roximate formulas are available for Nu 
T, 0 

(see, e.g., [20] and refer- 

nces therein). 

Overall, our asymptotic analyses in this section (summarized by 

q. (5) ) suggest that the ratio between the Nusselt number and 

ts corresponding value for the case of constant conductivity (i.e., 

= 0 ) is approximately equal to a term that is mainly a function of

, while being weakly dependent on Pe . It is important to empha- 

ize that this result was derived for particles of arbitrary shape un- 

er a fairly general flow condition, namely a laminar, steady-state, 

ncompressible flow. We have only demanded the Prandtl number 

o be large when the Peclet number is high. 

. Variation of Nu 
Q 

as a function of Pe and β

In Section 3 , we considered Eq. (1) assuming that the surface of 

he particle is held at a constant temperature (see Eq. (2) ). There, 

he assumption of a Dirichlet boundary condition on S p allowed us 

o effectively employ the Kirchhoff and von Mises transformations 

for, respectively, Pe � 1 and Pe � 1 ) to develop a nearly analyt- 

cal formula for Nu 
T 
. Unfortunately, neither techniques can be di- 

ectly applied to find the general form of the Nusselt number when 

 uniform heat flux is imposed on S p . That a Neumann bound- 

ry condition is more challenging to deal with analytically than its 

irichlet counterpart is a known matter (see, e.g., [20] ). Despite 

his difficulty, we derive an estimate for Nu 
Q 

with the aid of the 

ollowing scaling arguments. 

.1. Limit of conduction-dominated heat transport 

Consider the limit of Pe � 1 , and, accordingly, an inner expan- 

ion of the form 

 = T (0) + Pe T (1) + · · · (49) 
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or the temperature, where 

 ·
[(
1 + β T ( 0 ) 

)∇ T ( 0 ) 
]

= 0 with 

1 + β T ( 0 ) 
)(
n · ∇ T ( 0 ) 

)
= −1 

or r ∈ S p and lim 

r→∞ 

T ( 0 ) = 0 

(50) 

nd 

 · ∇ T ( 0 ) = ∇ 
2 
(
T ( 1 ) + β T ( 0 ) T ( 1 ) 

)
with 

 · ∇ 

(
T ( 1 ) + β T ( 0 ) T ( 1 ) 

)
= 0 for r ∈ S p . 

(51) 

pplying the Kirchhoff transformation (see Eq. (7) ), it can be 

hown that 

 
(0) = 

√ 

1 + 2 β θ (0) − 1 

β
, (52) 

here 

∇ 
2 θ ( 0 ) = 0 with 

 · ∇ θ ( 0 ) = −1 for r ∈ S p and lim 

r→∞ 

θ ( 0 ) = 0 . (53) 

dditionally, consistent with Eq. (49) , the Nusselt number can be 

xpressed as 

u 
Q 

= 

S p 

2 π T 
(0) 

( 

1 − Pe 
T 

(1) 

T 
(0) 

) 

+ · · ·

= Nu (0) 
Q 

+ Pe Nu (1) 
Q 

+ · · · , (54) 

here the overbar indicates average over S p (see also Eq. (6) ). 

he zeroth-order Nusselt number is determined by the solution of 

q. (53) , with its dependency on β obeying Eq. (52) . How about 

he dependency of Nu (1) 
Q 

on β? To find this out, we examine the 

imits of small and large β . 

Suppose β � 1 , in which case we can write 

u (1) 
Q 

= Nu (1) 
Q, 0 

+ β Nu (1) 
Q, 1 

+ · · · . (55) 

ince both Pe and β are small, then, we need to only retain Nu (1) 
Q, 0 

n the above expansion. This means that, to the leading order, 

u (1) 
Q 

is independent of β . Now, assume β � 1 . Eqs. (52) and 

51) suggest that, in this limit, 

 
(0) ∼ 1 √ 

β
and T (1) ∼ 1 

β
. (56) 

ence, we conclude that, again, to the leading order, Nu (1) 
Q 

is inde- 

endent of β . Given the behavior of Nu (1) 
Q 

in its asymptotic limits, 

t is reasonable to approximate Nu 
Q 
for small Peclet numbers as a 

ummation of two terms: one that only depends on β and another 

ne that solely changes with Pe . 

.2. Limit of advection-dominated heat transport 

Consider the limit of Pe � 1 , where the thermal boundary layer 

hrinks at a rate proportional to Pe −1 / 3 . In this case, the tempera- 

ure and Nusselt number can be described as (see, e.g., [20] ) 

 = Pe −1 / 3 T (0) + Pe −2 / 3 T (1) + · · · , (57) 

u 
Q 

= 

S p 

2 π T 
(0) 

( 

Pe 1 / 3 − T 
(1) 

T 
(0) 

) 

+ · · · . (58) 

here, upon substituting for T in Eqs. (1) and (3) , we have (in gen-

ralized boundary layer coordinates) 

 
2 
∂T (0) 

∂ X 
− Y 2 

2 

∂
2 

∂ X 
∂T (0) 

∂ Y 
= 

∂ 2 T (0) 

2 
∂ Y 

5 
ith 
∂T (0) 

∂ Y 
= −1 at Y = 0 and lim 

Y →∞ 

T (0) = 0 . (59) 

q. (59) does not depend on β and, in fact, is identical to the one 

or β = 0 . Recognizing that T 
(0) 

is not a function of β, we deduce 

rom Eq. (58) that Nu 
Q 

for large Peclet numbers is approximately 

qual to the sum of a Pe -dependent term and one that only varies 

ith β . 

.3. Bridging results for limits of low and high Peclet numbers 

The main takeaway point of our scaling analyses in Section 

.1 and Section 4.2 is that Nu 
Q 

may be estimated as the summa- 

ion of two terms, one of which is a function of Pe and the other 

ne is a function of β . As a unified formula, we, therefore, propose 

u 
Q 

≈ Nu 
Q, 0 

+ 

(
Nu c 

Q 
− Nu c 

Q, 0 

)
, (60) 

here Nu 
Q, 0 

represents the value of Nu 
Q 

for β = 0 (i.e., for con- 

tant conductivity) and the superscript c denotes the Nusselt num- 

er corresponding to Pe = 0 (i.e, conduction Nusselt number). The 

bove approximation possesses the required form and has zero er- 

or for the cases of Pe = 0 and β = 0 . We will test the validity of

q. (6) in Section 5 . 

Before we conclude this section, it is worth emphasizing that, 

or certain geometries, fairly accurate estimates of Nu 
Q, 0 

exist in 

he literature (see, e.g., [20] ). Furthermore, we have discovered em- 

irically that 

u c 
Q 
= 

S p β

2 π

(√ 

1 + 2 β θ (0) − 1 

)−1 

≈ S p β

2 π

(√ 

1 + 2 β θ (0) − 1 

)−1 

= 

S p β

2 π

( √ 

1 + 

S p β

π Nu c 
Q, 0 

− 1 

) −1

(61) 

q. (61) is exact for a spherical particle and found to be unexpect- 

dly precise for other particle shapes such as ellipsoids, cylinders, 

ones, and cubes. 

. Comparison with direct numerical solution of Eq. (1) 

In Section 3 and Section 4 , we presented approximate formu- 

ations for Nu 
T 
and Nu 

Q 
via perturbation analyses in the asymp- 

otic limits of Pe and β . To give an idea about the estimation er- 

or of the proposed formulas, here, we compare their predictions 

or spherical, cubic, and ellipsoidal particles against the results ob- 

ained from the full numerical solution of the problems described 

n Section 2 . A finite-element approach, as implemented in COM- 

OL Multiphysics [26,27] , is employed to carry out the computa- 

ions. We first solve the steady-state incompressible Navier-Stokes 

quations for the fluid flow, and, then, use the calculated veloc- 

ty field u to compute the solution of Eq. (1) for the temper- 

ture distribution T . The flow and advection-diffusion equations 

re solved iteratively, while discretized by P2+P1 and quadratic 

agrange schemes, respectively. The outer boundary at infinity is 

odeled as a large sphere, whose center coincides with the center 

f the particle. Specifically, the diameter of the sphere is set to 200 

imes the characteristic length of the particle. We use tetrahedral 

lements to mesh the computational domain such that the grid 

ensity is the highest near the particle. Grid-independence studies 

re performed to ensure that the results change only marginally if 

he mesh is globally refined. 

Figs. 1 and 2 show the outcome of our calculations for Nu 
T 

nd Nu 
Q 
, respectively. The results are presented in the form of �

ersus Pe plots for β = 0 . 1 , 1 , 10 and Re = 0 . 1 , 1 , 10 , where the
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Fig. 1. Percent difference � between the results of full numerical simulations and the predictions of Eq. (5) for Nu 
T 
of spherical (first row), cubic (second row), and ellipsoidal 

(bottom three rows) particles. The plots of � versus Pe in the left, middle, and right columns are for Re = 0 . 1 , 1, and 10, respectively. The graphs in the third, fourth, and fifth 

rows are for flows along the principal axes of the ellipsoid with semi-axis lengths of, respectively, a , b , and c , where b / a = 2 / 3 and c / a = 1 / 3 . Note that the characteristic 

length � is set to the radius for the sphere, to half the side length for the cube, and to the largest semi-axis for the ellipsoid. 
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arameter � is defined as the percent difference between the di- 

ectly computed and predicted values of the Nusselt number. Each 

gure consists of fifteen sub-figures that are organized into five 

ows and three columns. The sub-figures in the left, middle, and 

ight columns correspond to Re = 0 . 1 , 1, and 10, respectively. Also, 

hose in the first and second rows belong to spherical and cubic 

articles, whereas the rest are for an ellipsoidal particle of semi- 

xis lengths a , b , and c , where b / a = 2 / 3 and c / a = 1 / 3 . Within the

ottom three rows, the plots in the first, second, and third rows are 

or flows along the principal axes of the ellipsoid associated with 

 , b , and c , respectively. Note that, in calculating the Nusselt and

eclet numbers the characteristic length � is set to the radius for 
6 
he sphere, to half the side length for the cube, and to the largest 

emi-axis for the ellipsoid. 

Overall, we see that the predictions of Eqs. (5) and (6) are quite 

ccurate, with the absolute value of � being less than 16 . 5% for 

ll the cases considered. The approximations are more precise for 

articles with more streamlined shapes. Also, as expected, the es- 

imations deviate the most from the numerical results when β
nd Re are large and Pe is in the intermediate range. Perhaps sur- 

risingly, however, � is very small for β � O (1) , irrespective of 

ts corresponding Reynolds and Peclet numbers. Another observa- 

ion that can be made is that � is mostly positive in the plots of 

ig. 1 whereas it is mainly negative in those of Fig. 2 . Note that
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Fig. 2. Percent difference � between the results of full numerical simulations and the predictions of Eq. (6) for Nu 
Q 

of spherical (first row), cubic (second row), and 

ellipsoidal (bottom three rows) particles. The plots of � versus Pe in the left, middle, and right columns are for Re = 0 . 1 , 1, and 10, respectively. The graphs in the third, 

fourth, and fifth rows are for flows along the principal axes of the ellipsoid with semi-axis lengths of, respectively, a , b , and c , where b / a = 2 / 3 and c / a = 1 / 3 . Note that 

the characteristic length � is set to the radius for the sphere, to half the side length for the cube, and to the largest semi-axis for the ellipsoid. 
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is defined such that it is positive when the predicted Nusselt 

umber overestimates the numerically calculated one. Lastly, for 

he same shape, Re , and β, the Peclet number at which the ap- 

roximation error is maximum is generally higher for Nu 
Q 

than it 

s for Nu 
T 
. 

. Summary 

We studied the problem of forced convection heat transfer 

rom a particle of arbitrary shape immersed in an unbounded 

uid whose thermal conductivity varies linearly with the temper- 

ture. Assuming a uniform free-stream flow, we employed asymp- 
7 
otic as well as scaling analyses to develop approximate relations 

or the variations of the Nusselt number with the Peclet number 

nd the slope of the (normalized) conductivity-temperature curve. 

e considered both constant temperature and uniform heat flux 

oundary conditions on the surface of the particle, and discov- 

red that, for the former, Nu 
T 

can be estimated as a product of 

 Pe -dependent term and one that primarily changes with β . We 

lso found that, for the latter, Nu 
Q 
may be approximated as a sum 

f a Pe -dependent piece and a β-dependent one. In a nutshell, 

ur derivations offer a straightforward way to estimate the Nus- 

elt number for any β by just knowing the Nusselt number corre- 

ponding to β = 0 , i.e., the constant conductivity Nusselt number. 



E. Dehdashti, M. Razizadeh and H. Masoud International Journal of Heat and Mass Transfer 171 (2021) 121067 

b

l

t

t

t

w

a

e

D

A

G

r

S

l

A

c

w

a

T

S

T

a

T

T

T

w

s

m

T

w

l

G

c

t

l

T

a

η

R

T

W

m

c

W

(

f

c

N

a

R

 

 

 

 

[  

 

 

We evaluated the generality and accuracy of our formulations 

y comparing their predictions for Nu 
T 
and Nu 

Q 
with those calcu- 

ated based on direct numerical solutions of the governing equa- 

ions. The comparisons confirmed that the proposed approxima- 

ions are valid over a wide range of parameters. More specifically, 

hey demonstrated that the estimation errors are remarkably low 

hen β � O (1) . Finally, it is worth noting that our formulations 

re equally applicable for approximating the Sherwood number in 

quivalent mass transfer problems. 
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ppendix A. Derivation of prefactor c

We wish to calculate 

 = −

(
4 

3 

)
( 1 + β) 

dT (0) 

dη

∣∣∣∣
η=0 

, (A.1) 

here T (0) satisfies Eq. (40) . We first consider the limit of β � 1 

nd proceed with a regular perturbation expansion of T (0) as 

 
(0) = T (0) 

0 
+ β T (0) 

1 
+ O (β2 ) . (A.2) 

ubstituting Eq. (A.2) in Eq. (40) , we find that 

d 2 T (0) 
0 

dη2 
+ 3 η2 

dT (0) 
0 

dη
= 0 with 

 

(0) 
0 

= 1 at η = 0 and lim 

η→∞ 

T (0) 
0 

= 0 (A.3) 

nd 

d 2 T (0) 
1 

dη2 
+ 3 η2 

dT (0) 
1 

dη
+ 

1 

2 

d 2 

dη2 

(
T (0) 
0 

)2 = 0 with 

 

(0) 
1 

= 0 at η = 0 and lim 

η→∞ 

T (0) 
1 

= 0 . (A.4) 

he solution of Eq. (A.3) is 

 

(0) 
0 

= 1 − 1 


(4 / 3) 

∫ η

0 

exp 
(
− ˆ η3 

)
d ̂  η (A.5) 

hich is derived using the integrating factor method. Applying the 

ame approach to Eq. (A.4) , we obtain (after some mathematical 

anipulations) 

 

(0) 
1 

= 

dT (0) 
1 

dη

∣∣∣∣
η=0 


(4 / 3) 
(
1 − T (0) 

0 

)
−

(
1 − T (0) 

0 

)2 
2 

− 1 

[ 
(4 / 3) ] 
2 

∫ η

0 

exp 
(
− ˆ η3 

)
×

[

(4 / 3) ˆ η3 T (0) 

0 
+ 

∫ ˆ η

0 

ˆ ˆ η3 exp 

(
− ˆ ˆ η3 

)
d ̂  ˆ η

]
d ̂  η, 

(A.6) 

here the first term on the right-hand side is numerically calcu- 

ated (by enforcing the boundary condition at infinity) to be 

dT (0) 
1 

dη

∣∣∣∣
η=0 

= 0 . 667 . (A.7) 
8 
iven Eqs. (A.2) , (A.5) , and (A.7) , for small β, we can write 

 = 1 + 

[ 

1 − 

(
4 

3 

)
dT (0) 

1 

dη

∣∣∣∣
η=0 

] 

β + O (β2 ) 

= 1 + 0 . 404 β + O (β2 ) . (A.8) 

Now, suppose β � 1 , while β � Pe and β � Pr . We realize, 

hrough inspecting Eq. (40) , that d T (0) /d η scales with β−1 / 3 in this 

imit. Informed by this scaling, we expand T (0) as 

 
(0) = T (0) 

0 
+ O (β−1 / 3 ) (A.9) 

nd introduce 

˜ = β−1 / 3 η. (A.10) 

eplacing for T (0) and η in Eq. (40) , we then arrive at 

d 2 

d ̃  η2 

[ (
T (0) 
0 

)2 ] + 6 ˜ η2 
dT (0) 

0 

d ̃  η
= 0 with 

 

(0) 
0 

= 1 at ˜ η = 0 and lim 

˜ η→∞ 

T (0) 
1 

= 0 . (A.11) 

e solve the above nonlinear ordinary differential equation nu- 

erically and determine that 

 = −

(
4 

3 

)
dT (0) 

0 

d ̃  η

∣∣∣∣
˜ η=0 

β2 / 3 + O (β1 / 3 ) 

= 0 . 710 β2 / 3 + O (β1 / 3 ) . (A.12) 

hat is truly surprising, based on the results of Eqs. (A.8) and 

A.12) , is that the prefactor c is very well approximated by a single 

ormula (for the entire range of β) as 

 ≈
(
1 + 

3 β

5 

)2 / 3 

. (A.13) 

ote that the above expression captures both low- and high- β
symptotes remarkably well. 
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