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flow with the assumption that the thermal conductivity of the fluid changes linearly with the temper-
ature. We use a combination of asymptotic and scaling analyses to derive approximate expressions for
the dimensionless heat transfer coefficient, i.e., the Nusselt number Nu, of arbitrarily shaped particles.
The results cover the entire range of the Peclet number Pe. We find that, for a constant temperature
boundary condition and fixed geometry, the Nusselt number is essentially equal to the product of two
terms, one of which is only a function of Pe while the other one is nearly independent of Pe and mainly
depends on the proportionality constant of the conductivity-temperature relation. We also show that, in
contrast, when a uniform heat flux is imposed on the surface of the particle, Nu can be estimated as a

summation of a Pe-dependent piece and one that solely varies with the proportionality constant.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Heat transfer from a hot or cold object exposed to an exter-
nal fluid flow is arguably the most basic form of forced convec-
tion heat transfer encountered in industrial processes and techno-
logical applications. When analyzing this category of heat trans-
fer problems, in many cases, it is well justified to assume that the
fluid properties such as density p, viscosity w, specific heat cp,
and thermal conductivity k are constant. In general, this assump-
tion renders the energy equation (the partial differential equation
that governs the distribution of the fluid temperature) linear and
decoupled from the Navier-Stokes equations (from which the fluid
velocity field is determined).

There exist, however, practical cases where at least one of the
fluid properties cannot realistically be considered constant. For in-
stance, it has been shown that the effective thermal conductivity of
nanofluids increases considerably with the rising temperature (see
e.g., [1]) or, for liquid metals, k has been found to vary roughly
linearly with the temperature in a wide range of operating condi-
tions (see, e.g., [2]). The energy equation in these situations is no
longer linear and, therefore, becomes more challenging to solve,
which is the cost of adding realism to the mathematical model of
the underlying transport phenomenon. Perhaps for this reason, the
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majority of textbook examples and classical problems in convec-
tive heat transfer from objects are solved under the assumption
that the fluid properties are constant. Hence, it is of both academic
and practical interest to revisit those problems with the goal of ex-
tending their solutions to cases with variable fluid properties. To
this end, here, we examine the steady-state transfer of heat from
a particle via an externally driven laminar flow, with the premise
that the thermal conductivity of the fluid is a linear function of the
temperature.

Building on previous theoretical efforts on the subject (see, e.g.,
[3-16]), we derive approximate expressions for the Nusselt num-
ber of particles of arbitrary geometry. The derivations are based
on asymptotic and scaling analyses. For completeness, we consider
both constant temperature and uniform heat flux boundary condi-
tions on the surface of the particle. The results are presented for
the full range of Peclet number Pe. In what follows, we first de-
scribe the problem we wish to solve (Section 2). Then, we present
the solutions for the above-mentioned surface conditions (Section
3 and Section 4). The validity ranges of the solutions are discussed
next (Section 5) and a brief summary is given in the end (Section
6).

2. Problem statement
Consider a laminar, steady-state, incompressible flow with ve-

locity u past a stationary object of arbitrary geometry and char-
acteristic length ¢. Suppose that the free-stream velocity takes the
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form of U, = U e, where Uy, = |U| is a constant and e is a unit
vector, and that the temperature approaches a constant value, de-
noted T%, at large distances from the particle. Also, let the thermal
conductivity of the fluid vary with the dimensionless temperature
as k=ko(1+ BT), with kg and B being the far-field conductiv-
ity and a constant parameter, respectively. Then, neglecting viscous
dissipation, the equation that governs the steady-state distribution
of T outside the particle is

Peu VT =V .[(1+BT)VT], (1)

where the Peclet number is defined as Pe = pU,cpl/kg. The
boundary conditions associated with Eq. (1) are

T=1 for reS, and rlimT:O (2)

for the case in which the surface of the particle S, is held at a
constant temperature T;, and

(1+BT)(n-VT)=-1 for reS, and lim T=0 (3)

for the one where a uniform heat flux gs is applied on S,. Here,
r is the position vector with magnitude r = |r| and n is the unit
vector outward normal to the surface of the particle. Furthermore,
the length and fluid velocity are non-dimensionalized, respectively,
by ¢ and Uy, whereas the dimensionless temperature is defined as
either

T — Tz,
Ty — Tz

T Tz
qs¢/ko

consistent with the boundary conditions in Egs. (2) and (3). The
star superscript is used to denote the dimensional temperature.

A key dimensionless quantity in analyzing the boundary-value
problems described by Eqs. (1)-(3) is the average Nusselt number,
which can be defined as

or

(4)

1
N, = — 8 [ n.vrads (5)
21 Sp
for the problem with a prescribed temperature on the surface of
the particle (see Eq. (2)) and as

_ _Sp
¢ 2aT
for the one with a prescribed heat flux on Sp (see Eq. (3)), where
Sp represents the dimensionless surface area of the particle and T
is the mean value of T on S;. In the following sections, we seek to

develop approximate formulas for the variations of Nu, and Nu,
with Pe and .

Nu, (6)

3. Variation of Nu, as a function of Pe and S

We begin the derivation of Nu, by first considering the asymp-
totic limits of small and large Peclet numbers and then bridging
the gap between the two limits by introducing a smooth transition
function. Our approach builds on ideas presented in the classical
works on the topic of heat and mass transfer from an isolated par-
ticle in uniform flows (see, e.g., [5-7,17-19]).

3.1. Limit of conduction-dominated heat transport

Suppose conduction is the dominant mode of heat transport,
i.e., Pe « 1, but finite. In this limit, an effective approach for deal-
ing with the nonlinearity of Eq. (1) is to make a change of variable
from T to 6 such that

_1 7 _ (" _ B
e_kofo k(T)dT_/O 1+ BT = L1247, 7)
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This is known as the Kirchhoff transformation (see, e.g., [6,10]),
with the reference temperature set to T = 0 for convenience. It fol-
lows from Eq. (7) that

1
Nu, =57 spn-VG ds, (8)
where
Peu - Vo =V?0, with

J1+286 (9)

0=1+p/2 for reS, and rlim0=0.

Our goal is to obtain an asymptotic expression for Nu,, and, to
that end, we proceed with a singular perturbation expansion of 6
in terms of Pe (see, e.g, [6,17,20]). In particular, we assume that, in
the vicinity of the particle, & can be expressed as

0 =00 4+ pPed® 4+ o(Pe), (10)

which is known as the inner expansion of 6. Upon substitution of
Eq. (10) into Egs. (8) and (9), we obtain

Nur = Nu® + PeNu" + o(Pe)

_1[/ n.vo© dS—i—Pe/ n.Ve<1>d5]+o(pe),
21 Sp

S (11)

V2 =0 with 0@ =14+p8/2 for reS,. (12)

Far from the particle, on the other hand, we consider 0 to take the
form of

0 =PedD + o(Pe). (13)

This is called the outer expansion of 8, where the tilde overbar de-
notes that the transformed temperature field is written as a func-
tion of the rescaled position vector

#=Per with 7= |F. (14)

Rewriting Eq. (9) in terms of # and replacing Eq. (13) for §, we find
e VO =Vv20M  with limA® =0, (15)
F—o0

with V and V2 operators representing derivatives with respect to
the stretched coordinates. The inner and outer expansions are re-
quired to match asymptotically, i.e.,

lim 6 = lim4@. (16)
r—o00 f—0

Enforcing the above equation at every order of Pe furnishes the
missing boundary conditions of Eqs. (12) and (15). Following Bren-
ner [17], the zeroth-order inner solution away from the particle
and the first-order outer solution can be written, respectively, as

Nu©@ Nu®©®

90 _ T; +0(r3) =Pe ZTF +0(Pe), (17)
. Nu©®

M — ZTF exp [—%(F—e-f‘)], (18)

where r is measured from a proper origin located at the particle’s
“heat center”.

Now, we take a shortcut approach that allows us to calculate
Nu'" without directly solving for V. The technique is based
on Greens second identity and falls under the general framework
of the reciprocal theorem (see, e.g., [20-23]). First, we multiply
Eq. (12) by @ and Eq. (9) by 8. Next, we subtract the resulting
equations and make some rearrangements to arrive at

0O Ve

J1+2B86

V. (0V6®)=V.(6© Vo) - Peu. (19)
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Then, we integrate Eq. (19) over the fluid domain V and use the
divergence theorem to reach

_0OVe

V1+286

on.vo© ds— [ 6©n.vo dS+Pe/
S Sp v
(20)

Note that the contributions from surfaces at infinity (denoted by
S») vanish because the integrands decay faster than dS grows at
large distances from the particle. Eq. (20) can be simplified to

0O Ve

Pe
277(1+,3/2)/v J1+2B6

by applying the boundary conditions on Sp.

Nu, = Nu® + (21)

Inspecting Eqgs. (21), (13), (11), and (10), we determine that
1
NulV = —
2n(1+B/2)

/ §O V(@D - GO)dr

/ 0O VeO
X
v 1+ 2,650(0)
(22)

where the second integral on the right-hand side is over the entire
three-dimensional real space R? and §(© = Nu® /27 We proceed
with evaluating the integral appearing first on the right-hand side
of Eq. (22). To that effect, we convert this volume integral into a
pair of surface integrals as

ORVAIO)

Jyu- \/Tw dv
_ 31?/ V.[W(ﬁe(o)—l)u]dv
\%4

1
—— 14+2B600(60© —1)n-udS
| [ VTTZBEO (60 1)
+J VT+2B00(86© ~ 1)n-uas]
Due to no penetration condition, n-u =0 on Sp. Also,
/ nouds=0 (24)
S
because the flow is incompressible (i.e, V -u = 0). Therefore, the

values of both surface integrals in Eq. (23) amount to zero, which
means that the volume integral is zero, too. Additionally,

GO VIO di

/ 1/ sin 9] cos¢ dep df df = 0. (25)

lncorporatmg these results, we find (after algebraic manipulations)
that

(23)

R3
u(O)

o)) (Nu(o))2 e-F 1 . T
T T 8w (1+B/2) e B p[_i(r_e'r)]dr
T 4(1+B/2) (26)

The evaluation of the volume integral over R3 is detailed by
Dehdashti and Masoud [20].
Replacing for Nu{" in Eq. (11), we have

Nu“’) Pe Nu©@ \?
1+ﬁ/2 <1+/3/2) +o(Pe)

Nu© 2
=(1+8/2) |:Nu§2) + Pe % + o(Pe):|

Nu, = (1+8/2 )|:
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= (14 B/2)Nu,, + o(Pe), (27)

where Nu, , and Nu!?) are the Nusselt numbers corresponding, re-
spectlvely, to B=0 and to B =0 and Pe = 0. In other words, the
former is the constant conductivity Nusselt number and the lat-
ter is the constant conductivity pure conduction Nusselt number.
Remember that Eq. (12) describes a linear boundary value prob-
lem and, therefore, changing its boundary condition on S, from
6 =1+ /2 to 0 =1 alters the respective Nusselt number by a fac-
tor of (1+ 5/2)’1.

Eq. (27) indicates that, to the leading order in Pe, Nu, is the
product of a B-dependent term and the constant-conductivity Nus-
selt number, which depends on Pe and the geometry of the parti-
cle. It is worth emphasizing that this relation was derived with no
restriction on the flow Reynolds number, defined as Re = pUy.¢/ .
Even no-slip condition was not necessary. The only conditions en-
forced were the flow incompressibility and no flow penetration
into the particle. Lastly, we note that Eq. (27) recovers the clas-
sical result of Brenner [17] for 8 = 0 and generalizes the work of
Polyanin [6] for the special case of Stokes flow (i.e., Re = 0).

3.2. Limit of advection-dominated heat transport

Suppose the transport of heat is dominated by advection, i.e.,
Pe > 1. In this limit, the temperature outside the particle ap-
proaches T, at short distances from S,. In other words, the tem-
perature variations are confined to a narrow layer next to the
boundary of the particle. Here, similar to Section 3.1, we aim for
developing an asymptotic approximation for the Nusselt number.

Assuming that S, is smooth, we follow Polyanin [5] and adopt
a generalized boundary layer coordinate system (x,y,z), with the
corresponding unit vectors e, ey, and e, and associated metric
coefficients hy, hy, and h,. Remember that, throughout the paper,
all lengths are non-dimensionalized by ¢. The y component in this
system measures the distance from the surface of the particle and,
thus, e, =n at y = 0 (i.e., at Sp). The direction of the x coordinate
is chosen to be the same as the component of the fluid velocity
vector projected onto the plane normal to ey. The direction of the
third coordinate is then determined by e, = e, x ey.

Eq. (1), written in terms of the (x,y,z) coordinates, takes the

form of
u, 0T u, 0T 1 a | hyh, 0 B
Pe(hxax+h 3y> by, {3x|: X<T+2T

[t (g 2 (v 2]

with T=1 at y=0 and IlimT=0. (28)
y—00
In the above equation,
1 ov 1 0¥
=Rk ay MW TR, 29)

are the velocity components in the x and y directions, respectively,
where W is a pseudo stream function. Note that u, is zero per
the definition of the generalized boundary layer coordinate system.
Given that the distribution of temperature is restricted to a thin re-
gion close to Sp, it is convenient to expand the metric coefficients
and W about y =0 as

hy =hyo(x,2) + he1(x2)y+-- -, (30)
h, =1, (31)
hz ZhZ,O(X, Z)Jrth](X, Z)er ’ (32)
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1
\I/:§\I/2(x,z)y2+-~, (33)
where
oy
"IJZ = hz = hz<0 7o, (34)
oy ),

with 7y being the dimensionless shear stress at the surface of the
particle. To ensure the validity of Eq. (33), the Prandtl number Pr =
cpit/ko is assumed to be large. Needless to say, both ¥ and 9W/dy
are zero at y = 0, due to the no-slip condition.

The thickness of the temperature boundary layer is known to
scale with Pe~'/3, which results from equating the order of mag-
nitude of the advective and conductive terms within the boundary
layer (see, e.g., [18,19]). Considering this scaling and the structure
of Eq. (28), we proceed with expanding T and Nu, as

T=TO(x,¥,2)+0(Pe ), (35)

Nu, = Pe'*Nu® + 0(1) (36)

and with making the following change of variables:

Yy =Pely, (37)

x = / hyohy o d5. (38)
X0

Next, we rewrite Eq. (28) to the leading order in Pe as

aT®  y2 9w, 9TO® 52 o B (02
29x "7 ox oy ol 2(T )
with T® =1 at vy=0 and lim TO =0. (39)

Eq. (39) can be further simplified to its self-similar form

&2 B (o2 dr .
© 4 (0 2 w
an |:T 5(1) } +37 dn =0 with
T®=1 at =0 and Jim T® =0, (40)

where the new independent variable 7 is defined, according to the
von Mises transformation, via

. -13
n=\/‘72<9fx \/l?zdi) Y. (41)

Taking everything into account, the leading-order term in the Nus-
selt number expansion can be expressed as

0)
Nu£0)=—<‘l +ﬁ)fsp 8T~ dS
0) y=0 /3
1+ dT(
:_( 4nﬂ> an| e (e VE dx) dz
n=0
dT© dT© - (42)
:3) Nu©®
dn dn T,0
n=0 1n=0, =0
:—r(§)(1 T N,
n=0

where Nu<0) represents the value of Nu(o) corresponding to 8 =
0. Of course Eq. (42) reproduces the classmal results of Lighthill
[24] and Acrivos [25]. We demonstrate, in Appendix A, that the

prefactor c is
dr©® 38
c= 1+p8)—— (1 + ) (43)
( ) dn |,
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Hence, we obtain
3 ﬁ
Nu, ~ 1+ 25 Num +0(1), (44)

with Nu, ; denoting the Nusselt number for the case of 8 = 0.

3.3. Bridging results for limits of low and high Peclet numbers

The results of the previous two subsections can be described
succinctly as

Nu’%<1+’3> for Pe «x1

Nur.o 2 NU.T b
= —L =~ (1+ap)’,

NU 3 ,3 NuT.O

—r 1+ == for Pe>» 1

Num

(45)

where 1/2 $a £ 3/5 and 2/3 £ b < 1. The functional dependency
of these two parameters on the Peclet number may be formulated
as

(3/5 W Pe + ap
46
\/7+ 2ag (46)
(2/3N +b0’ (47)
vPe + bo
where
ap=5.78 and by =5.90. (48)

The above relations are motivated by the full numerical solution
of Eq. (1), subject to the boundary conditions in Eq. (2), for sev-
eral basic particle shapes. The accuracy of the predictions made by
Eqs. (45)-(48) and the details of the numerical solutions will be
discussed in Section 5. Note that, for some simple geometries, ap-
proximate formulas are available for Nu,, (see, e.g., [20] and refer-
ences therein).

Overall, our asymptotic analyses in this section (summarized by
Eq. (5)) suggest that the ratio between the Nusselt number and
its corresponding value for the case of constant conductivity (i.e.,
B = 0) is approximately equal to a term that is mainly a function of
B, while being weakly dependent on Pe. It is important to empha-
size that this result was derived for particles of arbitrary shape un-
der a fairly general flow condition, namely a laminar, steady-state,
incompressible flow. We have only demanded the Prandtl number
to be large when the Peclet number is high.

4. Variation of Nu,, as a function of Pe and B

In Section 3, we considered Eq. (1) assuming that the surface of
the particle is held at a constant temperature (see Eq. (2)). There,
the assumption of a Dirichlet boundary condition on S, allowed us
to effectively employ the Kirchhoff and von Mises transformations
(for, respectively, Pe « 1 and Pe > 1) to develop a nearly analyt-
ical formula for Nu,. Unfortunately, neither techniques can be di-
rectly applied to find the general form of the Nusselt number when
a uniform heat flux is imposed on Sp. That a Neumann bound-
ary condition is more challenging to deal with analytically than its
Dirichlet counterpart is a known matter (see, e.g., [20]). Despite
this difficulty, we derive an estimate for Nu, with the aid of the
following scaling arguments.

4.1. Limit of conduction-dominated heat transport

Consider the limit of Pe « 1, and, accordingly, an inner expan-
sion of the form
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for the temperature, where

V- [(1+BT®)VI®] =0 with

(1+BT®)(n-VTO) =1 (50)
for reS, and JLngOT(°> =0

and

n.V7©® =V2(TM + BTOTD)  with 51)
n.V(TO 4 BTOTD) =0 for reS,.

Applying the Kirchhoff transformation (see Eq. (7)), it can be
shown that

) —
T(O):,/1+2ﬂ0 17 (52)

B
where
V26© =0 with
n-Vo® =1 for reS, and limo® =0. (53)

Additionally, consistent with Eq. (49), the Nusselt number can be
expressed as

=(1)
Sp T
NuQ=(0)<l—Pe(0))+m

2n T T
= Nuflo) + Pe Nugl) +, (54)

where the overbar indicates average over S, (see also Eq. (6)).
The zeroth-order Nusselt number is determined by the solution of
Eq. (53), with its dependency on B obeying Eq. (52). How about
the dependency of Nué” on B? To find this out, we examine the
limits of small and large 8.

Suppose B « 1, in which case we can write

N =N AN &

Since both Pe and 8 are small, then, we need to only retain Nugg
in the above expansion. This means that, to the leading order,
Nug) is independent of 8. Now, assume B> 1. Egs. (52) and
(51) suggest that, in this limit,

1

TO~ — and T ~ 7 (56)

Hence, we conclude that, again, to the leading order, Nug) is inde-

pendent of B. Given the behavior of Nu'D in its asymptotic limits,
it is reasonable to approximate Nu, for small Peclet numbers as a
summation of two terms: one that only depends on 8 and another
one that solely changes with Pe.

4.2. Limit of advection-dominated heat transport
Consider the limit of Pe > 1, where the thermal boundary layer

shrinks at a rate proportional to Pe~!/3. In this case, the tempera-
ture and Nusselt number can be described as (see, e.g., [20])

T=Pe 1ATO 4 pe=23TM 4 ... (57)
(1)
T
NUQ = 7Si(0) (Pe]/3 — (0)) + e (58)
27T T

where, upon substituting for T in Eqs. (1) and (3), we have (in gen-
eralized boundary layer coordinates)
aT® Y2 9w, 9T®  H52TO

YWomr ~ 2 x v - o
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(0)
with Bgy =-1 at y=0 and lim TO = 0. (59)

Eq. (59) does not depend on B and, in fact, is identical to the one

for B = 0. Recognizing that T is not a function of B, we deduce
from Eq. (58) that Nu, for large Peclet numbers is approximately
equal to the sum of a Pe-dependent term and one that only varies
with B.

4.3. Bridging results for limits of low and high Peclet numbers

The main takeaway point of our scaling analyses in Section
4.1 and Section 4.2 is that Nu, may be estimated as the summa-
tion of two terms, one of which is a function of Pe and the other

one is a function of B. As a unified formula, we, therefore, propose

Nu, ~ Nu, + (Nuf — Nug ), (60)

where Nu, , represents the value of Nu, for g =0 (ie, for con-
stant conductivity) and the superscript ¢ denotes the Nusselt num-
ber corresponding to Pe = 0 (i.e, conduction Nusselt number). The
above approximation possesses the required form and has zero er-
ror for the cases of Pe =0 and 8 = 0. We will test the validity of
Eq. (6) in Section 5.

Before we conclude this section, it is worth emphasizing that,
for certain geometries, fairly accurate estimates of Nu, , exist in
the literature (see, e.g., [20]). Furthermore, we have discovered em-
pirically that

- 1
NuZ:%(Jl—i—Zﬁ@(o)—l)
1 -1
SeB( 70 _ _Spp S B
~2n< 1+2860 1 =5 1+nNug.0 1) .

(61)

Eq. (61) is exact for a spherical particle and found to be unexpect-
edly precise for other particle shapes such as ellipsoids, cylinders,
cones, and cubes.

5. Comparison with direct numerical solution of Eq. (1)

In Section 3 and Section 4, we presented approximate formu-
lations for Nu, and Nu, via perturbation analyses in the asymp-
totic limits of Pe and B. To give an idea about the estimation er-
ror of the proposed formulas, here, we compare their predictions
for spherical, cubic, and ellipsoidal particles against the results ob-
tained from the full numerical solution of the problems described
in Section 2. A finite-element approach, as implemented in COM-
SOL Multiphysics [26,27], is employed to carry out the computa-
tions. We first solve the steady-state incompressible Navier-Stokes
equations for the fluid flow, and, then, use the calculated veloc-
ity field u to compute the solution of Eq. (1) for the temper-
ature distribution T. The flow and advection-diffusion equations
are solved iteratively, while discretized by P2+P1 and quadratic
Lagrange schemes, respectively. The outer boundary at infinity is
modeled as a large sphere, whose center coincides with the center
of the particle. Specifically, the diameter of the sphere is set to 200
times the characteristic length of the particle. We use tetrahedral
elements to mesh the computational domain such that the grid
density is the highest near the particle. Grid-independence studies
are performed to ensure that the results change only marginally if
the mesh is globally refined.

Figs. 1 and 2 show the outcome of our calculations for Nu,
and Nu,, respectively. The results are presented in the form of A
versus Pe plots for f§ =0.1, 1, 10 and Re = 0.1, 1, 10, where the
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Fig. 1. Percent difference A between the results of full numerical simulations and the predictions of Eq. (5) for Nu, of spherical (first row), cubic (second row), and ellipsoidal
(bottom three rows) particles. The plots of A versus Pe in the left, middle, and right columns are for Re = 0.1, 1, and 10, respectively. The graphs in the third, fourth, and fifth
rows are for flows along the principal axes of the ellipsoid with semi-axis lengths of, respectively, a, b, and ¢, where b/a =2/3 and ¢/a = 1/3. Note that the characteristic
length ¢ is set to the radius for the sphere, to half the side length for the cube, and to the largest semi-axis for the ellipsoid.

parameter A is defined as the percent difference between the di-
rectly computed and predicted values of the Nusselt number. Each
figure consists of fifteen sub-figures that are organized into five
rows and three columns. The sub-figures in the left, middle, and
right columns correspond to Re = 0.1, 1, and 10, respectively. Also,
those in the first and second rows belong to spherical and cubic
particles, whereas the rest are for an ellipsoidal particle of semi-
axis lengths a, b, and ¢, where b/a = 2/3 and ¢/a = 1/3. Within the
bottom three rows, the plots in the first, second, and third rows are
for flows along the principal axes of the ellipsoid associated with
a, b, and ¢, respectively. Note that, in calculating the Nusselt and
Peclet numbers the characteristic length ¢ is set to the radius for

the sphere, to half the side length for the cube, and to the largest
semi-axis for the ellipsoid.

Overall, we see that the predictions of Eqs. (5) and (6) are quite
accurate, with the absolute value of A being less than 16.5% for
all the cases considered. The approximations are more precise for
particles with more streamlined shapes. Also, as expected, the es-
timations deviate the most from the numerical results when 8
and Re are large and Pe is in the intermediate range. Perhaps sur-
prisingly, however, A is very small for 8 <O0(1), irrespective of
its corresponding Reynolds and Peclet numbers. Another observa-
tion that can be made is that A is mostly positive in the plots of
Fig. 1 whereas it is mainly negative in those of Fig. 2. Note that
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Fig. 2. Percent difference A between the results of full numerical simulations and the predictions of Eq. (6) for Nu, of spherical (first row), cubic (second row), and
ellipsoidal (bottom three rows) particles. The plots of A versus Pe in the left, middle, and right columns are for Re = 0.1, 1, and 10, respectively. The graphs in the third,
fourth, and fifth rows are for flows along the principal axes of the ellipsoid with semi-axis lengths of, respectively, a, b, and ¢, where b/a =2/3 and ¢/a = 1/3. Note that
the characteristic length ¢ is set to the radius for the sphere, to half the side length for the cube, and to the largest semi-axis for the ellipsoid.

A is defined such that it is positive when the predicted Nusselt
number overestimates the numerically calculated one. Lastly, for
the same shape, Re, and 8, the Peclet number at which the ap-
proximation error is maximum is generally higher for Nu, than it
is for Nu,.

6. Summary

We studied the problem of forced convection heat transfer
from a particle of arbitrary shape immersed in an unbounded
fluid whose thermal conductivity varies linearly with the temper-
ature. Assuming a uniform free-stream flow, we employed asymp-

totic as well as scaling analyses to develop approximate relations
for the variations of the Nusselt number with the Peclet number
and the slope of the (normalized) conductivity-temperature curve.
We considered both constant temperature and uniform heat flux
boundary conditions on the surface of the particle, and discov-
ered that, for the former, Nu, can be estimated as a product of
a Pe-dependent term and one that primarily changes with 8. We
also found that, for the latter, Nu, may be approximated as a sum
of a Pe-dependent piece and a S-dependent one. In a nutshell,
our derivations offer a straightforward way to estimate the Nus-
selt number for any B by just knowing the Nusselt number corre-
sponding to 8 =0, i.e., the constant conductivity Nusselt number.
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We evaluated the generality and accuracy of our formulations
by comparing their predictions for Nu; and Nu, with those calcu-
lated based on direct numerical solutions of the governing equa-
tions. The comparisons confirmed that the proposed approxima-
tions are valid over a wide range of parameters. More specifically,
they demonstrated that the estimation errors are remarkably low
when B < 0(1). Finally, it is worth noting that our formulations
are equally applicable for approximating the Sherwood number in
equivalent mass transfer problems.
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Appendix A. Derivation of prefactor ¢

We wish to calculate

O

where T© satisfies Eq. (40). We first consider the limit of 8 <« 1
and proceed with a regular perturbation expansion of T(® as

: (A1)
n=0

TO =7 L BT 1+ 0(?). (A2)
Substituting Eq. (A.2) in Eq. (40), we find that
d2T© dT©
0 2% " ;

an? +37 dn =0 with
=1 at =0 and Jim ¥ =0 (A3)
and
1 L dT? 1 d )2 .

o +37 an EW(T" ) =0 with
L?=0 at n=0 and lim " =0, (A4)
The solution of Eq. (A.3) is

1 1

© _1_ _53 5

T, =1 F(4/3)/0 exp (—7) dij (A.5)

which is derived using the integrating factor method. Applying the
same approach to Eq. (A.4), we obtain (after some mathematical
manipulations)

(1-1%)°

0) _
" = 5

r4/3)(1-19) -

dr®
dn -

1 " -
T r@s)P J, ee (-7)

N a 2
x [r<4/3> PTO+ [ 7 exp (—ﬁ3)dﬁ}dﬁ,
0
(A.6)

where the first term on the right-hand side is numerically calcu-
lated (by enforcing the boundary condition at infinity) to be

(0)
dr,

an = 0.667.

n=0

(A7)
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Given Egs. (A.2), (A.5), and (A.7), for small B, we can write

4) dr®

c=1+ 1—r(3 &

B+ 0(B%)
0

n=
=1+0.404 8 + 0(B?). (A.8)
Now, suppose 8 > 1, while 8 «Pe and B « Pr. We realize,

through inspecting Eq. (40), that dT(® /dp scales with 8~1/3 in this
limit. Informed by this scaling, we expand T© as

TO — TO(O) +0(B7173) (A.9)
and introduce

ii=pB"n. (A.10)
Replacing for T(® and 5 in Eq. (40), we then arrive at

ddﬁzz [(To(o))z] +672 dZ(;;O) =0 with

=1 at =0 and limT[” =0. (A11)

nN—o0

We solve the above nonlinear ordinary differential equation nu-
merically and determine that
B +0(B"?)

d1®
c=-r(3) G
7 1o

=0.710 823 + 0(B'3).

What is truly surprising, based on the results of Eqs. (A.8) and
(A.12), is that the prefactor c is very well approximated by a single
formula (for the entire range of 8) as

2/3
3B

Note that the above expression captures both low- and high-8
asymptotes remarkably well.

(A12)

(A13)
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