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We theoretically show that a superposition of plane waves causes small (compared to the wavelength)

particles dispersed in a fluid to assemble in quasiperiodic two or three-dimensional patterns. We

experimentally demonstrate this theory by using ultrasound waves to assemble quasiperiodic patterns

of carbon nanoparticles in water using an octagonal arrangement of ultrasound transducers, and we

document good agreement between theory and experiments. The theory also applies to obtaining

quasiperiodic patterns in other situations where particles move with linear waves, such as optical lattices.
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We demonstrate that a superposition (finite linear com-

bination) of plane waves assembles quasiperiodic patterns

of particles dispersed in a fluid, which is useful to fabricate

quasicrystal-like structures [1–4] with feature size of

approximately one wavelength. Experimental evidence of

quasiperiodic patterns of particles or atoms obtained with

specific fields, such as lasers [5–8] and ultrasound waves

[9] exists. In contrast, we derive a general theory to obtain

prescribed quasiperiodic symmetries [e.g., eightfold, ten-

fold in two dimensions (2D) and icosahedral in three

dimensions (3D), among others], for any linear wavelike

phenomenon. Quasicrystals can exhibit unusual physical

properties, e.g., diamagnetic properties, or low electric

conductivity that may be strongly dependent on the temper-

ature, see, e.g., Refs. [4,10]. Quasicrystals also arise

naturally in alloys (e.g., Ref. [11]) and when combining

molecules (e.g., mycelles [12]). However, the specific

symmetries are limited by the choice of metals or mole-

cules, unlike in the theory we demonstrate in this Letter.

Quasicrystals are characterized by diffraction patterns

with symmetries that do not correspond to any crystalline

(periodic) materials, e.g., tenfold symmetry in 2D [13,14].

Mathematically they can be described by quasiperiodic

functions via the “projection method,” see, e.g.,

Refs. [14,15]. A function f: Rd
→ R is quasiperiodic if

another function exists g:RN
→ R with period ½0; 2π�N and

a matrix K ∈ R
d×N such that d < N, fðxÞ ¼ gðKTxÞ and

there are at most d − 1 linearly independent vectors in

rangeðKTÞ with entries being integer multiples of 2π. Thus,

f is a restriction of the N-dimensional function g to d
dimensions (Appendix A, [16]).

Let pðxÞ be a scalar field describing a time-harmonic

wave phenomenon, e.g., the acoustic pressure in a fluid

with dispersed spherical particles. We model the interaction

between the waves and particles using an energy landscape

or potential ψðxÞ ¼ U(pðxÞ;∇pðxÞ), whose minima cor-

respond to locations where particles accumulate when

subject to the field pðxÞ. This is a valid assumption for,

e.g., optics [11,17,18] and ultrasound waves [19–25]. We

show that if pðxÞ is a quasiperiodic function, then its energy
landscape and corresponding pattern of particles must also

be quasiperiodic. Moreover, a quasiperiodic pðxÞ can result
from a superposition of plane waves. Experimental evi-

dence supporting this observation exists in, e.g., optics,

where five lasers (which can be modeled by plane waves)

can create optical lattices with tenfold symmetries [5–8].

Thus, the objective of this Letter is to derive a general

theory to assemble patterns of particles dispersed in a fluid,

for any linear wave phenomenon. Further, we demonstrate

the theory using 2D ultrasound wave fields, established

with 2N ultrasound transducers, where N is the dimension

of the higher dimensional space in the projection method

[14,15]. We disperse 80 nm carbon nanoparticles in water

and assemble them into quasiperiodic patterns with eight-

fold (octagonal) symmetry, using eight ultrasound trans-

ducers spatially arranged as a regular octagon. The theory is

also valid in 3D, and is useful to conveniently fabricate

materials with quasiperiodic patterns of particles embedded

in a polymer matrix [22,23], such as those used in

engineered composite materials and metamaterials,

e.g., Ref. [26].

The pressure associated with an ultrasound wave is given

by p̃ðx; tÞ ¼ ℜðpðxÞ exp½−iωt�Þ, whereℜ is the real part of

a complex number, x ∈ R
d, t is time, ω is the angular

frequency, and i ¼
ffiffiffiffiffiffi

−1
p

. The field p solves the Helmholtz

equation Δpþ k2p ¼ 0, with wave number k ¼ ω=c and

wave propagation speed c. A small (relative to the wave-

length λ) particle in a standing ultrasound wave is subject to

the acoustic radiation force associated with that ultrasound

wave [27–30]. Thus, at location x in an inviscid fluid, a

small particle experiences a force FðxÞ ¼ −∇ψðxÞ, with ψ

the acoustic radiation potential (ARP), given as

ψðxÞ ¼ ajpðxÞj2 −∇pðxÞ�B∇pðxÞ: ð1Þ
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Here a ¼ f1κ0=4, B ¼ 3f2=ð8ρ0ω2ÞId, Id is the d × d
identity matrix, f1 ¼ 1 − ðκp=κ0Þ, f2 ¼ 2ðρp − ρ0Þ=ð2ρpþ
ρ0Þ, and � is the conjugate transpose. ρ and κ are the density
and compressibility, with subscripts 0 and p referring to the

fluid and particle, respectively. Particles assemble at the

minima of the ARP because the acoustic radiation force

approaches zero where the ARP is (locally) minimum, and

points towards the minimum in its vicinity. We remark that

this theory neglects interactions between particles, i.e., it

relies only on primary (or direct) scattering. Furthermore,

the same theory describes the optical pressure exerted on

dielectric particles that are smaller than a wavelength, by

taking B ¼ 0, see, e.g., Refs. [17,18,31].

We consider the particular case where the wave field

pðxÞ is a superposition of plane waves given by

pðx; uÞ ¼
X

N

j¼1

αj exp½ikj · x� þ βj exp½−ikj · x�: ð2Þ

Here, u ¼ ½α1;…; αN ; β1;…; βN �T is a vector containing

the nonzero complex amplitudes in Eq. (2) and kj are the

wave vectors with jkjj ¼ k. We may obtain fields close to

Eq. (2) by using N pairs of parallel-oriented ultrasound

transducers with normal directions kj as shown in Fig. 1 for

N ¼ 4 and d ¼ 2. For each j, αj, and βj represent the

amplitude and phase of the signals that drive a pair of

parallel ultrasound transducers with normal kj, as indicated

in Fig. 1. We refer to the vector u as “transducer operating

parameters,” although this ignores the acoustic and electric

impedance that would more accurately model the ultra-

sound transducers. We leave the characterization of the

quasiperiodic patterns of particles that can be achieved with

the wave field Eq. (2) for future studies. However, when

N ¼ d and the kj are linearly independent in Eq. (2), the

patterns of particles are periodic and are characterized

in Ref. [32].

The wave field Eq. (2) is a restriction to Rd of a wave

field in RN with period ½0; 2π�N . Thus, the wave field

Eq. (2) can be made quasiperiodic. To show this, we define

pNðy; uÞ using Eq. (2) with y ∈ RN and the canonical basis

vectors ej ¼ ðδijÞNj¼1 ∈ R
N instead of the kj, j ¼ 1;…; N.

Here, we use δij ¼ 1 if i ¼ j and 0 otherwise. Clearly,

pNðy; uÞ is periodic in y for any choice of complex

amplitudes u, and its period is the hypercube ½0; 2π�N .
We use the convention that x ∈ R

d and y ∈ RN . A

calculation (Appendix B, [16]) reveals that

pðx; uÞ ¼ pNðKTx; uÞ; ð3Þ

where K ¼ ½k1;…; kN � ∈ Rd×N determines whether the

wave field is periodic or quasiperiodic. Naturally, the

ARP ψ in Rd [see Eq. (1)] relates to a similar quantity

ψN in RN that is of the same form, but involves pN instead

of p and with identical a but where the matrix BN ¼
KTBK ∈ R

N×N is different because of the chain rule

(Appendix C, [16]), i.e.,

ψðx; uÞ ¼ ψNðKTx;uÞ: ð4Þ

Hence, the ARP is quasiperiodic in x if pðx; uÞ is

quasiperiodic in x.

The superposition of plane waves [Eq. (2)] pre-

dicts 2D quasiperiodic patterns of particles with pres-

cribed symmetries. In the particular case of 80 nm

carbon nanoparticles dispersed in water, we use

c0 ¼ 1500 m=s, cp ¼ 5300 m=s, ρ0 ¼ 1000 kg=m3, and

ρp ¼ 2100 kg=m3. Since κ ¼ 1=ðρc2Þ, we obtain

a ≈ 5.7424 × 106 andB ≈ ð0.2115ÞI2 in Eq. (1). We intend

the patterns of particles within the octagonal arrangement

of ultrasound transducers in Fig. 1 to show eightfold

symmetry. Figure 2 illustrates simulations of different

symmetries for the carbon nanoparticles in water in the

far field, i.e., the ultrasound transducers are sufficiently far

0

Ultrasound
transducers

FIG. 1. Each parallel pair of ultrasound transducers establishes

an ultrasound wave that is close to a plane wave in the rectangle

delineated by the dotted lines perpendicular to the ultrasound

transducers. The plane wave model Eq. (2) accurately represents

the ultrasound wave field generated by this transducer arrange-

ment in the blue region. The red circle indicates the region we

evaluate.

FIG. 2. Examples of the ARP that lead to quasiperiodic 2D

patterns of particles. The wave vectors are kj ¼ ½cos θj; sin θj�T ,
where θj ¼ jπ=N, j ¼ 0;…; N − 1 and 2N ∈ f8; 10; 12g corre-

sponds to the desired order of rotational symmetry, i.e., eight-, ten-,

or twelvefold symmetry. The ultrasound transducer operating

parameters in Eq. (2) are u ¼ ½1;…; 1�T ∈ R
2N . The computation

was performed using a uniform grid of the square ½−7λ; 7λ�2 with
10242 points. The color scale shows arbitrary units.
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from the region that we display. For instance, if we drive the

eight ultrasound transducers in Fig. 1 with the same

amplitude and phase, i.e., u ¼ ½1;…; 1�T ∈ R
8, we obtain

patterns of particles with an eightfold symmetry and center

of rotation at the origin (the center of the red circle in

Fig. 1). Figure 2 also shows quasiperiodic patterns of

particles with tenfold and twelvefold symmetries that can

be obtained by arranging the ultrasound transducers in

Fig. 1 as either a regular decagon or dodecagon, instead of

an octagon. Thus, we obtain known quasiperiodic sym-

metries in 2D, e.g., the tenfold symmetry is the same

symmetry encountered in Penrose tilings [2,13,14]. We also

point out that ultrasound transducer arrangements other

than regular polygons are possible and will yield patterns of

particles with other symmetries.

We used the setup of Fig. 3 to experimentally obtain

quasiperiodic patterns with eightfold symmetries. The

setup comprises a polycarbonate octagonal reservoir with

water, 80 nm carbon nanoparticles, and sodium dodecyl

benzene sulfonate (NaDDBS) surfactant [33]. The reservoir

is lined with eight ultrasound transducers along its perim-

eter (SM111 piezoelectric material, with center frequency

of 1 MHz), driven by a function generator. The distance

between two parallel ultrasound transducers is 5 cm and

each ultrasound transducer is 2 cm wide (or 40λ=3). The
depth of the liquid is approximately 1 cm (or 7λ, when

c0 ¼ 1500 m=s). Thus, boundary effects from the reservoir

and the free liquid surface are negligible and the theory and

experiments only consider bulk ultrasound waves.

Brownian motion of the particles is negligible in the

experiments (Appendix D, [16]).

We compare simulations of the ARP obtained from the

theoretical plane wave superposition Eq. (2), where par-

ticles assemble at the minima of the ARP, to experimentally

obtained patterns of particles, for two specific experiments.

In experiment 1, we impose ultrasound transducer

operating parameters u ¼ ½1; 1; 1; 1; 1; 1; 1; 1�T and in

experiment 2 we impose u ¼ ½1;−1; 1; 1; 1;−1; 1; 1�T .
Figure 4 shows the simulated ARP in the region

½−7λ; 7λ�2, and we indicate the region we evaluate as a

red circle, as in Fig. 1. We used explicit expressions for the

gradient and Hessian of the ARP to predict the locations

where particles assemble, by identifying points where the

Hessian is sufficiently positive definite (minimum eigen-

value greater than 10−6) and the gradient is sufficiently

small (less than 4 × 1011). We show the simulated locations

where particles assemble in red, superimposed on the

experimental results (photographs, where dark areas show

columns of particles viewed from the top, as in Ref. [23]).

We manually register the simulated and experimental

results with MATLAB’s FITGEOTRANS at the points indicated

by “þ” signs in Fig. 4, assuming a 2D projective trans-

formation. Finally, we qualitatively compare the simulated

and experimental results by superimposing the simulated

locations where we predict particles assemble (red) and

experimentally obtained patterns of particles (blue), and we

mark the overlapping locations (blue and red) in black. We

observe good qualitative agreement between simulations

and experiments.

We quantified the agreement between simulations and

experiments within the red circle of diameterD ¼ 40λ=3 as
follows. We binarized the photographs of the experimental

results, using MATLAB’s IMBINARIZE with sensitivity 0.45.

Camera

Octagonal

reservoir

Octagonal

Ultrasound

transducer
Fluid and particles

Function generator

Fluid and 

particles

Ultrasound 

transducer

Leads

Reservoir

1 cm

(a) (b)

FIG. 3. (a) Schematic of the experimental setup showing its

components and (b) photograph of the experimental setup (top

view) showing a typical experiment with 80 nm carbon nano-

particles in water.

FIG. 4. Simulated ARP (first column, particles assemble at

minima) and experimentally obtained patterns of particles with

the minima of the simulated ARP superimposed in red (second

column), for experiments 1 and 2, showing distinct quasiperiodic

patterns with eightfold symmetries. We superimpose the simu-

lated ARP minima where we predict particles assemble (red) and

experimentally obtained patterns of particles (blue) (third col-

umn). We mark the overlapping locations (blue and red) in black.

Each image shows a red circle where we expect good agreement

with the plane wave model (see also Fig. 1) and “þ” signs

indicate the registration between the simulated ARP and the

experimental results.
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We determined the fraction of the total area of the simulated

clusters that is inside the experimentally determined clus-

ters, i.e., the black area divided by the sum of the black and

blue areas using the color convention in the comparison

column of Fig. 4. Figure 5 shows that the agreement

between simulations and experiments improves with

decreasing size of the evaluation circle with diameter

αD, with α ∈ ½1=2; 1�. In Fig. 5, the fraction of agreement

between simulations and experiments increases linearly

with decreasing size of the evaluation circle. Thus, the

simulations and experiments agree most closely at the

origin, which is consistent with Eq. (2) being a far-field

model. Other sources of error in the model Eq. (2) include

neglecting the boundary reflections and the finite width of

the ultrasound transducers.

We have shown that linear wave phenomena can

assemble quasiperiodic patterns of particles. Since linear

wave phenomena are common in physics, our findings

apply to a broad variety of different physical situations,

including ultrasound waves, electromagnetic waves, elastic

waves, amongst others. We illustrated this principle theo-

retically with plane waves in a fluid, and demonstrated it

experimentally by assembling 80 nm carbon nanoparticles

dispersed in water into patterns with eightfold symmetries,

using ultrasound waves. The theory accurately predicts the

experimental patterns of particles. Thus, this theory and

experimental demonstration provides a pathway upon

which to base a manufacturing platform for quasicrystal-

like structures of inclusions in a polymer matrix. Such

materials could help with the experimental study of the

physical properties of quasicrystals. These quasiperiodic

materials could have different mechanical or electrical

properties than a material with a random arrangement of

particles.
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