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Wave-Driven Assembly of Quasiperiodic Patterns of Particles
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We theoretically show that a superposition of plane waves causes small (compared to the wavelength)
particles dispersed in a fluid to assemble in quasiperiodic two or three-dimensional patterns. We

experimentally demonstrate this theory by using ultrasound waves to assemble quasiperiodic patterns
of carbon nanoparticles in water using an octagonal arrangement of ultrasound transducers, and we
document good agreement between theory and experiments. The theory also applies to obtaining

quasiperiodic patterns in other situations where particles move with linear waves, such as optical lattices.
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We demonstrate that a superposition (finite linear com-
bination) of plane waves assembles quasiperiodic patterns
of particles dispersed in a fluid, which is useful to fabricate
quasicrystal-like structures [1-4] with feature size of
approximately one wavelength. Experimental evidence of
quasiperiodic patterns of particles or atoms obtained with
specific fields, such as lasers [5—8] and ultrasound waves
[9] exists. In contrast, we derive a general theory to obtain
prescribed quasiperiodic symmetries [e.g., eightfold, ten-
fold in two dimensions (2D) and icosahedral in three
dimensions (3D), among others], for any linear wavelike
phenomenon. Quasicrystals can exhibit unusual physical
properties, e.g., diamagnetic properties, or low electric
conductivity that may be strongly dependent on the temper-
ature, see, e.g., Refs. [4,10]. Quasicrystals also arise
naturally in alloys (e.g., Ref. [11]) and when combining
molecules (e.g., mycelles [12]). However, the specific
symmetries are limited by the choice of metals or mole-
cules, unlike in the theory we demonstrate in this Letter.

Quasicrystals are characterized by diffraction patterns
with symmetries that do not correspond to any crystalline
(periodic) materials, e.g., tenfold symmetry in 2D [13,14].
Mathematically they can be described by quasiperiodic
functions via the “projection method,” see, e.g.,
Refs. [14,15]. A function f: R? — R is quasiperiodic if
another function exists g: R¥ — R with period [0, 2z]" and
a matrix K € R®" such that d < N, f(x) = g(K'x) and
there are at most d — 1 linearly independent vectors in
range(KT) with entries being integer multiples of 2. Thus,
f is a restriction of the N-dimensional function g to d
dimensions (Appendix A, [16]).

Let p(x) be a scalar field describing a time-harmonic
wave phenomenon, e.g., the acoustic pressure in a fluid
with dispersed spherical particles. We model the interaction
between the waves and particles using an energy landscape
or potential y(x) = U(p(x), Vp(x)), whose minima cor-
respond to locations where particles accumulate when
subject to the field p(x). This is a valid assumption for,
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e.g., optics [11,17,18] and ultrasound waves [19-25]. We
show that if p(x) is a quasiperiodic function, then its energy
landscape and corresponding pattern of particles must also
be quasiperiodic. Moreover, a quasiperiodic p(x) can result
from a superposition of plane waves. Experimental evi-
dence supporting this observation exists in, e.g., optics,
where five lasers (which can be modeled by plane waves)
can create optical lattices with tenfold symmetries [5-8].
Thus, the objective of this Letter is to derive a general
theory to assemble patterns of particles dispersed in a fluid,
for any linear wave phenomenon. Further, we demonstrate
the theory using 2D ultrasound wave fields, established
with 2N ultrasound transducers, where N is the dimension
of the higher dimensional space in the projection method
[14,15]. We disperse 80 nm carbon nanoparticles in water
and assemble them into quasiperiodic patterns with eight-
fold (octagonal) symmetry, using eight ultrasound trans-
ducers spatially arranged as a regular octagon. The theory is
also valid in 3D, and is useful to conveniently fabricate
materials with quasiperiodic patterns of particles embedded
in a polymer matrix [22,23], such as those used in
engineered composite materials and metamaterials,
e.g., Ref. [26].

The pressure associated with an ultrasound wave is given
by p(x,1) = N(p(x) exp[—iwt]), where N is the real part of
a complex number, x € R4, ¢ is time, @ is the angular
frequency, and i = v/—1. The field p solves the Helmholtz
equation Ap + k*p = 0, with wave number k = w/c and
wave propagation speed c. A small (relative to the wave-
length 1) particle in a standing ultrasound wave is subject to
the acoustic radiation force associated with that ultrasound
wave [27-30]. Thus, at location x in an inviscid fluid, a
small particle experiences a force F(x) = —Vy (x), with y
the acoustic radiation potential (ARP), given as

y(x) = alp(x)]> = Vp(x)"BVp(x). (1)
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Here a = fx0/4, B =3f,/(8pgw*)ly, 1, is the dxd
identity matrix, f; = 1= (k,/ko), f2 = 2(p, —po)/(20,+
Po), and x is the conjugate transpose. p and k are the density
and compressibility, with subscripts O and p referring to the
fluid and particle, respectively. Particles assemble at the
minima of the ARP because the acoustic radiation force
approaches zero where the ARP is (locally) minimum, and
points towards the minimum in its vicinity. We remark that
this theory neglects interactions between particles, i.e., it
relies only on primary (or direct) scattering. Furthermore,
the same theory describes the optical pressure exerted on
dielectric particles that are smaller than a wavelength, by
taking B = 0, see, e.g., Refs. [17,18,31].

We consider the particular case where the wave field
p(x) is a superposition of plane waves given by

p(x;u) = Zaj explik; - x| + B exp[—ik; - x]. (2)

J=1

Here, u = [ay, ..., ay, B1, ..., By]T is a vector containing
the nonzero complex amplitudes in Eq. (2) and k; are the
wave vectors with |k;| = k. We may obtain fields close to
Eq. (2) by using N pairs of parallel-oriented ultrasound
transducers with normal directions k; as shown in Fig. 1 for
N =4 and d =2. For each j, a;, and f3; represent the
amplitude and phase of the signals that drive a pair of
parallel ultrasound transducers with normal k, as indicated
in Fig. 1. We refer to the vector u as “transducer operating
parameters,” although this ignores the acoustic and electric
impedance that would more accurately model the ultra-
sound transducers. We leave the characterization of the
quasiperiodic patterns of particles that can be achieved with
the wave field Eq. (2) for future studies. However, when
N = d and the k; are linearly independent in Eq. (2), the
patterns of particles are periodic and are characterized
in Ref. [32].

Ultrasound
transducers

FIG. 1. Each parallel pair of ultrasound transducers establishes
an ultrasound wave that is close to a plane wave in the rectangle
delineated by the dotted lines perpendicular to the ultrasound
transducers. The plane wave model Eq. (2) accurately represents
the ultrasound wave field generated by this transducer arrange-
ment in the blue region. The red circle indicates the region we
evaluate.

The wave field Eq. (2) is a restriction to R? of a wave
field in RY with period [0,2z]". Thus, the wave field
Eq. (2) can be made quasiperiodic. To show this, we define
pn(y;u) using Eq. (2) withy € R" and the canonical basis
vectors e; = (6,~j)j.":1 € RY instead of the k;, j = 1,..., N.
Here, we use 6;; =1 if i = j and O otherwise. Clearly,
pn(y;u) is periodic in y for any choice of complex
amplitudes u, and its period is the hypercube [0,2z]V.
We use the convention that x € R? and y € R¥. A
calculation (Appendix B, [16]) reveals that

px;u) = py(K'x:u), (3)

where K = [k, ...,ky] € RN determines whether the
wave field is periodic or quasiperiodic. Naturally, the
ARP y in RY [see Eq. (1)] relates to a similar quantity
wy in RY that is of the same form, but involves p, instead
of p and with identical a but where the matrix By =
KTBK € R¥*N is different because of the chain rule
(Appendix C, [16]), i.e.,

w(xiu) =wy(Kx;u). (4)

Hence, the ARP is quasiperiodic in x if p(x;u) is
quasiperiodic in x.

The superposition of plane waves [Eq. (2)] pre-
dicts 2D quasiperiodic patterns of particles with pres-
cribed symmetries. In the particular case of 80 nm
carbon nanoparticles dispersed in water, we use
co = 1500 m/s, ¢, = 5300 m/s, py = 1000 kg/m?, and
pp =2100 kg/m?. Since « =1/(pc?), we obtain
a~5.7424 x 10° and B ~ (0.2115)l, in Eq. (1). We intend
the patterns of particles within the octagonal arrangement
of ultrasound transducers in Fig. 1 to show eightfold
symmetry. Figure 2 illustrates simulations of different
symmetries for the carbon nanoparticles in water in the
far field, i.e., the ultrasound transducers are sufficiently far

high
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FIG. 2. Examples of the ARP that lead to quasiperiodic 2D
patterns of particles. The wave vectors are k; = [cos §;,sin 6;]”,
where 6; = jz/N, j=0,....N—1and 2N € {8, 10, 12} corre-
sponds to the desired order of rotational symmetry, i.e., eight-, ten-,
or twelvefold symmetry. The ultrasound transducer operating
parameters in Eq. (2) are u = [1, ..., 1]7 € R?N. The computation
was performed using a uniform grid of the square [~71, 74]% with
10242 points. The color scale shows arbitrary units.
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from the region that we display. For instance, if we drive the
eight ultrasound transducers in Fig. 1 with the same
amplitude and phase, i.e., u = [1, ..., 1]7 € R®, we obtain
patterns of particles with an eightfold symmetry and center
of rotation at the origin (the center of the red circle in
Fig. 1). Figure 2 also shows quasiperiodic patterns of
particles with tenfold and twelvefold symmetries that can
be obtained by arranging the ultrasound transducers in
Fig. 1 as either a regular decagon or dodecagon, instead of
an octagon. Thus, we obtain known quasiperiodic sym-
metries in 2D, e.g., the tenfold symmetry is the same
symmetry encountered in Penrose tilings [2,13,14]. We also
point out that ultrasound transducer arrangements other
than regular polygons are possible and will yield patterns of
particles with other symmetries.

We used the setup of Fig. 3 to experimentally obtain
quasiperiodic patterns with eightfold symmetries. The
setup comprises a polycarbonate octagonal reservoir with
water, 80 nm carbon nanoparticles, and sodium dodecyl
benzene sulfonate (NaDDBS) surfactant [33]. The reservoir
is lined with eight ultrasound transducers along its perim-
eter (SM111 piezoelectric material, with center frequency
of 1 MHz), driven by a function generator. The distance
between two parallel ultrasound transducers is 5 cm and
each ultrasound transducer is 2 cm wide (or 401/3). The
depth of the liquid is approximately 1 cm (or 74, when
cg = 1500 m/s). Thus, boundary effects from the reservoir
and the free liquid surface are negligible and the theory and
experiments only consider bulk ultrasound waves.
Brownian motion of the particles is negligible in the
experiments (Appendix D, [16]).

We compare simulations of the ARP obtained from the
theoretical plane wave superposition Eq. (2), where par-
ticles assemble at the minima of the ARP, to experimentally
obtained patterns of particles, for two specific experiments.
In experiment 1, we impose ultrasound transducer

Camera
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FIG. 3. (a) Schematic of the experimental setup showing its
components and (b) photograph of the experimental setup (top
view) showing a typical experiment with 80 nm carbon nano-
particles in water.

operating parameters # = [1,1,1,1,1,1,1,1]7 and in
experiment 2 we impose u = [1,-1,1,1,1,-1,1,1].
Figure 4 shows the simulated ARP in the region
[=74,72]%, and we indicate the region we evaluate as a
red circle, as in Fig. 1. We used explicit expressions for the
gradient and Hessian of the ARP to predict the locations
where particles assemble, by identifying points where the
Hessian is sufficiently positive definite (minimum eigen-
value greater than 107%) and the gradient is sufficiently
small (Iess than 4 x 10!). We show the simulated locations
where particles assemble in red, superimposed on the
experimental results (photographs, where dark areas show
columns of particles viewed from the top, as in Ref. [23]).
We manually register the simulated and experimental
results with MATLAB’s FITGEOTRANS at the points indicated
by “+4” signs in Fig. 4, assuming a 2D projective trans-
formation. Finally, we qualitatively compare the simulated
and experimental results by superimposing the simulated
locations where we predict particles assemble (red) and
experimentally obtained patterns of particles (blue), and we
mark the overlapping locations (blue and red) in black. We
observe good qualitative agreement between simulations
and experiments.

We quantified the agreement between simulations and
experiments within the red circle of diameter D = 401/3 as
follows. We binarized the photographs of the experimental
results, using MATLAB’S IMBINARIZE with sensitivity 0.45.

Simulated ARP Experiment photo Comparison
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FIG. 4. Simulated ARP (first column, particles assemble at
minima) and experimentally obtained patterns of particles with
the minima of the simulated ARP superimposed in red (second
column), for experiments 1 and 2, showing distinct quasiperiodic
patterns with eightfold symmetries. We superimpose the simu-
lated ARP minima where we predict particles assemble (red) and
experimentally obtained patterns of particles (blue) (third col-
umn). We mark the overlapping locations (blue and red) in black.
Each image shows a red circle where we expect good agreement
with the plane wave model (see also Fig. 1) and “+” signs
indicate the registration between the simulated ARP and the
experimental results.
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FIG. 5. Agreement between simulations and experiments as a
function of evaluation circle diameter D = 404/3.

We determined the fraction of the total area of the simulated
clusters that is inside the experimentally determined clus-
ters, i.e., the black area divided by the sum of the black and
blue areas using the color convention in the comparison
column of Fig. 4. Figure 5 shows that the agreement
between simulations and experiments improves with
decreasing size of the evaluation circle with diameter
aD, with a € [1/2, 1]. In Fig. 5, the fraction of agreement
between simulations and experiments increases linearly
with decreasing size of the evaluation circle. Thus, the
simulations and experiments agree most closely at the
origin, which is consistent with Eq. (2) being a far-field
model. Other sources of error in the model Eq. (2) include
neglecting the boundary reflections and the finite width of
the ultrasound transducers.

We have shown that linear wave phenomena can
assemble quasiperiodic patterns of particles. Since linear
wave phenomena are common in physics, our findings
apply to a broad variety of different physical situations,
including ultrasound waves, electromagnetic waves, elastic
waves, amongst others. We illustrated this principle theo-
retically with plane waves in a fluid, and demonstrated it
experimentally by assembling 80 nm carbon nanoparticles
dispersed in water into patterns with eightfold symmetries,
using ultrasound waves. The theory accurately predicts the
experimental patterns of particles. Thus, this theory and
experimental demonstration provides a pathway upon
which to base a manufacturing platform for quasicrystal-
like structures of inclusions in a polymer matrix. Such
materials could help with the experimental study of the
physical properties of quasicrystals. These quasiperiodic
materials could have different mechanical or electrical
properties than a material with a random arrangement of
particles.
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