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ABSTRACT

Robotic apple harvesting has received much research attention in the past few years due to growing
shortage and rising cost in labor. One key enabling technology towards automated harvesting is accurate
and robust apple detection, which poses great challenges as a result of the complex orchard environ-
ment that involves varying lighting conditions and foliage/branch occlusions. This letter reports on the
development of a novel deep learning-based apple detection framework named Suppression Mask R-CNN.
Specifically, we first collect a comprehensive apple orchard dataset for "Gala" and "Blondee" apples, using
a color camera, under different lighting conditions (overcast and front lighting vs. back lighting). We then
develop a novel suppression Mask R-CNN for apple detection, in which a suppression branch is added to
the standard Mask R-CNN to suppress non-apple features generated by the original network. Compre-
hensive evaluations are performed, which show that the developed suppression Mask R-CNN network
outperforms state-of-the-art models with a higher F1-score of 0.905 and a detection time of 0.25 second

per frame on a standard desktop computer.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Fruit harvesting is highly labor-intensive and cost-heavy; it is
estimated that the labor needed for apple harvesting alone is more
than 10 million worker hours annually, attributing to approximately
15% of the total production cost in U.S[1]. Growing labor shortage
and rising labor cost have steadily eroded the profitability and sus-
tainability of the fruit industry. Furthermore, manual picking activ-
ities constitute great risks of back strain and musculoskeletal pain
to fruit pickers due to repetitive hand motions, awkward postures
when picking fruits at high locations or deep in the canopy, and
ascending and descending on ladders with heavy loads [2]. There-
fore, there is an imperative need for the development of robotic
mass harvesting systems to tackle labor shortage, lower human in-
jury risks, and improve productivity and profitability of the fruit
industry.

The first and foremost task in robotic harvesting is apple de-
tection, which identifies apples in the area of interest and provides
targets for the robot to perform subsequent actions. Due to the low
cost of cameras and the tremendous advances in computer vision
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[3], image-based apple detection systems have gained great pop-
ularity in robotic fruit harvesting since the late 1980s. However,
robust apple detection in the presence of complex tree structures,
varying lighting conditions, and foliage/branch occlusions is a chal-
lenging task.

Several methods have been proposed to address the above chal-
lenges. For example, a simple thresholding method is developed in
[4,5] to generate a binary image with smoothing filters that elimi-
nate noise and irrelevant details. The large segmented regions are
then recognized as fruits. This method is easy to implement but
it is susceptible to varying lighting conditions. A circular Hough
Transform is also proposed to obtain binary edge images along
with a matrix of votes on the detection candidates [6,7]. This ap-
proach works well with a simple background but is less applicable
in a complex structured environment, such as in a dense fruit or-
chard. Another idea is to combine shape and texture of the fruit
to generate a richer set of feature representations [8-11]. By com-
paring the differences between fruit and leaves in texture, specific
fruit or vegetable like broccoli are then detected. However, this
method relies on hand-crafted features and is sensitive to lighting
conditions and occlusions.

With rapid advancements in deep learning in recent years,
deep neural networks (DNNs) have found great successes in object
detection and semantic image segmentation [12,13]. DNN-based
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methods can learn feature representations automatically without
the need of feature hand-engineering. For example, Dias et. al[14].
used a combination of convolutional neural network (CNN) and
support vector machine (SVM) to extract features of apple blos-
soms in a complex background, which shows a good performance
of 0.822 F1-score. More recently, region-based convolutional neu-
ral network (R-CNN) has gained great popularity in object detec-
tion [15]. R-CNN utilizes regions of interest produced by selective
search [16] and then regresses bounding box location with classifi-
cation. A subsequent work, faster R-CNN [17], adds region a locat-
ing method instead of selective search to improve its performance.

Despite the aforementioned developments, accurate apple per-
ception to support robotic harvesting in real orchard environments
remains a great challenge. Existing methods either provide insuffi-
cient accuracy [18,19] or are based on simple structured orchards
with little occlusion and stable lighting conditions [14,20]. As such,
the goal of this study is to develop a robust and accurate apple de-
tection framework to support robotic harvesting in real orchard en-
vironment. Towards this end, we collected a comprehensive dataset
from two commercial orchards for two varieties of apples with dis-
tinct colors under various lighting conditions. Furthermore, we ex-
tended the well-known Mask R-CNN [21] with a suppression net-
work, hereinafter referred to as suppression Mask R-CNN, to im-
prove detection performance. Performance evaluations for apple
detection were then conducted to compare the proposed suppres-
sion Mask R-CNN with state-of-the-art models.

The contributions of this work are summarized as follows:

1. We collect and process a comprehensive orchard dataset with
multiple apple varieties under various lighting conditions in
real orchard environment.

. We develop a new deep network, suppression Mask R-CNN, to
remove false detections due to occlusion and thus increase the
accuracy and robustness of apple detection.

. Extensive evaluations show that the proposed suppression
Mask R-CNN achieves state-of-the-art performance.

The remainder of this paper is organized as fol-
lows. Section 2 reviews the existed state-of-the-art work.
Section 3 presents the orchard data collection and processing.
The suppression Mask R-CNN is then detailed in Section 4. Ex-
periments are performed in Section 5 to evaluate the proposed
framework with comparisons to state-of-art approaches. Finally,
Section 6 concludes the paper with discussions on future work.

2. Related work

Several state-of-the-art deep learning-based apple detection ap-
proaches have been developed. In particular, DaSNet [19], a deep
convolutional neural network that exploits the techniques of spa-
tial pyramid pooling and gate feature pyramid network, is pro-
posed for apple detection. It uses a lightweight residual network
as its backbone to achieve improved computational efficiency. Al-
though DaSNet has a decent performance (0.832 Fl1-score) and a
lightweight overhead, the algorithm is only trained and validated
on a dataset that contains a single apple variety with good light-
ing. YOLOv3 [18], another lightweight network that combines Re-
gion Proposal Network (RPN) and classification network into a sin-
gle architecture, is applied in [22] for apple detection. While the
network offers a fast detection rate, it has a relatively low F1-score
of 0.817. Mask R-CNN [21], a popular object detection algorithm, is
also deployed for apple detection [23]. The Mask R-CNN is a two-
stage detector that involves a RPN and a classification network. The
former searches the location of region of interest (ROI), whereas
the latter predicts the class of ROI and regresses the bounding box
of the ROI candidates. The Mask R-CNN is successfully applied to
apple detection in [23] with promising performance demonstrated.
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Fig. 1. Six sample images from the collected dataset: (a)-(c) Gala apples under over-
cast, back lighting, and direct lighting conditions, respectively; and (d)-(e) Blondee
apples under overcast, back lighting, and direct lighting conditions, respectively.

However, the dataset they use only has one apple variety with
good lighting conditions, making the results less compelling. In
this paper, we use a comprehensive orchard database that contains
multiple apple varieties under various lighting conditions. Further,
we develop a novel Suppression Mask R-CNN that has superior per-
formance as compared to the aforementioned approaches.

3. Data collection and processing

In this study, apple images of "Gala” and "Blondee” varieties
were taken in two commercial orchards in Sparta, Michigan, USA
during the 2019 harvest season. The two apple varieties have dis-
tinct color characteristics; "Gala” apples are red over a yellow back-
ground, while "Blondee” apples have a smooth yellow skin (see
Fig. 1). A RGB camera with a resolution of 1,280x720 was used
to take images of apples at a distance of 1 ~ 2 meters to the tree
trunk, which is the typical range of harvesting robots [24]. The im-
ages were collected across multiple days to cover both cloudy and
sunny weather conditions. In a single day, the data were also col-
lected at different times of the day, including 9:00am in the morn-
ing, noon, and 3:00pm in the afternoon, to cover different light-
ing angles: front-lighting, back-lighting, side-lighting, and scattered
lighting. When capturing images, the camera was placed parallel to
the ground and directly facing the trees to mimic the harvesting
scenario. A total of 1,500 images were captured where two sample
images are shown in Fig. 1.

We next processed the collected raw orchard images into for-
mats that can be used to train and evaluate deep networks. Specifi-
cally, apples in the images were annotated by rectangles using VGG
Image Annotator [25] and the annotation was then compiled into
the human-readable format. Compared to polygon and mask anno-
tations, rectangular annotation used here accelerates data prepara-
tion, particularly in dense images like our dataset. The annotated
dataset was then split into training, validation, and test subsets
with the apple quantities of 10,530, 4,203, and 4,795, respectively.

4. Suppression mask R-CNN

This section describes the development of a new deep learning-
based apple detection approach that systematically combines a
DNN backbone and a RGB feature-based suppression network. As
shown in Fig. 2, the proposed suppression Mask R-CNN consists of
two parts: a feature learning backbone from Mask R-CNN [21] and
a feature suppression end. The former is used to learn apple fea-
tures and generate region proposals. In the meantime, due to the



P. Chu, Z. Li, K. Lammers et al.

Pattern Recognition Letters 147 (2021) 206-211

g [a
- )
AHF 2
o 7]
x
RPN
/ Conv class ‘
Class branch Filtered
patches
FC BBox ; —> ZiN —>
4 ! ﬂ Box
BBox branch Weight
Component
Patches Conv Dense
ResNet101 Anchors

Feature Learning Backbone

Feature Suppression End

Fig. 2. Structure of the suppression Mask R-CNN. It consists of a feature learning backbone and a feature suppression end. The feature learning backbone is a deep network
to learn apple features while the feature suppression end, consisting of a weighting component and a shallow ConvNet, is used to filter non-apple regions.

foliage and branch occlusions, it will also learn foliage and branch
features that can cause false detection. As such, we introduce a
suppression network to filter non-apple features to improve de-
tection performance by exploiting a combination of clustered fea-
tures and convoluted features. These two networks are trained sep-
arately to avoid generating similar feature maps. We next discuss
the two networks in more details.

4.1. Feature learning backbone

The feature learning network uses the Mask R-CNN backbone
[21] and follows Mask R-CNN’s two-stage learning procedures with
two modifications. First, the convolutional backbone in Mask R-
CNN is used for feature extraction over an entire image, and is
applied as the network backbone for bounding-box recognition. In
this study, we instantiate feature learning backbone with ResNet-
101-FPN [21] as its backbone. ResNet101 outperforms other single
ConvNet mainly because it maintains strong semantic features at
various resolution scales. Even though ResNet101 is a deep net-
work, the residual blocks and dropouts function help it avoid gra-
dient vanishing and exploding problems. Then similar to [21], we
use a Region Proposal Network (RPN) [17] to generate object re-
gions. RPN is a small convolutional network which can convert fea-
ture maps into scored region proposals around where the object
lies. These proposals with certain height and width are called an-
chors, which are a set of predefined bounding boxes. The anchors
are designed to capture the scale and aspect ratio of specific ob-
ject classes and are typically determined based on object sizes in
the dataset. In the second stage, class and box offset are predicted
by virtue of Faster R-CNN [17] that applies bounding box classifica-
tion and regression in parallel. As shown in Fig. 2, another network
is employed to take the proposed regions from the first stage and
assign them to specific areas of a feature map obtained at the sec-
ond stage. After scanning these areas, the network generates object
classes and bounding boxes simultaneously [21].

Second, for improving the recall or true detection of our algo-
rithm, we introduce a convolutional structure (as shown in Fig. 2)
in the class branch to learn additional feature representations. The
features condensed from the Mask R-CNN backbone and fully con-
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nected layers may have lost considerable details of apples. Since
images have many occlusions in our dataset, the deep network can
treat some partial foliage features as apple features. These addi-
tional feature representations will enable the identification of cer-
tain regions in an image as an occluded apple or foliage. Further-
more, we freeze the layers in the ResNet101 backbone and train
this class branch independently in case there are many overlaps
compared to our main network.

4.2. Feature suppression end

After the feature learning step, bounding boxes of apple candi-
dates are obtained. The image patches inside the bounding boxes
are then fed into a feature suppression end to remove mis-labeled
candidates. Since the feature learning backbone may have learned
wrong inference features like leaves with apple-like shapes, the
purpose of this suppression network is to avoid that non-apple re-
gions flow into the last decision layer.

Specifically, the suppression network consists of a weighting
component and a shallow ConvNet. The weighting component is
a 2x2 grid clustering layer that aims to determine apple regions
in terms of apple pixel counts. The motivation is that in our an-
notated dataset, each apple is annotated in the center of a bound-
ing box and occupies the major area in that bounding box. Even
though the canopies always partially occlude the apple, the pix-
els corresponding to the apple are still in the majority. Based on
our observation of dataset, the four regions (a, b, c,d as shown in
Fig. 3-(3)) generally contain most apple pixels. Therefore, as shown
in Fig. 3, we divide each bounding box in the training dataset into
four regions, a, b, c,d, as a 2x2 grid. The four regions a, b, c,d is,
respectively, located near the left top, right top, left bottom, and
right bottom with a margin of 5% pixels to the box edges. Further-
more, we use K-means clustering [26] to group similar pixels and
obtain several clusters. After clustering, we label each pixel with its
class number i, i =1, 2, 3, ...n, with n being the pre-specified clus-
ter numbers (In our experiments, we use n = 3). Since the class
associated with the most pixels will correspond to the apple re-
gion, we select the “apple” region from the four grids and define
its pixel counts as N%, N®, N¢, and N¢, respectively. We will then
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Fig. 3. Illlustration of the proposed weighting scheme: (1) sliced image inside the
bounding box of a detected apple; (2) pixel clustering using K-means with k=3
where each cluster is shown in one of the three colors; (3) image partitioning into
4 regions and counting pixel numbers of each cluster in the 4 grids; and (4) apple
pixel determination by assigning the pixels corresponding to the cluster with most
pixel counts in the 4 grids as apple pixels.

(1 4)

set the apple region pixels as 1 whereas other pixels are assigned
to zero. A sample output is shown in Fig. 3. The weighting compo-
nent keeps the objective information and generates an output with
only apple pixels, which makes it more efficient to train feature
suppression network that we will discuss later. The other merit of
weighting component is that if the previous network recognizes
a leaf as an apple, only leaf pixels are treated as objectives and
flow to next ConvNets. That makes suppression network easy to
discriminate apple and non-apple objectives.

The second component is a shallow convolutional network that
is used to learn apple features based on filtered patches gener-
ated by the weighting component. Compared to the feature learn-
ing backbone, the features to learn in this shallow network is less.
Only three convolution layers (3x3x32, 3x3x32, 3x3x64) associated
with pooling layers (17x17x32, 7x7x32, 2x2x64) and RelLU as ac-
tivation are used to fit the discrimination function. Two additional
dense layers are employed to flatten feature maps and produce de-
cision. This network has a total of 45,153 trainable parameters. The
detailed architecture is described in Fig. 2. With the help of feature
suppression end, we suppress non-apple class flowing into the de-
cision layer and it does not significantly increase inference time
since the depth of the feature suppression end is small. The pro-
posed feature suppression end can be viewed as a filter to effi-
ciently reduce false alarms.

4.3. Loss functions

Since we train the feature learning backbone and the suppres-
sion network separately, we define two loss functions as follows.
For the feature learning backbone, we use the same loss function
with Mask R-CNN [21], which defines a multi-task loss on each
sampled region of interest as Lygcpone = Leis + Lpoy, Where Ly and
Ly, are, respectively, classification loss and bounding box loss de-
fined as:

1 A

Lbackbone = mEiLcls(pia pf) + Wxip;‘k 'Lbox(ti, tl*) (1)
Cls 0X

Las(pi, p}) = —pilog pi — (1 — py) log(1 — py), (2)

where p; and p; are, respectively, the predicted probability and
ground truth of anchor i; t; and ¢} are, respectively, predicted coor-
dinates and ground-truth coordinates; Ng; and Ny, are normaliza-
tion terms of batch size and number of anchor locations; the loss
function Ly, is the L1-smooth function [27]; and X is a parameter
that controls the balance between the classification loss and the
bounding box loss [28]. In our network, we use A =1 as we assign
equal weights to the two losses.

For feature suppression end, we define L,,; as the average bi-
nary cross-entropy loss. For a patch associated with ground-truth
class, L,,q is defined as:

Leng = —[ylogy + (1 —y) log(1 -] (3)
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Fig. 4. An example of Gala apple detection using our suppression Mask R-CNN. It
shows that the majority of apples are detected (green bounding boxes) but there
are still 3 apples missed (red bounding boxes) due to heavy occlusion. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

where y is the ground truth and j is the prediction.
5. Experiment results
5.1. Implementation

In this section, we evaluate the efficacy of the suppression
Mask R-CNN with the processed data as discussed in Section 3.
The network hyper-parameters, including the momentum, learn-
ing rate, decay factor, training steps, and batch size, are set as 0.9,
0.001, 0.0005, 934, and 1, respectively, through cross-validation.
The input image size is 1,280x720, which is aligned with the cam-
era resolution. To better analyze the training process, we set up
100 epochs for training. We exploit a pre-trained model on COCO
dataset [29] to warm-start the training process and it generally
only needs 50 epochs to converge. A detection example is shown
in Fig. 4, where green boxes represent correctly identified apples
while red boxes represent missed detection.

To quantitatively evaluate the detection performance, we use
performance metrics including precision, recall and F1-score for al-
gorithm evaluation. All detection outcomes are divided into four
types: true positive (TP), false positive (FP), true negative (TN), and
false negative (FN), based on the relation between the true class
and predicted class. Then precision (P) and recall (R) are defined
as follows:

TP TP
P =15 PR = TP EN (4)

Then F1-score is defined based on precision and recall as fol-
lows:
ZP P-R 5)

+R

Note that the suppression network offers a tradeoff between
recall and precision, that is, aggressive suppression will lead to
higher precision but lower recall rate. This tradeoff can be con-
trolled by adjusting two confidence thresholds th; in the class
branch network and th, in the feature suppression end. Then we
tune both confidence thresholds during the inference process to
obtain the best recall and precision of our entire model. Fig. 5
shows the Pareto plot, where each point represents the perfor-
mance of a combination of thy; and th,. From the Pareto front (blue
solid lines) in Fig. 5, we choose two “best” configurations C; and
C,, among which C; represents a better F1-score 0.905 whereas C,
achieves a better of recall rate of 0.939. The detection performance
with C; has 10% increase in precision and 0.4% increase in recall
whereas 1.6% increase in precision and 1.3% increase in recall are

F1=
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Fig. 5. The Pareto plot of recall-precision on different combinations of th; and
th,.The Pareto front is shown in blue solid lines and the two configurations used
to compare with the state-of-art networks (see Table 1) are shown in red stars.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 1

Performance comparison between the state-of-the-art networks and
our proposed Suppression Mask R-CNN with two parameter config-
urations (C; and G).
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Fig. 6. The plot of recall-precision curves on different approaches. Our proposed
Suppression Mask R-CNN networks (in both configurations) outperform the state-
of-the-art algorithms.

Precision  Recall F1-score
YOLOv3 0.703 0.860  0.773
DaSNet 0.693 0.821 0.751
Faster R-CNN 0.761 0.889  0.820
Mask R-CNN(ResNet101) 0.789 0.927  0.852
Mask R-CNN(ResNet152) 0.798 0.928  0.858
Suppression Mask R-CNN(C;)  0.880 0.931 0.905
Suppression Mask R-CNN(G;)  0.801 0.939 0.864

achieved with configuration C,. These results demonstrate that in
both cases, our integrated class branch and the suppression end
approach improve the true detection and the C, configuration sig-
nificantly reduce false fruit detection rates.

5.2. Comparison with the state-of-the-arts

In order to fully evaluate the performance of the proposed ap-
proach, we compare our approach with the state-of-the-art apple
detection algorithms based on our comprehensive image dataset.
The algorithms that we compare with include YOLOv3 [22], DaSNet
[19], Faster R-CNN [30], and Mask R-CNN [23]. These approaches
are trained and evaluated on the same training data and test data.
For Mask R-CNN, we consider two configurations: ResNet101 back-
bone and ResNet152 backbone. The recall-precision curves of these
approaches are shown in Fig. 6. Furthermore, the precision, recall

Table 2

Fig. 7. Detection results on different apple varieties under various lighting con-
ditions: (a)-(c) detection on Gala apples under overcast, back lighting, and direct
lighting conditions, respectively; and (d)-(e) detection on Blondee apples under
overcast, back lighting, and direct lighting conditions, respectively.

and F1-score are shown in Table 1. It can be seen in Fig. 6 and
Table 1 that the proposed Suppression Mask R-CNN has superior
performance as compared to the existing approaches.

5.3. Evaluation on different apple varieties and lighting conditions

In addition, we also evaluate our model in different sub-
datasets. Specifically, we separate the whole dataset into several
sub-datasets based on apple variety and lighting conditions. The
evaluations are summarized in the Table 2 and results are shown

Performance evaluation on subset of the data with different apple varieties as well as dif-
ferent lighting conditions.It can be seen that similar performance are obtained in Gala and
Blondee apples while back lighting can slightly decrease the performance.

Dataset

Category Lighting Condition Total

Gala Blondee  Overcast  Direct Lighting  Back Lighting
Number 3357 1438 3356 959 480 4,795
Precision 0.87 0.89 0.89 0.89 0.84 0.88
Recall 0.93 0.93 0.93 0.93 0.93 0.93
F1-score 0.90 0.91 0.91 0.91 0.88 0.91
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in 7. The results show that our model has a better performance
for Blondee apples than for Gala. Compared to back lighting condi-
tions, the detection of our model reaches a higher precision under
overcast or direct lighting conditions, which indicates that artificial
lighting may be helpful for further improving the performance and
it will be investigated in our future work.

6. Conclusion

In this study, we collected a comprehensive apple dataset for
two varieties of apples with distinct yellow and red colors under
different lighting conditions from the real orchard environment. A
novel suppression Mask R-CNN was developed to robustly detect
apples from the dataset. Our developed feature suppression net-
work significantly reduced false detection by filtering non-apple
features learned from the feature learning backbone. Our suppres-
sion Mask R-CNN demonstrated superior performance, compared
to state-of-the-art models in experimental evaluations.

Our future work will include the incorporation of depth infor-
mation in the network design to further improve the detection per-
formance. Furthermore, foliage and branches detection will be de-
veloped to provide necessary contextual information for the robot
to maneuver, e.g., avoiding colliding with tree branches. Lastly, we
will also investigate whether artificial lighting augmentation can
enhance the detection performance.
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