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a b s t r a c t 

Robotic apple harvesting has received much research attention in the past few years due to growing 

shortage and rising cost in labor. One key enabling technology towards automated harvesting is accurate 

and robust apple detection, which poses great challenges as a result of the complex orchard environ- 

ment that involves varying lighting conditions and foliage/branch occlusions. This letter reports on the 

development of a novel deep learning-based apple detection framework named Suppression Mask R-CNN. 

Specifically, we first collect a comprehensive apple orchard dataset for "Gala" and "Blondee" apples, using 

a color camera, under different lighting conditions (overcast and front lighting vs. back lighting). We then 

develop a novel suppression Mask R-CNN for apple detection, in which a suppression branch is added to 

the standard Mask R-CNN to suppress non-apple features generated by the original network. Compre- 

hensive evaluations are performed, which show that the developed suppression Mask R-CNN network 

outperforms state-of-the-art models with a higher F1-score of 0.905 and a detection time of 0.25 second 

per frame on a standard desktop computer. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Fruit harvesting is highly labor-intensive and cost-heavy; it is 

stimated that the labor needed for apple harvesting alone is more 

han 10 million worker hours annually, attributing to approximately 

5% of the total production cost in U.S [1] . Growing labor shortage 

nd rising labor cost have steadily eroded the profitability and sus- 

ainability of the fruit industry. Furthermore, manual picking activ- 

ties constitute great risks of back strain and musculoskeletal pain 

o fruit pickers due to repetitive hand motions, awkward postures 

hen picking fruits at high locations or deep in the canopy, and 

scending and descending on ladders with heavy loads [2] . There- 

ore, there is an imperative need for the development of robotic 

ass harvesting systems to tackle labor shortage, lower human in- 

ury risks, and improve productivity and profitability of the fruit 

ndustry. 

The first and foremost task in robotic harvesting is apple de- 

ection, which identifies apples in the area of interest and provides 

argets for the robot to perform subsequent actions. Due to the low 

ost of cameras and the tremendous advances in computer vision 
� Handle by Editor Sudeep Sarkar. 
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3] , image-based apple detection systems have gained great pop- 

larity in robotic fruit harvesting since the late 1980s. However, 

obust apple detection in the presence of complex tree structures, 

arying lighting conditions, and foliage/branch occlusions is a chal- 

enging task. 

Several methods have been proposed to address the above chal- 

enges. For example, a simple thresholding method is developed in 

4,5] to generate a binary image with smoothing filters that elimi- 

ate noise and irrelevant details. The large segmented regions are 

hen recognized as fruits. This method is easy to implement but 

t is susceptible to varying lighting conditions. A circular Hough 

ransform is also proposed to obtain binary edge images along 

ith a matrix of votes on the detection candidates [6,7] . This ap- 

roach works well with a simple background but is less applicable 

n a complex structured environment, such as in a dense fruit or- 

hard. Another idea is to combine shape and texture of the fruit 

o generate a richer set of feature representations [8–11] . By com- 

aring the differences between fruit and leaves in texture, specific 

ruit or vegetable like broccoli are then detected. However, this 

ethod relies on hand-crafted features and is sensitive to lighting 

onditions and occlusions. 

With rapid advancements in deep learning in recent years, 

eep neural networks (DNNs) have found great successes in object 

etection and semantic image segmentation [12,13] . DNN-based 

https://doi.org/10.1016/j.patrec.2021.04.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
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Fig. 1. Six sample images from the collected dataset: (a)-(c) Gala apples under over- 

cast, back lighting, and direct lighting conditions, respectively; and (d)-(e) Blondee 

apples under overcast, back lighting, and direct lighting conditions, respectively. 
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ethods can learn feature representations automatically without 

he need of feature hand-engineering. For example, Dias et. al [14] . 

sed a combination of convolutional neural network (CNN) and 

upport vector machine (SVM) to extract features of apple blos- 

oms in a complex background, which shows a good performance 

f 0.822 F1-score. More recently, region-based convolutional neu- 

al network (R-CNN) has gained great popularity in object detec- 

ion [15] . R-CNN utilizes regions of interest produced by selective 

earch [16] and then regresses bounding box location with classifi- 

ation. A subsequent work, faster R-CNN [17] , adds region a locat- 

ng method instead of selective search to improve its performance. 

Despite the aforementioned developments, accurate apple per- 

eption to support robotic harvesting in real orchard environments 

emains a great challenge. Existing methods either provide insuffi- 

ient accuracy [18,19] or are based on simple structured orchards 

ith little occlusion and stable lighting conditions [14,20] . As such, 

he goal of this study is to develop a robust and accurate apple de- 

ection framework to support robotic harvesting in real orchard en- 

ironment. Towards this end, we collected a comprehensive dataset 

rom two commercial orchards for two varieties of apples with dis- 

inct colors under various lighting conditions. Furthermore, we ex- 

ended the well-known Mask R-CNN [21] with a suppression net- 

ork, hereinafter referred to as suppression Mask R-CNN, to im- 

rove detection performance. Performance evaluations for apple 

etection were then conducted to compare the proposed suppres- 

ion Mask R-CNN with state-of-the-art models. 

The contributions of this work are summarized as follows: 

1. We collect and process a comprehensive orchard dataset with 

multiple apple varieties under various lighting conditions in 

real orchard environment. 

2. We develop a new deep network, suppression Mask R-CNN, to 

remove false detections due to occlusion and thus increase the 

accuracy and robustness of apple detection. 

3. Extensive evaluations show that the proposed suppression 

Mask R-CNN achieves state-of-the-art performance. 

The remainder of this paper is organized as fol- 

ows. Section 2 reviews the existed state-of-the-art work. 

ection 3 presents the orchard data collection and processing. 

he suppression Mask R-CNN is then detailed in Section 4 . Ex- 

eriments are performed in Section 5 to evaluate the proposed 

ramework with comparisons to state-of-art approaches. Finally, 

ection 6 concludes the paper with discussions on future work. 

. Related work 

Several state-of-the-art deep learning-based apple detection ap- 

roaches have been developed. In particular, DaSNet [19] , a deep 

onvolutional neural network that exploits the techniques of spa- 

ial pyramid pooling and gate feature pyramid network, is pro- 

osed for apple detection. It uses a lightweight residual network 

s its backbone to achieve improved computational efficiency. Al- 

hough DaSNet has a decent performance (0.832 F1-score) and a 

ightweight overhead, the algorithm is only trained and validated 

n a dataset that contains a single apple variety with good light- 

ng. YOLOv3 [18] , another lightweight network that combines Re- 

ion Proposal Network (RPN) and classification network into a sin- 

le architecture, is applied in [22] for apple detection. While the 

etwork offers a fast detection rate, it has a relatively low F1-score 

f 0.817. Mask R-CNN [21] , a popular object detection algorithm, is 

lso deployed for apple detection [23] . The Mask R-CNN is a two- 

tage detector that involves a RPN and a classification network. The 

ormer searches the location of region of interest (ROI), whereas 

he latter predicts the class of ROI and regresses the bounding box 

f the ROI candidates. The Mask R-CNN is successfully applied to 

pple detection in [23] with promising performance demonstrated. 
207 
owever, the dataset they use only has one apple variety with 

ood lighting conditions, making the results less compelling. In 

his paper, we use a comprehensive orchard database that contains 

ultiple apple varieties under various lighting conditions. Further, 

e develop a novel Suppression Mask R-CNN that has superior per- 

ormance as compared to the aforementioned approaches. 

. Data collection and processing 

In this study, apple images of ”Gala” and ”Blondee” varieties 

ere taken in two commercial orchards in Sparta, Michigan, USA 

uring the 2019 harvest season. The two apple varieties have dis- 

inct color characteristics; ”Gala” apples are red over a yellow back- 

round, while ”Blondee” apples have a smooth yellow skin (see 

ig. 1 ). A RGB camera with a resolution of 1,280x720 was used 

o take images of apples at a distance of 1 ∼ 2 meters to the tree

runk, which is the typical range of harvesting robots [24] . The im- 

ges were collected across multiple days to cover both cloudy and 

unny weather conditions. In a single day, the data were also col- 

ected at different times of the day, including 9:00am in the morn- 

ng, noon, and 3:00pm in the afternoon, to cover different light- 

ng angles: front-lighting, back-lighting, side-lighting, and scattered 

ighting. When capturing images, the camera was placed parallel to 

he ground and directly facing the trees to mimic the harvesting 

cenario. A total of 1,500 images were captured where two sample 

mages are shown in Fig. 1 . 

We next processed the collected raw orchard images into for- 

ats that can be used to train and evaluate deep networks. Specifi- 

ally, apples in the images were annotated by rectangles using VGG 

mage Annotator [25] and the annotation was then compiled into 

he human-readable format. Compared to polygon and mask anno- 

ations, rectangular annotation used here accelerates data prepara- 

ion, particularly in dense images like our dataset. The annotated 

ataset was then split into training, validation, and test subsets 

ith the apple quantities of 10,530, 4,203, and 4,795, respectively. 

. Suppression mask R-CNN 

This section describes the development of a new deep learning- 

ased apple detection approach that systematically combines a 

NN backbone and a RGB feature-based suppression network. As 

hown in Fig. 2 , the proposed suppression Mask R-CNN consists of 

wo parts: a feature learning backbone from Mask R-CNN [21] and 

 feature suppression end. The former is used to learn apple fea- 

ures and generate region proposals. In the meantime, due to the 
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Fig. 2. Structure of the suppression Mask R-CNN. It consists of a feature learning backbone and a feature suppression end. The feature learning backbone is a deep network 

to learn apple features while the feature suppression end, consisting of a weighting component and a shallow ConvNet, is used to filter non-apple regions. 
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oliage and branch occlusions, it will also learn foliage and branch 

eatures that can cause false detection. As such, we introduce a 

uppression network to filter non-apple features to improve de- 

ection performance by exploiting a combination of clustered fea- 

ures and convoluted features. These two networks are trained sep- 

rately to avoid generating similar feature maps. We next discuss 

he two networks in more details. 

.1. Feature learning backbone 

The feature learning network uses the Mask R-CNN backbone 

21] and follows Mask R-CNN’s two-stage learning procedures with 

wo modifications. First, the convolutional backbone in Mask R- 

NN is used for feature extraction over an entire image, and is 

pplied as the network backbone for bounding-box recognition. In 

his study, we instantiate feature learning backbone with ResNet- 

01-FPN [21] as its backbone. ResNet101 outperforms other single 

onvNet mainly because it maintains strong semantic features at 

arious resolution scales. Even though ResNet101 is a deep net- 

ork, the residual blocks and dropouts function help it avoid gra- 

ient vanishing and exploding problems. Then similar to [21] , we 

se a Region Proposal Network (RPN) [17] to generate object re- 

ions. RPN is a small convolutional network which can convert fea- 

ure maps into scored region proposals around where the object 

ies. These proposals with certain height and width are called an- 

hors, which are a set of predefined bounding boxes. The anchors 

re designed to capture the scale and aspect ratio of specific ob- 

ect classes and are typically determined based on object sizes in 

he dataset. In the second stage, class and box offset are predicted 

y virtue of Faster R-CNN [17] that applies bounding box classifica- 

ion and regression in parallel. As shown in Fig. 2 , another network 

s employed to take the proposed regions from the first stage and 

ssign them to specific areas of a feature map obtained at the sec- 

nd stage. After scanning these areas, the network generates object 

lasses and bounding boxes simultaneously [21] . 

Second, for improving the recall or true detection of our algo- 

ithm, we introduce a convolutional structure (as shown in Fig. 2 ) 

n the class branch to learn additional feature representations. The 

eatures condensed from the Mask R-CNN backbone and fully con- 
208 
ected layers may have lost considerable details of apples. Since 

mages have many occlusions in our dataset, the deep network can 

reat some partial foliage features as apple features. These addi- 

ional feature representations will enable the identification of cer- 

ain regions in an image as an occluded apple or foliage. Further- 

ore, we freeze the layers in the ResNet101 backbone and train 

his class branch independently in case there are many overlaps 

ompared to our main network. 

.2. Feature suppression end 

After the feature learning step, bounding boxes of apple candi- 

ates are obtained. The image patches inside the bounding boxes 

re then fed into a feature suppression end to remove mis-labeled 

andidates. Since the feature learning backbone may have learned 

rong inference features like leaves with apple-like shapes, the 

urpose of this suppression network is to avoid that non-apple re- 

ions flow into the last decision layer. 

Specifically, the suppression network consists of a weighting 

omponent and a shallow ConvNet. The weighting component is 

 2x2 grid clustering layer that aims to determine apple regions 

n terms of apple pixel counts. The motivation is that in our an- 

otated dataset, each apple is annotated in the center of a bound- 

ng box and occupies the major area in that bounding box. Even 

hough the canopies always partially occlude the apple, the pix- 

ls corresponding to the apple are still in the majority. Based on 

ur observation of dataset, the four regions ( a, b, c, d as shown in 

ig. 3 -(3)) generally contain most apple pixels. Therefore, as shown 

n Fig. 3 , we divide each bounding box in the training dataset into 

our regions, a, b, c, d, as a 2x2 grid. The four regions a, b, c, d is,

espectively, located near the left top, right top, left bottom, and 

ight bottom with a margin of 5% pixels to the box edges. Further- 

ore, we use K-means clustering [26] to group similar pixels and 

btain several clusters. After clustering, we label each pixel with its 

lass number i , i = 1 , 2 , 3 , . . . n , with n being the pre-specified clus-

er numbers (In our experiments, we use n = 3 ). Since the class 

ssociated with the most pixels will correspond to the apple re- 

ion, we select the “apple” region from the four grids and define 

ts pixel counts as N 
a , N 

b , N 
c , and N 

d , respectively. We will then
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Fig. 3. Illustration of the proposed weighting scheme: (1) sliced image inside the 

bounding box of a detected apple; (2) pixel clustering using K-means with k = 3 

where each cluster is shown in one of the three colors; (3) image partitioning into 

4 regions and counting pixel numbers of each cluster in the 4 grids; and (4) apple 

pixel determination by assigning the pixels corresponding to the cluster with most 

pixel counts in the 4 grids as apple pixels. 
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Fig. 4. An example of Gala apple detection using our suppression Mask R-CNN. It 

shows that the majority of apples are detected (green bounding boxes) but there 

are still 3 apples missed (red bounding boxes) due to heavy occlusion. (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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et the apple region pixels as 1 whereas other pixels are assigned 

o zero. A sample output is shown in Fig. 3 . The weighting compo-

ent keeps the objective information and generates an output with 

nly apple pixels, which makes it more efficient to train feature 

uppression network that we will discuss later. The other merit of 

eighting component is that if the previous network recognizes 

 leaf as an apple, only leaf pixels are treated as objectives and 

ow to next ConvNets. That makes suppression network easy to 

iscriminate apple and non-apple objectives. 

The second component is a shallow convolutional network that 

s used to learn apple features based on filtered patches gener- 

ted by the weighting component. Compared to the feature learn- 

ng backbone, the features to learn in this shallow network is less. 

nly three convolution layers (3x3x32, 3x3x32, 3x3x64) associated 

ith pooling layers (17x17x32, 7x7x32, 2x2x64) and ReLU as ac- 

ivation are used to fit the discrimination function. Two additional 

ense layers are employed to flatten feature maps and produce de- 

ision. This network has a total of 45,153 trainable parameters. The 

etailed architecture is described in Fig. 2 . With the help of feature 

uppression end, we suppress non-apple class flowing into the de- 

ision layer and it does not significantly increase inference time 

ince the depth of the feature suppression end is small. The pro- 

osed feature suppression end can be viewed as a filter to effi- 

iently reduce false alarms. 

.3. Loss functions 

Since we train the feature learning backbone and the suppres- 

ion network separately, we define two loss functions as follows. 

or the feature learning backbone, we use the same loss function 

ith Mask R-CNN [21] , which defines a multi-task loss on each 

ampled region of interest as L backbone = L cls + L box , where L cls and 

 box are, respectively, classification loss and bounding box loss de- 

ned as: 

 backbone = 

1 

N cls 

�i L cls (p i , p 
∗
i ) + 

λ

N box 

�i p 
∗
i · L box (t i , t ∗i ) (1)

 cls (p i , p 
∗
i ) = −p ∗i log p i − (1 − p ∗i ) log (1 − p i ) , (2)

here p i and p 
∗
i 
are, respectively, the predicted probability and 

round truth of anchor i ; t i and t 
∗
i 
are, respectively, predicted coor- 

inates and ground-truth coordinates; N cls and N box are normaliza- 

ion terms of batch size and number of anchor locations; the loss 

unction L box is the L1-smooth function [27] ; and λ is a parameter 

hat controls the balance between the classification loss and the 

ounding box loss [28] . In our network, we use λ = 1 as we assign

qual weights to the two losses. 

For feature suppression end, we define L end as the average bi- 

ary cross-entropy loss. For a patch associated with ground-truth 

lass, L end is defined as: 

 = −[ y log ̂  y + (1 − y ) log (1 − ˆ y )] , (3) 
end w  

209 
here y is the ground truth and ˆ y is the prediction. 

. Experiment results 

.1. Implementation 

In this section, we evaluate the efficacy of the suppression 

ask R-CNN with the processed data as discussed in Section 3 . 

he network hyper-parameters, including the momentum, learn- 

ng rate, decay factor, training steps, and batch size, are set as 0.9, 

.0 01, 0.0 0 05, 934, and 1, respectively, through cross-validation. 

he input image size is 1,280x720, which is aligned with the cam- 

ra resolution. To better analyze the training process, we set up 

00 epochs for training. We exploit a pre-trained model on COCO 

ataset [29] to warm-start the training process and it generally 

nly needs 50 epochs to converge. A detection example is shown 

n Fig. 4 , where green boxes represent correctly identified apples 

hile red boxes represent missed detection. 

To quantitatively evaluate the detection performance, we use 

erformance metrics including precision, recall and F1-score for al- 

orithm evaluation. All detection outcomes are divided into four 

ypes: true positive (TP), false positive (FP), true negative (TN), and 

alse negative (FN), based on the relation between the true class 

nd predicted class. Then precision (P) and recall (R) are defined 

s follows: 

 = 

T P 

T P + F P 
R = 

T P 

T P + F N 

(4) 

Then F1-score is defined based on precision and recall as fol- 

ows: 

 1 = 

2 · P · R 
P + R 

(5) 

Note that the suppression network offers a tradeoff between 

ecall and precision, that is, aggressive suppression will lead to 

igher precision but lower recall rate. This tradeoff can be con- 

rolled by adjusting two confidence thresholds th 1 in the class 

ranch network and th 2 in the feature suppression end. Then we 

une both confidence thresholds during the inference process to 

btain the best recall and precision of our entire model. Fig. 5 

hows the Pareto plot, where each point represents the perfor- 

ance of a combination of th 1 and th 2 . From the Pareto front (blue

olid lines) in Fig. 5 , we choose two “best” configurations C 1 and 

 2 , among which C 1 represents a better F1-score 0.905 whereas C 2 
chieves a better of recall rate of 0.939. The detection performance 

ith C 1 has 10% increase in precision and 0 . 4% increase in recall 

hereas 1 . 6% increase in precision and 1 . 3% increase in recall are
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Fig. 5. The Pareto plot of recall-precision on different combinations of th 1 and 

th 2 .The Pareto front is shown in blue solid lines and the two configurations used 

to compare with the state-of-art networks (see Table 1 ) are shown in red stars. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Table 1 

Performance comparison between the state-of-the-art networks and 

our proposed Suppression Mask R-CNN with two parameter config- 

urations ( C 1 and C 2 ). 

Precision Recall F1-score 

YOLOv3 0.703 0.860 0.773 

DaSNet 0.693 0.821 0.751 

Faster R-CNN 0.761 0.889 0.820 

Mask R-CNN(ResNet101) 0.789 0.927 0.852 

Mask R-CNN(ResNet152) 0.798 0.928 0.858 

Suppression Mask R-CNN( C 1 ) 0.880 0.931 0.905 

Suppression Mask R-CNN( C 2 ) 0.801 0.939 0.864 

a

b

a

n

5

p

d

T

[

a

F

b

a

Fig. 6. The plot of recall-precision curves on different approaches. Our proposed 

Suppression Mask R-CNN networks (in both configurations) outperform the state- 

of-the-art algorithms. 

Fig. 7. Detection results on different apple varieties under various lighting con- 

ditions: (a)-(c) detection on Gala apples under overcast, back lighting, and direct 

lighting conditions, respectively; and (d)-(e) detection on Blondee apples under 

overcast, back lighting, and direct lighting conditions, respectively. 

a  

T

p

5

d

s

e

chieved with configuration C 2 . These results demonstrate that in 

oth cases, our integrated class branch and the suppression end 

pproach improve the true detection and the C 2 configuration sig- 

ificantly reduce false fruit detection rates. 

.2. Comparison with the state-of-the-arts 

In order to fully evaluate the performance of the proposed ap- 

roach, we compare our approach with the state-of-the-art apple 

etection algorithms based on our comprehensive image dataset. 

he algorithms that we compare with include YOLOv3 [22] , DaSNet 

19] , Faster R-CNN [30] , and Mask R-CNN [23] . These approaches 

re trained and evaluated on the same training data and test data. 

or Mask R-CNN, we consider two configurations: ResNet101 back- 

one and ResNet152 backbone. The recall-precision curves of these 

pproaches are shown in Fig. 6 . Furthermore, the precision, recall 
Table 2 

Performance evaluation on subset of the data wi

ferent lighting conditions.It can be seen that sim

Blondee apples while back lighting can slightly d

Dataset 

Category Lighting Cond

Gala Blondee Overcast D

Number 3357 1438 3356 9

Precision 0.87 0.89 0.89 0

Recall 0.93 0.93 0.93 0

F1-score 0.90 0.91 0.91 0

210 
nd F1-score are shown in Table 1 . It can be seen in Fig. 6 and

able 1 that the proposed Suppression Mask R-CNN has superior 

erformance as compared to the existing approaches. 

.3. Evaluation on different apple varieties and lighting conditions 

In addition, we also evaluate our model in different sub- 

atasets. Specifically, we separate the whole dataset into several 

ub-datasets based on apple variety and lighting conditions. The 

valuations are summarized in the Table 2 and results are shown 
th different apple varieties as well as dif- 

ilar performance are obtained in Gala and 

ecrease the performance. 

ition Total 

irect Lighting Back Lighting 

59 480 4,795 

.89 0.84 0.88 

.93 0.93 0.93 

.91 0.88 0.91 
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n 7 . The results show that our model has a better performance 

or Blondee apples than for Gala. Compared to back lighting condi- 

ions, the detection of our model reaches a higher precision under 

vercast or direct lighting conditions, which indicates that artificial 

ighting may be helpful for further improving the performance and 

t will be investigated in our future work. 

. Conclusion 

In this study, we collected a comprehensive apple dataset for 

wo varieties of apples with distinct yellow and red colors under 

ifferent lighting conditions from the real orchard environment. A 

ovel suppression Mask R-CNN was developed to robustly detect 

pples from the dataset. Our developed feature suppression net- 

ork significantly reduced false detection by filtering non-apple 

eatures learned from the feature learning backbone. Our suppres- 

ion Mask R-CNN demonstrated superior performance, compared 

o state-of-the-art models in experimental evaluations. 

Our future work will include the incorporation of depth infor- 

ation in the network design to further improve the detection per- 

ormance. Furthermore, foliage and branches detection will be de- 

eloped to provide necessary contextual information for the robot 

o maneuver, e.g., avoiding colliding with tree branches. Lastly, we 

ill also investigate whether artificial lighting augmentation can 

nhance the detection performance. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

eferences 

[1] K. Gallardo , P. Galinato , 2012 Cost Estimates of Establishing, Producing, and 
packing Red Delicious Apples in Washington, FS099E, 2012 . 

[2] F.A. Fathallah, Musculoskeletal disorders in labor-intensive agriculture, Appl Er- 
gon 41 (6) (2010) 738–743 Special Section: Selection of papers from IEA 2009., 

doi: 10.1016/j.apergo.2010.03.003 . 
[3] D.I. Patrício , R. Rieder , Computer vision and artificial intelligence in precision 

agriculture for grain crops: a systematic review, Comput. Electron. Agric. 153 
(2018) 69–81 . 

[4] D.C. Slaughter , R.C. Harrell , Color vision in robotic fruit harvesting, Transactions 

of the ASAE 30 (4) (1987) 1144–1148 . 
[5] P.W. Sites , M.J. Delwiche , Computer vision to locate fruit on a tree, Transactions 

of the ASAE 31 (1) (1988) 257–0265 . 
[6] D. Whittaker , G. Miles , O. Mitchell , L. Gaultney , Fruit location in a partially

occluded image, Transactions of the ASAE 30 (3) (1987) 591–0596 . 
[7] M. Benady , G.E. Miles , Locating melons for robotic harvesting using structured 

light, Paper-American Society of Agricultural Engineers (USA) (1992) . 
211 
[8] W. Qiu , S. Shearer , Maturity assessment of broccoli using the discrete fourier 
transform, Transactions of the ASAE 35 (6) (1992) 2057–2062 . 

[9] M. Cardenas-Weber , A. Hetzroni , G.E. Miles , Machine vision to locate melons
and guide robotic harvesting, Paper-American Society of Agricultural Engineers 

(USA) (1991) . 
[10] P. Levi , A. Falla , R. Pappalardo , Image controlled robotics applied to citrus fruit

harvesting, in: 7th International Conference on Robot Vision and Sensory Con- 
trols, Zurich (Switzerland), 2–4 Feb 1988, IFS Publications, 1988 . 

[11] J. Zhao , J. Tow , J. Katupitiya , On-tree fruit recognition using texture proper-

ties and color data, in: 2005 IEEE/RSJ International Conference on Intelligent 
Robots and Systems, IEEE, 2005, pp. 263–268 . 

12] I. Sa , Z. Ge , F. Dayoub , B. Upcroft , T. Perez , C. McCool , Deepfruits: a fruit detec-
tion system using deep neural networks, Sensors 16 (8) (2016) 1222 . 

[13] S. Bargoti , J.P. Underwood , Image segmentation for fruit detection and yield 
estimation in apple orchards, J. Field Rob. 34 (6) (2017) 1039–1060 . 

[14] P.A . Dias , A . Tabb , H. Medeiros , Apple flower detection using deep convolu-

tional networks, Comput. Ind. 99 (2018) 17–28 . 
[15] R. Girshick , J. Donahue , T. Darrell , J. Malik , Region-based convolutional net- 

works for accurate object detection and segmentation, IEEE Trans Pattern Anal 
Mach Intell 38 (1) (2015) 142–158 . 

[16] J.R. Uijlings , K.E. Van De Sande , T. Gevers , A.W. Smeulders , Selective search for
object recognition, Int J Comput Vis 104 (2) (2013) 154–171 . 

[17] S. Ren , K. He , R. Girshick , J. Sun , Faster r-cnn: Towards real-time object detec-

tion with region proposal networks, in: Advances in neural information pro- 
cessing systems, 2015, pp. 91–99 . 

[18] J. Redmon , A. Farhadi , Yolov3: an incremental improvement, arXiv preprint 
arXiv:1804.02767 (2018) . 

[19] H. Kang , C. Chen , Fruit detection and segmentation for apple harvesting using 
visual sensor in orchards, Sensors 19 (20) (2019) 4599 . 

20] D. Bulanon , T. Kataoka , Fruit detection system and an end effector for robotic

harvesting of fuji apples, Agricultural Engineering International: CIGR Journal 
12 (1) (2010) . 

21] K. He , G. Gkioxari , P. Dollár , R. Girshick , Mask R-CNN, in: Proceedings of the
IEEE International Conference on Computer Vision, 2017, pp. 2961–2969 . 

22] Y. Tian , G. Yang , Z. Wang , H. Wang , E. Li , Z. Liang , Apple detection during dif-
ferent growth stages in orchards using the improved YOLO-V3 model, Comput. 

Electron. Agric. 157 (2019) 417–426 . 

23] W. Jia , Y. Tian , R. Luo , Z. Zhang , J. Lian , Y. Zheng , Detection and segmentation
of overlapped fruits based on optimized mask r-cnn application in apple har- 

vesting robot, Comput. Electron. Agric. 172 (2020) 105380 . 
24] Z. De-An , L. Jidong , J. Wei , Z. Ying , C. Yu , Design and control of an apple har-

vesting robot, Biosyst. Eng. 110 (2) (2011) 112–122 . 
25] A . Dutta , A . Zisserman , The VIA annotation software for images, audio and

video, in: Proceedings of the 27th ACM International Conference on Multime- 

dia, in: MM’19, ACM, New York, NY, USA, 2019 . DOI:10.1145/3343031.3350535 
26] K. Krishna , M.N. Murty , Genetic k-means algorithm, IEEE Transactions on Sys- 

tems, Man, and Cybernetics, Part B (Cybernetics) 29 (3) (1999) 433–439 . 
27] R. Girshick , Fast R-CNN, in: Proceedings of the IEEE International Conference 

on Computer Vision, 2015, pp. 1440–1448 . 
28] X. Wang , A. Shrivastava , A. Gupta , A-Fast-RCNN: hard positive generation via 

adversary for object detection, in: Proceedings of the IEEE Conference on Com- 
puter Vision and Pattern Recognition, 2017, pp. 2606–2615 . 

29] T.-Y. Lin , M. Maire , S. Belongie , J. Hays , P. Perona , D. Ramanan , P. Dollár , C.L. Zit-

nick , Microsoft coco: Common objects in context, in: European Conference on 
Computer Vision, Springer, 2014, pp. 740–755 . 

30] S. Wan , S. Goudos , Faster R-CNN for multi-class fruit detection using a robotic
vision system, Comput. Networks 168 (2020) 107036 . 

http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0001
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0001
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0001
https://doi.org/10.1016/j.apergo.2010.03.003
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0003
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0003
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0003
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0004
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0004
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0004
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0005
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0005
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0005
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0006
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0006
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0006
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0006
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0006
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0007
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0007
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0007
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0008
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0008
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0008
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0009
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0009
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0009
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0009
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0010
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0010
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0010
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0010
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0011
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0011
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0011
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0011
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0012
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0012
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0012
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0012
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0012
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0012
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0012
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0013
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0013
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0013
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0014
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0014
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0014
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0014
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0015
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0015
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0015
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0015
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0015
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0016
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0016
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0016
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0016
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0016
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0017
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0017
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0017
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0017
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0017
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0018
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0018
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0018
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0019
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0019
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0019
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0020
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0020
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0020
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0021
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0021
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0021
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0021
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0021
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0022
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0022
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0022
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0022
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0022
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0022
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0022
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0023
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0023
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0023
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0023
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0023
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0023
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0023
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0024
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0024
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0024
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0024
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0024
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0024
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0025
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0025
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0025
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0025
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0026
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0026
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0026
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0027
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0027
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0028
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0028
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0028
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0028
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0029
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0029
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0029
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0029
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0029
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0029
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0029
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0029
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0029
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0030
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0030
http://refhub.elsevier.com/S0167-8655(21)00161-6/sbref0030

	Deep learning-based apple detection using a suppression mask R-CNN
	1 Introduction
	2 Related work
	3 Data collection and processing
	4 Suppression mask R-CNN
	4.1 Feature learning backbone
	4.2 Feature suppression end
	4.3 Loss functions

	5 Experiment results
	5.1 Implementation
	5.2 Comparison with the state-of-the-arts
	5.3 Evaluation on different apple varieties and lighting conditions

	6 Conclusion
	Declaration of Competing Interest
	References


