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Industrial innovation has accumulated big data in the form of past design successes and failures. Designers must painstakingly identify, extract, and
structure requirements from texts and drawings of archived documents to understand the past and guide future designs. This is not a trivial task for human
designers, despite the digitalization of design data. This paper presents a system of “Design Reading” which takes in textual design data and applies a
machine learning-based language processing model to extract a structured hierarchy of functional requirements by recursively decomposing text passages.

Design Reading will benefit future design practice by learning from the past.

Design, Machine Learning, Natural Language Processing

1. Introduction

Present day designers sit on a wealth of digitally documented
design and manufacturing data from the past; evidence of a
modern legacy of innovative complex problem-solving to advance
the quality of life for society. There exists an overwhelming
amount of available information about design successes and
failures, and this quantity is only increasing. Some fields, such as
biomedicine, see more than 1 million papers published per year,
with such figures steadily increasing across all disciplines by 8-9%
annually [1]. In manufacturing, most design information exists in
the form of documented initial specifications; artifacts of extensive
stakeholder research, user feedback, and design revisions
throughout the product life cycle. Despite the digitalization of past
design information, distilling documentation into learnable
outcomes to guide future design practices remains a difficult task
in most industries. As a result, when experienced designers and
manufacturing engineers switch teams or leave an organization,
their successors have difficulty consuming documentation of past
work for smooth continuation of a project. When experts are not
available, learnings from past designs may not be distilled at all,
resulting in perpetuation of past mistakes in future designs.

Keyword searches and other rudimentary processes with text
mining tools may be used to organize documented specifications
to a degree, but human designers must still conduct a painstaking
study of documentation to understand, extract, and structure
embedded functional requirements. As a result, a thorough and
complete analysis of past design specifications requires time-
consuming effort of experienced designers with extensive domain
knowledge. This paper presents an approach to enable machines
to understand design documents in text form, extract and
memorize past designs’ key functional requirements (FRs) and
tested design parameters, and retrieve them when needed. We call
this process “Design Reading” in this paper, which is one of the
major modules of the Hybrid Intelligence System we recently
proposed [2]. Design Reading can be used to construct databases
of detailed FRs addressed in the past that designers can utilize
when creating future products, to facilitate rapid innovation.

In the case of engineering design, the task of “Design Reading”
involves extracting a hierarchical map of the functional
requirements and design parameters of past products. We have
developed a novel system which can automate Design Reading by

applying state-of-the-art Natural Language Processing (NLP)
models and Machine Learning (ML) tools. In this work, we focused
on reading design specifications in text form only, excluding
graphic data or drawings.

2. Background in Al for Design

2.1. Functional Domain of Design

While terminology may vary among different schools of design
research, the importance of identifying requirements in the
functional domain, or what a design must achieve, is universally
recognized as the first priority of early-stage design. CIRP
members have demonstrated the necessity and utility of correctly
identifying Functional Requirements (FRs) [3] as the core design
activity of translating Customer Requirements into a successful
product design [4]. In industry, significant resources are invested
to identify and surface FRs via laborious design processes
involving stakeholder interviews and intensive domain research.
If artifacts from past design research could be leveraged during
this early-stage process, a rich history of past design successes and
failures in industry could be transformed into a valuable asset to
guide future designs. However, a barrier to immediately
translating learnings from artifacts of past design data is that they
are often expressed in language, meaning that designers
themselves must manually read, identify, and extract FRs to
understand the core knowledge being represented. How we can
apply NLP models to extract and structure FRs from textual design
documentation is the core goal of this paper.

The methodology by which a designer may translate
requirements in the functional domain to design parameters in the
physical domain also varies among schools of design thinking. In
Axiomatic Design [3], the decomposition process is applied top-
down, starting with the highest-level Functional Requirement (FR).
This highest-level “what” of the design is paired with a high-level
solution or Design Parameter (DP), which is “how” the design may
achieve “what” the FR defines. This root node FR-DP pair may be
decomposed one level lower by first identifying the sub-
requirements (FRs) needed to satisfy this high-level “what-how”
pair. Subsequently, a DP is paired to each sub-FR, and the process
continues recursively until the terminal nodes of the FR-DP tree
are identified. Well-documented product specifications should
contain such FR-DP information embedded contextually, which
engineers may discover if they read carefully. However, it requires



significant effort to extract, even for domain experts, if they are
unfamiliar with Axiomatic design practices. This work’s goal is to
allow machines to read the FRs and DPs in design documentation
with minimal human intervention. For consistency and clarity,
terminology from Axiomatic Design will be borrowed in this paper,
where FRs will refer to the “what” of a design, and DPs to the “how.”

2.2. Natural Language Processing

The field of Natural Language Processing (NLP) has benefitted
from the resurgence of research in Al methods. The core goal of
NLP, representing language for machines to understand, has been
performed using deep neural networks, trained on massive
datasets of text. Novel neural network architectures such as the
Transformer [5], designed specifically for capturing contextual
information in a language sequence, have allowed for the
development of sophisticated NLP models such as Bidirectional
Encoder Representations from Transformers (BERT) [6] by Google,
which will be applied to design tasks in this paper.

BERT is especially valuable to the scientific community due to
the manner in which the model’s training is de-coupled. The
training process is split into two phases: pre-training and fine-
tuning. During pre-training, BERT’s internal parameters are
trained on 3.3 billion words worth of text. The pre-trained
parameters of BERT are made publicly available, so that they may
be fine-tuned to perform a specific language task. Tasks in the field
of NLP range from sentiment analysis of product reviews, to text
generation. A dataset with as few as 105 examples may be used to
subsequently fine-tune BERT’s parameters to perform a wide
range of such benchmark NLP tasks.

The NLP-based module in the design reading system proposed
by this paper uses BERT, fine-tuned on the task of question-
answering. Question-answering involves considering two inputs: a
long-form passage of text, and a prompting question. The output is
the extracted span of text from the longer passage which contains
the answer to the question prompt. The output is obtained
extractively, where the answer is an unmodified sub-sequence of
the context passage. BERT performs question-answering by
introducing trainable parameters which can be optimized, using
training examples, to identify the start and end position, within the
context, having the maximum likelihood of containing the relevant
answer information to the question prompt. A common dataset
and testing metric for question-answering is the Stanford Question
Answering Dataset (SQuAD) [7], a crowd-sourced set of 105
example contexts, questions, and correct answers. An
implementation of BERT, fine-tuned on SQuAD by the HuggingFace
Transformer library [8], is applied in this paper.

2.3. Machine Learning in Design

Previously, we have shown how representations of design
documentation, from neural network-based models like BERT,
could be applied to quantify metrics of functional coupling in
systems design [9]. Because the functional domain in design is
reflected in the semantic domain of language, which can be
represented as a feature vector, we were able to demonstrate how
language descriptions of products could be processed to accurately
measure the functional independence of a matrix of FRs and DPs.
This confirmed the possibility of applying NLP models to analyze
design texts in terms of functional requirements.

We also showed how synthetic data may be generatively created
for training an ML model in low-resource design data
environments. We demonstrated that generative text models could
be applied to effectively auto-complete “seed” design prompts to
assemble a dataset of labeled problem and solution statements
[10]. A binary classifier was trained on this dataset to identify if an
unseen, unlabeled statement described a problem or a solution.
We also demonstrated the ability to extract FRs from context

through the application of BERT, fine-tuned on question-
answering [11]. By posing a succinctly worded “what”-type
question, the relevant functional domain information in a passage
could be extracted. The following method describes how a design
reading system may be built around such a module to scale the
design information extraction system to extract complete
functional trees from multiple design documents.

3. Method

This section describes how a set of design texts documenting a
common problem can (1) be processed to extract their highest-
level functional requirement and decomposed to extract a
structured FR-DP hierarchy, and (2) all be compiled to create a
global map of the functional domain of the problem.

3.1. Extracting FRs

The Design Reading analysis is initialized by first extracting the
highest-level FR from a given document. This top FRo (“what”) can
be identified as the overarching goal which the design seeks to
achieve, which is expected to be explicitly stated in the document.
The next task involves mapping the highest-level FRo to the
highest-level DPo. The physical domain is mapped from the
functional domain by identifying “how” the FR is addressed in the
document. After mapping, this “what” and “how” pair is used in the
third task: decomposition. The next level of FRs required for the
highest-level FR-DP pair are extracted, and the mapping and
decomposition process continues recursively until relevant text to
extract is exhausted. Figure 1 visualizes this process.
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Figure 1. Process for extracting functional structure from text document

Each extractive step in this process is implemented by “question-
answering” process using the BERT with fine-tuned on SQuAD as
described before. By choosing the correct inputs (context and
question) for each task of initialization, mapping, and
decomposition, the target answer is returned as an opuput. The
input context used is the design document and is updated after
each step to remove previously extracted content. The input
questions are dynamically updated during recursion and are based
on previously extracted content, as summarized in Table 1.
Recursion terminates when no output answers are returned or
context is exhausted.

Table 1 Question-Answering Inputs for Functional Decomposition

Task Initialization Mapping Decomposition
Description | given a document, given a document, given a document,
identify the key and a functional and a (FRn-DPy)
functional requirement pair, identify any
requirement (FRo) (FRy), identify the sub-requirements
being addressed by | corresponding (FRn4)
the design. “how” (DPx).
Input Design Document Design Document Design Document
Context (extracted content
removed)
Input “What is the aim?” | “How does it “What is needed
Question {FRn}?" for {DPn} to
{FRn}?"
Output FRo DPn FRni
Answer




Input Text: Vibration energy harvesters based on the resonance of the beam structure
work effectively only when the operating frequency window of the beam resonance
matches with the available vibration source. None of the resonating MEMS structures
can operate with low frequency, low amplitude, and unpredictable ambient vibrations
since the resonant frequency goes up very high as the structure gets smaller. Bistable
buckled beam energy harvester is therefore developed for lowering the operating
frequency window below 100Hz for the first time at the MEMS scale. This design does
not rely on the resonance of the MEMS structure but operates with the large snapping
motion of the beam at very low frequencies when input energy overcomes an energy
threshold. A fully functional piezoelectric MEMS energy harvester is designed,
monolithically fabricated, and tested. An electromechanical lumped parameter model is
developed to analyze the nonlinear dynamics and to guide the design of the nonlinear
oscillator based energy harvester. Multilayer beam structure with residual stress
induced buckling is achieved through the progressive residual stress control of the
deposition processes along the fabrication steps. Surface profile of the released device
shows bistable buckling of 200pm which matches well with the amount of buckling
designed. Dynamic testing demonstrates the energy harvester operates with 50%
bandwidth under 70Hz at 0.5g input, operating conditions that have not been
demonstrated by MEMS vibration energy harvesters before.
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Figure 2. Fully automated functional extraction and structuring of an individual MEMS paper abstract [24], using process from Section 3.1

3.2. Abstraction by Structuring Extracted Design Information

The intermediate result of the recursive decomposition in
section 3.1 is an FR-DP tree structure for each design document,
like that shown in Figure 2. If multiple documents describe
different aspects of a system, it is necessary to compile individual
FR-DP trees from them into a global map of the functional domain
and to abstract them into a global FR-DP tree.
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Figure 3. Extracted FRs from individual documents may be compiled into
a global structure using clustering based on semantic similarity

K-means clustering, based on semantic similarity, is used to
construct a global hierarchical tree of all extracted FRs. Semantic
representations (the linguistic meaning of each FR) are obtained
by producing vectors for each FR text span using the pre-trained
language modeling parameters from BERT. The method by which
all extracted FRs are structured is explained in the following and
visualized in Figure 3.
1. The highest-level FRo (one from each document)

are K-means clustered. The FR at each cluster’s

centroid has the most in common with all other

FRs in its cluster and is therefore considered a

highest-level FR for the new global hierarchy.

2. The other extracted FRn are assigned to an FRo

group based on semantic similarity such that FRs

describing similar requirements are grouped

together. Semantic similarity is measured by

cosine distance between vector representations.
With this method, multiple artifacts of documentation can be
analyzed and compiled creating a searchable structure in the
functional domain of a problem. Past design efforts sharing
functional requirements may be represented such that designers
of new products may easily find similar FRs and matching DPs that
have been previously conceived and used, thus facilitating future
design with the full knowledge of the past.

4. Case Study: FR Map Construction of MEMS Design

4.1. Background on Low-Frequency Vibrational Energy Harvesting
Due to the low availability of industrial design specifications,

published scientific papers are used to demonstrate this Design

Reading system. These papers focus on solving the problem of

Microelectromechanical Systems (MEMS) energy harvesting from
low-frequency vibrations. This is a complex challenge if a
piezoelectric microscale cantilevered device is considered for this
application [12]. From the relationship between natural frequency
wo, mass, and stiffness k, resonance scales inversely with the scale

L from wy, = 1/k/PL® where mass is density P multiplied with
volume L3. This relationship results in high linear resonant
frequencies for micro-scale cantilever beams. This case study
shows the mapping of the functional domain by processing papers
published on the designs of two non-linear devices to solve this
problem, utilizing the oscillation of a clamped-clamped beam array
[12-17], and an array of buckled beams [18-24].

4.2. Functional Domain Mapping for MEMS Case

A total of 13 papers [12-24] are identified and processed. Each
paper describes a part of the global problem but, together, they
collectively solve challenges in developing low frequency MEMS
energy harvesting devices. For each paper, the abstract is
considered as the high-level summary of the design. First, the FR-
DP tree is extracted for each abstract. One of these abstracts [24],
and its corresponding extracted tree are presented in Figure 2 as
an example of the output of the decomposition process. For the 13
papers, 88 FRs were extracted. The top-level FRo for each paper
are listed in Table 2. The remaining FRs may be viewed in our
repository, in [25]. The extracted FRs were structured, using K-
means clustering with (K=10) following the method outlined in
section 3.2. As a result, a global map of the functional domain is
produced, shown in Figure 4. This is the compilation of 13
individual maps such as the one from Figure 2. This is a
demonstration of how Design Reading may be applied to map the
functional space of a complex problem.

Table 2 Highest-Level Functional Requirement from each MEMS paper

Abstract Ref. Highest-level Functional Requirement (FRo)
[12] harvest energy from parasitic vibrational energy sources and
convert it to electrical energy
[13] robust power generation
[14] ultra wide - bandwidth energy harvesting applications
[15]tt harvests energy from parasitic ambient vibration
[16] energy harvester
[17]t overcomes the limitations of conventional linear resonance beam -
based piezoelectric energy harvesters in terms of power bandwidth
and power density
[18] generate electric power from ambient vibrations
[19] harvesting small energy from the ambient vibration
[20] increasing the operating frequency bandwidth
[21] stiffens the beam as the beam deflects and transforms the dynamics
to a nonlinear regime
[22] to address the challenges of low-frequency , low-g vibration energy
harvesting at mems scale
[23] lowering the operating frequency while widening the bandwidth
[24]* lowering the operating frequency window below 100hz for the first
time at the mems scale

tFR1 and **FR2 shown in Figure 4
*Full decomposition of which shown in Figure 2
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Figure 4. Hierarchical structure of all extracted FRs from [12-24]. Each of the 88 FRs could not be explicitly included in this paper
but may be viewed in our online repository in [25]; the highest-level FRs extracted from each document are shown in Table 2.

5. Discussion

The value of the design reading system demonstrated with the
case study lies in its speed and thoroughness, even when
compared to those (such as the authors) with both product design
and MEMS domain expertise. Results are obtained nearly
instantaneously, and efficiently produce a hierarchy of design
information simply from unprocessed text documents. In an
ongoing study [26], we are comparing the NLP model results to
those of human practitioners of product design and MEMS, with
early results showing good agreement between experts and the Al
The implications of deploying this process on a much larger scale
are suggestive of how design knowledge may be managed using Al-
powered NLP models, constantly updating and restructuring large
functional spaces based on published news.

The automated decomposition of textual data at the highest level
of FR-DP space may be expanded to detailed levels of design to
include graphics and 3D models in the future, applying similar
algorithms to map design, utilizing ML-based image-processing
models in the place of NLP, to extract functional features for Al-
assisted process planning (AAPP), assembly modeling, and other
manufacturing operations. The massive amount of knowledge
from past product development would enable designers to identify
structured functional requirements of a design inherited from the
process domain. This information can be called as “genes” of
product design, with an analogy to the translation of DNA to
protein production. In the future, “Design Reading” will enable
mapping of a “Product Genome” which will elevate the current
Industry 4.0 to the next level. Industry will be able to construct
large databases of their products from past product development.
Such a transformative shift for the production industry will be akin
to how sequencing genetic information has revolutionized the
rapid development of novel, customizable drugs and vaccines in
the pharmaceutical industry. For junior engineers, this design
reading system provides a tool for utilizing their design capability
to address complex problems in highly specialized technical fields.

6. Conclusion

Motivated by the goal of applying artificially intelligent models
to transform the practice of design, we developed a design reading
system where question-answering, powered by neural-network
based language model BERT, was used to recursively extract a map
of the “whats” and “hows” of a design from existing specifications.
Design reading presents a step towards enabling Hybrid
Intelligence of machines and humans in the practice of high-
performance design as well as towards immediate applications
such as industrial big data processing, digital threading and
intelligent knowledge conservation and transfer.
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