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Industrial	 innovation	has	 accumulated	big	data	 in	 the	 form	of	past	design	 successes	 and	 failures.	Designers	must	painstakingly	 identify,	 extract,	 and	
structure	requirements	from	texts	and	drawings	of	archived	documents	to	understand	the	past	and	guide	future	designs.	This	is	not	a	trivial	task	for	human	
designers,	despite	the	digitalization	of	design	data.	This	paper	presents	a	system	of	“Design	Reading”	which	takes	in	textual	design	data	and	applies	a	
machine	learning-based	language	processing	model	to	extract	a	structured	hierarchy	of	functional	requirements	by	recursively	decomposing	text	passages.	
Design	Reading	will	benefit	future	design	practice	by	learning	from	the	past.		
	
Design,	Machine	Learning,	Natural	Language	Processing	

1.	Introduction	

Present	day	designers	 sit	 on	 a	wealth	of	digitally	documented	
design	 and	 manufacturing	 data	 from	 the	 past;	 evidence	 of	 a	
modern	legacy	of	innovative	complex	problem-solving	to	advance	
the	 quality	 of	 life	 for	 society.	 There	 exists	 an	 overwhelming	
amount	 of	 available	 information	 about	 design	 successes	 and	
failures,	and	this	quantity	is	only	increasing.	Some	fields,	such	as	
biomedicine,	see	more	than	1	million	papers	published	per	year,	
with	such	figures	steadily	increasing	across	all	disciplines	by	8-9%	
annually	[1].	In	manufacturing,	most	design	information	exists	in	
the	form	of	documented	initial	specifications;	artifacts	of	extensive	
stakeholder	 research,	 user	 feedback,	 and	 design	 revisions	
throughout	the	product	life	cycle.	Despite	the	digitalization	of	past	
design	 information,	 distilling	 documentation	 into	 learnable	
outcomes	to	guide	future	design	practices	remains	a	difficult	task	
in	most	 industries.	As	a	 result,	when	experienced	designers	and	
manufacturing	engineers	 switch	 teams	or	 leave	an	organization,	
their	successors	have	difficulty	consuming	documentation	of	past	
work	for	smooth	continuation	of	a	project.	When	experts	are	not	
available,	 learnings	from	past	designs	may	not	be	distilled	at	all,	
resulting	in	perpetuation	of	past	mistakes	in	future	designs.	
Keyword	 searches	 and	 other	 rudimentary	 processes	with	 text	

mining	tools	may	be	used	to	organize	documented	specifications	
to	a	degree,	but	human	designers	must	still	conduct	a	painstaking	
study	 of	 documentation	 to	 understand,	 extract,	 and	 structure	
embedded	 functional	 requirements.	 As	 a	 result,	 a	 thorough	 and	
complete	 analysis	 of	 past	 design	 specifications	 requires	 time-
consuming	effort	of	experienced	designers	with	extensive	domain	
knowledge.		This	paper	presents	an	approach	to	enable	machines	
to	 understand	 design	 documents	 in	 text	 form,	 extract	 and	
memorize	 past	 designs’	 key	 functional	 requirements	 (FRs)	 and	
tested	design	parameters,	and	retrieve	them	when	needed.		We	call	
this	process	 “Design	Reading”	 in	 this	paper,	which	 is	 one	of	 the	
major	 modules	 of	 the	 Hybrid	 Intelligence	 System	 we	 recently	
proposed	[2].	Design	Reading	can	be	used	to	construct	databases	
of	 detailed	 FRs	 addressed	 in	 the	 past	 that	 designers	 can	 utilize	
when	creating	future	products,	to	facilitate	rapid	innovation.	
In	the	case	of	engineering	design,	the	task	of	“Design	Reading”	

involves	 extracting	 a	 hierarchical	 map	 of	 the	 functional	
requirements	 and	design	parameters	 of	 past	 products.	We	have	
developed	a	novel	system	which	can	automate	Design	Reading	by	

applying	 state-of-the-art	 Natural	 Language	 Processing	 (NLP)	
models	and	Machine	Learning	(ML)	tools.	In	this	work,	we	focused	
on	 reading	 design	 specifications	 in	 text	 form	 only,	 excluding	
graphic	data	or	drawings.			

2.	Background	in	AI	for	Design	

2.1.	Functional	Domain	of	Design	
While	 terminology	may	 vary	 among	 different	 schools	 of	 design	
research,	 the	 importance	 of	 identifying	 requirements	 in	 the	
functional	domain,	or	what	a	design	must	achieve,	 is	universally	
recognized	 as	 the	 first	 priority	 of	 early-stage	 design.	 CIRP	
members	have	demonstrated	the	necessity	and	utility	of	correctly	
identifying	Functional	Requirements	 (FRs)	 [3]	as	 the	core	design	
activity	 of	 translating	 Customer	 Requirements	 into	 a	 successful	
product	design	[4].	In	industry,	significant	resources	are	invested	
to	 identify	 and	 surface	 FRs	 via	 laborious	 design	 processes	
involving	stakeholder	interviews	and	intensive	domain	research.	
If	 artifacts	 from	past	design	 research	 could	be	 leveraged	during	
this	early-stage	process,	a	rich	history	of	past	design	successes	and	
failures	in	industry	could	be	transformed	into	a	valuable	asset	to	
guide	 future	 designs.	 However,	 a	 barrier	 to	 immediately	
translating	learnings	from	artifacts	of	past	design	data	is	that	they	
are	 often	 expressed	 in	 language,	 meaning	 that	 designers	
themselves	 must	 manually	 read,	 identify,	 and	 extract	 FRs	 to	
understand	 the	core	knowledge	being	 represented.	How	we	can	
apply	NLP	models	to	extract	and	structure	FRs	from	textual	design	
documentation	is	the	core	goal	of	this	paper.		
The	 methodology	 by	 which	 a	 designer	 may	 translate	

requirements	in	the	functional	domain	to	design	parameters	in	the	
physical	domain	also	varies	among	schools	of	design	thinking.	In	
Axiomatic	Design	 [3],	 the	decomposition	process	 is	 applied	 top-
down,	starting	with	the	highest-level	Functional	Requirement	(FR).	
This	highest-level	“what”	of	the	design	is	paired	with	a	high-level	
solution	or	Design	Parameter	(DP),	which	is	“how”	the	design	may	
achieve	“what”	the	FR	defines.	This	root	node	FR-DP	pair	may	be	
decomposed	 one	 level	 lower	 by	 first	 identifying	 the	 sub-
requirements	(FRs)	needed	to	satisfy	this	high-level	“what-how”	
pair.	Subsequently,	a	DP	is	paired	to	each	sub-FR,	and	the	process	
continues	recursively	until	 the	terminal	nodes	of	 the	FR-DP	tree	
are	 identified.	 Well-documented	 product	 specifications	 should	
contain	 such	 FR-DP	 information	 embedded	 contextually,	 which	
engineers	may	discover	if	they	read	carefully.	However,	it	requires	
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significant	 effort	 to	extract,	 even	 for	domain	experts,	 if	 they	are	
unfamiliar	with	Axiomatic	design	practices.	This	work’s	goal	is	to	
allow	machines	to	read	the	FRs	and	DPs	in	design	documentation	
with	 minimal	 human	 intervention.	 For	 consistency	 and	 clarity,	
terminology	from	Axiomatic	Design	will	be	borrowed	in	this	paper,	
where	FRs	will	refer	to	the	“what”	of	a	design,	and	DPs	to	the	“how.”	
	

2.2.	Natural	Language	Processing	
The	field	of	Natural	Language	Processing	(NLP)	has	benefitted	

from	the	resurgence	of	research	in	AI	methods.	The	core	goal	of	
NLP,	representing	language	for	machines	to	understand,	has	been	
performed	 using	 deep	 neural	 networks,	 trained	 on	 massive	
datasets	of	 text.	Novel	neural	network	architectures	 such	as	 the	
Transformer	 [5],	 designed	 specifically	 for	 capturing	 contextual	
information	 in	 a	 language	 sequence,	 have	 allowed	 for	 the	
development	 of	 sophisticated	 NLP	models	 such	 as	Bidirectional	
Encoder	Representations	from	Transformers	(BERT)	[6]	by	Google,	
which	will	be	applied	to	design	tasks	in	this	paper.		
BERT	is	especially	valuable	to	the	scientific	community	due	to	

the	 manner	 in	 which	 the	 model’s	 training	 is	 de-coupled.	 The	
training	 process	 is	 split	 into	 two	 phases:	 pre-training	 and	 fine-
tuning.	 During	 pre-training,	 BERT’s	 internal	 parameters	 are	
trained	 on	 3.3	 billion	 words	 worth	 of	 text.	 The	 pre-trained	
parameters	of	BERT	are	made	publicly	available,	so	that	they	may	
be	fine-tuned	to	perform	a	specific	language	task.	Tasks	in	the	field	
of	NLP	range	from	sentiment	analysis	of	product	reviews,	to	text	
generation.	A	dataset	with	as	few	as	105	examples	may	be	used	to	
subsequently	 fine-tune	 BERT’s	 parameters	 to	 perform	 a	 wide	
range	of	such	benchmark	NLP	tasks.	
The	NLP-based	module	in	the	design	reading	system	proposed	

by	 this	 paper	 uses	 BERT,	 fine-tuned	 on	 the	 task	 of	 question-
answering.	Question-answering	involves	considering	two	inputs:	a	
long-form	passage	of	text,	and	a	prompting	question.	The	output	is	
the	extracted	span	of	text	from	the	longer	passage	which	contains	
the	 answer	 to	 the	 question	 prompt.	 The	 output	 is	 obtained	
extractively,	where	the	answer	is	an	unmodified	sub-sequence	of	
the	 context	 passage.	 BERT	 performs	 question-answering	 by	
introducing	 trainable	parameters	which	can	be	optimized,	using	
training	examples,	to	identify	the	start	and	end	position,	within	the	
context,	having	the	maximum	likelihood	of	containing	the	relevant	
answer	 information	 to	 the	 question	 prompt.	 A	 common	 dataset	
and	testing	metric	for	question-answering	is	the	Stanford	Question	
Answering	 Dataset	 (SQuAD)	 [7],	 a	 crowd-sourced	 set	 of	 105	
example	 contexts,	 questions,	 and	 correct	 answers.	 An	
implementation	of	BERT,	fine-tuned	on	SQuAD	by	the	HuggingFace	
Transformer	library	[8],	is	applied	in	this	paper.	
	
2.3.	Machine	Learning	in	Design	
Previously,	 we	 have	 shown	 how	 representations	 of	 design	

documentation,	 from	 neural	 network-based	 models	 like	 BERT,	
could	 be	 applied	 to	 quantify	 metrics	 of	 functional	 coupling	 in	
systems	 design	 [9].	 Because	 the	 functional	 domain	 in	 design	 is	
reflected	 in	 the	 semantic	 domain	 of	 language,	 which	 can	 be	
represented	as	a	feature	vector,	we	were	able	to	demonstrate	how	
language	descriptions	of	products	could	be	processed	to	accurately	
measure	the	functional	independence	of	a	matrix	of	FRs	and	DPs.	
This	confirmed	the	possibility	of	applying	NLP	models	to	analyze	
design	texts	in	terms	of	functional	requirements.	
We	also	showed	how	synthetic	data	may	be	generatively	created	

for	 training	 an	 ML	 model	 in	 low-resource	 design	 data	
environments.	We	demonstrated	that	generative	text	models	could	
be	applied	to	effectively	auto-complete	“seed”	design	prompts	to	
assemble	 a	 dataset	 of	 labeled	 problem	 and	 solution	 statements	
[10].	A	binary	classifier	was	trained	on	this	dataset	to	identify	if	an	
unseen,	 unlabeled	 statement	 described	 a	 problem	or	 a	 solution.	
We	 also	 demonstrated	 the	 ability	 to	 extract	 FRs	 from	 context	

through	 the	 application	 of	 BERT,	 fine-tuned	 on	 question-
answering	 [11].	 By	 posing	 a	 succinctly	 worded	 “what”-type	
question,	the	relevant	functional	domain	information	in	a	passage	
could	be	extracted.		The	following	method	describes	how	a	design	
reading	 system	may	be	built	 around	 such	a	module	 to	 scale	 the	
design	 information	 extraction	 system	 to	 extract	 complete	
functional	trees	from	multiple	design	documents.	

3.	Method	

This	 section	 describes	 how	 a	 set	 of	 design	 texts	 documenting	 a	
common	problem	can	 (1)	be	processed	 to	 extract	 their	 highest-
level	 functional	 requirement	 and	 decomposed	 to	 extract	 a	
structured	FR-DP	hierarchy,	 and	 (2)	 all	 be	 compiled	 to	 create	 a	
global	map	of	the	functional	domain	of	the	problem.		
	
3.1.	Extracting	FRs	
The	Design	Reading	analysis	is	initialized	by	first	extracting	the	

highest-level	FR	from	a	given	document.	This	top	FR0	(“what”)	can	
be	 identified	 as	 the	 overarching	 goal	which	 the	 design	 seeks	 to	
achieve,	which	is	expected	to	be	explicitly	stated	in	the	document.	
The	 next	 task	 involves	 mapping	 the	 highest-level	 FR0	 to	 the	
highest-level	 DP0.	 The	 physical	 domain	 is	 mapped	 from	 the	
functional	domain	by	identifying	“how”	the	FR	is	addressed	in	the	
document.	After	mapping,	this	“what”	and	“how”	pair	is	used	in	the	
third	task:	decomposition.	The	next	level	of	FRs	required	for	the	
highest-level	 FR-DP	 pair	 are	 extracted,	 and	 the	 mapping	 and	
decomposition	process	continues	recursively	until	relevant	text	to	
extract	is	exhausted.	Figure	1	visualizes	this	process.	

	
Figure	1.	Process	for	extracting	functional	structure	from	text	document	

	
Each	extractive	step	in	this	process	is	implemented	by	“question-
answering”	process	using	the	BERT	with	fine-tuned	on	SQuAD	as	
described	 before.	 By	 choosing	 the	 correct	 inputs	 (context	 and	
question)	 for	 each	 task	 of	 initialization,	 mapping,	 and	
decomposition,	 the	 target	answer	 is	 returned	as	an	opuput.	The	
input	 context	 used	 is	 the	design	document	 and	 is	 updated	 after	
each	 step	 to	 remove	 previously	 extracted	 content.	 The	 input	
questions	are	dynamically	updated	during	recursion	and	are	based	
on	 previously	 extracted	 content,	 as	 summarized	 in	 Table	 1.	
Recursion	 terminates	when	 no	 output	 answers	 are	 returned	 or	
context	is	exhausted.	
	
Table	1	Question-Answering	Inputs	for	Functional	Decomposition	
Task	 Initialization	 Mapping	 Decomposition	
Description	 given	a	document,	

identify	the	key	
functional	
requirement	(FR0)	
being	addressed	by	
the	design.	

given	a	document,	
and	a	functional	
requirement	
(FRN),	identify	the	
corresponding	
“how”	(DPN).	

given	a	document,	
and	a	(FRN-DPN)	
pair,	identify	any	
sub-requirements	
(FRN.i)	

Input	
Context	

Design	Document	 Design	Document	 Design	Document	
(extracted	content	
removed)	

Input	
Question	

“What	is	the	aim?”	 “How	does	it	
{FRN}?”	

“What	is	needed	
for	{DPN}	to	
{FRN}?”	

Output	
Answer	

FR0	 DPN	 FRN.i	



Input	Text:	Vibration	energy	harvesters	based	on	the	resonance	of	the	beam	structure	
work	 effectively	 only	when	 the	 operating	 frequency	window	of	 the	 beam	 resonance	
matches	with	the	available	vibration	source.	None	of	the	resonating	MEMS	structures	
can	operate	with	low	frequency,	low	amplitude,	and	unpredictable	ambient	vibrations	
since	the	resonant	frequency	goes	up	very	high	as	the	structure	gets	smaller.	Bistable	
buckled	 beam	 energy	 harvester	 is	 therefore	 developed	 for	 lowering	 the	 operating	
frequency	window	below	100Hz	for	the	first	time	at	the	MEMS	scale.	This	design	does	
not	rely	on	the	resonance	of	the	MEMS	structure	but	operates	with	the	large	snapping	
motion	of	the	beam	at	very	low	frequencies	when	input	energy	overcomes	an	energy	
threshold.	 A	 fully	 functional	 piezoelectric	 MEMS	 energy	 harvester	 is	 designed,	
monolithically	fabricated,	and	tested.	An	electromechanical	lumped	parameter	model	is	
developed	to	analyze	the	nonlinear	dynamics	and	to	guide	the	design	of	the	nonlinear	
oscillator	 based	 energy	 harvester.	 Multilayer	 beam	 structure	 with	 residual	 stress	
induced	 buckling	 is	 achieved	 through	 the	 progressive	 residual	 stress	 control	 of	 the	
deposition	processes	along	the	fabrication	steps.	Surface	profile	of	the	released	device	
shows	 bistable	 buckling	 of	 200µm	which	matches	well	with	 the	 amount	 of	 buckling	
designed.	 Dynamic	 testing	 demonstrates	 the	 energy	 harvester	 operates	 with	 50%	
bandwidth	 under	 70Hz	 at	 0.5g	 input,	 operating	 conditions	 that	 have	 not	 been	
demonstrated	by	MEMS	vibration	energy	harvesters	before.	 	

	Figure	2.	Fully	automated	functional	extraction	and	structuring	of	an	individual	MEMS	paper	abstract	[24],	using	process	from	Section	3.1	
	

3.2.	Abstraction	by	Structuring	Extracted	Design	Information	
The	 intermediate	 result	 of	 the	 recursive	 decomposition	 in	

section	3.1	is	an	FR-DP	tree	structure	for	each	design	document,	
like	 that	 shown	 in	 Figure	 2.	 If	 multiple	 documents	 describe	
different	aspects	of	a	system,	it	is	necessary	to	compile	individual	
FR-DP	trees	from	them	into	a	global	map	of	the	functional	domain	
and	to	abstract	them	into	a	global	FR-DP	tree.	
	

	
Figure	3.	Extracted	FRs	from	individual	documents	may	be	compiled	into	

a	global	structure	using	clustering	based	on	semantic	similarity	
	

K-means	 clustering,	 based	 on	 semantic	 similarity,	 is	 used	 to	
construct	a	global	hierarchical	tree	of	all	extracted	FRs.	Semantic	
representations	(the	linguistic	meaning	of	each	FR)	are	obtained	
by	producing	vectors	for	each	FR	text	span	using	the	pre-trained	
language	modeling	parameters	from	BERT.	The	method	by	which	
all	extracted	FRs	are	structured	is	explained	in	the	following	and	
visualized	in	Figure	3.	

1. The	highest-level	FR0	(one	from	each	document)	
are	K-means	 clustered.	 The	FR	 at	 each	 cluster’s	
centroid	has	the	most	 in	common	with	all	other	
FRs	 in	 its	 cluster	 and	 is	 therefore	 considered	 a	
highest-level	FR	for	the	new	global	hierarchy.		

2. The	other	 extracted	FRN	 are	 assigned	 to	 an	FR0	
group	based	on	semantic	similarity	such	that	FRs	
describing	 similar	 requirements	 are	 grouped	
together.	 Semantic	 similarity	 is	 measured	 by	
cosine	distance	between	vector	representations.	

With	 this	 method,	 multiple	 artifacts	 of	 documentation	 can	 be	
analyzed	 and	 compiled	 creating	 a	 searchable	 structure	 in	 the	
functional	 domain	 of	 a	 problem.	 Past	 design	 efforts	 sharing	
functional	requirements	may	be	represented	such	that	designers	
of	new	products	may	easily	find	similar	FRs	and	matching	DPs	that	
have	been	previously	conceived	and	used,	thus	facilitating	future	
design	with	the	full	knowledge	of	the	past.		

4.	Case	Study:	FR	Map	Construction	of	MEMS	Design	

4.1.	Background	on	Low-Frequency	Vibrational	Energy	Harvesting	
Due	 to	 the	 low	 availability	 of	 industrial	 design	 specifications,	

published	 scientific	 papers	 are	 used	 to	 demonstrate	 this	Design	
Reading	 system.	 These	 papers	 focus	 on	 solving	 the	 problem	 of	

Microelectromechanical	Systems	(MEMS)	energy	harvesting	from	
low-frequency	 vibrations.	 This	 is	 a	 complex	 challenge	 if	 a	
piezoelectric	microscale	cantilevered	device	is	considered	for	this	
application	[12].	From	the	relationship	between	natural	frequency	
ω0,	mass,	and	stiffness	k,	resonance	scales	inversely	with	the	scale	
L	 from	𝜔! = #𝑘/𝑃𝐿"	 	where	mass	 is	density	P	multiplied	with	
volume	 L3.	 This	 relationship	 results	 in	 high	 linear	 resonant	
frequencies	 for	 micro-scale	 cantilever	 beams.	 This	 case	 study	
shows	the	mapping	of	the	functional	domain	by	processing	papers	
published	on	 the	designs	of	 two	non-linear	 devices	 to	 solve	 this	
problem,	utilizing	the	oscillation	of	a	clamped-clamped	beam	array	
[12-17],	and	an	array	of	buckled	beams	[18-24].		
	

4.2.	Functional	Domain	Mapping	for	MEMS	Case	
A	 total	 of	 13	 papers	 [12-24]	 are	 identified	 and	 processed.	 Each	
paper	describes	a	part	of	 the	global	problem	but,	 together,	 they	
collectively	 solve	 challenges	 in	developing	 low	 frequency	MEMS	
energy	 harvesting	 devices.	 For	 each	 paper,	 the	 abstract	 is	
considered	as	the	high-level	summary	of	the	design.	First,	the	FR-
DP	tree	is	extracted	for	each	abstract.	One	of	these	abstracts	[24],	
and	its	corresponding	extracted	tree	are	presented	in	Figure	2	as	
an	example	of	the	output	of	the	decomposition	process.	For	the	13	
papers,	88	FRs	were	extracted.	The	top-level	FR0	 for	each	paper	
are	 listed	 in	Table	2.	 	The	 remaining	FRs	may	be	viewed	 in	our	
repository,	 in	 [25].	The	 extracted	FRs	were	 structured,	 using	K-
means	 clustering	with	 (K=10)	 following	 the	method	 outlined	 in	
section	3.2.	As	a	result,	a	global	map	of	 the	 functional	domain	 is	
produced,	 shown	 in	 Figure	 4.	 This	 is	 the	 compilation	 of	 13	
individual	 maps	 such	 as	 the	 one	 from	 Figure	 2.	 This	 is	 a	
demonstration	of	how	Design	Reading	may	be	applied	to	map	the	
functional	space	of	a	complex	problem.		
	

Table	2	Highest-Level	Functional	Requirement	from	each	MEMS	paper	
Abstract	Ref.	 Highest-level	Functional	Requirement	(FR0)	

[12]	 harvest	energy	from	parasitic	vibrational	energy	sources	and	
convert	it	to	electrical	energy	

[13]	 robust	power	generation	
[14]	 ultra	wide	-	bandwidth	energy	harvesting	applications	
[15]††	 harvests	energy	from	parasitic	ambient	vibration	
[16]	 energy	harvester	
[17]†	 overcomes	the	limitations	of	conventional	linear	resonance	beam	-	

based	piezoelectric	energy	harvesters	in	terms	of	power	bandwidth	
and	power	density	

[18]	 generate	electric	power	from	ambient	vibrations	
[19]	 harvesting	small	energy	from	the	ambient	vibration	
[20]	 increasing	the	operating	frequency	bandwidth	
[21]	 stiffens	the	beam	as	the	beam	deflects	and	transforms	the	dynamics	

to	a	nonlinear	regime	
[22]	 to	address	the	challenges	of	low-frequency	,	low-g	vibration	energy	

harvesting	at	mems	scale	
[23]	 lowering	the	operating	frequency	while	widening	the	bandwidth	
[24]*	 lowering	the	operating	frequency	window	below	100hz	for	the	first	

time	at	the	mems	scale	
†FR1	and	††FR2	shown	in	Figure	4	
*Full	decomposition	of	which	shown	in	Figure	2



	
Figure	4.	Hierarchical	structure	of	all	extracted	FRs	from	[12-24].	Each	of	the	88	FRs	could	not	be	explicitly	included	in	this	paper	
but	may	be	viewed	in	our	online	repository	in	[25];	the	highest-level	FRs	extracted	from	each	document	are	shown	in	Table	2.	

5.	Discussion	

The	value	of	the	design	reading	system	demonstrated	with	the	
case	 study	 lies	 in	 its	 speed	 and	 thoroughness,	 even	 when	
compared	to	those	(such	as	the	authors)	with	both	product	design	
and	 MEMS	 domain	 expertise.	 Results	 are	 obtained	 nearly	
instantaneously,	 and	 efficiently	 produce	 a	 hierarchy	 of	 design	
information	 simply	 from	 unprocessed	 text	 documents.	 In	 an	
ongoing	study	 [26],	we	are	comparing	 the	NLP	model	 results	 to	
those	of	human	practitioners	of	product	design	and	MEMS,	with	
early	results	showing	good	agreement	between	experts	and	the	AI.	
The	implications	of	deploying	this	process	on	a	much	larger	scale	
are	suggestive	of	how	design	knowledge	may	be	managed	using	AI-
powered	NLP	models,	constantly	updating	and	restructuring	large	
functional	spaces	based	on	published	news.		
The	automated	decomposition	of	textual	data	at	the	highest	level	

of	 FR-DP	 space	may	be	expanded	 to	detailed	 levels	of	design	 to	
include	 graphics	 and	 3D	models	 in	 the	 future,	 applying	 similar	
algorithms	 to	 map	 design,	 utilizing	 ML-based	 image-processing	
models	 in	the	place	of	NLP,	 to	extract	 functional	 features	 for	AI-
assisted	process	planning	(AAPP),	assembly	modeling,	and	other	
manufacturing	 operations.	 The	 massive	 amount	 of	 knowledge	
from	past	product	development	would	enable	designers	to	identify	
structured	functional	requirements	of	a	design	inherited	from	the	
process	 domain.	 	 This	 information	 can	 be	 called	 as	 “genes”	 of	
product	 design,	 with	 an	 analogy	 to	 the	 translation	 of	 DNA	 to	
protein	 production.	 In	 the	 future,	 “Design	 Reading”	 will	 enable	
mapping	 of	 a	 “Product	 Genome”	which	will	 elevate	 the	 current	
Industry	4.0	 to	 the	next	 level.	 Industry	will	be	able	 to	 construct	
large	databases	of	their	products	from	past	product	development.	
Such	a	transformative	shift	for	the	production	industry	will	be	akin	
to	 how	 sequencing	 genetic	 information	 has	 revolutionized	 the	
rapid	development	of	novel,	 customizable	drugs	and	vaccines	 in	
the	 pharmaceutical	 industry.	 For	 junior	 engineers,	 this	 design	
reading	system	provides	a	tool	for	utilizing	their	design	capability	
to	address	complex	problems	in	highly	specialized	technical	fields.		

6.	Conclusion	

Motivated	by	the	goal	of	applying	artificially	intelligent	models	
to	transform	the	practice	of	design,	we	developed	a	design	reading	
system	 where	 question-answering,	 powered	 by	 neural-network	
based	language	model	BERT,	was	used	to	recursively	extract	a	map	
of	the	“whats”	and	“hows”	of	a	design	from	existing	specifications.	
Design	 reading	 presents	 a	 step	 towards	 enabling	 Hybrid	
Intelligence	 of	 machines	 and	 humans	 in	 the	 practice	 of	 high-
performance	 design	 as	 well	 as	 towards	 immediate	 applications	
such	 as	 industrial	 big	 data	 processing,	 digital	 threading	 and	
intelligent	knowledge	conservation	and	transfer.	
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