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Electromagnetic waves in a dynamical axion background exhibit superluminal group velocities at high
frequencies and instabilities at low frequencies, altering how photons propagate through space. Local
disturbances propagate causally, but unlike in ordinary Maxwell theory, propagation occurs inside as well
as on the light cone. For the unstable modes, the energy density in the electromagnetic field grows
exponentially along timelike displacements. In this paper we derive retarded Green functions in axion
electrodynamics in various limits and study the time-domain properties of propagating signals.
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I. INTRODUCTION

Axion models provide some of the most well-motivated
extensions to the Standard Model, providing a mechanism
to resolve the strong CP problem and a class of dark matter
candidates. Through its coupling to gluons, the vacuum
expectation value of the axion field cancels the θ̄ parameter
of quantum chromodynamics (QCD) and restores CP
symmetry [1,2], explaining the surprisingly small exper-
imentally measured value, jθ̄j < 6 × 10−11 [3,4]. Through
the misalignment mechanism [5–7], axions can also be
produced in the early Universe in sufficient abundance to
comprise most or all of the dark matter.
Many of the most stringent constraints on axion models

utilize a coupling between the axion and the Standard
Model electric and magnetic fields,

L ⊃ −
1

8
gaγγaϵμνρσFμνFρσ ¼ gaγγaE ·B: ð1Þ

This coupling enables axion production through the
Primakoff process [8,9], axion decay to photons, and
axion-photon interconversion in the presence of electro-
magnetic fields. As such it can be used either to detect or
to produce axions in the laboratory. Stellar observations
[10–12] constrain gaγγ < 10−10 GeV−1 for a wide range of

axion masses, and additional constraints set by the power
spectra of bright x-ray point sources provide a more
stringent limit of gaγγ ≲ 10−12 GeV−1 for light axions of
mass ma ≲ 10−12 eV [13–15]. At large occupation num-
bers and de Broglie wavelengths, axion dark matter
behaves as a classical, oscillating background field that
induces small time-dependent perturbations to electrody-
namics, which can be probed with a variety of different
sensitive experimental techniques [9,16–21].
The coupling in Eq. (1) also affects the propagation

of classical electromagnetic radiation [22–27]. Electro-
magnetic plane waves traveling through an axion back-
ground acquire modified phase velocities for left- and
right-polarizations, an effect which may be observable
in interferometers [28–30], atomic clocks [31] or astro-
physical sources [32], for some ranges of axion masses
and couplings. If axion domain walls form in the early
Universe, the modified dispersion relations provide a new
mechanism for energy dissipation via photon reflection
[33]. Furthermore, low frequency modes exhibit tachyonic
instabilities, while at high frequencies, group velocities for
both polarizations are superluminal.
Despite the presence of plane wave solutions with

superluminal group velocities, axion electrodynamics is
a causal theory: local disturbances do not propagate outside
the light cone. This was first shown long ago in the case of
tachyonic scalar field theory by Aharonov, Komar, and
Susskind [34]. Here we show that the same mechanism is at
work in axion electrodynamics, with consequences that
include the exponential growth of local disturbances.
In this paper we calculate the classical electromagnetic

retarded Green function in a coherent, dynamical axion
background in several disparate regimes of axion parameter
space. Our results are organized based on the hierarchical
ordering of three different scales:
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(i) ma, the axion mass;
(ii) μ0 ≡ 1

2
gaγγ

ffiffiffiffiffi
ρa

p
, a mass scale that determines the rate

of exponential growth of the electromagnetic fields,
based on the axion density ρa; and

(iii) T−1 and L−1, the inverses of the characteristic
propagation time and distance T ∼ L of a signal.

Rather than focusing only on those axion models that
provide a natural solution to the strong CP problem, we
consider the broader realm of axionlike particles (ALPs),
where the axion mass ma and decay constant fa are not
required to satisfymafa ∼mπfπ, and the value of gaγγ is not
determined by ma. These axions can still provide a wide
range of dark matter candidates (see, e.g., [35–37]). For
the lowest-mass “fuzzy dark matter” candidates, generic
constraints on ultralight scalars from Lyman-α data
[38–41] impose a lower bound on the axion mass of
ma ≳ 2 × 10−21 eV, though in the “large misalignment”
regime of Ref. [42] the Lyman-α bound is altered by the
effect of ALP self-interactions. Our analysis in this paper
encompasses the nearly 20 decades of ALP parameter
space above this bound, where the axion is still light
enough that it can be treated as a coherently oscillating
background field.
In terms of the axion virial velocity v, the mass sets an

upper bound on the characteristic L and T, L≲ ðmavÞ−1
and T ≲ ðmav2Þ−1, after which any analysis must incor-
porate the effects of decoherence. In the example of fuzzy
dark matter with ma ≈ 2 × 10−21 eV, and taking v ∼ 10−3

as the ALP virial velocity, the coherence length and
time are, respectively, Lc ≲ 1017 m ≈ 3 pc and Tc ≲ 3×
1011 s ≈ 104 yr. On the other extreme, for ma much larger
than 10−4 eV, even a tabletop experiment will encounter
significant decoherence. In the presence of cold axion
streams, where some population of the dark matter has a
significantly smaller virial velocity, the relevant coherence
time can be much longer. Our analysis is focused on the
nonrelativistic limit, neglecting these decoherence effects
and ignoring spatial gradients in the axion field.
We begin in Sec. II with the simplest analysis, the

ma ≪ μ0; 1=T limit. In this case the value of the axion field
changes at an approximately constant rate, ∂taðx; tÞ≈
const, and we find an analytic solution to the Green
function valid for all values of μ0T. This Green function
exhibits exponential growth inside the light cone of the
disturbance when μ0T ≳ 1. Despite the potentially cata-
strophic consequences of this unbounded growth, the dilute
density of dark matter and experimental constraints on the
axion-photon coupling ensure that the timescales for the
genuinely exponential phase of the growth are outside
the reach of all but the lightest ALP candidates, unless the
local ALP density ρa is enhanced by several orders of
magnitude above 0.4 GeV=cm3. In Sec. II C we highlight
some of the curious and potentially detectable perturba-
tions to classical electrodynamics induced by the axion
background.

For almost all allowed values of gaγγ and ρa, the
hierarchy μ0 ≪ ma is more realistic, and we explore this
limit in Sec. III. In the case of the oscillating background
axion field it is no longer possible to derive an exact
analytic expression for the Green function using the
methods of Sec. II. Instead, we construct perturbative
expansions for the μ0T ≪ 1 and μ0T ≫ 1 limits by
expressing the Green function as a continued fraction.
When the frequency support of the radiation includes
ω ≈ 1

2
ma, a narrow resonance induces exponential growth

for large T. In Sec. III A we calculate the dominant part of
the Green function in the μ0T ≫ 1 limit. In this late-time
limit the resonant enhancement dwarfs the contribution
from frequencies ω ≠ 1

2
ma. This resonant emission has

been previously studied in [43,44], although the resonant
band is so narrow that dispersion effects and gravitational
redshifting may completely prevent the exponential growth
[45]. For the nonresonant limit μ0T ≪ 1, and for electro-
magnetic signals which do not include support near the
resonant frequency ω ≈ 1

2
ma, Sec. III B provides a con-

tinued fraction expression for the Green function that is
valid to arbitrary order in gaγγ. In Secs. II C and III C, we
provide numeric examples to illustrate the behavior of
signals in various corners of ALP parameter space, and to
verify our analytic expressions.
The primary results of this paper are collected in

Eqs. (77), (78) and (79) in Sec. IV. Despite the significant
differences between the two limits, the Green functions of
Secs. II and III both exhibit the novel inside-the-light-cone
propagation and exponential growth in certain modes.

A. Axion electrodynamics

In terms of θðxμÞ, the local value of the effective CP
violation induced by the axion background, the Lagrangian
for electrodynamics includes the interactions

L ¼ −
1

4
FμνFμν − AμJμ þ

θ

8
ϵμνρσFμνFρσ; ð2Þ

where Fμν is the electromagnetic field strength tensor, Aμ

and Jμ are the vector potential and 4-current, and θðxμÞ is
related to the value of the axion field via

θðxμÞ≡ gaγγaðxμÞ: ð3Þ

In Lorenz ∂αAα ¼ 0 gauge, the equations of motion for Aμ

reduce to

∂2Aμ − ϵμνρσð∂νθÞð∂ρAσÞ ¼ Jμ; ð4Þ

which depends explicitly on the derivatives of θðxμÞ
rather than θ itself. Taking the external source to be neutral
and transverse, J0 ¼ 0 and ∇ · J ¼ 0, and neglecting any
spatial gradients in the background axion field, j∇aj ≪ j _aj,
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the equations of motion for the scalar and vector potentials
decouple,1

∂2Φ ¼ 0; ∂2Aþ _θ∇ ×A ¼ J: ð5Þ

For a typical model of ALP dark matter, _θðtÞ is given by

θðtÞ ≈ θ0 cosðmatÞ; θ0 ¼ gaγγ

ffiffiffiffiffi
ρa

p
ma

; _θ0 ¼ maθ0;

ð6Þ

where the value of θ0 is set by the local axion dark matter
density, ρa ∼ ð0.042 eVÞ4, and where

_θ0 ≃ 1.75 × 10−23 eV ×
�

gaγγ
10−11 GeV−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρa

0.4 GeV=cm3

r
:

ð7Þ

For future reference, we note that 1.75 × 10−23 eV≃
2.66 × 10−8 Hz ≃ 0.84 yr−1.

II. GREEN FUNCTIONS FOR THE
STEADY-STATE BACKGROUND

For timescales that are short compared to the period
of the axion oscillation, mat ≪ 1 and ma ≲ _θ, it is
appropriate and instructive to consider the approximation
∂2
t θ ≈ 0, where _θðtÞ assumes a nearly constant value

−_θ0 ≤ _θðtÞ ≤ _θ0. In this case the differential equation for
A can be solved using a Fourier transform,

Aðt;xÞ ¼
�
1

2π

�
4
Z

dωd3kÃðω;kÞeiðωt−k·xÞ; ð8Þ

so that the differential equation for A becomes a set of
algebraic equations for Ãi. For planar waves propagating in
the ẑ direction, k ¼ kẑ, the polarization basisA ¼ Aþϵ̂þ þ
A−ϵ̂− þ Azẑ with ϵ̂� ¼ 1ffiffi

2
p ðx̂� iŷÞ diagonalizes the equa-

tions of motion, with the result

Ã�½k2 − ω2 � _θk� ¼ j̃�ðkÞ; Ãz½k2 − ω2� ¼ 0; ð9Þ

where j̃�ðkÞ is the Fourier transform of the transverse
source ðϵ̂� · JÞ in the polarization basis. Circularly polar-
ized plane waves propagate with the dispersion relations

ω2
� ¼ k2 � k_θ; ð10Þ

producing subluminal or superluminal phase velocities
depending on the sign of _θ and the polarization of the
radiation.

The group velocities for both modes are superluminal,
for both positive and negative _θ,

dω�
dk

¼ k� 1
2
_θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k_θ
p ≥ 1; ð11Þ

with dω�=dk ¼ 1 only for _θ ¼ 0. The effect appears at
quadratic order in _θ=k,

dω�
dk

¼ 1þ 1

8

_θ2

k2
∓ 1

8

_θ3

k3
þ…; ð12Þ

so that for _θ ≪ k the modification of the group velocity is
subdominant to the Oð_θ=kÞ change in the phase velocity,

ω�
k

¼
ffiffiffiffiffiffiffiffiffiffiffi
1�

_θ

k

s
¼ 1� 1

2

_θ

k
−
1

8

_θ2

k2
� 1

16

_θ3

k3
þ…: ð13Þ

We demonstrate below that the retarded Green func-
tion vanishes outside the light cone, preserving causality
despite the presence of superluminal group velocities. As a
necessary consequence, disturbances in the field induced
by local sources grow exponentially in timelike directions.
To leading order in _θ, the phase velocities alternate about a
central value ω�=k ¼ 1 based on the polarization of the
light and the sign of _θ. After multiple periods of the axion
oscillation, the perturbations to the phase velocity tend to
cancel each other. On the other hand, the group velocity is
superluminal for both positive and negative _θ, so the
exponential growth is not ameliorated by any periods of
exponential decay when the sign of _θ changes. The effects
from the modified group velocities should grow over time.
With the approximation that _θðtÞ is nearly constant, the

two-dimensional Green function can be obtained analyti-
cally to all orders in _θ. Experimental constraints on
gaγγ < 10−10 GeV−1 and ma exclude the ma ≪ _θ possibil-
ity unless the local axion density is significantly enhanced,
ρa ≫ O ðGeV=cm3Þ, so the results in this section are
directly applicable primarily to situations involving to
dense clumps of ultralight axions. When we calculate the
Green function for the more broadly relevant ma ≫ _θ
hierarchy of scales in Sec. III, the steady-state case with
constant _θ also provides a helpful consistency check in the
limit where the exponential growth becomes important.

A. Green function solution in two dimensions

The Green function can be calculated analytically for the
simplified case of plane waves k ¼ kẑ with a spatially
homogenous (∇θ ¼ 0), steady-state (∂2

t θ ¼ 0) axion back-
ground. Imposing translational symmetry in x and y
effectively reduces the system from (3þ 1) dimensions
to (1þ 1). The Ã� equation of motion in Eq. (9) admits a
Green function solution g�ðz; tÞ of the form

1The equations of motion with ∇a ≠ 0 are discussed in e.g.,
[23,46].
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A� ¼
Z

dt0dz0j�ðt0; z0Þg�ðt − t0; z − z0Þ; ð14Þ

where

ð∂2
t − ∂2

z � i_θ∂zÞg�ðt − t0; z − z0Þ ¼ δðz − z0Þδðt − t0Þ:
ð15Þ

In this section it is convenient to fold a factor of 1=2 into the
definition of _θ,

μðtÞ ¼
_θðtÞ
2

; ð16Þ

where μ determines the rate of exponential growth, as we
show below.
Defining a related Green function G0,

g�ðtjt0; zjz0Þ ¼ e�iμzG0ðtjt0; zjz0Þ; ð17Þ

Eq. (15) can be simplified to

ð∂2
t − ∂2

z − μ2ÞG0ðt; zÞ ¼ e∓iμzδðzÞδðtÞ; ð18Þ

so that μ2 acts as an effective tachyonic mass for the
scalarlike Green function G0.
Applying the Fourier transform and integrating both

sides of Eq. (18) produces the integral form of the Green
function,

Gϵ ¼
Z

dωdk
ð2πÞ2

e−iðωt−kzÞ

k2 − ðωþ iεÞ2 − μ2
; ð19Þ

where ε > 0 indicates that the contour in the complex ω
plane should correspond to the retarded Green function,
which vanishes for t < 0. For k2 > μ2 the ε → 0þ limit can
be recovered easily. However, for k2 < μ2 one of the poles
in ω is located above the real axis, at

ω ¼ −iε� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − k2

q
: ð20Þ

To recover the retarded Green function, the contour in ω
should pass above both poles, with ε → μþ on the imagi-
nary axis.
The

R
dω integral can be completed using the residue

theorem,

Gϵ ¼ ΘðtÞ−2πie
−ε

ð2πÞ2
Z

dkeikz

2ω0

ðeiω0t − e−iω0tÞ; ð21Þ

where ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − μ2

p
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − k2

p
and ΘðtÞ is the step

function. The integral is simplified by a coordinate sub-
stitution k → φ,

k ¼ μ coshφ; ω0 ¼ μ sinhφ; ð22Þ

where the contour L in the complex φ plane is shown in
Fig. 1, and allows coshφ to vary smoothly from −∞ to ∞
with ImðcoshφÞ ¼ 0. By mapping the coordinates ðt; zÞ to
ðη; λÞ via

μt ¼
ffiffiffi
λ

p
cosh η; μz ¼

ffiffiffi
λ

p
sinh η; t2 − z2 ¼ λ=μ2;

ð23Þ

for λ ≥ 0, the integral can be written in terms of just λ and
φ� η:

G0ðλ ≥ 0Þ ¼ ΘðtÞ
4πi

Z
L
dφðei

ffiffi
λ

p
sinhðφþηÞ − e−i

ffiffi
λ

p
sinhðφ−ηÞÞ;

¼ ΘðtÞ
4πi

Z
∞

−∞þiπ
dφ0ðei

ffiffi
λ

p
sinhφ0 − e−i

ffiffi
λ

p
sinhφ0 Þ:

ð24Þ

Here the notation
R
∞
−∞þiπ dφ indicates the imaginary offset

for ReðφÞ < 0 shown in Fig. 1. In order to make this last
simplification, removing the η dependence completely, note
that the integrand has no poles for finite φ0, so that the
contours L� from the coordinate substitutions φ� ¼ η� φ
can be shifted horizontally to compensate for η.
Outside the light cone, for spacelike displacements

z2 > t2, the coordinate transformation Eq. (23) is replaced
by the alternative

μz ¼ z̄ cosh η; μt ¼ z̄ sinh η; z2 − t2 ¼ z̄2 ¼ −λ=μ2:

ð25Þ

In this case, with λ < 0, the two contributions to the integral
cancel each other,

FIG. 1. The contourL that allows Eq. (24) to be written in terms
of Hankel functions. The shorthand notation for this contour isR
∞
−∞þiπ dφ, indicating that the contour approaches the imaginary
axis from negative real ∞ with a constant imaginary component
of þiπ.
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G0ðλ < 0Þ ¼ ΘðtÞ
4πi

Z
L
dφðeiz̄ coshðφþηÞ − eiz̄ coshðφ−ηÞÞ ¼ 0;

ð26Þ

and so the retarded Green function vanishes outside the
light cone.
Using this contour notation, and the integral definition of

the Hankel functions

Hð1;2Þ
ν ðzÞ ¼ � 1

πi

Z þ∞�iπ

−∞
duez sinh u−νu; ð27Þ

G0 can be written as

G0ðt; zÞ ¼
ΘðtÞΘðλÞi

4π

�
π

i
Hð2Þ

0 ði
ffiffiffi
λ

p
Þ − π

i
Hð2Þ

0 ð−i
ffiffiffi
λ

p
Þ
�
:

ð28Þ

Equation (28) simplifies for integer values of ν to recover
an expression in terms of the modified Bessel function of
the first kind, IνðzÞ:

G0ðt; zÞ ¼
ΘðtÞΘðλÞ

2
I0ð

ffiffiffi
λ

p
Þ: ð29Þ

Finally, we obtain

g�ðt; zÞ ¼ e�iμzΘðtÞΘðt2 − z2Þ
2

I0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2ðt2 − z2Þ
q �

: ð30Þ

As anticipated by the discussion of tachyonic scalar
theories in Ref. [34], the Bessel function I0ð

ffiffiffi
λ

p Þ grows
exponentially with timelike λ ∝ t2 − z2. In the λ ≫ 1 limit
it approaches

lim
λ→∞

I0ð
ffiffiffi
λ

p
Þ ¼ λ−1=4e

ffiffi
λ

p

ffiffiffiffiffiffi
2π

p
�
1þ 1

8
ffiffiffi
λ

p þOðλ−1Þ
�
: ð31Þ

The retarded Green function vanishes outside the light
cone, t2 < z2, and it explicitly satisfies the equations of
motion

Z
dt0dz0j�ðt0; z0Þð∂2

t − ∂2
z � i_θ∂zÞg�ðt − t0; z − z0Þ

¼ j�ðt; zÞ: ð32Þ

From the solution for A� one can derive the corresponding
Green functions for the E and B fields,

Ex ¼ −∂tAx; Ey ¼ ∂tAy; Bx ¼ −∂zAy; By ¼ ∂zAx;

ð33Þ

with Ez ¼ Bz ¼ 0.

In many of the simplest cases of interest, including
idealized axion interferometers and astrophysical sources,
the photon source is localized in space and produces a
signal sðτ; zÞ ¼ δðzÞsðτÞ or alternatively sðτ; zÞ ¼ sðτ − zÞ
that varies in time and propagates in the forward direction,
z ≥ 0. With this choice, the E and B fields can be found
from the ΘðzÞ components of the derivatives of A�, and the
familiar Standard Model limit μ → 0 is recovered by

∂tA
μ¼0
� ðt; zÞ ¼ −ΘðzÞ 1

2
j�ðt − zÞ; ð34Þ

∂zA
μ¼0
� ðt; zÞ ¼ ΘðzÞ 1

2
j�ðt − zÞ: ð35Þ

B. Green function solution in four dimensions

The Green function Eq. (30) is valid for sources that are
spatially uniform in the x and y directions. In many
situations, including laser pulses and the light from distant
stars, this approximation is sufficient. However, in other
cases the fully four-dimensional Green function may be
relevant. As we show in this section, most of the 4D
solution can be written in terms of the 2D Green function
derived in Sec. II A. One of the new integrals cannot be so
easily solved analytically, but with some effort it can be put
in the form of a rapidly converging infinite series for easier
numerical evaluation.
In the Lorenz gauge with neutral sources, ∇ ·A ¼ 0,

A0 ¼ 0, the Green function for A satisfies

ðδij□ − _θϵlik∇lÞGkjðxμ − yμÞ ¼ δijδ
ð4Þðxμ − yμÞ; ð36Þ

where the cross product term in Eq. (5) forces the Green
function Gkj to have a nontrivial tensor structure. Its
Fourier transform G̃kj satisfies

½ð−ω2 þ k2Þδik þ 2iμklϵlik�G̃kjðω;kÞ ¼ δij; ð37Þ

in terms of μ from Eq. (16), frequency ω, and k2 ¼ kiki for
i ¼ 1, 2, 3. Inverting the operator that acts on G̃kj, the
Green function can be written as

G̃kj ¼ Ãδkj þ B̃klϵlkj þ C̃kkkj; ð38Þ

where

Ã ¼ −
ω2 − k2

β
; B̃ ¼ −

2iμ
β

; C̃ ¼ 4μ2

ðω2 − k2Þβ ;

β ¼ ðω2 − k2Þ2 − 4k2μ2; ð39Þ

where the four roots of β are

ω2
� ¼ k2 � 2kμ: ð40Þ
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Since the current sources are transverse, the Green function
can be simplified by the transverse projection

G̃T
ij ≡

�
δik −

kikk
k2

�
G̃kj;

¼ Ã

�
δij −

kikj
k2

�
þ B̃klϵlij; ð41Þ

GT
ij ¼ δijAþ iϵlij∇lBþ Aij; ð42Þ

where A, B and Aij are the Fourier transforms of Ã, B̃, and
−Ãkikj=k2, respectively.
Both A and B can be written in terms of the scalar

function G0ðt; zÞ from the two-dimensional case, Eq. (30),

A ¼ 1

2πr
∂rðcosðrμÞG0ðt; r;−μ2ÞÞ;

B ¼ sinðrμÞ
2πr

ðG0ðt; r;−μ2ÞÞ; ð43Þ

where

G0ðt; r;−m2Þ≡ 1

2
ΘðtÞΘðt2 − r2ÞI0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2t2 −m2r2

p
Þ:

ð44Þ

Attempting the same technique for Aij leads to the
incomplete expression

Aij ¼
1

4π
∂i∂j

Z
1

−1
dq cosðqrμÞG0ðt; qr;−μ2Þ; ð45Þ

an integral that does not have a simple expression in terms
of Bessel functions or other hypergeometric functions. In
Appendix B we show how the integral form of Aij can be
replaced with an infinite series over a product of hyper-
geometric functions, with the result

Aij ¼
1

8π
∂i∂j

�
ΘðtÞΘðt2 − r2Þ

X∞
l¼0

ð− 1
4
μ2r2Þl

l!ðlþ 1
2
Þ
�

2

jμtj
�

l

× IlðjμtjÞ1F2

�
lþ 1

2

1
2
; l
2
þ 1

4

���� − 1

4
μ2r2

�	
: ð46Þ

The series in l converges rapidly for μr ≤ 2. For large
μr ≫ 1 and μt ≫ 1 it converges for l > lmax, for an
lmaxðμt; μrÞ given in Appendix B.

C. Application to monochromatic signals

The Green function for the vector potential A [Eq. (30)]
and its derivatives exhibit novel inside-the-light-cone
components, which induce exponentially growing, semi-
static residual fields in the wake of a signal. The on-the-
light-cone contribution to the signal is modified as well, as

a result of the perturbed phase velocity. Both of these
effects provide signatures of the axion background in the
path of an electromagnetic wave. In this section, we provide
a few examples to show how simple monochromatic
signals can be distorted on timescales T that are shorter
than the period of axion oscillation, T ≪ m−1

a .

1. Phase velocity

One distinctive feature of the modified electrodynamics,
the helicity-dependent phase velocities, can be quantified
directly from the equations of motion as in Refs. [29,30].
From the dispersion relations for right- and left-polarized
light, Eq. (10), the phase velocities can be expanded in
powers of μ ¼ 1

2
_θðtÞ,

vphase ¼
ω�
k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

μ

k

r
¼ 1� μ

k
−
1

2

μ2

k2
þOðμ3=k3Þ:

ð47Þ

This result can be also be recovered from the Green
function in Eq. (30). If the signal is driven by a mono-
chromatic source,

j�ðτÞ ¼ eiΩτf�ðτÞ; ð48Þ

the solutions for A�ðt; zÞ are proportional to trigonometric
factors of expðiΩðt − zÞ � μzÞ, reproducing the linear order
term in Eq. (47).
Extremely sensitive measurements of the phase shift

induced by gravitational waves are the bedrock for the
remarkable recent detections of black hole and neutron star
mergers. The sensitivity of advanced LIGO [47] to the
gravitational strain h ¼ ΔL=L exceeds 10−23=

ffiffiffiffiffiffi
Hz

p
for

gravitational waves with frequency f ∼ 102 Hz. An axion
interferometer comparing the phases of left- and right-
polarized laser beams of angular frequency Ω observes a
phase difference

Δϕ≡ ϕþ − ϕ− ¼ 2μL ¼ _θðtÞL ð49Þ

after the laser propagates a length L. Compared to the
equivalent phase shift corresponding to a change in the path
length ΔL, Δϕ ¼ ΩΔL, the technology capable of
detecting an hmin ∼ 10−23 would also be able to set a limit
on μ=Ω of order

2μ

Ω
≲ hmin; ð50Þ

in the context of an axion interferometer. To use the
1064 nm laser of LIGO [48] as an example (Ω ¼ 1.77×
1015 rad=s), an interferometer capable of similar precision
has a potential sensitivity to any _θ ≳ 2 × 10−8 Hz, which
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overlaps with the parameter space indicated by Eq. (7)
for 10−11 GeV−1 ≲ gaγγ ≲ 10−10 GeV−1.
To achieve the sensitivity indicated by Eq. (50), the

approximation that _θðtÞ ¼ 2μ is constant needs to hold only
for as long as it takes the photon beam to traverse the
interferometer. As long as maL ≪ 1 and maT ≪ 1 for
the characteristic length L and time of flight T for the
measurement, it is not necessary to insist that ma ≪ _θ. A
detector with cT ∼ nL ∼Oð103 kmÞ (where n is the
effective number of reflections of the light within the
chamber) would thus be sensitive to ma ≲ 10−12 eV, while
more massive axions would be more easily detected with
shorter interferometers. In the case of LIGO, the beam
cavity storage time T is long compared to the length of each
arm, with T ∼ nL=c for some n ≈ 70 [48].

2. After-pulse residual fields

A substantively new effect appears when we consider
the Green function to all orders in _θ, for signals of finite
duration T. In the _θ ¼ 0 vacuum of standard electrody-
namics, such a signal propagates away from the source at
speed c, maintaining the same duration T. In the _θ ≠ 0
background, this is no longer true. Rather than returning to
zero after the signal passes, the E and B fields retain a
residual nonzero value that grows with time. Interpreting
− 1

4
_θ2 as a tachyonic mass term for the photon, the growth

of the E and B fields is a consequence of the tachyonic
instability—a transfer of energy from the axion background
into long-wavelength photons triggered by the original
signal. This growth takes place inside the light cone, rather
than strictly on it.
Again specializing to a monochromatic signal j�ðτÞ ¼

2eiΩτf�ðτÞ for simplicity, and taking the source at z ¼ 0 to

satisfy j�ðτÞ ¼ 0 for τ < 0 and τ > T, the “residual” field

AðrÞ
� at z > 0 refers to the nonzero field value after

t − z > T. We have

∂tA
ðrÞ
� ðt − z > TÞ

¼ μ

Z
T

0

dτeiΩτ�iμzf�ðτÞ
ðμt − μτÞI1ð

ffiffiffiffi
λ0

p Þffiffiffiffi
λ0

p ; ð51Þ

∂zA
ðrÞ
� ðt − z > TÞ

¼ μ

Z
T

0

dτeiΩτ�iμzf�ðτÞ
�
�iI0ð

ffiffiffiffi
λ0

p
Þ − μzI1ð

ffiffiffiffi
λ0

p Þffiffiffiffi
λ0

p
�
;

ð52Þ

where λ0 ¼ μ2ðt − τÞ2 − μ2z2. In the high frequency limit,
the rapid oscillations of eiΩτ tend to cancel out the
contributions from both integrals, so that the strengths of
the residual E and B fields are proportional to μ=Ω.
However, especially for μT ∼Oð1Þ, the residual fields
can become substantial: for λ0 ≳Oð1Þ, the exponential
growth of the Bessel functions becomes apparent, and
eventually compensates for the μ=Ω suppression.
To demonstrate the distortion to a signal as it propagates

through space, Fig. 2 shows the Poynting vector S ¼ E ×
B as a function of z at four snapshots in time. At t ¼ T0,
when the signal is newly produced, it exhibits relatively
mild modifications to the original Szðt; zÞ ¼ S0 square
wave, in this example with T0 ¼ μ−1. By the t ¼ 5T0

snapshot, not only has the signal become notably distorted,
but it also has developed nonzero values inside the light
cone, of magnitude Szðt − z > T0Þ ∼ 10−1S0. At t ¼ 7T0

this part of the field exceeds Szðt − z > T0Þ ≳ S0, and
continues to grow exponentially for t > 7T0.

FIG. 2. The spatial profile the Poynting vector SzðzÞ of a propagating right-polarized square pulse is shown as a function of z, at
several snapshots in time: t ¼ fT0; 3T0; 5T0; 7T0g with T0 ¼ 103 s, where the solid and dashed lines correspond, respectively, to
μ ¼ �10−3 Hz. For 0 ≤ t − z ≤ T0 (“on the light cone”), the difference in sign affects the phase velocities and spectrum of the pulses,
but for t − z > T0 (“inside the light cone”) the sign of μ is irrelevant for Szðt; zÞ.
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In Fig. 3, we show ExðtÞ for two square pulses with
different durations T, to demonstrate the relationship
between the pulse length and the strength of the residual
fields. In this example we inflate the typical value of μ to
μ ¼ 1 kHz so that the strength of the residual pulse
approaches the amplitude of the original signal for
t ∼OðfewÞ × T in an example with 10 kHz radiation.
However, the same plots can be reused for any value of
μ by rescaling Ω, t and z so as to keep μΩ, μt and μz
constant, as in the right-hand panel of Fig. 3. For another
example, using μ ¼ 10−8 Hz instead of 103 Hz, the plot in
Fig. 3 would show t in units of 105 s rather than μs,
and z ¼ 1.5 × 1013 km ¼ 0.49 pc.

3. Exponential growth

At sufficiently late times, μt≳ 1, the growth in theE and
B fields highlighted in Fig. 3 becomes exponential, driven
by the Bessel functions I0ð

ffiffiffi
λ

p Þ and λ−1=2I1ð
ffiffiffi
λ

p Þ in the
Green functions Eqs. (51)–(52). This is true not only of the
semistatic residual fields in the wake of the signal, but also
for the signal itself, if its duration T is long compared to
μ−1. For the phenomenologically relevant values of μ given
by Eq. (7), probing the strongly exponential behavior
requires extremely long coherence times T0 > μ−1≳
108 s for both the axion field and the radiation source,
unless the axion density is significantly enhanced beyond
the expected ρa ∼ 0.4 GeV=cm3. Nevertheless, it is a useful

exercise to explore the behavior of the fields in this
extreme limit.
Even in the late-time limit μðt − zÞ > 1, there is a clear

distinction between the received “signal,” when
0 ≤ t − z ≤ T, and the “residual” fields, t − z > T. In
contrast to the relatively mild modifications to the signal
in Fig. 3, the signal eventually becomes significantly
amplified and distorted for large μt ≫ 1 and μz ≫ 1.
The semistatic residual fields that appear in the wake of
the signal continue to grow exponentially, until the point
where the energy density in the electromagnetic fields
becomes comparable to ρa, and the backreaction on the
axion field can no longer be neglected.
Figure 3 (right panel) shows the modified signal for an

example with μ ¼ 10−3 Hz, where the pulse duration
(T¼5×103 s) and propagation distance (z¼ 6× 108 km)
are both larger than μ−1. In the μ → 0 limit of standard
electrodynamics, the power density jSzj of this circularly
polarized square wave would remain constant, Sm¼0

z ð0 ≤
t − z ≤ TÞ ¼ S0, returning to zero for t − z > T. Instead,
the received power in the μ ≠ 0 case varies as a function of
time, oscillating with ever-larger fluctuations and increas-
ing exponentially. Once μðt − zÞ≳ 1, the fluctuations in the
power ΔSz become larger than the magnitude of the power
at the source, S0, and the exponential growth soon ensures
that SzðtÞ ≫ S0 for all t − z ≫ μ−1.
After the signal has passed by, the residual fields are well

described by Eqs. (51)–(52), which in the λ0 ≫ 1 limit

FIG. 3. Left: the Ex field is shown as a function of time at fixed z ¼ 150 km for square pulses of frequency f0 ¼ Ω=2π ¼ 10 kHz, and
durations 1000 μs (orange) and 2000 μs (blue). Oscillations begin as the front of the pulse passes through the fixed value of z, followed
at later times by monotonic growth. For illustration we use an inflated value of μ ¼ 1 kHz. Not pictured, the B and Ey fields have a
nearly identical profile. Right: the value of the Poynting vector Sz is shown as a function of time for three square pulses of duration
T0 ¼ 5 × 103 s and similar frequencies f0 ∼ 10=T0, measured at a distance z ¼ 2=μ from the source, for μ ¼ 10−3 Hz. In the μ ¼ 0 case
the Poynting vector would be constant, with Sm¼0

z ð0 ≤ t − z ≤ T0Þ ¼ S0.
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closely resemble the asymptotic expansion described in
Eq. (B11) in Appendix B. The dominant term in this
expansion is the exponential

lim
λ→∞

Ijð
ffiffiffi
λ

p
Þ ≈ e

ffiffi
λ

p

ffiffiffiffiffiffiffiffiffiffiffiffi
2π

ffiffiffi
λ

pp : ð53Þ

To show the dependence of the strength of the residual
fields on the pulse length ΩT0, the left panel of Fig. 4
shows Szðt; zÞ at t ¼ 10 ms, z ¼ 1 ms, as a function of
pulse duration T0, with fixed frequency f0 ¼ Ω=2π ¼
5 kHz. Once T0 ≳ 4μ−1, the strength of the field at ðt; zÞ
approaches a constant value. Evidently, Szðt − z > TÞ is
driven primarily by the first part of the signal, which has
induced the longest-lived instabilities: the subsequent
exponential growth of the initial instability makes this part
of the signal the most consequential.
By considering the high-frequency limit of Eqs. (51)–

(52), where f�ðτÞ and Ijð
ffiffiffiffi
λ0

p Þ both vary slowly compared
to eiΩτ, it is easy to see that the inside-the-light-cone
electromagnetic fields scale as jEj ∝ Ω−1 and jBj ∝ Ω−1,
so that the radiation density is proportional to Sz ∝ Ω−2. In
the right panel of Fig. 4, the power Szðt; zÞ is shown for the
same values of t and z, this time as a function of the
frequency of the square pulse (f0 ¼ Ω=2π), with fixed
pulse duration T0 ¼ 2 × 10−3 s. At low frequencies,
f0 ≪ T−1

0 , the power approaches a constant. In this limit

the phases of the integrands in Eqs. (51)–(52) are essen-
tially independent of Ω, eiΩτ�iμz ≈ e�iμz. In the opposite
limit, f0 ≫ T−1

0 , the Sz ∝ μ2=Ω2 scaling suggested by
Eqs. (51)–(52) becomes manifest. Together, the T0 ≫
μ−1 and f0 ≫ μ limits indicate that the power scales

roughly as Szðt; zÞ ∼ e
ffiffi
λ

p
ðμ=ΩÞ2, for λ ¼ μ2t2 − μ2z2 with

t − z ≫ T0. In many applications involving radio, visible or
x-ray radiation, the hierarchy between μ and Ω imposes an
extreme penalty on the magnitude of the surplus power, so
that only after multiple e-foldings would it be possible to
detect the signal.
Our derivation of the Green function Eq. (30) assumes

that θ̈ vanishes, so that μðtÞ can be treated as constant. For a
standard axion oscillating in a quadratic potential, μðtÞ
varies according to

μðtÞ ¼ μ0 cosðmatÞ; μ0 ¼
1

2
gaγγ

ffiffiffiffiffi
ρa

p
: ð54Þ

At times T comparable to the period of axion oscillation,
T ∼m−1

a , the steady-state approximation μðtÞ ≃ μ is no
longer valid, and it is necessary to use the methods
described in Sec. III. In principle, because μ0 is set directly
by ρa and gaγγ , it is independent of ma, and the exponential
growth in the late-time limit μT ≫ 1 can be explored
without violating the steady-state condition maT ≪ 1.
Achieving μ0 ≫ ma does, however, require a nonstandard

FIG. 4. Left: the fractional change in the radiation power Sz at z ¼ 300 km, for μ ¼ 1 kHz, as a function of pulse duration T0,
measured at t ¼ T0 þ 10 ms. The approach to a constant value as the pulse duration increases reflects the fact that it is the first part of the
signal which has induced the largest contribution to the growing instability. Right: ΔSz=S0 as a function of radiation frequency
f ¼ Ω=2π, for the same values of μ and z, for fixed t ¼ 10 ms and T0 ¼ 2 ms. The falling value of ΔSz mimics the ΔSz ∝ Ω−2 scaling
indicated in Sec. II C 3. The oscillations in the received power for t − z > T0 correspond to integer values of πΩT0. As shown in the left
panel, small variations inΩT0 have a substantial impact on the power when μT0 ≲OðfewÞ, but for larger values of T0 the contribution to
Szðt; zÞ from the latter part of the signal is dwarfed by the exponential growth seeded by the first part.
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ALP model with an extended field range. Equation (54)
implies

μðtÞ ¼ μ0 cosðmatÞ → θðtÞ ¼ θ0 sinðmatÞ; θ0 ¼ 2
μ0
ma

;

ð55Þ
so μ0 ≫ ma necessarily implies that θ0 ≫ 2.
In practice, this region of parameter space with μ0 > ma

is mostly ruled out by experiment. Based on the constraints
for gaγγ [10–15] and ma [38–41], for dark matter densities

of ρa ≈ 0.4 GeV=cm3, Eq. (7) indicates that _θ ≪ ma for all
allowed ma and gaγγ . To realize the late-time exponential
growth within the steady-state axion background, three
conditions must be satisfied: ma must be near the low-mass
“fuzzy dark matter” extreme, ma ∼ 10−21 eV; the coupling
gaγγ must be relatively strong, gaγγ ≲ 10−11 eV, and the
value of

ffiffiffiffiffi
ρa

p
in the path of the photon must be enhanced by

a few orders of magnitude, for example by concentrating
some fraction of the axions into dense clumps or “axion
stars.” If these conditions are not satisfied, then maT ≪ 1
implies μ0T ≪ 1, and the Green function is well approxi-
mated by its series expansion in λ.

III. OSCILLATING AXION BACKGROUND

In an oscillating axion background,

_θðtÞ ¼ _θ0 cosðmatÞ; _θ0 ¼ gaγγ
ffiffiffiffiffi
ρa

p
; ð56Þ

the Green function for the vector potential A� in (1þ 1)
dimensional spacetime satisfies

ð∂2
t − ∂2

z � i_θ0 cosðmatÞ∂zÞg�ðt − t0; z − z0Þ
¼ δðz − z0Þδðt − t0Þ: ð57Þ

As in Sec. II Awe restrict our analysis to propagating plane
waves. Unlike the _θ ≈ const limit of Eq. (19), Eq. (57)
cannot be inverted to find an algebraic expression for the
Fourier transform of g�. Instead,

ðk2 − ω2Þg̃�ðω; kÞ

∓ k_θ0
2

ðeit0ma g̃�ðωþma; kÞ þ e−it0mag̃�ðω −ma; kÞÞ ¼ 1

ð58Þ

couples g̃�ðωÞ to g̃�ðω�maÞ. This complication stems
from the fact that the solutions of the homogeneous
equations of motion are Mathieu functions.
In both of the limits _θ0T ≫ 1 and _θ0T ≪ 1, the leading

forms of the Green functions can be extracted from Eq. (58)
without invoking Mathieu functions or their Fourier trans-
forms. Section III A focuses on the former limit, in which
frequencies ω ¼ 1

2
ma �Oð_θ0Þ are resonantly enhanced,

inducing exponential growth for these unstable frequencies.
In the alternate limit _θ0T ≪ 1 where the exponential
growth is not realized, and for _θ0T ≳ 1 for signals that
do not include the resonantly enhanced frequencies,
Sec. III B provides a continued fraction expression for
the Green function that converges quickly for small
_θ0 ≪ ma.

A. Resonantly enhanced propagation

For small _θ0 ≪ ma, Eq. (58) suggests that the solu-
tion for g̃�ðωÞ could be found as an expansion in
k_θ0=ðk2 − ω2Þ. However, for ω ≈ k�Oð_θ0Þ the simple
perturbative expansion is disrupted, especially near fre-
quencies ω ¼ � 1

2
ma where ω2 ¼ ðω�maÞ2.

At late times, when _θ0T ≳ 1, the exponential growth of
the unstable modes with ω ¼ �ma=2þOð_θ0Þ dominates
the propagation of a signal. In this late-time limit the Green
function can be approximated by integrating over the
resonantly enhanced modes,2

g�ðtjt0; zÞ ≈
X

k;ω≈�ma=2

Z
dkdωeikz−iωðt−t0Þ

ð2πÞ2 Gðω�; k�Þ;

ð59Þ

where we expand ω and k about �ma=2, defining

ϵ≡�
_θ0
4ma

; k� ≡�ma

2
þ αϵ; ω� ≡�ma

2
þ βϵ:

ð60Þ

The factor of �_θ0 in Eq. (57) corresponding to right- and
left-polarized light is absorbed into the definition of the
parameter ϵ. Even in the corner of ALP parameter space
with small masses and relatively large couplings, Eq. (7)
indicates that ϵ≲ 10−1 remains perturbatively small.
For ALPs more closely resembling a QCD axion with
ma > 10−12 eV, gaγγ < 10−11 GeV−1, and fixed ρa ≈
0.4 GeV=cm3, the value of ϵ drops to ϵ < 10−11.
The functionGðω�; k�Þ introduced in Eq. (59) is defined

to include only the Oðϵ−1Þ part of g̃� in the neighborhood
of the resonant frequencies, where α and β are OðmaÞ. By
dropping the Oðϵ0Þ portion of the Green function, Eq. (58)
can be disentangled to solve for Gðω�; k�Þ,

Gðω�; kþÞ ¼
1

ϵma

�
α� β þmae∓it0ma

α2 − β2 −m2
a

�
;

Gðω�; k−Þ ¼ −
1

ϵma

�
α ∓ β þmae∓it0ma

α2 − β2 −m2
a

�
: ð61Þ

2Here we employ a multiscale technique used in Ref. [49] in an
asymptotic analysis of lattice Green functions.
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In terms of α and β, Eq. (59) reduces to

g�ðtjt0; zÞ ≈
Z

4ϵ2dαdβeiϵαz−iϵβðt−t0Þ

ð2πÞ2ϵmaðα2 − β2 −m2
aÞ

×

�
iα cos

maðt − t0Þ
2

sin
maz
2

− iβ sin
maðt − t0Þ

2
cos

maz
2

þ ima cos
maðtþ t0Þ

2
sin

maz
2

�
þOðϵ0Þ: ð62Þ

As always, the retarded Green function is defined to satisfy gðt < t0Þ ¼ 0, so the contour in ωðβÞ passes above both poles at
β ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 −m2

a

p
, even when α2 < m2

a.
Fortuitously, this integral is nearly identical to the one encountered in Sec. II. Following the example of Eqs. (22)–(23),

we introduce the coordinate transformations

α≡ma coshφ; β0 ≡þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 −m2

a

q
¼ þi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a − α2
q

≡ma sinhφ; ð63Þ

maϵz ¼
ffiffiffi
λ

p
sinh η; maϵðt − t0Þ ¼

ffiffiffi
λ

p
cosh η; λ ¼ m2

aϵ
2ððt − t0Þ2 − z2Þ: ð64Þ

As in Fig. 1, φ is such that coshφ runs smoothly from −∞ toþ∞with Im coshðφÞ ¼ 0. Extending the limits of integration
in Eq. (62) to −∞ < β < ∞ and −∞ < α < ∞, we find

gðtjt0; zÞ ≈
Θðt − t0ÞΘððt − t0Þ2 − z2Þ

2

�
1þ 4iϵ cos

maðtþ t0Þ
2

sin
maz
2

I0ð
ffiffiffi
λ

p
Þ

þ 4ϵ

�
maϵðt − t0Þ sin

maðt − t0Þ
2

cos
maz
2

−maϵz cos
maðt − t0Þ

2
sin

maz
2

	
I1ð

ffiffiffi
λ

p Þffiffiffi
λ

p
�
; ð65Þ

which is again causal and exhibits propagation inside the
light cone. The ϵ0 term in the expansion is calculated
separately, by considering the Maxwell theory ϵ → 0 limit.
In the late-time limit, when T ¼ ðt − t0Þ satisfies

2ϵmaT þ log ϵ ≫ logmaT; ð66Þ

the ϵI0ð
ffiffiffi
λ

p Þ and ϵI1ð
ffiffiffi
λ

p Þ contributions become larger than
Oð1Þ, and the resonantly enhanced modes dominate the
Green function.
Compared to the ma → 0 limit from Sec. II, the

approximate retarded Green function in the resonantly
enhanced regime of ma ≫ _θ is remarkably similar. The
exponential growth scale μðtÞ has been replaced by

maϵ ¼
μ0
2
¼

_θ0
4
; ð67Þ

which is in line with what we naively expect from Sec. II.
For example, if we used the steady-state result to approxi-
mate the late-time exponential growth by replacing jμðtÞj
with its average value, hjμðtÞji ¼ 1

π
_θ0, the resulting esti-

mate for the growth factor is off by only 27%.
Recall from Eq. (7) that for fixed axion density

ρa ¼ 0.4 GeV=cm3, even in the corner of parameter space
saturating gaγγ ≲ 10−10 GeV−1 andma ≳ 2 × 10−21 eV, the
value of ϵ is still perturbatively small, jϵj≲ 2 × 10−3. For
this roughly maximal value of ϵ, Eq. (66) is satisfied by

maT ≳ 3600. Elsewhere in the ðma; gaγγÞ parameter space,
ϵ can assume significantly smaller values, requiring larger
maT ≫ 103 to satisfy Eq. (66).
Our treatment of the axion background as a coherently

oscillating field requires the field to remain coherent
throughout the signal propagation, or T < Tc with Tc ∼
ðmav2Þ−1, where v ∼ 10−3 is the virial velocity of the axions.
In the case of photons traveling freely through space, as
opposed to reflecting within some cavity, the propagation
distance L must also be smaller than some Lc ∼ ðmavÞ−1.
For ϵ≲ 10−5, the onset of exponential growth indicated
by Eq. (66) requires maT > 106 ∼ 1=v2, meaning that
decoherence effects become important on the timescales
associated with the exponential growth, and must be
accounted for. This result is consistent with Ref. [45],
which found that for axion models with 10−8 eV < ma,
decoherence completely obscures the exponential growth.
Additionally, for these models the width is narrow enough
that gravitational redshift by the darkmatter halo is sufficient
to detune the resonance, even if the velocity for the axion
cloud is taken to bev ≪ 10−3 in order to satisfymaT > 1=v2,
leading the authors of Ref. [45] to conclude that for ma >
10−8 eV in the observable range the parametric resonance at
ω ¼ 1

2
ma never develops into exponential growth.

Nevertheless, there is a window where ϵ≳ 10−5 occupy-
ing a couple decades of the ðma; gaγγÞ parameter space in
which the resonance can develop. It applies to extremely
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low-frequency radiation of ω≳ 10−21 eV, or equivalently
f ≳ 10−7 Hz ∼ 10 yr−1, which does not propagate through
the interstellar medium.

B. Propagation without resonance

In the opposite limit to Eq. (66), where ϵmaT ∼ _θT ≪ 1
and the resonance is not given time to grow, an alternate
approach provides a perturbative expansion of the Green

function in powers of ϵ. This approach is also valid in the
ϵmaT > 1 limit for signals that do not include support
within the instability band ω ¼ ma=2�Oð_θÞ, and generi-
cally for any signal where the resonant component from
Eq. (65) can be approximated by its series expansion.
For values of ω ≠ ma=2, Eq. (58) can be rearranged into

a continued fraction solution for g̃�ðωÞ, as a generalization
of the relation

g̃�ðω; kÞ ¼
1

k2 − ω2
þ 2kmaϵ

k2 − ω2
ðeit0ma g̃�ðωþma; kÞ þ e−it0ma g̃�ðω −ma; kÞÞ; ð68Þ

in terms of ϵ from Eq. (60). By iterating the replacement of g̃�ðω�maÞ with g̃�ðωÞ and g̃�ðω� 2maÞ, we derive an
approximation of the form g̃�ðω; kÞ ≈ alðω; kÞ as follows:

g̃�ðωÞ ¼ a0ðωÞ þ b0ðωÞg̃�ðωþmaÞ þ b0ðωÞg̃�ðω −maÞ;
g̃�ðωÞ ¼ a1ðωÞ þ b1ðωÞg̃�ðωþ 2maÞ þ b−1ðωÞg̃�ðω − 2maÞ;

..

.

g̃�ðωÞ ¼ alðωÞ þ blðωÞg̃�ðωþ 2lmaÞ þ b−lðωÞg̃�ðω − 2lmaÞ; ð69Þ

where the k dependence of each function g̃�ðω� 2lma; kÞ has been left implicit, and where

a0ðωÞ ¼
1

k2 − ω2
; a1ðωÞ ¼

a0ðωÞ þ bþ0ðωÞa0ðωþmaÞ þ b−0ðωÞa0ðω −maÞ
1 − bþ0ðωÞb−0ðωþmaÞ þ b−0ðωÞbþ0ðω −maÞ

;

b�0ðωÞ ¼
2ϵkmae�imat0

k2 − ω2
; b�1ðωÞ ¼

b�0ðωÞb�0ðω�maÞ
1 − bþ0ðωÞb−0ðωþmaÞ þ b−0ðωÞbþ0ðω −maÞ

: ð70Þ

The recursion is provided by

alþ1ðωÞ ¼
alðωÞ þ bþlðωÞalðωþ 2lmaÞ þ b−lðωÞalðω − 2lmaÞ
1 − bþlðωÞb−lðωþ 2lmaÞ − b−lðωÞbþlðω − 2lmaÞ

;

b�ðlþ1ÞðωÞ ¼
b�lðωÞb�lðω� 2lmaÞ

1 − bþlðωÞb−lðωþ 2lmaÞ − b−lðωÞbþlðω − 2lmaÞ
: ð71Þ

The convergence of the continued fraction expression
effectively depends on a small-b expansion, and for generic
values of ω ∼ k ≫ OðϵmaÞ counting powers of ϵ is rela-
tively easy: all of the ai are Oðϵ0Þ, while b�l ∼Oðϵ2lÞ.
Near the k ≈ ω poles, where k ¼ �ωþOðϵmaÞ, a factor of
ðk2 − ω2Þ ∝ ϵ−1 modifies the power counting to b�l ∼
Oðϵ2l−1Þ.
However, when ω ≈ n

2
ma for integer n, the power

counting is overturned near the k2 ¼ ω2 poles, prompting
the special treatment in Sec. III A. For example, for
ω ¼ 1

2
ma �OðϵmaÞ, the poles in a0ðωÞ and a0ðω −maÞ

are encountered simultaneously, and rather than finding

a1ðωÞ ¼ a0ðωÞð1þOðϵÞÞ, the difference between a1ðωÞ
and a0ðωÞ becomes Oðϵ0Þ; similarly, b−1ðω ≈ma=2Þ∼
Oðϵ0Þ. Excepting this ω ¼ � 1

2
ma resonance and the family

of higher-order, narrower resonances, the Green function
can otherwise be approximated to arbitrary order in ϵ by

g̃�ðω; kÞ ¼ alðω; kÞ þOðϵ2l−1Þ: ð72Þ

The l ¼ 0 case is simply the Maxwell theory ϵ → 0
result. At l ¼ 2, the expression for the retarded Green
function at Oðϵ2Þ is
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g�ðtjt0; zÞ ¼
�
1

2
ΘðzÞΘðt − t0 − zÞ þ 1

2
Θð−zÞΘðt − t0 þ zÞ

��
1þ ϵ4i cos

�
maðtþ t0Þ

2

�
sin

�
maz
2

�

þ ϵ2
�
−4þ 4 cosðmaðtþ t0ÞÞ cosðmazÞ þ 2maðt − t0Þ cos

�
maz
2

�
sin

�
maðt − t0Þ

2

�

− 2 cos

�
maðt − t0Þ

2

��
½−2þ 2 cos ðmaðtþ t0ÞÞ� cos

�
maz
2

�
þmaz sin

�
maz
2

��	
þOðϵ3Þ

�
; ð73Þ

which agrees at OðϵÞ and even at Oðϵ2maTÞ and Oðϵ2mazÞ with the late-time expression Eq. (65). Note that the series
expansions of the Bessel IνðzÞ functions are

I0ð
ffiffiffi
z

p Þ ¼ 1þ z
4
þ z2

64
þ z3

2304
þ…;

2ffiffiffi
z

p I1ð
ffiffiffi
z

p Þ ¼ 1þ z
8
þ z2

192
þ z3

9216
þ…: ð74Þ

To express g� in terms of _θ0, recall that a � sign is
incorporated into the definition of ϵ, where

gþðtjt0; zÞ∶ϵ → þ
_θ0
4
; g−ðtjt0; zÞ∶ϵ → −

_θ0
4
: ð75Þ

As a result, the replacement ϵ → −ϵ is equivalent to
switching gþ ↔ g−; taking the complex conjugate,
g⋆� ¼ g∓; or applying the parity transformation z → −z.
In Appendix A we provide the Oðϵ3Þ form of gðtjt0; zÞ.

We also demonstrate that as maT ≫ 1 and maz ≫ 1
approach the late-time limit, the leading ϵðϵmaTÞn and
ϵðϵmazÞn terms reconstruct the series expansions of I0ð

ffiffiffi
λ

p Þ
and I1ð

ffiffiffi
λ

p Þ= ffiffiffi
λ

p
. In Eq. (A2) we verify this explicitly as far

as the 1=192 coefficient of the ϵðϵmaTÞ5 term. This
indicates that the continued fraction expression for the
Green function provides a smooth interpolation between
the ϵmaT ≪ 1 and ϵmaT ≫ 1 limits.
By including the Oðϵ2Þ terms, Eq. (79) is more precise

than Eq. (78) in the ϵmat ≪ 1 limit, and it includes a novel
effect: the −4ϵ2 term in the expansion, which is not
proportional to any sinusoidal factors. When the Green
function is convolved with a signal of some duration T and
some spectrum of frequencies Ω, in the T ≫ m−1

a limit the
sinusoidal terms act as approximate Dirac δ functions to
enhance the modes with Ω ≈ n

2
ma for integers n ≥ 1.

If the axion mass is heavy enough thatma coincides with
observable frequencies of light, then this resonant enhance-
ment may be the most easily visible effect. However, for
very light ALP dark matter where ma ∼ ω < 2π ·OðkHzÞ
corresponds to difficult-to-detect radio waves, the fre-
quency-independent perturbation to the Green function
becomes much more significant. As ϵ2 is proportional to
ρa, changes in the axion density can modify the strength of
visible light passing through it, causing “nongravitational
microlensing.”
Depending on the cosmological history, some fraction of

the axions can clump together to form minihalos with
density perturbations δρa=ρa potentially much larger than
Oð1Þ [50]. (For recent work, see [51–55].) In addition to the

gravitational microlensing, the direct effect from axion
electrodynamics on starlight passing through an axion
cluster may be detectable if the average value of ϵ2 ¼
1
16
g2aγγρa=m2

a is not too small.

C. Numeric results

In Secs. III A and III B we used different methods to
approximate the Green function in the homogeneous,
oscillating axion background. In this section we verify
Eqs. (78) and (79) by comparing them to the numeric
solution of the differential equation

ð∂2
t − ∂2

z þ 4imaϵ cosðmatÞ∂zÞg�ðt − t0; z − z0Þ

¼ lim
σ→0

1

2πσ2
exp

�
−ðt − t0Þ2

2σ2

�
exp

�
−ðz − z0Þ2

2σ2

�
: ð76Þ

(Recall that ϵ≡� _θ0
4ma

.) For the numeric calculations, we

use a small value of σ < ϵm−1
a to approximate the delta

function source.
In Fig. 5, we compare the series expansion of the

continued fraction g̃�ðω; kÞ ¼ alðω; kÞ at l ¼ 2 to the
numeric result calculated from Eq. (76) with σ ¼ 0.05m−1

a .
Rather than truncating the series expansion at Oðϵ2Þ as in
Eq. (73), we use the Oðϵ3Þ expression Eq. (A1) from
Appendix A. For simplicity, we use t0 ¼ 0 in this example,
with ϵ ¼ 1=16. The agreement at early times, ϵmat ≪ 1, is
quite good, but the approximation begins to fail by
t≳ 2m−1

a =ϵ. Even though the Oðϵ3Þ expression includes
terms that grow as ϵðϵmaTÞ and iϵðϵmaTÞ2, by t ≥ 45m−1

a
the exponential growth has begun to invalidate the series
expansion in ðϵmaTÞ for both the real and imaginary parts
of the Green function.
Figure 6 shows the superior agreement between the late-

time expression Eq. (65) and the numeric result at later
times ϵmat ∼Oð1Þ. Compared to the continued fraction
solution Eq. (A1), Eq. (65) is missing the Oðϵ2ðϵmaTÞ0Þ
and Oðϵ3ðϵmaTÞ1Þ terms, making it less precise at early
times. However, because Eq. (65) includes terms of
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OðϵðϵmaTÞnÞ for all nonnegative integers n, it is the correct
choice for handling Oð1Þ values of ϵmaT.
At extremely late times, when maT ≫ ϵ−2, even our

“late-time” approximation from Sec. III A fails to capture

the dominant behavior of the Green function. In addition to
the ω ¼ �ma=2 poles, the contribution from the next-to-
leading resonance at ω ¼ �ma þOðϵ2maÞ becomes sig-
nificant. To calculate the extremely late Green function, the

FIG. 5. Left column: the real part of the Green function Reðg�ðtjt0; zÞÞ is plotted as a function of z, comparing the series expansion
Eq. (A1) at Oðϵ3Þ (dashed) against the numeric result (solid) at the following moments in time: mat ¼ f5; 9g (top), mat ¼ f25; 45g
(bottom). A thin black line shows the ϵ≡� 1

4
_θ0=ma → 0 result at t ¼ 9m−1

a and t ¼ 45m−1
a , in the upper and lower panels

(respectively). Right column: the series expansion (dashed) and numeric result (solid) for Imðg�ðtjt0; zÞÞ are shown as functions of z for
the same fixed values of t as in the left column, at early times t ¼ f5m−1

a ; 9m−1
a g (top) and late times t ¼ f25m−1

a ; 45m−1
a g (bottom). In

the ϵ → 0 limit (ordinary Maxwell theory), Imðg�Þ → 0. Changing the sign of ϵ is equivalent to replacing g� with its complex conjugate,
g� → g⋆�, or performing the parity transformation z → −z. In this example we take ϵ ¼ þ1=16 and t0 ¼ 0, so that the top and bottom
rows represent “early” and “late” times, with ϵmat ≪ 1 and ϵmat ≳ 1, respectively. The t ¼ 45m−1

a curve in red shows the breakdown of
the series expansion for ϵmat ≫ 1.
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methods of Sec. III A can be repeated with some new k� ¼
�ma þ ϵ2γ and ω� ¼ �ma þ ϵ2δ. Together with the sub-
leading terms from the ω ¼ �ma=2 poles, the resulting
expression would include all terms of Oðϵ2ðmaTÞnÞ, and
should match the n ¼ 0 and n ¼ 1 terms that appear
already in Eq. (A1). For the phenomenologically viable
values of ϵ with ρa ∼ 0.4 GeV=cm3, the decoherence at
Tc ∼ ðmav2Þ−1 ensures that ϵ2maT ≲Oð1Þ for all T ≲ Tc,
and the axion field loses coherence before the behavior at
these “extremely late” times can be explored.

IV. CONCLUSIONS

In this paper we have computed a set of Green functions
appropriate to various limits of axion electrodynamics.
Between Secs. II A, III A, and III B, our analysis covers the
phenomenologically viable parameter space for coherent
axion backgrounds, as well as more extreme ALP models
with stronger couplings or enhanced energy densities.
Our study of photon propagation at early times T ≪ m−1

a
in Sec. II shows that the QCD axion induces gentle
modifications to the propagation of local disturbances in
standard electrodynamics. ALP models in the more
extreme corners of parameter space can instigate more
dramatic growth in low-frequency modes as signal pulses
pass through space. In Sec. III, extending our analysis to
account for the oscillation of the axion field, we derive a
Green function that preferentially enhances radiation with
frequencies close to ω ¼ n ma

2
for positive integers n. In all

cases, perhaps the sharpest qualitative distinction between
radiation in Maxwell theory and in axion electrodynamics
is the presence of inside-the-light-cone propagation in the
latter.
We collect our main results below. For plane waves

symmetric in the x and y directions, the Green functions
g� satisfy the equations of motion ð∂2

t − ∂2
z � i_θðtÞ∂zÞ ×

g�ðt − t0; z − z0Þ ¼ δðz − z0Þδðt − t0Þ for right- and left-
polarized light, respectively.

(i) Semistatic limit: at times t ≪ m−1
a , with μ ¼

1
2
_θ0 cosðmatÞ ≃ const::

g�ðt − t0; zÞ ¼ e�iμzΘðt − t0ÞΘððt − t0Þ2 − z2Þ
2

× I0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2ððt − t0Þ2 − z2Þ
q �

: ð77Þ

The phase factor e�iμz provides polarization-
dependent phase velocities, as anticipated by the
dispersion relation Eq. (13). The exponentially
growing I0 function corresponds to superluminal
group velocities for both polarizations of light.
For nonstandard ALP models with ma ≪ _θ0, the
exponential growth at t≳ μ−1 can begin while the
semistatic condition t ≪ m−1

a is still satisfied. Oth-
erwise, when μt≲ 1, the Bessel function is well
approximated by its series expansion in powers of μt
and μz.

FIG. 6. The real (left) and imaginary (right) parts of the Green function gðtjt0; zÞ are plotted as functions of z at fixed values of
mat ¼ f25; 45g. In each plot the late-time approximation Eq. (65) (dashed) closely matches the numeric solution (solid), improving on

the nonresonant series expansions used in the lower panels of the previous figure. In this example, ϵ≡� _θ0
4ma

¼ þ1=16 and t0 ¼ 0, and

the numeric calculation was performed with σ ¼ 0.05m−1
a . For reference, the ϵ ¼ 0 solution for Reðg�Þ is shown at t ¼ 45m−1

a (thin
black line).
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(ii) Resonant, late-time limit: for jϵjmat≳ 1, where ϵma ¼ � 1
4
_θ0 for g�, respectively:

g�ðtjt0; zÞ ¼
Θðt − t0ÞΘððt − t0Þ2 − z2Þ

2

�
1þ 4iϵI0ð

ffiffiffi
λ

p
Þ cos

�
maðtþ t0Þ

2

�
sin

�
maz
2

�

þ 4ϵ
I1ð

ffiffiffi
λ

p Þffiffiffi
λ

p
�
maϵðt − t0Þ sin

�
maðt − t0Þ

2

�
cos

�
maz
2

�

−maϵz cos

�
maðt − t0Þ

2

�
sin

�
maz
2

�	�
; ð78Þ

where g� is expressed as a function of
λ ¼ ϵ2m2

aððt − t0Þ2 − z2Þ. This Green function de-
scribes the behavior at late times, λ≳ 1, when the
resonant enhancement of frequencies ω ≃ma=2 is
the dominant effect. In contrast to Eq. (77), Eq. (78)
is appropriate for the standard ALP models with
_θ0 ≪ ma, and is valid even for t ≫ m−1

a . Both
Eqs. (77) and (78) exhibit exponential growth at
late times t ≫ _θ−1, though in the latter case the
enhancement is specific to frequency modes within
the narrow resonance ω ¼ ma=2�Oð_θÞ.
At extremely late times, when ϵ2mat ≫ 1, the

contributions from the higher resonances such as

ω ¼ ma �Oð_θ2=maÞ also become significant.
Given the small values of ϵ for most regions of
ALP parameter space, and the fact that the axion
background usually exhibits decoherence before
ϵ2mat ∼Oð1Þ is satisfied, we do not provide the
Green function in this limit. However, the methods
of Sec. III A can be extended in a straightforward
manner to describe the dominant behavior in the
ϵ2mat≳ 1 limit.

(iii) Nonresonant propagation: for jϵjmat≲ 1, and for
signals that do not include the resonant frequencies
ω ¼ ma=2þOð_θ0Þ:

g�ðtjt0; zÞ ¼
Θðt − t0ÞΘððt − t0Þ2 − z2Þ

2

�
1þ ϵ4i cos

�
maðtþ t0Þ

2

�
sin

�
maz
2

�
− 4ϵ2

þ ϵ2
�
4 cosðmaðtþ t0ÞÞ cosðmazÞ þ 2maðt − t0Þ cos

�
maz
2

�
sin

�
maðt − t0Þ

2

�

− 2 cos

�
maðt − t0Þ

2

��
½−2þ 2 cos ðmaðtþ t0ÞÞ� cos

�
maz
2

�
þmaz sin

�
maz
2

��	

þOðϵ3Þ
�
; ð79Þ

where the Oðϵ3Þ term of the nonresonant series
expansion is provided in Eq. (A1) in Appendix A.
As long as jϵjmat < 1 and ϵ≲ 1, the Green function
can be calculated to arbitrary precision in OðϵnÞ
using this approach. For jϵjmat≳ 1, this series
expansion interpolates smoothly onto the Bessel
functions in Eq. (65), which include all terms of
order ϵðϵmatÞn and ϵðϵmazÞn for n ¼ 0; 1; 2….

In addition to the enhancement of specific frequencies
ω ≈ n

2
ma, Eqs. (73) and (A1) include terms that are not

sinusoidal, and which modify the propagation of all frequen-
cies of light. For ALP models with small axion masses,
where the resonant frequencies themselves are too small to
detect, the frequency independent ð1 − 4ϵ2Þ part of the
Green function continues to affect visible wavelengths of

light, and may provide a new signal of ALP dark matter in
regions where the axion density ρa ∝ ϵ2 varies significantly.
Both analyses in Sec. III are predicated upon ϵ ¼

� 1
4
_θ0=ma being a small parameter, and so the ϵ > Oð1Þ

case is generally the most difficult to address. If ϵ > 1 then
the continued fraction expression for the Green function
does not converge. In terms of the resonant analysis in
Sec. III A, once ϵnmat≳ 1, the Green function receives
contributions from an infinite set of poles at ωn ¼ n

2
ma.

This unusual ma ≪ _θ limit is handled by the treatment in
Section II A for times t ≪ m−1

a , where the semistatic
approximation is valid. However, once t ≫ m−1

a , the
ϵ > 1 Green function must be written in terms of
Mathieu functions or calculated numerically.
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If axions make up some component of the dark matter,
then their presence may be discerned through their influ-
ence on propagating photons. Sensitive terrestrial experi-
ments designed to measure the inside-the-light-cone
propagation or the polarization-dependent perturbations
from axion electrodynamics might complement existing
detection strategies for ALP dark matter. Astrophysical
observations may also be sensitive to the effects of axions.
Depending on the axion mass, the resonant enhancement
and frequency-independent modifications could provide
additional opportunities to detect axion dark matter, espe-
cially if some fraction of the dark matter has collapsed into
minihalos.
The work presented here can be developed in several

directions. To fully understand the propagation of light
through a galaxy containing axions, especially in the
neighborhood of axion minihalos or other dense objects,
it is important to consider the effects from spatial gradients
in the axion background. For light propagating through
multiple coherent patches, over distances L≳ ðmavÞ−1 or
for times T ≳ ðmav2Þ−1, decoherence effects are similarly
important. In physical systems where the axion density is
enhanced, or where its coherence time is increased, the
axion-induced effects on propagating light become more
significant. Possible applications include minihalos, cold
streams and caustics in the galaxy, as well as much denser
structures such as axion strings, or domain walls in the
early Universe. Finally, Green function techniques may

provide useful tools for exploring the sensitivity of terres-
trial axion detection experiments. We hope to explore these
possibilities in future work.
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APPENDIX A: CONTINUED FRACTION GREEN
FUNCTION AT HIGHER ORDER

In Sec. III B, we listed the first few terms of the
continued fraction Eq. (71), truncating the series expansion
of a2ðω; kÞ atOðϵ2Þ. The number of terms in the expansion
increases rapidly for higher powers of ϵ. For example, the
Oðϵ3Þ expression for the Green function is

gðtjt0; zÞ ¼
Θðt − t0ÞΘððt − t0Þ2 − z2Þ

2

�
1þ ϵ4i cos

�
maðtþ t0Þ

2

�
sin

�
maz
2

�

þ ϵ2
�
−4þ 4 cosðmaðtþ t0ÞÞ cosðmazÞ þ 2maðt − t0Þ cos

�
maz
2

�
sin

�
maðt − t0Þ

2

�

− 2 cos

�
maðt − t0Þ

2

��
½−2þ 2 cos ðmaðtþ t0ÞÞ� cos

�
maz
2

�
þmaz sin

�
maz
2

��	

þ i
3
ϵ3


cos

�
maðtþ t0Þ

2

��
12maz cos

maz
2

sin2
�
maðt − t0Þ

2

�

þ sin

�
maz
2

�
½2 cosð2matÞ − 38 cosðmaðt − t0ÞÞ þ 2 cosð2mat0Þ þ 6 cosðmaðtþ t0ÞÞ

− 63 − 6maðt − t0Þ sinðmaðt − t0ÞÞ þ 3m2
aðt − t0Þ2 − 3m2

az2�Þ
þ 8 sinðmazÞ½3 cosðmatÞ þ 3 cosðmat0Þ − cosðmað2tþ t0ÞÞ − cosðmaðtþ 2t0ÞÞ�

þ 9 cos

�
3maðtþ t0Þ

2

�
sin

�
3maz
2

��
þOðϵ4Þ

�
: ðA1Þ

To calculate g�ðtjt0; zÞ to Oðϵ4Þ–Oðϵ7Þ, it becomes neces-
sary to integrate the series expansion of al¼3ðω; kÞ rather
than a2ðω; kÞ, which can become tedious. At Oðϵ4Þ, for
example, a3ðω; kÞ includes triple poles ðk2 − ω2Þ3, double
poles ðk2− ðω�maÞ2Þ2 and ðk2 − ðω� 2maÞ2Þ2 and single

poles ðk2 − ðω� 3maÞ2Þ and ðk2 − ðω� 4maÞ2Þ. After
integrating over k, the Oðϵ4Þ component yields quadruple
poles at ω ¼ � 1

2
ma, triple poles at ω ¼ � 3

2
ma, double

poles at ω ¼ �ma and ω ¼ � 5
2
ma, and single poles at

ω ¼ 0, ω ¼ �2ma, ω ¼ �3ma and ω ¼ � 7
2
ma.
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Already at Oðϵ3Þ, we can see that the OðϵðϵmaTÞnÞ terms for n ¼ 0, 1, 2 match the series expansions of the Bessel
functions I0 and I1 given in Eq. (74), an important consistency check between Secs. III A and III B. By focusing exclusively
on the poles at k2 ¼ ω2 and k2 ¼ ðω�maÞ2, we can verify Eq. (65) by comparing it to the OðϵðϵmaTÞnÞ expansion for
arbitrarily large n. For example, at n ¼ 5, we integrate the Oðϵ6Þ expression for a3ðω; kÞ to find that

gðtjt0; zÞ ¼
�
1

2
ΘðzÞΘðt − t0 − zÞ þ 1

2
Θð−zÞΘðt − t0 þ zÞ

��
1þ 4iϵ cos

�
maðtþ t0Þ

2

�
sin

�
maz
2

�

×
�
1þ ϵ2

4
ðm2

aðt − t0Þ2 −m2
az2Þ þ

ϵ4

64
ðm2

aðt − t0Þ2 −m2
az2Þ2 þ…

�

þ 2ϵ2
�
maðt − t0Þ cos

�
maz
2

�
sin

�
maðt − t0Þ

2

�
−maz sin

�
maz
2

�
cos

�
maðt − t0Þ

2

��

×

�
1þ ϵ2

8
ðm2

aðt − t0Þ2 −m2
az2Þ þ

ϵ4

192
ðm2

aðt − t0Þ2 −m2
az2Þ2 þ…

��
þOðϵ2ðϵmaTÞnÞ; ðA2Þ

in complete agreement with Eq. (65).

APPENDIX B: INTEGRAL FOR FOUR-DIMENSIONAL GREEN FUNCTION

The part of the Green function Gij with the kikj=k2 tensor structure cannot be easily expressed in terms of
hypergeometric functions. The problematic integral can be expressed as

Aij ¼
1

4π
∂i∂j

�
1

2
ΘðtÞΘðt2 − r2Þ 2

μr
Iðt; rÞ

	
; ðB1Þ

where

I ¼ μr
2

Z
1

−1
dq cosðqrμÞI0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2t2 − μ2q2r2

q �
¼
Z

μr

0

dðqμrÞ cosðqrμÞI0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðμtÞ2 − ðμqrÞ2
q �

: ðB2Þ

Defining the dimensionless parameters

v≡ 1

4
q2μ2r2; v0 ≡ 1

4
μ2r2; σ ≡ 1

4
μ2t2; ðB3Þ

and replacing the trigonometric and Bessel functions with their equivalent hypergeometric functions,

I ¼
Z

v0

0

dvffiffiffi
v

p 0F1

�−
1
2

���� − v

�
0F1

�−
1

����σ − v

�
¼
Z

v0

0

dvffiffiffi
v

p 0F1

�−
1
2

���� − v

�X∞
k¼0

ðσ − vÞk
ðk!Þ2 ; ðB4Þ

¼
Z

v0

0

dvffiffiffi
v

p 0F1

�−
1
2

���� − v

�X∞
k¼0

Xk
j¼0

σk−jð−vÞj
k!j!ðk − jÞ! ; ðB5Þ

the integral over v can be completed:

Z
v0

0

dvvj−
1
2
0F1

�−
1
2

���� − v

�
¼ v

jþ1
2

0

jþ 1
2
1F2

 
jþ 1

2

1
2
; j
2
þ 1

4

���� − v0

!
; ðB6Þ

with the result
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I ¼
X∞
k¼0

Xk
j¼0

σk−jv
jþ1

2

0 ð−1Þj
k!j!ðk − jÞ!ðjþ 1

2
Þ 1F2

 
jþ 1

1
2
; j
2
þ 1

4

���� − v0

!
: ðB7Þ

One of the two infinite series can be replaced by a hypergeometric function, after replacing the index k with l≡ k − j, so
that both j and l run from zero to infinity:

I ¼ ffiffiffiffiffi
v0

p X∞
j¼0

X∞
l¼0

σl

l!Γðjþ lþ 1Þ
ð−v0Þj
j!ðjþ 1

2
Þ 1F2

 
jþ 1

2

1
2
; j
2
þ 1

4

���� − v0

!
; ðB8Þ

I ¼ ffiffiffiffiffi
v0

p X∞
j¼0

ð− 1
4
μ2r2Þj

j!ðjþ 1
2
Þ
�
2

μt

�
j
IjðμtÞ1F2

 
jþ 1

2

1
2
; j
2
þ 1

4

���� − 1

4
μ2r2

!
: ðB9Þ

Even for relatively large values of μt and μr, the series expression for I converges relatively quickly. In the asymptotic
v0 ≫ 1 limit, the 1F2 function is approximately

lim
v0→∞1F2

 
jþ 1

2

1
2
; j
2
þ 1

4

���� − v0

!
≈ vj=4þ1=8

0

2−jþ1=2 ffiffiffi
π

p
Γð3=4þ j=2Þ cos

�
2
ffiffiffiffiffi
v0

p þ πð1þ 2jÞ
8

�
; ðB10Þ

while to leading order the Bessel functions Ijð2
ffiffiffi
σ

p Þ approach

lim
μt→∞

IjðμtÞ ≈
eμtffiffiffiffiffiffiffiffiffiffi
2πμt

p
�
1 −

ð4j2 − 1Þ
8μt

þOððμtÞ−2Þ
�
: ðB11Þ

Consequently, the number of terms in
Pjmax

j¼0 required for convergence is driven primarily by the value of μt: in the limit
μt ≫ 1, the series converges quickly for j > jmax once

3jmax

2
log

jmax

e
þ jmax log

μtffiffiffi
2

p −
5jmax

2
log

μr
2

≫ μt: ðB12Þ

[1] R. Peccei and H. R. Quinn, CP Conservation in the
Presence of Instantons, Phys. Rev. Lett. 38, 1440
(1977).

[2] R. D. Peccei and H. R. Quinn, Constraints imposed by CP
conservation in the presence of instantons, Phys. Rev. D 16,
1791 (1977).

[3] C. A. Baker et al., An Improved Experimental Limit on the
Electric Dipole Moment of the Neutron, Phys. Rev. Lett. 97,
131801 (2006).

[4] J. M. Pendlebury et al., Revised experimental upper limit on
the electric dipole moment of the neutron, Phys. Rev. D 92,
092003 (2015).

[5] L. F. Abbott and P. Sikivie, A cosmological bound on the
invisible axion, Phys. Lett. 120B, 133 (1983).

[6] J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the
invisible axion, Phys. Lett. 120B, 127 (1983).

[7] M. Dine and W. Fischler, The not so harmless axion, Phys.
Lett. 120B, 137 (1983).

[8] H. Primakoff, Photoproduction of neutral mesons in nuclear
electric fields and the mean life of the neutral meson, Phys.
Rev. 81, 899 (1951).

[9] P. Sikivie, Experimental Tests of the Invisible Axion,
Phys. Rev. Lett. 51, 1415 (1983).

[10] D. A. Dicus, E. W. Kolb, V. L. Teplitz, and R. V. Wagoner,
Astrophysical bounds on very low mass axions, Phys. Rev.
D 22, 839 (1980).

[11] G. G. Raffelt, Astrophysical axion bounds, Lect. Notes
Phys. 741, 51 (2008).

[12] V. Anastassopoulos et al. (CAST Collaboration), New CAST
limit on theaxion-photon interaction,Nat. Phys.13, 584 (2017).

[13] J. W. Brockway, E. D. Carlson, and G. G. Raffelt, SN1987A
gamma-ray limits on the conversion of pseudoscalars, Phys.
Lett. B 383, 439 (1996).

[14] J. Grifols, E. Masso, and R. Toldra, Gamma-Rays from
SN1987A Due to Pseudoscalar Conversion, Phys. Rev. Lett.
77, 2372 (1996).

TIME-DOMAIN PROPERTIES OF ELECTROMAGNETIC SIGNALS … PHYS. REV. D 102, 123011 (2020)

123011-19

https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.97.131801
https://doi.org/10.1103/PhysRevLett.97.131801
https://doi.org/10.1103/PhysRevD.92.092003
https://doi.org/10.1103/PhysRevD.92.092003
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1103/PhysRev.81.899
https://doi.org/10.1103/PhysRev.81.899
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevD.22.839
https://doi.org/10.1103/PhysRevD.22.839
https://doi.org/10.1007/978-3-540-73518-2
https://doi.org/10.1007/978-3-540-73518-2
https://doi.org/10.1038/nphys4109
https://doi.org/10.1016/0370-2693(96)00778-2
https://doi.org/10.1016/0370-2693(96)00778-2
https://doi.org/10.1103/PhysRevLett.77.2372
https://doi.org/10.1103/PhysRevLett.77.2372


[15] J. P. Conlon, F. Day, N. Jennings, S. Krippendorf, and M.
Rummel, Constraints on axion-like particles from non-
observation of spectral modulations for x-ray point sources,
J. Cosmol. Astropart. Phys. 07 (2017) 005.

[16] N. Du et al. (ADMX Collaboration), A Search for Invisible
Axion Dark Matter with the Axion Dark Matter Experiment,
Phys. Rev. Lett. 120, 151301 (2018).

[17] J. L. Ouellet et al., First Results from ABRACADABRA-
10 cm: A Search for Sub-μeV Axion Dark Matter, Phys.
Rev. Lett. 122, 121802 (2019).

[18] L. Zhong et al. (HAYSTAC Collaboration), Results from
phase 1 of the HAYSTAC microwave cavity axion experi-
ment, Phys. Rev. D 97, 092001 (2018).

[19] E. Armengaud et al. (IAXO Collaboration), Physics
potential of the International Axion Observatory (IAXO),
J. Cosmol. Astropart. Phys. 06 (2019) 047.

[20] A. Berlin, R. T. D’Agnolo, S. A. R. Ellis, C. Nantista, J.
Neilson, P. Schuster, S. Tantawi, N. Toro, and K. Zhou,
Axion dark matter detection by superconducting resonant
frequency conversion, J. High Energy Phys. 07 (2020) 088.

[21] R. Lasenby, Microwave cavity searches for low-frequency
axion dark matter, Phys. Rev. D 102, 015008 (2020).

[22] F. Wilczek, Two Applications of Axion Electrodynamics,
Phys. Rev. Lett. 58, 1799 (1987).

[23] S. M. Carroll, G. B. Field, and R. Jackiw, Limits on a
Lorentz and parity violating modification of electrodynam-
ics, Phys. Rev. D 41, 1231 (1990).

[24] C. Coriano, Electrodynamics in the presence of an axion,
Mod. Phys. Lett. A 07, 1253 (1992).

[25] Z. Qiu, G. Cao, and X.-G. Huang, On electrodynamics of
chiral matter, Phys. Rev. D 95, 036002 (2017).

[26] D. Blas, A. Caputo, M. M. Ivanov, and L. Sberna, No chiral
light bending by clumps of axion-like particles, Phys. Dark
Universe 27, 100428 (2020).

[27] J. I. McDonald and L. B. Ventura, Optical properties of
dynamical axion backgrounds, Phys. Rev. D 101, 123503
(2020).

[28] D. Yoshida and J. Soda, Electromagnetic waves propagating
in the string axiverse, Prog. Theor. Exp. Phys. 2018, 041E01
(2018).

[29] W. DeRocco and A. Hook, Axion interferometry, Phys. Rev.
D 98, 035021 (2018).

[30] I. Obata, T. Fujita, and Y. Michimura, Optical Ring Cavity
Search for Axion Dark Matter, Phys. Rev. Lett. 121, 161301
(2018).

[31] L. M. Krauss, Axions and atomic clocks, arXiv:1905.10014.
[32] S. Chigusa, T. Moroi, and K. Nakayama, Signals of axion

like dark matter in time dependent polarization of light,
Phys. Lett. B 803, 135288 (2020).

[33] M. Huang and P. Sikivie, The structure of axionic domain
walls, Phys. Rev. D 32, 1560 (1985).

[34] Y. Aharonov, A. Komar, and L. Susskind, Superluminal
behavior, causality, and instability, Phys. Rev. 182, 1400
(1969).

[35] P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo,
and A. Ringwald, WISPy cold dark matter, J. Cosmol.
Astropart. Phys. 06 (2012) 013.

[36] N. Blinov, M. J. Dolan, P. Draper, and J. Kozaczuk, Dark
matter targets for axionlike particle searches, Phys. Rev. D
100, 015049 (2019).

[37] L. Di Luzio, M. Giannotti, E. Nardi, and L. Visinelli,
The landscape of QCD axion models, Phys. Rep. 870, 1
(2020).

[38] E. Armengaud, N. Palanque-Delabrouille, C. Yche, D. J. E.
Marsh, and J. Baur, Constraining the mass of light bosonic
dark matter using SDSS Lyman-α forest, Mon. Not. R.
Astron. Soc. 471, 4606 (2017).

[39] V. Iri, M. Viel, M. G. Haehnelt, J. S. Bolton, and G. D.
Becker, First Constraints on Fuzzy Dark Matter from
Lyman-α Forest Data and Hydrodynamical Simulations,
Phys. Rev. Lett. 119, 031302 (2017).

[40] T. Kobayashi, R. Murgia, A. De Simone, V. Iri, and M. Viel,
Lyman-α constraints on ultralight scalar dark matter: Im-
plications for the early and late universe, Phys. Rev. D 96,
123514 (2017).

[41] M. Nori, R. Murgia, V. Iri, M. Baldi, and M. Viel, Lyman α
forest and non-linear structure characterization in fuzzy dark
matter cosmologies, Mon. Not. R. Astron. Soc. 482, 3227
(2019).

[42] A. Arvanitaki, S. Dimopoulos, M. Galanis, L. Lehner, J. O.
Thompson, and K. Van Tilburg, Large-misalignment
mechanism for the formation of compact axion structures:
Signatures from the QCD axion to fuzzy dark matter, Phys.
Rev. D 101, 083014 (2020).

[43] A. Arza, Photon enhancement in a homogeneous axion dark
matter background, Eur. Phys. J. C 79, 250 (2019).

[44] M. P. Hertzberg and E. D. Schiappacasse, Dark matter axion
clump resonance of photons, J. Cosmol. Astropart. Phys. 11
(2018) 004.

[45] A. Arza, T. Schwetz, and E. Todarello, How to suppress
exponential growth—On the parametric resonance of pho-
tons in an axion background, J. Cosmol. Astropart. Phys. 10
(2020) 013.

[46] P. Sikivie, Invisible axion search methods, arXiv:2003
.02206.

[47] B. P. Abbott et al., Sensitivity of the Advanced LIGO
detectors at the beginning of gravitational wave astronomy,
Phys. Rev. D 93, 112004 (2016).

[48] B. Abbott et al. (LIGO Scientific Collaboration), LIGO:
The laser interferometer gravitational-wave observatory,
Rep. Prog. Phys. 72, 076901 (2009).

[49] A. Vanel, R. Craster, D. Colquitt, and M. Makwana,
Asymptotics of dynamic lattice Green’s functions, Wave
Motion 67, 15 (2016).

[50] E.W. Kolb and I. I. Tkachev, Large amplitude isothermal
fluctuations and high density dark matter clumps, Phys. Rev.
D 50, 769 (1994).

[51] A. E. Nelson and H. Xiao, Axion cosmology with early
matter domination, Phys. Rev. D 98, 063516 (2018).

[52] L. Visinelli and J. Redondo, Axion miniclusters in modified
cosmological histories, Phys. Rev. D 101, 023008 (2020).

[53] M. Buschmann, J. W. Foster, and B. R. Safdi, Early-
Universe Simulations of the Cosmological Axion, Phys.
Rev. Lett. 124, 161103 (2020).

[54] B. Eggemeier, J. Redondo, K. Dolag, J. C. Niemeyer, and A.
Vaquero, First Simulations of Axion Minicluster Halos,
Phys. Rev. Lett. 125, 041301 (2020).

[55] N. Blinov, M. J. Dolan, and P. Draper, Imprints of the Early
Universe on axion dark matter substructure, Phys. Rev. D
101, 035002 (2020).

ADSHEAD, DRAPER, and LILLARD PHYS. REV. D 102, 123011 (2020)

123011-20

https://doi.org/10.1088/1475-7516/2017/07/005
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevLett.122.121802
https://doi.org/10.1103/PhysRevLett.122.121802
https://doi.org/10.1103/PhysRevD.97.092001
https://doi.org/10.1088/1475-7516/2019/06/047
https://doi.org/10.1007/JHEP07(2020)088
https://doi.org/10.1103/PhysRevD.102.015008
https://doi.org/10.1103/PhysRevLett.58.1799
https://doi.org/10.1103/PhysRevD.41.1231
https://doi.org/10.1142/S0217732392003736
https://doi.org/10.1103/PhysRevD.95.036002
https://doi.org/10.1016/j.dark.2019.100428
https://doi.org/10.1016/j.dark.2019.100428
https://doi.org/10.1103/PhysRevD.101.123503
https://doi.org/10.1103/PhysRevD.101.123503
https://doi.org/10.1093/ptep/pty029
https://doi.org/10.1093/ptep/pty029
https://doi.org/10.1103/PhysRevD.98.035021
https://doi.org/10.1103/PhysRevD.98.035021
https://doi.org/10.1103/PhysRevLett.121.161301
https://doi.org/10.1103/PhysRevLett.121.161301
https://arXiv.org/abs/1905.10014
https://doi.org/10.1016/j.physletb.2020.135288
https://doi.org/10.1103/PhysRevD.32.1560
https://doi.org/10.1103/PhysRev.182.1400
https://doi.org/10.1103/PhysRev.182.1400
https://doi.org/10.1088/1475-7516/2012/06/013
https://doi.org/10.1088/1475-7516/2012/06/013
https://doi.org/10.1103/PhysRevD.100.015049
https://doi.org/10.1103/PhysRevD.100.015049
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1093/mnras/stx1870
https://doi.org/10.1093/mnras/stx1870
https://doi.org/10.1103/PhysRevLett.119.031302
https://doi.org/10.1103/PhysRevD.96.123514
https://doi.org/10.1103/PhysRevD.96.123514
https://doi.org/10.1093/mnras/sty2888
https://doi.org/10.1093/mnras/sty2888
https://doi.org/10.1103/PhysRevD.101.083014
https://doi.org/10.1103/PhysRevD.101.083014
https://doi.org/10.1140/epjc/s10052-019-6759-7
https://doi.org/10.1088/1475-7516/2018/11/004
https://doi.org/10.1088/1475-7516/2018/11/004
https://doi.org/10.1088/1475-7516/2020/10/013
https://doi.org/10.1088/1475-7516/2020/10/013
https://arXiv.org/abs/2003.02206
https://arXiv.org/abs/2003.02206
https://doi.org/10.1103/PhysRevD.93.112004
https://doi.org/10.1088/0034-4885/72/7/076901
https://doi.org/10.1016/j.wavemoti.2016.05.010
https://doi.org/10.1016/j.wavemoti.2016.05.010
https://doi.org/10.1103/PhysRevD.50.769
https://doi.org/10.1103/PhysRevD.50.769
https://doi.org/10.1103/PhysRevD.98.063516
https://doi.org/10.1103/PhysRevD.101.023008
https://doi.org/10.1103/PhysRevLett.124.161103
https://doi.org/10.1103/PhysRevLett.124.161103
https://doi.org/10.1103/PhysRevLett.125.041301
https://doi.org/10.1103/PhysRevD.101.035002
https://doi.org/10.1103/PhysRevD.101.035002

