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1. Introduction

In July 2012, the ATLAS and CMS Collaborations announced
the discovery of a new particle with a mass of approximately
125 GeV [1,2] at the CERN Large Hadron Collider (LHC). Subse-
quent measurements have indicated that this particle is consistent

* E-mail address: atlas.publications@cern.ch.

https://doi.org/10.1016/j.physletb.2020.135980

with the Standard Model (SM) Higgs boson [3-6], denoted by H.
While the interaction between the Higgs boson and the charged
fermions of the third-generation has already been observed by
both the ATLAS and CMS Collaborations [6-10], only upper lim-
its have been set on the interactions with fermions of the other
generations. The H — puu decay offers the best opportunity to
measure the Higgs interactions with a second-generation fermion
at the LHC. The SM branching ratio to dimuons for the Higgs bo-
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son with my = 125.09 GeV is (2.17 £ 0.04) x 10~* [11]. However,
physics beyond the SM [12,13] could modify the branching ratio.

Both the ATLAS and CMS Collaborations carried out searches
for the H — pupu process based on partial sets of about one quar-
ter of the data collected during Run 2 of the LHC [14,15]. This
paper presents an improved search for the dimuon decay of the
Higgs boson using the full pp collision dataset recorded with the
ATLAS detector in the LHC Run 2 period, spanning 2015 to 2018 at
/s =13 TeV, corresponding to an integrated luminosity of about
139 fb~!. Compared to the previous publication [14], several im-
provements have been made. They include a better categorisa-
tion based on multivariate techniques that exploit the topological
and kinematic differences between the different signal production
modes and the background processes, improvements in the muon
reconstruction, a large increase in the equivalent integrated lu-
minosity of the simulated background samples using a dedicated
fast simulation, and an improved methodology for the background
modelling.

The analysis selects events with two opposite-charge muons
and classifies them into 20 mutually exclusive categories based
on the event topology and multivariate discriminants to increase
the signal sensitivity. After event categorisation, the signal yield is
extracted by a simultaneous fit to the 20 dimuon mass (my,;,) dis-
tributions in the range 110-160 GeV together with background
normalisation and shape parameters, exploiting the resonant be-
haviour of the Higgs boson signal. The Higgs boson is assumed
to have a mass of my = 125.09 GeV [5] for all results presented.
More recent measurements of the Higgs boson mass [16,17] are
compatible within their uncertainties with this value.

2. ATLAS detector

The ATLAS detector [18,19] covers nearly the entire solid angle
around the collision point.! It consists of an inner tracking detector
surrounded by a thin superconducting solenoid, electromagnetic
and hadronic calorimeters, and a muon spectrometer incorporat-
ing three large superconducting toroid magnets.

The inner detector (ID) system is immersed in a 2 T axial
magnetic field and provides charged-particle tracking in the range
In| < 2.5. A high-granularity silicon pixel detector covers the ver-
tex region and typically provides four measurements per track. It
is surrounded by a silicon microstrip tracker, which typically pro-
vides four measurement points per track. These silicon detectors
are complemented by a transition radiation tracker, which enables
radially extended track reconstruction up to |n|=2.0.

The calorimeter system covers the pseudorapidity range |n| <
4.9. Within the region || < 3.2, electromagnetic calorimetry is
provided by barrel and endcap high-granularity liquid-argon (LAr)
sampling calorimeters, with an additional thin LAr presampler cov-
ering |n| < 1.8 to correct for energy loss in material upstream of
the calorimeters. Hadronic calorimetry is provided by a scintillator-
tile calorimeter, segmented into three barrel structures within
In| < 1.7, and two LAr hadronic endcap calorimeters.

The muon spectrometer (MS) comprises separate trigger and
high-precision tracking chambers measuring the deflection of
muons in a magnetic field generated by the superconducting air-
core toroids. The precision chamber system covers the region

1 ATLAS uses a right-handed coordinate system with its origin at the nominal
interaction point (IP) in the centre of the detector and the z-axis along the beam
pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis
points upward. Cylindrical coordinates (r,¢) are used in the transverse plane, ¢
being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms
of the polar angle 6 as n = —Intan(#/2). The rapidity is defined as y = % In E£Bz

E—p;
and the distance between two objects is defined as AR =./(Ay)2 + (A¢)2.
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In] < 2.7 with three layers of monitored drift tubes, comple-
mented by cathode-strip chambers in the forward region, where
the background is highest. The muon trigger system covers the
range |n| < 2.4 with resistive-plate chambers in the barrel, and
thin-gap chambers in the endcap regions.

The data were collected with a two-level trigger system [20].
The first-level trigger (L1) is implemented in hardware and uses a
subset of the detector information. This is followed by a software-
based high-level trigger which runs algorithms similar to those in
the offline reconstruction software, reducing the event rate to ap-
proximately 1 kHz from the maximum L1 rate of 100 kHz.

3. Data and simulated event samples

The pp collision data at /s = 13 TeV analysed here correspond
to the full recorded Run 2 dataset, with an integrated luminosity
of 139 fb~! after the application of data quality requirements. The
mean number of pp interactions per bunch crossing was about 34.
Events used in this analysis were recorded using a combination
of single-muon triggers with transverse momentum thresholds up
to 26 GeV for isolated muons and 50 GeV for muons without any
isolation requirement imposed, allowing to recover some ineffi-
ciency introduced by the isolation requirement at trigger level for
high momentum muons. The trigger efficiency for the sum of the
H — pp signal processes is about 91% relative to the common
event preselection discussed in Section 4.

Samples of simulated Monte Carlo (MC) events are used to op-
timise the selection, to model the signal processes and to develop
an analytic function to model the my, distributions for the back-
ground estimate. The signal samples as well as a complete set of
background processes were processed through the full ATLAS de-
tector simulation [21] based on GEANT4 [22], henceforth referred
to as fully simulated samples.

Signal samples were generated for the main Higgs boson pro-
duction modes. The mass of the Higgs boson was set in the sim-
ulation to my = 125 GeV and the corresponding width is I'y =
4.07 MeV [23]. The samples are normalised with the latest avail-
able theoretical calculations of the corresponding SM production
cross sections, summarised in Ref. [11]. The normalisation of all
Higgs boson samples also accounts for the H — uu branch-
ing ratio of 2.17 x 10™* calculated with HDECAY [24-27] and
PROPHECY4F [28-30].

Higgs boson production in the gluon-gluon fusion process (ggF)
was simulated using the PowHEG NNLOPS program [31-38] with
the PDFALHC15 set of parton distribution functions (PDFs) [39].
The simulation achieves next-to-next-to-leading-order (NNLO) ac-
curacy in QCD for inclusive observables after reweighting the Higgs
boson rapidity spectrum [40]. The parton-level events were pro-
cessed by PyTHIA 8 [41] to decay the Higgs bosons and to provide
parton showering, final-state photon radiation (QED FSR), hadro-
nisation and the underlying event, using the AZNLO set of tuned
parameters [42]. The sample is normalised to a next-to-next-to-
next-to-leading-order QCD calculation with next-to-leading-order
(NLO) electroweak corrections [43-54].

Higgs bosons produced via vector-boson fusion (VBF) and in as-
sociation with a vector boson, qq/qg — VH with V =W or Z,
were generated at NLO accuracy in QCD using the PoOwHEG-Box
program [55-57]. The loop-induced process gg — ZH was gener-
ated at leading order (LO) using POWHEG-BoX. For the VBF and VH
samples the same settings for the PDF set and PyTHIA 8 as in the
ggF sample were employed. The VBF sample is normalised to an
approximate-NNLO QCD cross section with NLO electroweak cor-
rections [58-60]. The V H samples are normalised to cross sections
calculated at NNLO in QCD with NLO electroweak corrections for
qq/qg — VH and at NLO and next-to-leading-logarithm accuracy
in QCD for gg — ZH [61-68]. Higgs boson production in associa-
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tion with a top-quark pair, ttH, was simulated at NLO accuracy in
QCD using MADGRAPH5_aMC@NLO [69,70] with the NNPDF3.0NLO
PDF set [71] and interfaced to PyTHIA 8 using the A14 set of tuned
parameters [72]. The cross section is taken from a calculation ac-
curate to NLO in QCD with NLO electroweak corrections [73-76].

Background events from the Drell-Yan (DY) Z/y* — up pro-
cess were generated with SHERPA 2.2.1 [77] using NLO-accurate
matrix elements for up to two partons, and LO-accurate matrix
elements for up to four partons calculated with the Comix [78]
and OpenLoops [79,80] libraries and the NNPDF3.0 NNLO set.
They were matched to the SHERPA parton shower [81] using the
MEPS@NLO prescription [82-85]. Diboson processes (WW, W Z,
and ZZ) as well as electroweak Zjj production were simulated
in a similar set-up with SHERPA 2.2.1. The tt and single-top-quark
samples were generated at NLO accuracy with POWHEG-Box [86,87]
using the NNPDF3.0NLO PDF set interfaced to PyTHIA 8 for parton
showering and hadronisation using the A14 parameter set. For the
Wt process, the diagram removal scheme [88] is applied to remove
the overlap with tf production. The production of ttV events was
modelled using the MADGRAPH5_aMC@NLO [69] generator at NLO
in a set-up similar to the one used for the ttH process.

The effects of multiple pp collisions in the same or neighbour-
ing bunch crossings (pile-up) are included in the MC simulation
by overlaying inelastic pp interactions produced using PYTHIA 8
with the NNPDF2.3LO set of PDFs [89] and the A3 set of tuned
parameters [90]. Events are reweighted such that the distribution
of the average number of interactions per bunch crossing matches
that observed in data. Simulated events are corrected to reflect the
momentum scales and resolutions as well as the trigger, recon-
struction, identification, and isolation efficiencies measured in data
for all the physics objects used in this analysis.

The background samples discussed above provide an equivalent
integrated luminosity that is typically 5-20 times higher than that
of data and are used to train multivariate classifiers and to test
the background modelling. However, the statistical uncertainties in
the dominant DY background are a limiting factor in studying the
background modelling at the level required by the small expected
H — pp signal. Therefore, two fast-simulation set-ups were de-
veloped to generate significantly larger DY samples. The primary
fast-simulation DY sample is based on parton-level events gen-
erated [91] with SHERPA 2.2.4 [92] using LO matrix elements for
Z/y* production with up to three additional partons and using the
CT14 NNLO PDF set [93]. The parton-level events were processed
with PyTHIA 8 to provide QED and QCD parton showering and
hadronisation, and double-counted QCD emissions were removed
using the CKKW-L algorithm [94] with a merging scale of 20 GeV.
For further cross-checks, an additional fast-simulation DY sample
was prepared that simulates Z/y* + 0,1 partons inclusively at
NLO accuracy using POowHEG-Box [95] with the CT10 PDF set [96]
and Z/y* 4 2 partons at LO accuracy with ALPGEN [97] using the
CTEQ6L1 PDF set [98]. These parton-level events were processed
with an approximate QCD shower algorithm, overlaps between the
two samples were removed, and QED FSR was provided by PHo-
TOs [99]. For both of these generated samples, experimental effects
were approximated using parameterisations rather than using the
full ATLAS detector simulation and reconstruction software. The
parameterisations, extracted from fully simulated MC samples or
directly from ATLAS data, reproduce the reconstruction and selec-
tion efficiencies of detector-level objects by event weighting and
model the resolution of the ATLAS detector with predetermined
probability distributions. Detailed descriptions were employed for
the muon momentum resolution and muon trigger and selection
efficiencies, for the photons from QED FSR, for hadronic jets from
the primary interaction and pile-up events in terms of kinemat-
ics and the number of associated ID tracks, and for the effect of
pile-up and the underlying event on the measurement of the miss-
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ing transverse momentum E?iss. In total, two sets of about 10-20
billion events are prepared in this way, corresponding to an equiv-
alent integrated luminosity of at least 50 ab~! in the kinematic
phase space relevant for the analysis.

Both fast simulation DY samples give a good description of the
data distributions of the observables used in this analysis to dis-
criminate the DY background from the H — uu signal, i.e. the
my,;, mass spectra and the multivariate discriminants described in
the following sections. Small residual differences are taken into ac-
count by reweighting the mass spectra to the data sidebands as
described in Section 6.

4. Object definitions and event selection

Events are required to contain at least one reconstructed pp
collision vertex candidate with at least two associated ID tracks
each with pr > 0.5 GeV. The vertex with the largest sum of p% of
tracks is considered to be the primary vertex of the hard interac-
tion. For signal events the primary vertex selection criteria has an
efficiency of about 99% [100].

The majority of muon candidates are reconstructed by com-
bining a track in the ID with a track in the MS. To improve the
muon reconstruction efficiency in the region of || < 0.1, which
has limited coverage in the MS, additional muon candidates are
identified by matching a reconstructed ID track to either an MS
track segment or a calorimetric energy deposit consistent with a
minimum-ionising particle. In the region 2.5 < || < 2.7, which is
not covered by the ID, additional muons are reconstructed from
an MS track with hits in the three MS layers and combined with
forward ID hits, if possible. Muon candidates are required to sat-
isfy the ‘loose’ criteria defined in Ref. [100] and have pt > 6 GeV
and |n| < 2.7. Muons with an associated ID track must be matched
to the primary vertex by having a longitudinal impact parameter
zp that satisfies |zgsin(0)| < 0.5 mm, where 0 is the polar angle
of the track. The significance of the transverse impact parameter
do calculated relative to the measured beam-line position is re-
quired to be |dp|/o (dp) < 3, where o (dg) is the uncertainty in dp.
Furthermore, isolation criteria are applied to suppress non-prompt
muons originating from hadron decays. The isolation selection uses
information about ID tracks and calorimeter energy deposits in a
range AR < 0.2 around the muon as described in Ref. [101].

Since muons may lose a significant fraction of their energy
by QED FSR, up to one final-state photon candidate per event is
included in the my,, calculation to improve the signal reconstruc-
tion. Photon candidates are reconstructed with a procedure similar
to the one described in Ref. [101], optimised to achieve the best
sensitivity for the H — pu signal. Only photon candidates close
to muons (AR(y, ) < 0.2) are considered. To reduce background
from pile-up interactions, a variable threshold is imposed on the
photon transverse momentum p¥ ; the threshold increases linearly
from p¥ =3 GeV for AR=0 to p¥ =8 GeV for AR=0.2. If
more than one photon passes this requirement, the photon with
the highest transverse momentum is selected. A QED FSR candi-
date is found in about 5% of the events and the signal m,,,, width
is reduced by about 3% when considering all reconstructed signal
events. With these selections, contributions from the loop-induced
decay H — Zy, Z — pju [102] are expected to be around 0.1% of
the H — pu yield and are thus neglected in the further analysis.

Electrons are reconstructed by matching clusters of energy in
the electromagnetic calorimeter to tracks in the ID. They are re-
quired to satisfy ‘Medium’ identification criteria [103], have pr >
7 GeV and |n| < 2.47 and be outside the region of 1.37 < |n| <
1.52. Similarly to muons, electrons are required to be isolated from
additional activity measured by ID tracks and the calorimeters
within AR < 0.2 [101] and to be matched to the primary vertex
with |zgsin(6)| < 0.5 mm and |dg|/o (dp) < 5.
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Table 1
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Summary of the main event selection criteria common to all events as well as the criteria applied to the selection
of hadronic jets. The bottom sections give the basic requirements on leptons and b-tagged jets for the analysis cate-
gories targeting different Higgs boson production processes. The subleading muon momentum threshold is 15 GeV in
all categories except the VH 3-lepton categories, where it is lowered to 10 GeV.

Selection

Common preselection Primary vertex

Two opposite-charge muons

Muons: [n| < 2.7, py

Fit Region

Jets pr>25GeVand |n| <2.4

lead

110 < my,, < 160 GeV

> 27 GeV, piPlead > 15 GeV (except V H 3-lepton)

or with pr > 30 GeV and 2.4 < |n| <4.5

ttH Category

V H 3-lepton Categories
V H 4-lepton Category
ggF +VBF Categories

at least one additional e or p with pr > 15 GeV, at least one b-jet (85% WP)
psblead > 10 GeV, one additional e (1) with pr > 15(10) GeV, no b-jets (85% WP)
at least two additional e or p with pr > 8,6 GeV, no b-jets (85% WP)

no additional x, no b-jets (60% WP)

Jets are reconstructed from ‘particle flow’ objects [104] using
the anti-k; algorithm [105,106] with a radius parameter of R = 0.4.
Candidate jets must have || < 4.5, and the jet pr must be larger
than 25(30) GeV for |n| <2.4 (2.4 < |n| < 4.5). To suppress pile-
up contributions, jets with |n| < 2.4 and pt < 60 GeV that do not
originate from the primary vertex are rejected using the jet vertex
tagging algorithm (JVT) [107], which combines tracking informa-
tion into a multivariate likelihood.

Jets containing b-hadrons with || < 2.5 are identified as b-
tagged jets using a multivariate b-tagging algorithm. Two identi-
fication working points (WP) are used [108,109] to provide a 60%
(85%) efficiency in tt events and a rejection factor of 1200 (25) for
light-flavour jets, respectively.

Neutrinos escape from the detector and lead to missing trans-
verse momentum E‘l‘.“iss. The E%‘iss is defined as the magnitude of
the negative vectorial sum of the transverse momenta of the se-
lected and calibrated physics objects (including muons, electrons
and jets) and the ID tracks not associated with any physics object
(soft term) [110,111].

Events are selected if they contain at least two opposite-
charge muon candidates. The leading muon is required to have
pr > 27 GeV to be above the trigger threshold and in most cat-
egories the subleading muon has to have pr > 15 GeV. Further
requirements on the presence or absence of additional muons,
electrons and b-tagged jets depend on the targeted Higgs boson
production mode (ttH, VH, or ggF +VBF), as detailed in Sec-
tion 5. The main selection requirements are summarised in Ta-
ble 1. The final signal+background fits are performed in the re-
gion m;, = 110-160 GeV, where about 450000 data events are
selected. Within the mass window my,, = 120-130 GeV, which
contains about 85% of the signal, about 868 H — /. events are
expected. This corresponds to a total efficiency times acceptance
of about 52% with respect to all H — ppu produced in the ggF,
VBF, VH and ttH processes.

5. Event categorisation

Events satisfying the preselection criteria of Section 4 are clas-
sified into 20 mutually exclusive categories. They are defined to ex-
ploit the topological and kinematic differences between the back-
ground processes and the different Higgs boson production modes:
ggF, VBF, VH and ttH. The background is dominated inclusively by
the DY process, while diboson production, tf and single-top pro-
duction and rarer SM processes such as ttV play a significant role
in the categories targeting VH and ttH production.

After preselecting events according to the presence of addi-
tional leptons and the number of jets and b-tagged jets, boosted
decision trees (BDT) [112,113] are trained using the XGBoost pack-
age [114] to enhance the signal sensitivity as explained in the

following. In order to avoid any potential bias, all trainings are per-
formed using k-fold cross-validation, where k different partitions
are used in turn for training, for validation and for testing.

The category selections targeting the different Higgs boson pro-
duction modes are made in a specific exclusive order, correspond-
ing to the order in which they are presented in this section.

5.1. ttH category

A category enriched in ttH events is defined in order to tar-
get the dileptonic or semileptonic decay of the tt system. Events
are considered for this category if there is at least one lepton (e or
) with a transverse momentum pr > 15 GeV in addition to the
opposite-sign muon pair and at least one b-tagged jet selected by
the 85% efficiency working point. The two highest-pr muons with
opposite charge are chosen as the Higgs boson decay candidate
and used to calculate the variable m;, used in the final fit. This
procedure correctly selects the muon pair coming from the Higgs
boson decay in about 80% of the cases. After this selection, a BDT
is trained using simulated ttH, H — w/ events as signal and sim-
ulated events from all SM background processes as background,
both selected in a range m,, = 100-200 GeV. The 12 variables
used in the BDT include the Higgs boson candidate’s transverse
momentum py”, the value of the cosine of the lepton decay angle
cos6* in the Collins-Soper frame [115], the transverse momenta
of the additional leptons, the multiplicity of central jets with |n| <
2.5, the multiplicity of b-tagged jets, and the scalar sum of the
transverse momenta of all the jets, Ht. In addition, several invari-
ant masses derived from the reconstructed objects as described in
the following are used. If there are not enough reconstructed ob-
jects in the event to define the invariant masses described in the
following, fixed arbitrary values outside their physical ranges are
assigned. The leptonic top-quark candidate mass mpep-top is calcu-
lated as the transverse mass of the system composed of the third
lepton, the missing transverse momentum and the b-tagged jet
candidate (if more than one b-tagged jet is present, the one yield-
ing Mieptop closest to 173 GeV is chosen). The transverse mass
of the leptonic W-boson candidate myep.w is calculated from the
system composed of the third lepton and the missing transverse
momentum. The hadronic top-quark candidate mass myad-top iS
reconstructed from three jets, where one jet must be b-tagged
(if only one b-tagged jet is present, it is used in the reconstruc-
tion of both mieptop and Muyad-top). If more than three jets are
available, the combination is chosen that maximises the probabil-
ity of compatibility with a hadronic top-quark decay in terms of
closeness of Myad-Top and Myad-w to the top-quark and W-boson
masses, respectively, where the mass of the hadronically decay-
ing W boson, myag.w, is calculated from the two non-b-tagged
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jets associated with the hadronic top decay. If, in addition to the
two muons associated with the Higgs boson candidate, two addi-
tional opposite-sign and same-flavour leptons are present in the
event, their invariant mass is used in the BDT. Similarly, if there
are at least three muons reconstructed, the mass of the dimuon
pair formed from the muon with the third-highest pr and the op-
positely charged muon assigned to the Higgs boson is included in
the classification.

A selection is applied to the BDT score to define one ttH-
enriched category (named ttH in the following) by optimising the
sensitivity to the predicted SM signal. The background is expected
to be dominated by the ttZ process with additional contributions
from the production of tt, dibosons, and ttH with Higgs boson de-
cays into a final state different from H — . Assuming SM Higgs
boson production and decay, 1.2 signal events are expected in this
category with a purity of 98% for the ttH process relative to other
Higgs boson production modes and a signal-to-background ratio of
8% in the mass window m,,,, = 120-130 GeV.

5.2. V H categories

Events not selected in the tftH category are considered for the
V H-enriched categories. The VH categories target signal events
where the Higgs boson is produced in association with a lepton-
ically decaying vector boson, W — ¢v or Z — ¢{ with £ =e, u,
drastically reducing the DY background. Events are required to
have no jets identified as b-jet candidates by the b-tagging algo-
rithm at the 85% efficiency working point. In addition to a pair
of oppositely charged muons from the H — pu decay, at least
one additional isolated muon or electron must be reconstructed. In
events with exactly three leptons, the subleading muon associated
with the Higgs boson candidate is required to have a transverse
momentum of at least 10 GeV, the additional muon (electron) is
required to have a transverse momentum of at least 10 (15) GeV
and no Z — puu candidate, defined as an opposite-charge dimuon
pair with a mass m;, = 80-105 GeV, can be present. In events
with at least four leptons, the two additional leptons (muons or
electrons) are required to have transverse momenta of at least 8
and 6 GeV and at most one Z — pup candidate can be present.
If more than two muons are reconstructed, their assignment to
the H— pup and Z — pupu (W — pv) decay candidates is based
on their charges and on the minimisation of a x2 criterion that
takes into account the difference between the reconstructed and
expected (transverse) masses of the two bosons and their expected
experimental resolutions. In the three-lepton case, the x2 makes
use of the transverse mass built from the lepton associated with
the W boson, called the ‘W lepton’ henceforth, and the miss-
ing transverse momentum. For these topologies the correct pairing
is obtained in 93% and 97% of the cases for the four-lepton and
three-lepton channels, respectively. If the additional leptons are
electrons, these are matched without ambiguity to the W — ev
or Z — ee decays. The two muons chosen as the H — pu candi-
date are used to calculate the variable m,,, used in the final fit.

Two BDTs are trained, separately for the three-lepton and four-
lepton events, to discriminate between the simulated signal and
background events satisfying the preselection criteria and having
a dimuon invariant mass in the range m;, = 110-160 GeV. The
three-lepton BDT uses the WH, H — pu production as signal.
The variables used include the azimuthal separation A¢ between
the Higgs boson candidate and the missing transverse momentum,
the transverse momentum of the W lepton, the transverse mass
of the W boson candidate, the azimuthal separation and the sep-
aration in pseudorapidity An between the Higgs boson candidate
and the W lepton, the missing transverse momentum, the trans-
verse momentum of the leading jet (if present) and the number of
reconstructed jets.
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For the four-lepton events the ZH, H — uu production is cho-
sen as signal in the BDT training. The variables used in the BDT
include the azimuthal separation between the leptons from the
Z — (¢ candidate, the azimuthal separation and the separation in
pseudorapidity between the H — uu candidate and the Z — ¢¢
candidate, the invariant mass of the Z — ¢¢ candidate, the num-
ber of jets and the transverse momentum of the two leading jets
(if present).

Three V H categories are defined by applying selection criteria
to the two BDT scores which optimise the sensitivity to the pre-
dicted SM signal. Two categories are defined for the three-lepton
events and are named VH3LH and VH3LM, where the former has
the higher signal-to-background ratio. For the four-lepton events,
only one category is selected and is named VH4L. The diboson
processes are expected to constitute about 70% (55%) of the total
background in the VH3LH (VH3LM) category with smaller contri-
butions expected from top-quark pair production and the DY pro-
cess. In the VHA4L category, about 98% of the background is from
the ZZ process. Assuming the SM Higgs boson production and de-
cay, the numbers of signal events expected in the m,, =120-130
GeV mass window for the VH3LM, VH3LH and VHA4L categories
are 2.8, 1.4 and 0.5, respectively, and the corresponding signal-to-
background ratios are 0.8%, 3.7% and 2.6%. The expected H — puu
signal purity for the V H production process relative to other Higgs
production modes is 89% in the VH3LM category and more than
99% in the VH3LH and VHA4L categories.

5.3. ggF and VBF categories

The events not selected in the ttH or VH categories described
above, are further classified according to the number of recon-
structed jets into three jet multiplicity categories: O-jet, 1-jet and
2-jet, where the last includes events with two or more jets. Events
with at least one b-tagged jet selected by the 60% efficiency work-
ing point or with a third muon with pr > 15 GeV are rejected
in the ggF and VBF categories, as they are found to have a very
low signal-to-background ratio and negligible signal sensitivity. To
fully exploit the kinematic differences between the signal and the
backgrounds, which are dominated by DY dimuon production con-
tributing more than 90% of all background events after preselec-
tion, BDTs are trained in each jet multiplicity category. All BDTs
are trained using the MC background samples and the simulated
H — o signal in the mass window my,,, = 120-130 GeV.

In the 2-jet category, a BDT is trained to disentangle signal
events produced by VBF, used as signal sample in the training,
from background events. This BDT, with a score denoted by Ovgg,
is based on 17 variables related to the dimuon and dijet sys-
tems as described below. The dimuon system is characterised by
the transverse momentum p4”, rapidity y,, and the value of
cos6*. Compared to events from the dominant DY background, sig-
nal events from both ggF and VBF production are characterised by
larger p#“ and smaller absolute values of y,,;,. The cos#* distribu-
tions provide some discrimination due to different spin-structures
and Z-y interference effects for the DY background [116]. For the
leading and subleading jets in the event (denoted by j; and j),
the following variables are computed: pt and n of j; and j;; the
azimuthal separation between the dimuon system and each jet,
A¢up.j, and Ay j,; the kinematics of the dijet system ( jj) char-

acterised by transverse momentum p%’, mass mj;j and rapidity y j;;
and the azimuthal separation between the dimuon and dijet sys-
tems, A¢, . jj- These variables exploit the unique signature of the
VBF process: two high-pt jets separated by a large rapidity gap
with little hadronic activity. For jets that have a high pt > 50 GeV
and are in the central region |n| < 2.1, the multiplicity of ID tracks
with pr > 0.5 GeV associated with each of the two leading jets,

N{r"ack, is also used to help discriminate between jets produced by
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fragmentation of gluons and quarks [117,118]. In addition, E%“iss
and Hr, which can discriminate the tt background from the signal,
are also considered.

From the Ovpp classifier, four categories in the region with
the highest score are selected and named VBF Very High, High,
Medium, and Low. The expected H — ppu signal contributing to
these categories is dominated by the VBF process with a purity
ranging from about 93% (VBF Very High) to 65% (VBF Low) and the
expected SM signal-to-background ratio computed in the 120-130
GeV mass window varies between 18% (VBF Very High) and 2.8%
(VBF Low). The predicted number of SM signal events in the VBF
categories ranges between 2.8 and 7.5 events.

The remaining events are considered for further classification
in three other BDTs split by jet multiplicity, with scores denoted
as Ofgg;z). These BDTs are trained with both the H — puu ggF
and VBF production MC samples as signal. In each jet category,
the same three variables characterising the dimuon system and
discussed above are used, ie. pi", y,, and cos@*. For the 1-jet

BDT, they are complemented by the transverse momentum p%l,
pseudorapidity 7;,, the track multiplicity NtJrlack in the jet, and the
azimuthal separation from the dimuon system, A¢,,, j,. In the 2-
jet category the same variables as in the VBF BDT are used.

The events in each of these three jet multiplicity categories
are further classified into four categories on the basis of the
O;gF_z) scores to yield a total of 12 mutually exclusive categories
called N-jet Very High, High, Medium and Low with N =0,1,2.
The ggF production process contributes 80%-100% of the expected
H — g signal in these categories. The expected SM signal-to-
background ratio in the 120-130 GeV mass window varies from
1.7%-1.5% (2-jet Very High and 1-jet Very High) to 0.07% (O-jet
Low). The predicted number of SM signal events in the ggF cate-
gories ranges between 17 and 125 events.

6. Signal and background modelling and systematic
uncertainties

The signal extraction is based on a binned maximum-likelihood
fit to the invariant mass spectrum of the dimuon system as de-
scribed in Section 7. Analytic models are used in the fit to describe
the my,, distributions for both the signal and background pro-
cesses.

6.1. Signal modelling

In the SM, the H — uu signal is predicted to be a narrow
resonance with a width of 4.1 MeV for my = 125.09 GeV. The
observed signal shape is thus determined by detector resolution
effects on the muon momentum measurement. A double-sided
Crystal Ball function is used for the Higgs signal model. This func-
tion is a modification of the Crystal Ball function [119,120], and
consists of a Gaussian central part with a power-law tail on each
side.

For each of the 20 categories, the signal parameters are fit-
ted to signal MC spectra summed over all production modes
(ggF, VBF, VH, ttH) assuming the relative normalisations as pre-
dicted by the SM. Within each category no significant differences
are found between the signal shapes of the different production
modes, indicating that the signal parameterisation is not sensi-
tive to the assumption on their relative normalisations. The width
of the Gaussian component of the double-sided Crystal Ball func-
tion varies between 2.6 and 3.2 GeV depending on the category.
Potential biases in the extracted signal yields due to the analytic
parameterisations are tested with a signal injection procedure: in
a signal-plus-background fit to pseudo-data constructed from the
expected signal and background distributions, the extracted signal
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yields agree with those injected within the statistical accuracy of
about 0.3%.

Several sources of systematic uncertainty in the signal mod-
elling are considered, including both theoretical and experimental
effects. The theoretical uncertainties in the signal production affect
the number of signal events expected in each category. The uncer-
tainties considered for the main production modes (ggF and VBF)
include the impact of the missing higher-order QCD corrections,
PDFs, the underlying event and hadronisation. In particular, the un-
certainty in the ggF signal is derived using the approach described
in Ref. [11], including effects from the variation of QCD scales for
factorisation, renormalisation and resummation, and the migration
between jet-multiplicity regions [121-128]. The uncertainty in the
ggF Higgs boson transverse momentum, including the effect of mi-
gration between different kinematic regions and of the treatment
of the top-quark mass in the loop corrections, is also taken into
account. In addition, dedicated uncertainties are assigned for the
ggF signal acceptance in VBF topologies. The uncertainties in the
predicted SM branching ratio and Higgs boson production cross
sections are included in accord with Ref. [11]. The uncertainties
associated with the modelling of the underlying event and par-
ton showering are estimated by considering the PyTHIA 8 system-
atic eigentune variations and by comparing events showered by
PyTHIA 8 with those showered by HERwIG 7 [129,130]. The impact
of the theory uncertainties on the predicted signal acceptances in
the different categories ranges between a few per mill and 15% for
ggF production. Similarly, for the VBF production the impact of the
theory uncertainties on the predicted signal acceptances varies be-
tween a few per mill and 7%. For the VH and ttH categories the
theory systematic uncertainties have an impact on the predicted
signal acceptances of between a few per mill and about 18%.

Systematic uncertainties related to the different reconstructed
physics objects used in the analysis affect the expected signal
yields in each category. In addition, systematic uncertainties in
the muon momentum scale and resolution also affect the signal
mass distribution. The experimental uncertainties considered are
the muon reconstruction and identification efficiencies, the effi-
ciencies due to the trigger, isolation and impact parameter require-
ments, the muon momentum scale and resolution [100,131,132],
the determination of the E%’iss soft term [110], the b-tagging ef-
ficiency [109], the uncertainty in the number of tracks associated
with the jets [117], the pile-up modelling [90], and uncertainties
in the electron reconstruction and identification efficiency [103] as
well as in the jet reconstruction efficiency, energy scale and reso-
lution [133]. The impact of the experimental uncertainties on the
predicted signal yields and modelling in the different categories is
dominated by the uncertainties in the jet energy scale and reso-
lution and the muon momentum resolution. The former can affect
signal yields by up to about 10% in some of the 2-jet categories.
The muon momentum resolution uncertainty has an impact on the
fitted yields ranging between 1% and 6% depending on the cate-
gory.

The experimental uncertainty of 240 MeV in the assumed value
of the Higgs mass from Ref. [5] is also taken into account. All these
sources of uncertainty are included in the signal extraction fit de-
scribed in Section 7 through nuisance parameters acting on the
relative signal yields in the different categories and on the signal
mass distributions.

6.2. Background modelling

Due to the very small signal-to-background ratio, which is at
the level of 0.2% in the region m,, = 120-130 GeV in an inclu-
sive selection, an accurate determination of the background is of
paramount importance. The m,,,, background spectrum is parame-
terised by analytic functions that can describe this distribution at
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Table 2
List of tested empirical functional forms for the background
modelling.

Function Expression

PowerN ;ffl+a1mw+azmﬁu+...+awmﬁﬁ)

EpolyN exp(aimy, +aszm +...+aNmﬁu)

the per-mill level to avoid a significant bias in the extracted sig-
nal yields. The mass range used for the fit, m;, = 110-160 GeV, is
optimised to obtain the best signal sensitivity taking into account
the statistical and systematic uncertainties.

For the ggF and VBF categories, the background is dominated
by the DY process, which accounts for more than 90% of the to-
tal, with small contributions from top-quark processes (mainly in
the 2-jet categories) and diboson production. In the ttH and VH
categories, the dominant backgrounds are associated production of
ttZ and VZ with Z — pu, respectively, while the DY process, tt
production and other diboson processes give minor contributions.

To achieve the required accuracy in the analytic description of
the background m,,,, distribution, the following approach is used.
A core function that describes the DY mass shape inclusively is
multiplied by an empirical function that can correct for distortions
of the mass shape due to the event selection and categorisation,
higher-order theory corrections and other smaller background con-
tributions. The empirical functions chosen are also flexible enough
to describe the background shape in categories where the domi-
nant background is not the DY process. The core function has no
free parameters and is common to all categories, while the empir-
ical functions have a certain number of free parameters that are
selected and fit to data independently in each category.

The core component of the background is an analytical function
based on a LO DY line-shape, described in Appendix A, convoluted
with detector effects. The experimental resolution in the dimuon
invariant mass is found to have an important effect on the core
function, since it produces a significant shape variation in the mass
region just above the Z-boson resonance and thus influences the
lower end of the fit region in the H — pu search. To take this
effect into account, the LO DY line-shape is convolved with a Gaus-
sian function with a mass-dependent resolution derived from the
simulation.

The core function is multiplied by the empirical component to
obtain the final background parameterisation used in the fits to the
my,, spectra. Two families of functions are studied for this empiri-
cal component: power-law functions (‘Power’) and exponentials of
polynomials (‘Epoly’), as defined in Table 2.

The criteria used to select the background functions from
among those listed above and to determine the associated sys-
tematic uncertainty, referred to as the spurious signal (SS) [1], are
described in the following. The SS yields are taken as the measured
signals obtained in signal-plus-background fits to the background-
only MC templates. They are determined not only for a signal mass
of 125 GeV, but also for values of my between 120 and 130 GeV
in steps of 1 GeV. The templates derived from fast and full sim-
ulation DY samples are reweighted using first- or second-order
polynomial functions in m,,, to the data sidebands for all these
studies.

As a first requirement, only functions able to fit the data side-
bands, the fully simulated background samples and the fast DY
simulation with a x? probability of the fit greater than 1% (for
all these samples) are considered. For the ttH and VH categories,
only the data sidebands and the fully simulated background sam-
ples are considered for these criteria, and the DY contribution is
neglected since it is very small and subject to large statistical fluc-
tuations.
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For the functions that satisfy these criteria, a spurious-signal
test is performed separately in each category. For the ggF and VBF-
enriched categories the primary fast-simulation DY sample based
on SHERPA as described in Section 3 is used, since it has high sta-
tistical precision, while for the ttH and the V H categories the fully
simulated non-DY background samples are used. Only the func-
tions with the absolute value of the SS below 20% of the expected
signal statistical error in data in the mass range 120 to 130 GeV
are considered. When applying this requirement, the MC statisti-
cal error is subtracted from the absolute value of the SS. Among
the functions that pass this requirement, those with the small-
est number of degrees of freedom are selected in each category to
minimise the statistical uncertainty that dominates in this search.
If more than one function per category passes this last selection,
the one with the smallest SS is selected. The maximum absolute
value of the SS in the mass range 120-130 GeV is taken to be the
background modelling uncertainty for the respective category.

As an additional cross-check, the SS tests for the ggF and VBF-
enriched categories are also performed on the fully simulated
SHERPA DY samples and the alternative fast DY simulation based
on the merged POwWHEG-Box and ALPGEN DY samples as explained
in Section 3. Further cross-checks are performed with the fast
DY simulation after applying several theoretical variations, such as
changes of the QCD renormalisation and factorisation scales by fac-
tors of two and one half and alternative PDF sets, and experimental
variations of the muon momentum resolution and scale and the
pile-up jet modelling within the experimental uncertainties. In all
these checks, no statistically significant increase in the SS values
is found, hence they are not included as additional systematic un-
certainty since their impact would be negligible. The SS systematic
uncertainty also addresses any potential local biases in the mass
spectra close to the signal region caused by the experimental se-
lections, such as the BDT score requirements or the lepton pairing
procedure in the V H categories.

After applying the above criteria, there is no evidence of sta-
tistically significant mismodelling, as no SS values are found that
are more than two standard deviations away from zero for a sig-
nal mass of 125 GeV. This considers the statistical accuracy of the
fast DY simulation that is about ten times better than that of the
data. All the SS are considered as uncorrelated systematic uncer-
tainties among the different categories. If the SS uncertainties were
considered as fully correlated between categories, the expected
significance would change by less than 2%.

The SS uncertainties in the different categories range from a
few per cent up to about 20% of the expected data statistical un-
certainties in the VBF and ggF categories and up to about 30% in
the VH and ttH categories, which have less statistical precision in
their background simulated samples.

6.3. Other systematic uncertainties

In addition to the systematic uncertainties in the signal and
background modelling described above, the uncertainty of 1.7% in
the combined 2015-2018 integrated luminosity is also considered.
It is derived from the calibration of the luminosity scale using x-y
beam-separation scans [134], obtained using the LUCID-2 detector
[135] for the primary luminosity measurements.

7. Results

The signal yield is obtained by a simultaneous binned maxi-
mum-likelihood fit to the my,, distributions of the 20 categories
in the range 110-160 GeV. The chosen bin size is 0.1 GeV.
Confidence intervals are based on the profile-likelihood-ratio test
statistic [136]. The systematic uncertainties listed in Section 6
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Fig. 1. Dimuon invariant mass spectrum in all the analysis categories observed in data. In (a) the unweighted sum of all events and signal plus background probability density
functions (pdf) are shown, while in (b) events and pdfs are weighted by In(1 + S/B), where S are the observed signal yields and B are the background yields derived from
the fit to data in the m;, = 120-130 GeV window. The background and signal pdf are derived from the fit to the data, with S normalised to its best-fit value. The lower
panels compare the fitted signal pdf, normalised to the signal best-fit value, to the difference between the data and the background model. The error bars represent the data

statistical uncertainties.

Table 3

Number of events observed in the m,,;, = 120-130 GeV window in data, the number of signal events expected in the SM (Ssuv), and events
from signal (S = x Ssm) and background (B) as derived from the combined fit to the data with a signal strength parameter of © =1.2.
The uncertainties in Ssy correspond to the systematic uncertainty of the SM prediction, the uncertainty in S is given by that in w, and the
uncertainty in B is given by the sum in quadrature of the statistical uncertainty from the fit and the SS uncertainty. In addition the observed
number of signal events divided by the square root of the number of background events (S/+/B) and the signal-to-background ratio (S/B) in %
for each of the 20 categories described in the text are displayed. In the last column, the width of the Gaussian component of the double-sided
Crystal Ball function used in the signal modelling (o, as described in Section 6) is reported.

Category Data Ssm S B S/x/E S/B [%] o [GeV]
VBF Very High 15 2.81 + 0.27 33+ 17 145 + 21 0.86 22.6 3.0
VBF High 39 3.46 + 0.36 40 + 21 325 +29 0.71 12.4 3.0
VBF Medium 112 48 + 0.5 56 + 2.8 85+ 4 0.61 6.6 2.9
VBF Low 284 75 + 0.9 9+4 273 £ 8 0.53 32 3.0
2-jet Very High 1030 176 + 3.3 21 + 10 1024 + 22 0.63 2.0 3.1
2-jet High 5433 50 +8 58 + 30 5440 + 50 0.77 1.0 2.9
2-jet Medium 18 311 79 £ 15 90 + 50 18 320 £+ 90 0.66 0.5 2.9
2-jet Low 36 409 63 £ 17 70 + 40 36 340 + 140 0.37 0.2 29
1-jet Very High 1097 16.5 £ 24 19 + 10 1071 £ 22 0.59 1.8 2.9
1-jet High 6413 46 + 7 54 + 28 6320 + 50 0.69 0.9 2.8
1-jet Medium 24 576 90 + 11 100 £+ 50 24 290 + 100 0.67 0.4 2.7
1-jet Low 73 459 125 £ 17 150 + 70 73 480 + 190 0.53 0.2 2.8
0-jet Very High 15 986 59 + 11 70 + 40 16 090 £+ 90 0.55 0.4 2.6
0-jet High 46 523 99 + 13 120 + 60 46 190 + 150 0.54 0.3 2.6
0-jet Medium 91 392 119 +£ 14 140 + 70 91 310 + 210 0.46 0.2 2.7
0-jet Low 121 354 79 £ 10 90 + 50 121 310 + 280 0.26 0.1 2.7
VHA4L 34 0.53 £ 0.05 0.6 +£ 0.3 24 £ 4 013 2.6 2.9
VH3LH 41 145 £+ 0.14 1.7 £ 09 41+5 0.27 4.2 3.1
VH3LM 358 2.76 + 0.24 32+ 16 347 £ 15 017 0.9 3.0
ttH 17 119 + 013 14 £ 0.7 151 £ 22 0.36 9.2 32

are implemented in the fit as nuisance parameters constrained
by additional Gaussian or log-normal likelihood terms and the
Higgs boson is assumed to have a mass of my = (125.09 +
0.24) GeV.

The best-fit value of the signal strength parameter, defined as
the ratio of the observed signal yield to the one expected in the
SM, is u = 1.2 £ 0.6, corresponding to an observed (expected)
significance of 2.00 (1.70) with respect to the hypothesis of no
H — pu signal. The spectra of the dimuon invariant mass for all
the analysis categories after the signal-plus-background fit are pre-
sented in Fig. 1. In Fig. 1(b) the events are weighted by In(1+S/B),
where S are the observed signal yields and B are the background
yields derived from the fit to data in the m;,,, = 120-130 GeV win-
dow. These values for S, B and other key quantities are listed in
Table 3.

The best-fit values of the signal strength parameters for the
five major groups of categories (ttH + V H, ggF O-jet, 1-jet, 2-jet,
and VBF) are shown in Fig. 2 together with the combined value. A
goodness-of-fit test is performed using the saturated model tech-
nique [137] and returns a probability of 10%.

The signal strength uncertainty is dominated by the data statis-
tical error of about 4+0.58. The impact of the systematic uncertain-
ties on the signal strength is found to be %18 with contributions

—-0.13’
from the signal theory uncertainties that account for *_'8:(132, the

signal experimental uncertainties that account for fg:g; and the
spurious-signal uncertainties that account for +0.10.

The compatibility of the measured signal strengths between the
20 categories is tested by repeating the fit after allowing each cat-
egory to have its own signal strength parameter. The probability
of compatibility is found to be at the level of 2%. With the same
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Fig. 2. The best-fit values of the signal strength parameters for the five major groups
of categories (ttH + V H, ggF 0-jet, 1-jet, 2-jet, and VBF) together with the combined
value.

methodology, the probability of compatibility between the signal
strengths of the five groups of categories shown in Fig. 2 is found
to be 20%. Among the 20 categories, those with an individual sig-
nal strength at the level of two standard deviations from the mean
value are the VBF Medium, the O-jet Very High and the VH4L. For
each of these three categories, it was checked that adding one de-
gree of freedom to the function used to model the background
or changing the functional form from ‘Power’ to ‘Epoly’ does not
significantly impact the analysis results or the probability of com-
patibility between the 20 categories.

An upper limit on the signal strength @ is computed using a
modified frequentist CLy method [136,138]. The observed upper
limit on @ at 95% confidence level (CL) is found to be 2.2, with
an expected limit of 1.1 for the case of no H — up signal and
an expected limit of 2.0 for the case of an H — pu signal at
SM strength. The corresponding branching ratio upper limit at 95%
CL is B(H — ppt) <4.7-1074, assuming the SM cross section for
Higgs boson production.

This result represents an improvement of about a factor of 2.5
in expected sensitivity compared with the previous ATLAS publica-
tion [14]. Of this improvement, a factor of about two is due to the
larger analysed dataset and the additional 25% improvement can
be attributed to more advanced analysis techniques.

8. Conclusion

A search for the rare dimuon decay of the Higgs boson is per-
formed using the full Run 2 dataset of 139 fb~' collected with
the ATLAS detector in pp collisions at /s = 13 TeV at the LHC.
The best-fit value for the SM H — pu signal strength parameter
is found to be = 1.2 + 0.6, corresponding to an observed (ex-
pected) significance of 2.00 (1.70) with respect to the hypothesis
of no H— pp signal. An upper limit of 2.2 at 95% CL is set on the
signal strength, while 1.1 is expected for the case of no H — uu
signal.
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Appendix A. Expression for the leading-order Drell-Yan
lineshape

The core component of the background function is based on a
LO DY line-shape (see e.g. Ref. [116]):

DY (my,) = Zﬁqq(m,m) ~ogg(Myy) ., q=u, s, d.
q

The parton luminosity contribution Ly is derived from the
PDF4LHC15 PDF set as a function of § = mfm using APFEL [140]
interfaced to LHAPDF [141] and parameterised using a 6th order
polynomial. The matrix element component aqq(§) = ogqg(Mup)/

(2my,;,) can be expressed as

.. 4ma? .
(ﬁq@)=E§N:[Q;‘—ZQqVKVqXZVG)

+ (A + V(AT + VD Xz(D],

where
. $6—m)
zy(§) =Kk — .
Xzy (§—m2)2 +T%m?
a2
N S
xz(3) = k>

$—m%)2 +T2m%’
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Here Q,V,A denote the electric charges, vector and axial-vector
couplings of the fermions, «, Gf the electroweak couplings, mz, 'z
the mass and width of the Z-boson using values from Ref. [142]
and N, = 3 the number of QCD colour charges. The DY function
described above is then convolved with a Gaussian function with
a mass-dependent resolution derived from the simulation.
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