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A search for the dimuon decay of the Standard Model (SM) Higgs boson is performed using data 
corresponding to an integrated luminosity of 139 fb−1 collected with the ATLAS detector in Run 2 pp
collisions at 

√
s = 13 TeV at the Large Hadron Collider. The observed (expected) significance over the 

background-only hypothesis for a Higgs boson with a mass of 125.09 GeV is 2.0σ (1.7σ ). The observed 
upper limit on the cross section times branching ratio for pp → H → μμ is 2.2 times the SM prediction 
at 95% confidence level, while the expected limit on a H → μμ signal assuming the absence (presence) 
of a SM signal is 1.1 (2.0). The best-fit value of the signal strength parameter, defined as the ratio of the 
observed signal yield to the one expected in the SM, is μ = 1.2 ± 0.6.
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1. Introduction

In July 2012, the ATLAS and CMS Collaborations announced 
the discovery of a new particle with a mass of approximately 
125 GeV [1,2] at the CERN Large Hadron Collider (LHC). Subse-
quent measurements have indicated that this particle is consistent 

� E-mail address: atlas .publications @cern .ch.

with the Standard Model (SM) Higgs boson [3–6], denoted by H . 
While the interaction between the Higgs boson and the charged 
fermions of the third-generation has already been observed by 
both the ATLAS and CMS Collaborations [6–10], only upper lim-
its have been set on the interactions with fermions of the other 
generations. The H → μμ decay offers the best opportunity to 
measure the Higgs interactions with a second-generation fermion 
at the LHC. The SM branching ratio to dimuons for the Higgs bo-

https://doi.org/10.1016/j.physletb.2020.135980
0370-2693/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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son with mH = 125.09 GeV is (2.17 ± 0.04) × 10−4 [11]. However, 
physics beyond the SM [12,13] could modify the branching ratio.

Both the ATLAS and CMS Collaborations carried out searches 
for the H → μμ process based on partial sets of about one quar-
ter of the data collected during Run 2 of the LHC [14,15]. This 
paper presents an improved search for the dimuon decay of the 
Higgs boson using the full pp collision dataset recorded with the 
ATLAS detector in the LHC Run 2 period, spanning 2015 to 2018 at √
s = 13 TeV, corresponding to an integrated luminosity of about 

139 fb−1. Compared to the previous publication [14], several im-
provements have been made. They include a better categorisa-
tion based on multivariate techniques that exploit the topological 
and kinematic differences between the different signal production 
modes and the background processes, improvements in the muon 
reconstruction, a large increase in the equivalent integrated lu-
minosity of the simulated background samples using a dedicated 
fast simulation, and an improved methodology for the background 
modelling.

The analysis selects events with two opposite-charge muons 
and classifies them into 20 mutually exclusive categories based 
on the event topology and multivariate discriminants to increase 
the signal sensitivity. After event categorisation, the signal yield is 
extracted by a simultaneous fit to the 20 dimuon mass (mμμ) dis-
tributions in the range 110–160 GeV together with background 
normalisation and shape parameters, exploiting the resonant be-
haviour of the Higgs boson signal. The Higgs boson is assumed 
to have a mass of mH = 125.09 GeV [5] for all results presented. 
More recent measurements of the Higgs boson mass [16,17] are 
compatible within their uncertainties with this value.

2. ATLAS detector

The ATLAS detector [18,19] covers nearly the entire solid angle 
around the collision point.1 It consists of an inner tracking detector 
surrounded by a thin superconducting solenoid, electromagnetic 
and hadronic calorimeters, and a muon spectrometer incorporat-
ing three large superconducting toroid magnets.

The inner detector (ID) system is immersed in a 2 T axial 
magnetic field and provides charged-particle tracking in the range 
|η| < 2.5. A high-granularity silicon pixel detector covers the ver-
tex region and typically provides four measurements per track. It 
is surrounded by a silicon microstrip tracker, which typically pro-
vides four measurement points per track. These silicon detectors 
are complemented by a transition radiation tracker, which enables 
radially extended track reconstruction up to |η| = 2.0.

The calorimeter system covers the pseudorapidity range |η| <
4.9. Within the region |η| < 3.2, electromagnetic calorimetry is 
provided by barrel and endcap high-granularity liquid-argon (LAr) 
sampling calorimeters, with an additional thin LAr presampler cov-
ering |η| < 1.8 to correct for energy loss in material upstream of 
the calorimeters. Hadronic calorimetry is provided by a scintillator-
tile calorimeter, segmented into three barrel structures within 
|η| < 1.7, and two LAr hadronic endcap calorimeters.

The muon spectrometer (MS) comprises separate trigger and 
high-precision tracking chambers measuring the deflection of 
muons in a magnetic field generated by the superconducting air-
core toroids. The precision chamber system covers the region 

1 ATLAS uses a right-handed coordinate system with its origin at the nominal 
interaction point (IP) in the centre of the detector and the z-axis along the beam 
pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis 
points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ
being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms 
of the polar angle θ as η = − ln tan(θ/2). The rapidity is defined as y = 1

2 ln E+pz
E−pz

and the distance between two objects is defined as �R = √
(�y)2 + (�φ)2.

|η| < 2.7 with three layers of monitored drift tubes, comple-
mented by cathode-strip chambers in the forward region, where 
the background is highest. The muon trigger system covers the 
range |η| < 2.4 with resistive-plate chambers in the barrel, and 
thin-gap chambers in the endcap regions.

The data were collected with a two-level trigger system [20]. 
The first-level trigger (L1) is implemented in hardware and uses a 
subset of the detector information. This is followed by a software-
based high-level trigger which runs algorithms similar to those in 
the offline reconstruction software, reducing the event rate to ap-
proximately 1 kHz from the maximum L1 rate of 100 kHz.

3. Data and simulated event samples

The pp collision data at 
√
s = 13 TeV analysed here correspond 

to the full recorded Run 2 dataset, with an integrated luminosity 
of 139 fb−1 after the application of data quality requirements. The 
mean number of pp interactions per bunch crossing was about 34. 
Events used in this analysis were recorded using a combination 
of single-muon triggers with transverse momentum thresholds up 
to 26 GeV for isolated muons and 50 GeV for muons without any 
isolation requirement imposed, allowing to recover some ineffi-
ciency introduced by the isolation requirement at trigger level for 
high momentum muons. The trigger efficiency for the sum of the 
H → μμ signal processes is about 91% relative to the common 
event preselection discussed in Section 4.

Samples of simulated Monte Carlo (MC) events are used to op-
timise the selection, to model the signal processes and to develop 
an analytic function to model the mμμ distributions for the back-
ground estimate. The signal samples as well as a complete set of 
background processes were processed through the full ATLAS de-
tector simulation [21] based on Geant4 [22], henceforth referred 
to as fully simulated samples.

Signal samples were generated for the main Higgs boson pro-
duction modes. The mass of the Higgs boson was set in the sim-
ulation to mH = 125 GeV and the corresponding width is �H =
4.07 MeV [23]. The samples are normalised with the latest avail-
able theoretical calculations of the corresponding SM production 
cross sections, summarised in Ref. [11]. The normalisation of all 
Higgs boson samples also accounts for the H → μμ branch-
ing ratio of 2.17 × 10−4 calculated with HDECAY [24–27] and 
PROPHECY4F [28–30].

Higgs boson production in the gluon–gluon fusion process (ggF) 
was simulated using the Powheg NNLOPS program [31–38] with 
the PDF4LHC15 set of parton distribution functions (PDFs) [39]. 
The simulation achieves next-to-next-to-leading-order (NNLO) ac-
curacy in QCD for inclusive observables after reweighting the Higgs 
boson rapidity spectrum [40]. The parton-level events were pro-
cessed by Pythia 8 [41] to decay the Higgs bosons and to provide 
parton showering, final-state photon radiation (QED FSR), hadro-
nisation and the underlying event, using the AZNLO set of tuned 
parameters [42]. The sample is normalised to a next-to-next-to-
next-to-leading-order QCD calculation with next-to-leading-order 
(NLO) electroweak corrections [43–54].

Higgs bosons produced via vector-boson fusion (VBF) and in as-
sociation with a vector boson, qq̄/qg → V H with V = W or Z , 
were generated at NLO accuracy in QCD using the Powheg-Box
program [55–57]. The loop-induced process gg → ZH was gener-
ated at leading order (LO) using Powheg-Box. For the VBF and V H
samples the same settings for the PDF set and Pythia 8 as in the 
ggF sample were employed. The VBF sample is normalised to an 
approximate-NNLO QCD cross section with NLO electroweak cor-
rections [58–60]. The V H samples are normalised to cross sections 
calculated at NNLO in QCD with NLO electroweak corrections for 
qq̄/qg → V H and at NLO and next-to-leading-logarithm accuracy 
in QCD for gg → ZH [61–68]. Higgs boson production in associa-
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tion with a top-quark pair, tt̄H , was simulated at NLO accuracy in 
QCD using MadGraph5_aMC@NLO [69,70] with the NNPDF3.0NLO 
PDF set [71] and interfaced to Pythia 8 using the A14 set of tuned 
parameters [72]. The cross section is taken from a calculation ac-
curate to NLO in QCD with NLO electroweak corrections [73–76].

Background events from the Drell–Yan (DY) Z/γ ∗ → μμ pro-
cess were generated with Sherpa 2.2.1 [77] using NLO-accurate 
matrix elements for up to two partons, and LO-accurate matrix 
elements for up to four partons calculated with the Comix [78]
and OpenLoops [79,80] libraries and the NNPDF3.0 NNLO set. 
They were matched to the Sherpa parton shower [81] using the 
MEPS@NLO prescription [82–85]. Diboson processes (WW , W Z , 
and Z Z ) as well as electroweak Z j j production were simulated 
in a similar set-up with Sherpa 2.2.1. The tt̄ and single-top-quark 
samples were generated at NLO accuracy with Powheg-Box [86,87]
using the NNPDF3.0NLO PDF set interfaced to Pythia 8 for parton 
showering and hadronisation using the A14 parameter set. For the 
Wt process, the diagram removal scheme [88] is applied to remove 
the overlap with tt̄ production. The production of tt̄V events was 
modelled using the MadGraph5_aMC@NLO [69] generator at NLO 
in a set-up similar to the one used for the tt̄H process.

The effects of multiple pp collisions in the same or neighbour-
ing bunch crossings (pile-up) are included in the MC simulation 
by overlaying inelastic pp interactions produced using Pythia 8 
with the NNPDF2.3LO set of PDFs [89] and the A3 set of tuned 
parameters [90]. Events are reweighted such that the distribution 
of the average number of interactions per bunch crossing matches 
that observed in data. Simulated events are corrected to reflect the 
momentum scales and resolutions as well as the trigger, recon-
struction, identification, and isolation efficiencies measured in data 
for all the physics objects used in this analysis.

The background samples discussed above provide an equivalent 
integrated luminosity that is typically 5–20 times higher than that 
of data and are used to train multivariate classifiers and to test 
the background modelling. However, the statistical uncertainties in 
the dominant DY background are a limiting factor in studying the 
background modelling at the level required by the small expected 
H → μμ signal. Therefore, two fast-simulation set-ups were de-
veloped to generate significantly larger DY samples. The primary 
fast-simulation DY sample is based on parton-level events gen-
erated [91] with Sherpa 2.2.4 [92] using LO matrix elements for 
Z/γ ∗ production with up to three additional partons and using the 
CT14 NNLO PDF set [93]. The parton-level events were processed 
with Pythia 8 to provide QED and QCD parton showering and 
hadronisation, and double-counted QCD emissions were removed 
using the CKKW-L algorithm [94] with a merging scale of 20 GeV. 
For further cross-checks, an additional fast-simulation DY sample 
was prepared that simulates Z/γ ∗ + 0, 1 partons inclusively at 
NLO accuracy using Powheg-Box [95] with the CT10 PDF set [96]
and Z/γ ∗ + 2 partons at LO accuracy with Alpgen [97] using the 
CTEQ6L1 PDF set [98]. These parton-level events were processed 
with an approximate QCD shower algorithm, overlaps between the 
two samples were removed, and QED FSR was provided by Pho-
tos [99]. For both of these generated samples, experimental effects 
were approximated using parameterisations rather than using the 
full ATLAS detector simulation and reconstruction software. The 
parameterisations, extracted from fully simulated MC samples or 
directly from ATLAS data, reproduce the reconstruction and selec-
tion efficiencies of detector-level objects by event weighting and 
model the resolution of the ATLAS detector with predetermined 
probability distributions. Detailed descriptions were employed for 
the muon momentum resolution and muon trigger and selection 
efficiencies, for the photons from QED FSR, for hadronic jets from 
the primary interaction and pile-up events in terms of kinemat-
ics and the number of associated ID tracks, and for the effect of 
pile-up and the underlying event on the measurement of the miss-

ing transverse momentum Emiss
T . In total, two sets of about 10–20

billion events are prepared in this way, corresponding to an equiv-
alent integrated luminosity of at least 50 ab−1 in the kinematic 
phase space relevant for the analysis.

Both fast simulation DY samples give a good description of the 
data distributions of the observables used in this analysis to dis-
criminate the DY background from the H → μμ signal, i.e. the 
mμμ mass spectra and the multivariate discriminants described in 
the following sections. Small residual differences are taken into ac-
count by reweighting the mass spectra to the data sidebands as 
described in Section 6.

4. Object definitions and event selection

Events are required to contain at least one reconstructed pp
collision vertex candidate with at least two associated ID tracks 
each with pT > 0.5 GeV. The vertex with the largest sum of p2

T of 
tracks is considered to be the primary vertex of the hard interac-
tion. For signal events the primary vertex selection criteria has an 
efficiency of about 99% [100].

The majority of muon candidates are reconstructed by com-
bining a track in the ID with a track in the MS. To improve the 
muon reconstruction efficiency in the region of |η| < 0.1, which 
has limited coverage in the MS, additional muon candidates are 
identified by matching a reconstructed ID track to either an MS 
track segment or a calorimetric energy deposit consistent with a 
minimum-ionising particle. In the region 2.5 < |η| < 2.7, which is 
not covered by the ID, additional muons are reconstructed from 
an MS track with hits in the three MS layers and combined with 
forward ID hits, if possible. Muon candidates are required to sat-
isfy the ‘loose’ criteria defined in Ref. [100] and have pT > 6 GeV
and |η| < 2.7. Muons with an associated ID track must be matched 
to the primary vertex by having a longitudinal impact parameter 
z0 that satisfies |z0 sin(θ)| < 0.5 mm, where θ is the polar angle 
of the track. The significance of the transverse impact parameter 
d0 calculated relative to the measured beam-line position is re-
quired to be |d0|/σ (d0) < 3, where σ(d0) is the uncertainty in d0. 
Furthermore, isolation criteria are applied to suppress non-prompt 
muons originating from hadron decays. The isolation selection uses 
information about ID tracks and calorimeter energy deposits in a 
range �R < 0.2 around the muon as described in Ref. [101].

Since muons may lose a significant fraction of their energy 
by QED FSR, up to one final-state photon candidate per event is 
included in the mμμ calculation to improve the signal reconstruc-
tion. Photon candidates are reconstructed with a procedure similar 
to the one described in Ref. [101], optimised to achieve the best 
sensitivity for the H → μμ signal. Only photon candidates close 
to muons (�R(γ , μ) < 0.2) are considered. To reduce background 
from pile-up interactions, a variable threshold is imposed on the 
photon transverse momentum pγ

T ; the threshold increases linearly 
from pγ

T = 3 GeV for �R = 0 to pγ
T = 8 GeV for �R = 0.2. If 

more than one photon passes this requirement, the photon with 
the highest transverse momentum is selected. A QED FSR candi-
date is found in about 5% of the events and the signal mμμ width 
is reduced by about 3% when considering all reconstructed signal 
events. With these selections, contributions from the loop-induced 
decay H → Zγ , Z → μμ [102] are expected to be around 0.1% of 
the H → μμ yield and are thus neglected in the further analysis.

Electrons are reconstructed by matching clusters of energy in 
the electromagnetic calorimeter to tracks in the ID. They are re-
quired to satisfy ‘Medium’ identification criteria [103], have pT >

7 GeV and |η| < 2.47 and be outside the region of 1.37 < |η| <
1.52. Similarly to muons, electrons are required to be isolated from 
additional activity measured by ID tracks and the calorimeters 
within �R < 0.2 [101] and to be matched to the primary vertex 
with |z0 sin(θ)| < 0.5 mm and |d0|/σ (d0) < 5.
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Table 1
Summary of the main event selection criteria common to all events as well as the criteria applied to the selection 
of hadronic jets. The bottom sections give the basic requirements on leptons and b-tagged jets for the analysis cate-
gories targeting different Higgs boson production processes. The subleading muon momentum threshold is 15 GeV in 
all categories except the V H 3-lepton categories, where it is lowered to 10 GeV.

Selection

Common preselection Primary vertex
Two opposite-charge muons
Muons: |η| < 2.7, plead

T > 27 GeV, psublead
T > 15 GeV (except V H 3-lepton)

Fit Region 110 <mμμ < 160 GeV

Jets pT > 25 GeV and |η| < 2.4
or with pT > 30 GeV and 2.4 < |η| < 4.5

tt̄H Category at least one additional e or μ with pT > 15 GeV, at least one b-jet (85% WP)
V H 3-lepton Categories psubleadT > 10 GeV, one additional e (μ) with pT > 15(10) GeV, no b-jets (85% WP)
V H 4-lepton Category at least two additional e or μ with pT > 8,6 GeV, no b-jets (85% WP)
ggF +VBF Categories no additional μ, no b-jets (60% WP)

Jets are reconstructed from ‘particle flow’ objects [104] using 
the anti-kt algorithm [105,106] with a radius parameter of R = 0.4. 
Candidate jets must have |η| < 4.5, and the jet pT must be larger 
than 25 (30) GeV for |η| < 2.4 (2.4 < |η| < 4.5). To suppress pile-
up contributions, jets with |η| < 2.4 and pT < 60 GeV that do not 
originate from the primary vertex are rejected using the jet vertex 
tagging algorithm (JVT) [107], which combines tracking informa-
tion into a multivariate likelihood.

Jets containing b-hadrons with |η| < 2.5 are identified as b-
tagged jets using a multivariate b-tagging algorithm. Two identi-
fication working points (WP) are used [108,109] to provide a 60%
(85%) efficiency in tt̄ events and a rejection factor of 1200 (25) for 
light-flavour jets, respectively.

Neutrinos escape from the detector and lead to missing trans-
verse momentum Emiss

T . The Emiss
T is defined as the magnitude of 

the negative vectorial sum of the transverse momenta of the se-
lected and calibrated physics objects (including muons, electrons 
and jets) and the ID tracks not associated with any physics object 
(soft term) [110,111].

Events are selected if they contain at least two opposite-
charge muon candidates. The leading muon is required to have 
pT > 27 GeV to be above the trigger threshold and in most cat-
egories the subleading muon has to have pT > 15 GeV. Further 
requirements on the presence or absence of additional muons, 
electrons and b-tagged jets depend on the targeted Higgs boson 
production mode (tt̄H , V H , or ggF +VBF), as detailed in Sec-
tion 5. The main selection requirements are summarised in Ta-
ble 1. The final signal+background fits are performed in the re-
gion mμμ = 110–160 GeV, where about 450 000 data events are 
selected. Within the mass window mμμ = 120–130 GeV, which 
contains about 85% of the signal, about 868 H → μμ events are 
expected. This corresponds to a total efficiency times acceptance 
of about 52% with respect to all H → μμ produced in the ggF, 
VBF, V H and tt̄H processes.

5. Event categorisation

Events satisfying the preselection criteria of Section 4 are clas-
sified into 20 mutually exclusive categories. They are defined to ex-
ploit the topological and kinematic differences between the back-
ground processes and the different Higgs boson production modes: 
ggF, VBF, V H and tt̄H . The background is dominated inclusively by 
the DY process, while diboson production, tt̄ and single-top pro-
duction and rarer SM processes such as tt̄V play a significant role 
in the categories targeting V H and tt̄H production.

After preselecting events according to the presence of addi-
tional leptons and the number of jets and b-tagged jets, boosted 
decision trees (BDT) [112,113] are trained using the XGBoost pack-
age [114] to enhance the signal sensitivity as explained in the 

following. In order to avoid any potential bias, all trainings are per-
formed using k-fold cross-validation, where k different partitions 
are used in turn for training, for validation and for testing.

The category selections targeting the different Higgs boson pro-
duction modes are made in a specific exclusive order, correspond-
ing to the order in which they are presented in this section.

5.1. tt̄H category

A category enriched in tt̄H events is defined in order to tar-
get the dileptonic or semileptonic decay of the tt̄ system. Events 
are considered for this category if there is at least one lepton (e or 
μ) with a transverse momentum pT > 15 GeV in addition to the 
opposite-sign muon pair and at least one b-tagged jet selected by 
the 85% efficiency working point. The two highest-pT muons with 
opposite charge are chosen as the Higgs boson decay candidate 
and used to calculate the variable mμμ used in the final fit. This 
procedure correctly selects the muon pair coming from the Higgs 
boson decay in about 80% of the cases. After this selection, a BDT 
is trained using simulated tt̄H , H → μμ events as signal and sim-
ulated events from all SM background processes as background, 
both selected in a range mμμ = 100–200 GeV. The 12 variables 
used in the BDT include the Higgs boson candidate’s transverse 
momentum pμμ

T , the value of the cosine of the lepton decay angle 
cos θ∗ in the Collins–Soper frame [115], the transverse momenta 
of the additional leptons, the multiplicity of central jets with |η| <
2.5, the multiplicity of b-tagged jets, and the scalar sum of the 
transverse momenta of all the jets, HT. In addition, several invari-
ant masses derived from the reconstructed objects as described in 
the following are used. If there are not enough reconstructed ob-
jects in the event to define the invariant masses described in the 
following, fixed arbitrary values outside their physical ranges are 
assigned. The leptonic top-quark candidate mass mLep-Top is calcu-
lated as the transverse mass of the system composed of the third 
lepton, the missing transverse momentum and the b-tagged jet 
candidate (if more than one b-tagged jet is present, the one yield-
ing mLep-Top closest to 173 GeV is chosen). The transverse mass 
of the leptonic W -boson candidate mLep-W is calculated from the 
system composed of the third lepton and the missing transverse 
momentum. The hadronic top-quark candidate mass mHad-Top is 
reconstructed from three jets, where one jet must be b-tagged 
(if only one b-tagged jet is present, it is used in the reconstruc-
tion of both mLep-Top and mHad-Top). If more than three jets are 
available, the combination is chosen that maximises the probabil-
ity of compatibility with a hadronic top-quark decay in terms of 
closeness of mHad-Top and mHad-W to the top-quark and W -boson 
masses, respectively, where the mass of the hadronically decay-
ing W boson, mHad-W , is calculated from the two non-b-tagged 
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jets associated with the hadronic top decay. If, in addition to the 
two muons associated with the Higgs boson candidate, two addi-
tional opposite-sign and same-flavour leptons are present in the 
event, their invariant mass is used in the BDT. Similarly, if there 
are at least three muons reconstructed, the mass of the dimuon 
pair formed from the muon with the third-highest pT and the op-
positely charged muon assigned to the Higgs boson is included in 
the classification.

A selection is applied to the BDT score to define one tt̄H-
enriched category (named tt̄H in the following) by optimising the 
sensitivity to the predicted SM signal. The background is expected 
to be dominated by the tt̄ Z process with additional contributions 
from the production of tt̄ , dibosons, and tt̄H with Higgs boson de-
cays into a final state different from H → μμ. Assuming SM Higgs 
boson production and decay, 1.2 signal events are expected in this 
category with a purity of 98% for the tt̄H process relative to other 
Higgs boson production modes and a signal-to-background ratio of 
8% in the mass window mμμ = 120–130 GeV.

5.2. V H categories

Events not selected in the tt̄H category are considered for the 
V H-enriched categories. The V H categories target signal events 
where the Higgs boson is produced in association with a lepton-
ically decaying vector boson, W → 
ν or Z → 

 with 
 = e, μ, 
drastically reducing the DY background. Events are required to 
have no jets identified as b-jet candidates by the b-tagging algo-
rithm at the 85% efficiency working point. In addition to a pair 
of oppositely charged muons from the H → μμ decay, at least 
one additional isolated muon or electron must be reconstructed. In 
events with exactly three leptons, the subleading muon associated 
with the Higgs boson candidate is required to have a transverse 
momentum of at least 10 GeV, the additional muon (electron) is 
required to have a transverse momentum of at least 10 (15) GeV
and no Z → μμ candidate, defined as an opposite-charge dimuon 
pair with a mass mμμ = 80–105 GeV, can be present. In events 
with at least four leptons, the two additional leptons (muons or 
electrons) are required to have transverse momenta of at least 8 
and 6 GeV and at most one Z → μμ candidate can be present. 
If more than two muons are reconstructed, their assignment to 
the H → μμ and Z → μμ (W → μν) decay candidates is based 
on their charges and on the minimisation of a χ2 criterion that 
takes into account the difference between the reconstructed and 
expected (transverse) masses of the two bosons and their expected 
experimental resolutions. In the three-lepton case, the χ2 makes 
use of the transverse mass built from the lepton associated with 
the W boson, called the ‘W lepton’ henceforth, and the miss-
ing transverse momentum. For these topologies the correct pairing 
is obtained in 93% and 97% of the cases for the four-lepton and 
three-lepton channels, respectively. If the additional leptons are 
electrons, these are matched without ambiguity to the W → eν
or Z → ee decays. The two muons chosen as the H → μμ candi-
date are used to calculate the variable mμμ used in the final fit.

Two BDTs are trained, separately for the three-lepton and four-
lepton events, to discriminate between the simulated signal and 
background events satisfying the preselection criteria and having 
a dimuon invariant mass in the range mμμ = 110–160 GeV. The 
three-lepton BDT uses the WH , H → μμ production as signal. 
The variables used include the azimuthal separation �φ between 
the Higgs boson candidate and the missing transverse momentum, 
the transverse momentum of the W lepton, the transverse mass 
of the W boson candidate, the azimuthal separation and the sep-
aration in pseudorapidity �η between the Higgs boson candidate 
and the W lepton, the missing transverse momentum, the trans-
verse momentum of the leading jet (if present) and the number of 
reconstructed jets.

For the four-lepton events the ZH , H → μμ production is cho-
sen as signal in the BDT training. The variables used in the BDT 
include the azimuthal separation between the leptons from the 
Z → 

 candidate, the azimuthal separation and the separation in 
pseudorapidity between the H → μμ candidate and the Z → 



candidate, the invariant mass of the Z → 

 candidate, the num-
ber of jets and the transverse momentum of the two leading jets 
(if present).

Three V H categories are defined by applying selection criteria 
to the two BDT scores which optimise the sensitivity to the pre-
dicted SM signal. Two categories are defined for the three-lepton 
events and are named VH3LH and VH3LM, where the former has 
the higher signal-to-background ratio. For the four-lepton events, 
only one category is selected and is named VH4L. The diboson 
processes are expected to constitute about 70% (55%) of the total 
background in the VH3LH (VH3LM) category with smaller contri-
butions expected from top-quark pair production and the DY pro-
cess. In the VH4L category, about 98% of the background is from 
the Z Z process. Assuming the SM Higgs boson production and de-
cay, the numbers of signal events expected in the mμμ = 120–130
GeV mass window for the VH3LM, VH3LH and VH4L categories 
are 2.8, 1.4 and 0.5, respectively, and the corresponding signal-to-
background ratios are 0.8%, 3.7% and 2.6%. The expected H → μμ
signal purity for the V H production process relative to other Higgs 
production modes is 89% in the VH3LM category and more than 
99% in the VH3LH and VH4L categories.

5.3. ggF and VBF categories

The events not selected in the tt̄H or V H categories described 
above, are further classified according to the number of recon-
structed jets into three jet multiplicity categories: 0-jet, 1-jet and 
2-jet, where the last includes events with two or more jets. Events 
with at least one b-tagged jet selected by the 60% efficiency work-
ing point or with a third muon with pT > 15 GeV are rejected 
in the ggF and VBF categories, as they are found to have a very 
low signal-to-background ratio and negligible signal sensitivity. To 
fully exploit the kinematic differences between the signal and the 
backgrounds, which are dominated by DY dimuon production con-
tributing more than 90% of all background events after preselec-
tion, BDTs are trained in each jet multiplicity category. All BDTs 
are trained using the MC background samples and the simulated 
H → μμ signal in the mass window mμμ = 120–130 GeV.

In the 2-jet category, a BDT is trained to disentangle signal 
events produced by VBF, used as signal sample in the training, 
from background events. This BDT, with a score denoted by OVBF, 
is based on 17 variables related to the dimuon and dijet sys-
tems as described below. The dimuon system is characterised by 
the transverse momentum pμμ

T , rapidity yμμ and the value of 
cos θ∗ . Compared to events from the dominant DY background, sig-
nal events from both ggF and VBF production are characterised by 
larger pμμ

T and smaller absolute values of yμμ . The cos θ∗ distribu-
tions provide some discrimination due to different spin-structures 
and Z–γ interference effects for the DY background [116]. For the 
leading and subleading jets in the event (denoted by j1 and j2), 
the following variables are computed: pT and η of j1 and j2; the 
azimuthal separation between the dimuon system and each jet, 
�φμμ, j1 and �φμμ, j2 ; the kinematics of the dijet system ( j j) char-
acterised by transverse momentum p jj

T , mass mjj and rapidity y jj ; 
and the azimuthal separation between the dimuon and dijet sys-
tems, �φμμ, j j . These variables exploit the unique signature of the 
VBF process: two high-pT jets separated by a large rapidity gap 
with little hadronic activity. For jets that have a high pT > 50 GeV
and are in the central region |η| < 2.1, the multiplicity of ID tracks 
with pT > 0.5 GeV associated with each of the two leading jets, 
N ji
track, is also used to help discriminate between jets produced by 
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fragmentation of gluons and quarks [117,118]. In addition, Emiss
T

and HT, which can discriminate the tt̄ background from the signal, 
are also considered.

From the OVBF classifier, four categories in the region with 
the highest score are selected and named VBF Very High, High, 
Medium, and Low. The expected H → μμ signal contributing to 
these categories is dominated by the VBF process with a purity 
ranging from about 93% (VBF Very High) to 65% (VBF Low) and the 
expected SM signal-to-background ratio computed in the 120–130
GeV mass window varies between 18% (VBF Very High) and 2.8% 
(VBF Low). The predicted number of SM signal events in the VBF 
categories ranges between 2.8 and 7.5 events.

The remaining events are considered for further classification 
in three other BDTs split by jet multiplicity, with scores denoted 
as O (0−2)

ggF . These BDTs are trained with both the H → μμ ggF
and VBF production MC samples as signal. In each jet category, 
the same three variables characterising the dimuon system and 
discussed above are used, i.e. pμμ

T , yμμ and cos θ∗ . For the 1-jet 
BDT, they are complemented by the transverse momentum p j1

T , 
pseudorapidity η j1 , the track multiplicity N j1

track in the jet, and the 
azimuthal separation from the dimuon system, �φμμ, j1 . In the 2-
jet category the same variables as in the VBF BDT are used.

The events in each of these three jet multiplicity categories 
are further classified into four categories on the basis of the 
O (0−2)

ggF scores to yield a total of 12 mutually exclusive categories 
called N-jet Very High, High, Medium and Low with N = 0, 1, 2. 
The ggF production process contributes 80%–100% of the expected 
H → μμ signal in these categories. The expected SM signal-to-
background ratio in the 120–130 GeV mass window varies from 
1.7%–1.5% (2-jet Very High and 1-jet Very High) to 0.07% (0-jet 
Low). The predicted number of SM signal events in the ggF cate-
gories ranges between 17 and 125 events.

6. Signal and background modelling and systematic 
uncertainties

The signal extraction is based on a binned maximum-likelihood 
fit to the invariant mass spectrum of the dimuon system as de-
scribed in Section 7. Analytic models are used in the fit to describe 
the mμμ distributions for both the signal and background pro-
cesses.

6.1. Signal modelling

In the SM, the H → μμ signal is predicted to be a narrow 
resonance with a width of 4.1 MeV for mH = 125.09 GeV. The 
observed signal shape is thus determined by detector resolution 
effects on the muon momentum measurement. A double-sided 
Crystal Ball function is used for the Higgs signal model. This func-
tion is a modification of the Crystal Ball function [119,120], and 
consists of a Gaussian central part with a power-law tail on each 
side.

For each of the 20 categories, the signal parameters are fit-
ted to signal MC spectra summed over all production modes 
(ggF, VBF, V H , tt̄H) assuming the relative normalisations as pre-
dicted by the SM. Within each category no significant differences 
are found between the signal shapes of the different production 
modes, indicating that the signal parameterisation is not sensi-
tive to the assumption on their relative normalisations. The width 
of the Gaussian component of the double-sided Crystal Ball func-
tion varies between 2.6 and 3.2 GeV depending on the category. 
Potential biases in the extracted signal yields due to the analytic 
parameterisations are tested with a signal injection procedure: in 
a signal-plus-background fit to pseudo-data constructed from the 
expected signal and background distributions, the extracted signal 

yields agree with those injected within the statistical accuracy of 
about 0.3%.

Several sources of systematic uncertainty in the signal mod-
elling are considered, including both theoretical and experimental 
effects. The theoretical uncertainties in the signal production affect 
the number of signal events expected in each category. The uncer-
tainties considered for the main production modes (ggF and VBF) 
include the impact of the missing higher-order QCD corrections, 
PDFs, the underlying event and hadronisation. In particular, the un-
certainty in the ggF signal is derived using the approach described 
in Ref. [11], including effects from the variation of QCD scales for 
factorisation, renormalisation and resummation, and the migration 
between jet-multiplicity regions [121–128]. The uncertainty in the 
ggF Higgs boson transverse momentum, including the effect of mi-
gration between different kinematic regions and of the treatment 
of the top-quark mass in the loop corrections, is also taken into 
account. In addition, dedicated uncertainties are assigned for the 
ggF signal acceptance in VBF topologies. The uncertainties in the 
predicted SM branching ratio and Higgs boson production cross 
sections are included in accord with Ref. [11]. The uncertainties 
associated with the modelling of the underlying event and par-
ton showering are estimated by considering the Pythia 8 system-
atic eigentune variations and by comparing events showered by
Pythia 8 with those showered by Herwig 7 [129,130]. The impact 
of the theory uncertainties on the predicted signal acceptances in 
the different categories ranges between a few per mill and 15% for 
ggF production. Similarly, for the VBF production the impact of the 
theory uncertainties on the predicted signal acceptances varies be-
tween a few per mill and 7%. For the V H and tt̄H categories the 
theory systematic uncertainties have an impact on the predicted 
signal acceptances of between a few per mill and about 18%.

Systematic uncertainties related to the different reconstructed 
physics objects used in the analysis affect the expected signal 
yields in each category. In addition, systematic uncertainties in 
the muon momentum scale and resolution also affect the signal 
mass distribution. The experimental uncertainties considered are 
the muon reconstruction and identification efficiencies, the effi-
ciencies due to the trigger, isolation and impact parameter require-
ments, the muon momentum scale and resolution [100,131,132], 
the determination of the Emiss

T soft term [110], the b-tagging ef-
ficiency [109], the uncertainty in the number of tracks associated 
with the jets [117], the pile-up modelling [90], and uncertainties 
in the electron reconstruction and identification efficiency [103] as 
well as in the jet reconstruction efficiency, energy scale and reso-
lution [133]. The impact of the experimental uncertainties on the 
predicted signal yields and modelling in the different categories is 
dominated by the uncertainties in the jet energy scale and reso-
lution and the muon momentum resolution. The former can affect 
signal yields by up to about 10% in some of the 2-jet categories. 
The muon momentum resolution uncertainty has an impact on the 
fitted yields ranging between 1% and 6% depending on the cate-
gory.

The experimental uncertainty of 240 MeV in the assumed value 
of the Higgs mass from Ref. [5] is also taken into account. All these 
sources of uncertainty are included in the signal extraction fit de-
scribed in Section 7 through nuisance parameters acting on the 
relative signal yields in the different categories and on the signal 
mass distributions.

6.2. Background modelling

Due to the very small signal-to-background ratio, which is at 
the level of 0.2% in the region mμμ = 120–130 GeV in an inclu-
sive selection, an accurate determination of the background is of 
paramount importance. The mμμ background spectrum is parame-
terised by analytic functions that can describe this distribution at 
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Table 2
List of tested empirical functional forms for the background 
modelling.

Function Expression

PowerN m
(a0+a1mμμ+a2m2

μμ+...+aNmN
μμ)

μμ

EpolyN exp(a1mμμ + a2m2
μμ + ... + aNmN

μμ)

the per-mill level to avoid a significant bias in the extracted sig-
nal yields. The mass range used for the fit, mμμ = 110–160 GeV, is 
optimised to obtain the best signal sensitivity taking into account 
the statistical and systematic uncertainties.

For the ggF and VBF categories, the background is dominated 
by the DY process, which accounts for more than 90% of the to-
tal, with small contributions from top-quark processes (mainly in 
the 2-jet categories) and diboson production. In the tt̄H and V H
categories, the dominant backgrounds are associated production of 
tt̄ Z and V Z with Z → μμ, respectively, while the DY process, tt̄
production and other diboson processes give minor contributions.

To achieve the required accuracy in the analytic description of 
the background mμμ distribution, the following approach is used. 
A core function that describes the DY mass shape inclusively is 
multiplied by an empirical function that can correct for distortions 
of the mass shape due to the event selection and categorisation, 
higher-order theory corrections and other smaller background con-
tributions. The empirical functions chosen are also flexible enough 
to describe the background shape in categories where the domi-
nant background is not the DY process. The core function has no 
free parameters and is common to all categories, while the empir-
ical functions have a certain number of free parameters that are 
selected and fit to data independently in each category.

The core component of the background is an analytical function 
based on a LO DY line-shape, described in Appendix A, convoluted 
with detector effects. The experimental resolution in the dimuon 
invariant mass is found to have an important effect on the core 
function, since it produces a significant shape variation in the mass 
region just above the Z -boson resonance and thus influences the 
lower end of the fit region in the H → μμ search. To take this 
effect into account, the LO DY line-shape is convolved with a Gaus-
sian function with a mass-dependent resolution derived from the 
simulation.

The core function is multiplied by the empirical component to 
obtain the final background parameterisation used in the fits to the 
mμμ spectra. Two families of functions are studied for this empiri-
cal component: power-law functions (‘Power’) and exponentials of 
polynomials (‘Epoly’), as defined in Table 2.

The criteria used to select the background functions from 
among those listed above and to determine the associated sys-
tematic uncertainty, referred to as the spurious signal (SS) [1], are 
described in the following. The SS yields are taken as the measured 
signals obtained in signal-plus-background fits to the background-
only MC templates. They are determined not only for a signal mass 
of 125 GeV, but also for values of mH between 120 and 130 GeV
in steps of 1 GeV. The templates derived from fast and full sim-
ulation DY samples are reweighted using first- or second-order 
polynomial functions in mμμ to the data sidebands for all these 
studies.

As a first requirement, only functions able to fit the data side-
bands, the fully simulated background samples and the fast DY 
simulation with a χ2 probability of the fit greater than 1% (for 
all these samples) are considered. For the tt̄H and V H categories, 
only the data sidebands and the fully simulated background sam-
ples are considered for these criteria, and the DY contribution is 
neglected since it is very small and subject to large statistical fluc-
tuations.

For the functions that satisfy these criteria, a spurious-signal 
test is performed separately in each category. For the ggF and VBF-
enriched categories the primary fast-simulation DY sample based 
on Sherpa as described in Section 3 is used, since it has high sta-
tistical precision, while for the tt̄H and the V H categories the fully 
simulated non-DY background samples are used. Only the func-
tions with the absolute value of the SS below 20% of the expected 
signal statistical error in data in the mass range 120 to 130 GeV
are considered. When applying this requirement, the MC statisti-
cal error is subtracted from the absolute value of the SS. Among 
the functions that pass this requirement, those with the small-
est number of degrees of freedom are selected in each category to 
minimise the statistical uncertainty that dominates in this search. 
If more than one function per category passes this last selection, 
the one with the smallest SS is selected. The maximum absolute 
value of the SS in the mass range 120–130 GeV is taken to be the 
background modelling uncertainty for the respective category.

As an additional cross-check, the SS tests for the ggF and VBF-
enriched categories are also performed on the fully simulated
Sherpa DY samples and the alternative fast DY simulation based 
on the merged Powheg-Box and Alpgen DY samples as explained 
in Section 3. Further cross-checks are performed with the fast 
DY simulation after applying several theoretical variations, such as 
changes of the QCD renormalisation and factorisation scales by fac-
tors of two and one half and alternative PDF sets, and experimental 
variations of the muon momentum resolution and scale and the 
pile-up jet modelling within the experimental uncertainties. In all 
these checks, no statistically significant increase in the SS values 
is found, hence they are not included as additional systematic un-
certainty since their impact would be negligible. The SS systematic 
uncertainty also addresses any potential local biases in the mass 
spectra close to the signal region caused by the experimental se-
lections, such as the BDT score requirements or the lepton pairing 
procedure in the V H categories.

After applying the above criteria, there is no evidence of sta-
tistically significant mismodelling, as no SS values are found that 
are more than two standard deviations away from zero for a sig-
nal mass of 125 GeV. This considers the statistical accuracy of the 
fast DY simulation that is about ten times better than that of the 
data. All the SS are considered as uncorrelated systematic uncer-
tainties among the different categories. If the SS uncertainties were 
considered as fully correlated between categories, the expected 
significance would change by less than 2%.

The SS uncertainties in the different categories range from a 
few per cent up to about 20% of the expected data statistical un-
certainties in the VBF and ggF categories and up to about 30% in 
the V H and tt̄H categories, which have less statistical precision in 
their background simulated samples.

6.3. Other systematic uncertainties

In addition to the systematic uncertainties in the signal and 
background modelling described above, the uncertainty of 1.7% in 
the combined 2015–2018 integrated luminosity is also considered. 
It is derived from the calibration of the luminosity scale using x–y
beam-separation scans [134], obtained using the LUCID-2 detector 
[135] for the primary luminosity measurements.

7. Results

The signal yield is obtained by a simultaneous binned maxi-
mum-likelihood fit to the mμμ distributions of the 20 categories 
in the range 110–160 GeV. The chosen bin size is 0.1 GeV. 
Confidence intervals are based on the profile-likelihood-ratio test 
statistic [136]. The systematic uncertainties listed in Section 6
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Fig. 1. Dimuon invariant mass spectrum in all the analysis categories observed in data. In (a) the unweighted sum of all events and signal plus background probability density 
functions (pdf) are shown, while in (b) events and pdfs are weighted by ln(1 + S/B), where S are the observed signal yields and B are the background yields derived from 
the fit to data in the mμμ = 120–130 GeV window. The background and signal pdf are derived from the fit to the data, with S normalised to its best-fit value. The lower 
panels compare the fitted signal pdf, normalised to the signal best-fit value, to the difference between the data and the background model. The error bars represent the data 
statistical uncertainties.

Table 3
Number of events observed in the mμμ = 120–130 GeV window in data, the number of signal events expected in the SM (SSM), and events 
from signal (S = μ × SSM) and background (B) as derived from the combined fit to the data with a signal strength parameter of μ = 1.2. 
The uncertainties in SSM correspond to the systematic uncertainty of the SM prediction, the uncertainty in S is given by that in μ, and the 
uncertainty in B is given by the sum in quadrature of the statistical uncertainty from the fit and the SS uncertainty. In addition the observed 
number of signal events divided by the square root of the number of background events (S/

√
B) and the signal-to-background ratio (S/B) in % 

for each of the 20 categories described in the text are displayed. In the last column, the width of the Gaussian component of the double-sided 
Crystal Ball function used in the signal modelling (σ , as described in Section 6) is reported.
Category Data SSM S B S/

√
B S/B [%] σ [GeV]

VBF Very High 15 2.81 ± 0.27 3.3 ± 1.7 14.5 ± 2.1 0.86 22.6 3.0
VBF High 39 3.46 ± 0.36 4.0 ± 2.1 32.5 ± 2.9 0.71 12.4 3.0
VBF Medium 112 4.8 ± 0.5 5.6 ± 2.8 85 ± 4 0.61 6.6 2.9
VBF Low 284 7.5 ± 0.9 9 ± 4 273 ± 8 0.53 3.2 3.0
2-jet Very High 1030 17.6 ± 3.3 21 ± 10 1024 ± 22 0.63 2.0 3.1
2-jet High 5433 50 ± 8 58 ± 30 5440 ± 50 0.77 1.0 2.9
2-jet Medium 18 311 79 ± 15 90 ± 50 18 320 ± 90 0.66 0.5 2.9
2-jet Low 36 409 63 ± 17 70 ± 40 36 340 ± 140 0.37 0.2 2.9
1-jet Very High 1097 16.5 ± 2.4 19 ± 10 1071 ± 22 0.59 1.8 2.9
1-jet High 6413 46 ± 7 54 ± 28 6320 ± 50 0.69 0.9 2.8
1-jet Medium 24 576 90 ± 11 100 ± 50 24 290 ± 100 0.67 0.4 2.7
1-jet Low 73 459 125 ± 17 150 ± 70 73 480 ± 190 0.53 0.2 2.8
0-jet Very High 15 986 59 ± 11 70 ± 40 16 090 ± 90 0.55 0.4 2.6
0-jet High 46 523 99 ± 13 120 ± 60 46 190 ± 150 0.54 0.3 2.6
0-jet Medium 91 392 119 ± 14 140 ± 70 91 310 ± 210 0.46 0.2 2.7
0-jet Low 121 354 79 ± 10 90 ± 50 121 310 ± 280 0.26 0.1 2.7
VH4L 34 0.53 ± 0.05 0.6 ± 0.3 24 ± 4 0.13 2.6 2.9
VH3LH 41 1.45 ± 0.14 1.7 ± 0.9 41 ± 5 0.27 4.2 3.1
VH3LM 358 2.76 ± 0.24 3.2 ± 1.6 347 ± 15 0.17 0.9 3.0
tt̄H 17 1.19 ± 0.13 1.4 ± 0.7 15.1 ± 2.2 0.36 9.2 3.2

are implemented in the fit as nuisance parameters constrained 
by additional Gaussian or log-normal likelihood terms and the 
Higgs boson is assumed to have a mass of mH = (125.09 ±
0.24) GeV.

The best-fit value of the signal strength parameter, defined as 
the ratio of the observed signal yield to the one expected in the 
SM, is μ = 1.2 ± 0.6, corresponding to an observed (expected) 
significance of 2.0σ (1.7σ ) with respect to the hypothesis of no 
H → μμ signal. The spectra of the dimuon invariant mass for all 
the analysis categories after the signal-plus-background fit are pre-
sented in Fig. 1. In Fig. 1(b) the events are weighted by ln(1 + S/B), 
where S are the observed signal yields and B are the background 
yields derived from the fit to data in the mμμ = 120–130 GeV win-
dow. These values for S , B and other key quantities are listed in 
Table 3.

The best-fit values of the signal strength parameters for the 
five major groups of categories (tt̄H + V H , ggF 0-jet, 1-jet, 2-jet, 
and VBF) are shown in Fig. 2 together with the combined value. A 
goodness-of-fit test is performed using the saturated model tech-
nique [137] and returns a probability of 10%.

The signal strength uncertainty is dominated by the data statis-
tical error of about ±0.58. The impact of the systematic uncertain-
ties on the signal strength is found to be +0.18

−0.13, with contributions 
from the signal theory uncertainties that account for +0.13

−0.08, the 
signal experimental uncertainties that account for +0.07

−0.03 and the 
spurious-signal uncertainties that account for ±0.10.

The compatibility of the measured signal strengths between the 
20 categories is tested by repeating the fit after allowing each cat-
egory to have its own signal strength parameter. The probability 
of compatibility is found to be at the level of 2%. With the same 
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Fig. 2. The best-fit values of the signal strength parameters for the five major groups 
of categories (tt̄H + V H , ggF 0-jet, 1-jet, 2-jet, and VBF) together with the combined 
value.

methodology, the probability of compatibility between the signal 
strengths of the five groups of categories shown in Fig. 2 is found 
to be 20%. Among the 20 categories, those with an individual sig-
nal strength at the level of two standard deviations from the mean 
value are the VBF Medium, the 0-jet Very High and the VH4L. For 
each of these three categories, it was checked that adding one de-
gree of freedom to the function used to model the background 
or changing the functional form from ‘Power’ to ‘Epoly’ does not 
significantly impact the analysis results or the probability of com-
patibility between the 20 categories.

An upper limit on the signal strength μ is computed using a 
modified frequentist CLs method [136,138]. The observed upper 
limit on μ at 95% confidence level (CL) is found to be 2.2, with 
an expected limit of 1.1 for the case of no H → μμ signal and 
an expected limit of 2.0 for the case of an H → μμ signal at 
SM strength. The corresponding branching ratio upper limit at 95%
CL is B(H → μμ) < 4.7 · 10−4, assuming the SM cross section for 
Higgs boson production.

This result represents an improvement of about a factor of 2.5 
in expected sensitivity compared with the previous ATLAS publica-
tion [14]. Of this improvement, a factor of about two is due to the 
larger analysed dataset and the additional 25% improvement can 
be attributed to more advanced analysis techniques.

8. Conclusion

A search for the rare dimuon decay of the Higgs boson is per-
formed using the full Run 2 dataset of 139 fb−1 collected with 
the ATLAS detector in pp collisions at 

√
s = 13 TeV at the LHC. 

The best-fit value for the SM H → μμ signal strength parameter 
is found to be μ = 1.2 ± 0.6, corresponding to an observed (ex-
pected) significance of 2.0σ (1.7σ ) with respect to the hypothesis 
of no H → μμ signal. An upper limit of 2.2 at 95% CL is set on the 
signal strength, while 1.1 is expected for the case of no H → μμ
signal.
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Appendix A. Expression for the leading-order Drell–Yan 
lineshape

The core component of the background function is based on a 
LO DY line-shape (see e.g. Ref. [116]):

DY (mμμ) =
∑

q

Lqq̄(mμμ) · σqq̄(mμμ) , q = u, s, d .

The parton luminosity contribution Lqq̄ is derived from the 
PDF4LHC15 PDF set as a function of ŝ = m2

μμ using APFEL [140]
interfaced to LHAPDF [141] and parameterised using a 6th order 
polynomial. The matrix element component σqq̄(ŝ) = σqq̄(mμμ)/

(2mμμ) can be expressed as

σqq̄(ŝ) =4πα2

3ŝNc
[Q 2

q − 2QqV
VqχZγ (ŝ)

+ (A2

 + V 2


 )(A2
q + V 2

q )χZ (ŝ)] ,
where

χZγ (ŝ) = κ
ŝ(ŝ −m2

Z )

(ŝ −m2
Z )

2 + �2
Zm

2
Z

,

χZ (ŝ) = κ2 ŝ2

(ŝ −m2
Z )

2 + �2
Zm

2
Z

,
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κ =
√
2GFm2

Z

4πα
.

Here Q , V , A denote the electric charges, vector and axial-vector 
couplings of the fermions, α, GF the electroweak couplings, mZ , �Z

the mass and width of the Z -boson using values from Ref. [142]
and Nc = 3 the number of QCD colour charges. The DY function 
described above is then convolved with a Gaussian function with 
a mass-dependent resolution derived from the simulation.
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F. Cirotto 70a,70b, Z.H. Citron 180,j, M. Citterio 69a, D.A. Ciubotaru 27b, B.M. Ciungu 167, A. Clark 54, 
P.J. Clark 50, S.E. Clawson 101, C. Clement 45a,45b, Y. Coadou 102, M. Cobal 67a,67c, A. Coccaro 55b, 
J. Cochran 79, R. Coelho Lopes De Sa 103, H. Cohen 161, A.E.C. Coimbra 36, B. Cole 39, A.P. Colijn 120, 
J. Collot 58, P. Conde Muiño 139a,139h, S.H. Connell 33c, I.A. Connelly 57, S. Constantinescu 27b, 
F. Conventi 70a,aj, A.M. Cooper-Sarkar 134, F. Cormier 175, K.J.R. Cormier 167, L.D. Corpe 95, 
M. Corradi 73a,73b, E.E. Corrigan 97, F. Corriveau 104,z, M.J. Costa 174, F. Costanza 5, D. Costanzo 149, 
G. Cowan 94, J.W. Cowley 32, J. Crane 101, K. Cranmer 125, R.A. Creager 136, S. Crépé-Renaudin 58, 
F. Crescioli 135, M. Cristinziani 24, V. Croft 170, G. Crosetti 41b,41a, A. Cueto 5, T. Cuhadar Donszelmann 171, 
H. Cui 15a,15d, A.R. Cukierman 153, W.R. Cunningham57, S. Czekierda 85, P. Czodrowski 36, 
M.M. Czurylo 61b, M.J. Da Cunha Sargedas De Sousa 60b, J.V. Da Fonseca Pinto 81b, C. Da Via 101, 
W. Dabrowski 84a, F. Dachs 36, T. Dado 47, S. Dahbi 33e, T. Dai 106, C. Dallapiccola 103, M. Dam40, 
G. D’amen 29, V. D’Amico 75a,75b, J. Damp 100, J.R. Dandoy 136, M.F. Daneri 30, M. Danninger 152, V. Dao 36, 
G. Darbo 55b, O. Dartsi 5, A. Dattagupta 131, T. Daubney 46, S. D’Auria 69a,69b, C. David 168b, T. Davidek 142, 
D.R. Davis 49, I. Dawson 149, K. De 8, R. De Asmundis 70a, M. De Beurs 120, S. De Castro 23b,23a, 
N. De Groot 119, P. de Jong 120, H. De la Torre 107, A. De Maria 15c, D. De Pedis 73a, A. De Salvo 73a, 
U. De Sanctis 74a,74b, M. De Santis 74a,74b, A. De Santo 156, J.B. De Vivie De Regie 65, D.V. Dedovich 80, 
A.M. Deiana 42, J. Del Peso 99, Y. Delabat Diaz 46, D. Delgove 65, F. Deliot 144, C.M. Delitzsch 7, 
M. Della Pietra 70a,70b, D. Della Volpe 54, A. Dell’Acqua 36, L. Dell’Asta 74a,74b, M. Delmastro 5, 
C. Delporte 65, P.A. Delsart 58, S. Demers 183, M. Demichev 80, G. Demontigny 110, S.P. Denisov 123, 
L. D’Eramo 121, D. Derendarz 85, J.E. Derkaoui 35d, F. Derue 135, P. Dervan 91, K. Desch 24, K. Dette 167, 
C. Deutsch 24, M.R. Devesa 30, P.O. Deviveiros 36, F.A. Di Bello 73a,73b, A. Di Ciaccio 74a,74b, L. Di Ciaccio 5, 
W.K. Di Clemente 136, C. Di Donato 70a,70b, A. Di Girolamo 36, G. Di Gregorio 72a,72b, B. Di Micco 75a,75b, 
R. Di Nardo 75a,75b, K.F. Di Petrillo 59, R. Di Sipio 167, C. Diaconu 102, F.A. Dias 120, T. Dias Do Vale 139a, 
M.A. Diaz 146a, F.G. Diaz Capriles 24, J. Dickinson 18, M. Didenko 166, E.B. Diehl 106, J. Dietrich 19, 
S. Díez Cornell 46, C. Diez Pardos 151, A. Dimitrievska 18, W. Ding 15b, J. Dingfelder 24, S.J. Dittmeier 61b, 
F. Dittus 36, F. Djama 102, T. Djobava 159b, J.I. Djuvsland 17, M.A.B. Do Vale 147, M. Dobre 27b, 
D. Dodsworth 26, C. Doglioni 97, J. Dolejsi 142, Z. Dolezal 142, M. Donadelli 81c, B. Dong 60c, J. Donini 38, 
A. D’onofrio 15c, M. D’Onofrio 91, J. Dopke 143, A. Doria 70a, M.T. Dova 89, A.T. Doyle 57, E. Drechsler 152, 
E. Dreyer 152, T. Dreyer 53, A.S. Drobac 170, D. Du 60b, T.A. du Pree 120, Y. Duan 60d, F. Dubinin 111, 
M. Dubovsky 28a, A. Dubreuil 54, E. Duchovni 180, G. Duckeck 114, O.A. Ducu 36, D. Duda 115, A. Dudarev 36, 
A.C. Dudder 100, E.M. Duffield 18, M. D’uffizi 101, L. Duflot 65, M. Dührssen 36, C. Dülsen 182, 
M. Dumancic 180, A.E. Dumitriu 27b, M. Dunford 61a, S. Dungs 47, A. Duperrin 102, H. Duran Yildiz 4a, 
M. Düren 56, A. Durglishvili 159b, D. Duschinger 48, B. Dutta 46, D. Duvnjak 1, G.I. Dyckes 136, M. Dyndal 36, 
S. Dysch 101, B.S. Dziedzic 85, M.G. Eggleston 49, T. Eifert 8, G. Eigen 17, K. Einsweiler 18, T. Ekelof 172, 
H. El Jarrari 35e, V. Ellajosyula 172, M. Ellert 172, F. Ellinghaus 182, A.A. Elliot 93, N. Ellis 36, J. Elmsheuser 29, 
M. Elsing 36, D. Emeliyanov 143, A. Emerman 39, Y. Enari 163, M.B. Epland 49, J. Erdmann 47, A. Ereditato 20, 
P.A. Erland 85, M. Errenst 182, M. Escalier 65, C. Escobar 174, O. Estrada Pastor 174, E. Etzion 161, 
G.E. Evans 139a,139b, H. Evans 66, M.O. Evans 156, A. Ezhilov 137, F. Fabbri 57, L. Fabbri 23b,23a, V. Fabiani 119, 
G. Facini 178, R.M. Fakhrutdinov 123, S. Falciano 73a, P.J. Falke 24, S. Falke 36, J. Faltova 142, Y. Fang 15a, 
Y. Fang 15a, G. Fanourakis 44, M. Fanti 69a,69b, M. Faraj 67a,67c, A. Farbin 8, A. Farilla 75a, E.M. Farina 71a,71b, 
T. Farooque 107, S.M. Farrington 50, P. Farthouat 36, F. Fassi 35e, P. Fassnacht 36, D. Fassouliotis 9, 
M. Faucci Giannelli 50, W.J. Fawcett 32, L. Fayard 65, O.L. Fedin 137,o, W. Fedorko 175, A. Fehr 20, 
M. Feickert 173, L. Feligioni 102, A. Fell 149, C. Feng 60b, M. Feng 49, M.J. Fenton 171, A.B. Fenyuk 123, 
S.W. Ferguson 43, J. Ferrando 46, A. Ferrari 172, P. Ferrari 120, R. Ferrari 71a, D.E. Ferreira de Lima 61b, 
A. Ferrer 174, D. Ferrere 54, C. Ferretti 106, F. Fiedler 100, A. Filipčič 92, F. Filthaut 119, K.D. Finelli 25, 
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