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Abstract
The diffusivity of guest molecules in nanoporous materials is instrumental for practical
applications ranging from gas separation to catalysis and energy storage. Conventional methods to
predict diffusion coefficients are computationally demanding in particular for polyatomic
molecules with small diffusivity in nanoporous materials. In this work, we have implemented a
massively parallel GPU-accelerated string method to calculate the minimum energy path (MEP)
for the diffusion of polyatomic molecules in nanoporous materials. The GPU parallelization
enables fast prediction of molecular diffusivity in nanoporous material, which speeds up the
computation by a factor of over 500 in comparison with serial CPU calculations. The massively
parallel GPU-accelerated string method yields diffusion coefficients in excellent agreement with
results from molecular dynamics while reduces the computational cost by several orders of
magnitude. It will thus open up opportunities for high-throughput screening and inverse design
nanoporous materials.
Keywords: Diffusion, transition-state theory, nanoporous materials, high-throughput screening,

gas separation

* To whom correspondence should be addressed. Email: jwu@engr.ucr.edu

ACS Paragon Plus Environment


mailto:jwu@engr.ucr.edu

oNOYTULT D WN =

ACS Applied Nano Materials

1. Introduction

Recent years have seen the rapid development of nanoporous materials with a vast variety of
building blocks.!¢ Nanoporous materials (e.g., metal-organic frameworks) can now be designed
and synthesized by assembling organic ligands and metal cluster with appropriate topology. As a
result, large materials databases become commonplace promising data-driven applications via
high-throughput screening and computational design.” Transport properties such as diffusion
coefficient are closely related to many important applications. For example, diffusivity dictates the
performance of nanoporous materials, including zeolites, metal-organic and covalent organic
frameworks, for gas separation and ion sieving.!0-13 Efficient computational methods for fast yet
accurate prediction of transport properties are always in great demand for searching the best
nanoporous materials in a structural database and/or for the inverse design.!% 14

For guest molecules in a nanoporous material, the diffusion coefficients can be measured using
experimental techniques such as quasi-elastic neutron scattering (QENS) and pulsed-field
gradients-nuclear magnetic resonance (PFG-NMR).!5 16 Such experiments are laborious and not
suitable for high-throughput operations due to the time-consuming nature of sample preparation
and measurement.'”> 18 As a result, experimental data are rarely available for molecular diffusion
coefficients of chemical species in large libraries of nanoporous materials. Alternatively, diffusion
coefficients can be predicted from a number of theoretical methods.!'* 2! Among them, molecular
dynamics (MD) simulation has been most widely used to investigate the diffusion of gas molecules
in nanoporous materials. Despite its popularity, construction of a diffusion-coefficient database by
‘brute force’ MD simulation is computationally prohibitive. The task is challenging in particular
when one is concerned with the separation of organic molecules (e.g., paraxylene/orthoxylene and

benzene/cyclohexane) using nanoporous materials due to the slow diffusivity (less than 10-12 m?/s).
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Figure 1. Minimum energy path for the center of mass (green line) of ethene in MOF-5. Molecular
configuration of ethene at different position along the minimum energy path is also shown. The
size of atoms is rescaled and for the purpose of illustration only. Grey, white, ice blue and purple
represent carbon, hydrogen, oxygen and zinc, respectively.

Many theoretical attempts have been made to circumvent the computational limit of MD
simulation in predicting diffusion coefficients.!% !l A well-established alternative is by using the
transition-state theory (TST).2! While diffusivity is typically calculated from the Einstein equation
via mean-square displacement (MSD) over long equilibrium steps in MD simulation, TST predicts
diffusion coefficients based on a minimum energy path (MEP) that is solely determined by the
energy landscape of guest-host interactions (shown in Figure 1). Mathematical tools such as
nudged elastic band (NEB) and string methods have been commonly used to calculate the MEP.?*-
26 While NEB is mostly used in quantum-mechanical calculations of transport properties such as
ion diffusivity, the string method is more suitable to obtain the highly curved MEP dictating gas
diffusion in nanoporous materials.?’-3! More specifically, the string method is able to identify the
diffusion pathways based on the energy gradients such that each path follows an exactly minimum
energy route. Besides NEB and string methods, other mathematical tools, such as tunnel and

transition-state search, cluster analysis and grid searching, are also promising.!’> 32
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Computationally, TST is able to predict diffusion coefficients much more efficient than molecular
simulation because it entails no thermal fluctuations or atomic motions. Regrettably, existing
applications of TST methods are mostly limited to the diffusion of simple gas molecules as
represented by the single-site Lennard-Jones (LJ) potential. Not only is the extension of the MEP
calculation to polyatomic molecules mathematically challenging, but the computational efficiency
is severely compromised due to the rapid increase of dimensionality in representing MEP for
polyatomic molecules.

In a previous work,?3 we demonstrated that, given a fine-enough three-dimensional potential
grid, the string method can be used to accurately assess the minimum energy path (MEP) for the
diffusion of simple gas molecules in nanoporous materials. However, the same procedure is not
directly applicable to polyatomic molecules because the memory of a typical desktop computer is
infeasible to handle the external potential using a multi-dimensional grid with a sufficiently fine
resolution essential in MEP calculations. If the external potential is calculated on-the-fly as the
string evolves, it would be an enormous computational burden for serial implementation with
conventional central processing unit (CPU). Different from CPU, a graphic processing unit (GPU)
has many more arithmetic logic units (ALUs, a.k.a. threads) thereby it is capable of high-
throughput data processing. Inspired by recent progress of massively parallel GPU-acceleration of
simulation methods with excellent performance,’*3¢ we have implemented in this work a
massively parallel GPU-accelerated string method for predicting the diffusivity of polyatomic
molecule in a large library of nanoporous materials. The algorithm speeds up the theoretical
predictions of diffusion coefficients with the string method by a factor of ~500 in comparison with
serial CPU implementation. Importantly, the theoretical results are in excellent agreement with

MD simulation data for a number of materials. We also benchmark the computational efficiency
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for high-throughput screening of metal-organic frameworks (MOFs) for ethane/ethylene
separation. More than 90% of calculations of the diffusion coefficient in the nanoporous materials
can be completed within 30 seconds. By analyzing over 3080 structures from the CoORE MOF 2019
library, we are able to identify promising materials and desirable structural features leading to the
highest membrane selectivity. We expect that the expanded computational capability will likely
open up avenues for the construction of a large computational database for molecular diffusivity
thus empowering data-driven approaches to the inverse design of nanoporous materials.
2. Methods and Models
2.1 Transition-State Theory
According to the transition-state theory?!, the self-diffusion coefficient for a guest molecule
inside a nanoporous material can be calculated from
D, = lka2
2 (1)
where D, is the self-diffusion coefficient, £ is the hopping rate (i.e., transmission rate), and a is the

hopping distance between two neighboring cages. At infinite dilution, the hopping rate can be

obtained from the minimum energy path (MEP) for the molecular diffusion following the Bennett-

\/ﬁ exp V"’“(s*)] o
J.exp ﬂV“’ )]ds

where kp is the Boltzmann constant, 7" stands for the absolute temperature, S =1/ (kBT ), m

Chandler approach

represents the molecular mass, V% is the potential energy due to the interaction of the guest
molecule with the porous material. In the transition state theory, the minimum energy path is

described in terms of a dimensionless variable s, which represents the normalized reaction
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coordinate for the molecular transition between neighboring cages. In general, s depends on the
molecular configuration and the center of mass of the guest molecule.

In this work, we assume that both the nanoporous material and the guest molecule have fixed
structures. As a result, the reaction coordinate can be uniquely defined by six collective variables

5(6,,...,6;). The first three variables are related to the molecular position and the other three
variables represent the Euler angles of the guest molecule, i.e., s(491,...,¢96) :s(r,a)), where
r= (x, y,z) represents the position for the molecular center of mass (COM), and w = (a, ,6’,7/)

describes how a polyatomic molecule is oriented relative to its original input structure (as shown
in Figure S1).

To implement the string method numerically, we describe the minimum energy path by using
a series of discrete points referred to as images. At each point/image, the dimensionless variables

s can be expressed in terms of r and w

lri ’ + l{z)i ’ (3)
s = — :
AL L,

where [, =Z‘l‘j—l‘j_1‘ and [, =Z‘a);—a);_1‘ are the string arc lengths for the spatial and
=2 j=2

rotational variables at image i, while , and L, are the arc lengths of the entire string for r and

w, respectively.

In this work, we use atomistic models for both nanoporous materials and guest molecules. As
in a standard molecular force field, the non-bonded interactions are described by the Lennard-
Jones (LJ) potential. In addition to the short-range repulsion and van der Waals (vdW) attraction,
the electrostatic interactions due to atomic partial charges are accounted for with the Coulomb
potential. For atoms in the framework materials, the universal force field (UFF) is adopted for the

6
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LJ parameters, while the charge equilibration method from the RASPA software package is used
to assign the point charges of individual atoms.?’-3° The unit cell of each framework material is
duplicated along the axis so that the edge length is more than two times the cutoff distance.
Whereas the diffusion path may vary with the loadings due to gas-gas interactions, we expect that
the effect is relatively insignificant because the free-energy landscape is dominated by the external
energy. The force-field parameters for guest molecules considered in this work are available in
Supporting Information. Structural properties of nanoporous materials, such as pore diameters and
void fraction, are calculated with Zeo++.4° Images and videos of atomistic molecular structures
presented in this work are rendered from visual molecular dynamics (VMD) and Mercury.*!- 42
Given the position and configuration of a guest molecule, the external potential accounts for

its interaction with the nanoporous material and is given by

ext & & o : o 6 1 g4,
ver=3 2 4s | =5 | | T “)

=l j=1 Vi T 472-‘90 Vi

where ¢ and o stand for the LJ energy and size parameters, respectively, &, stands for the vacuum
permeability, N, and N, are the number of atoms in each guest molecule and that from the
nanoporous material. In calculation of V*, we use the Ewald summation method for electrostatic
interactions, and the Lorentz-Berthelot mixing rule is used for the energy and size parameters
between different atoms. The periodic boundary conditions are applied to all directions with the
vdW interactions truncated and shifted to zero at 12.9 A.
2.2 String Method

Within the framework of the transition-state theory (TST), both the computational cost and
accuracy are critically dependent on the construction of the minimum energy path (MEP). In our

previous work,?* we demonstrated that the string method provides an efficient way to identify
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MEDPs, leading to an accurate prediction of self-diffusion coefficients for simple gas molecules in
nanoporous materials. In principle, the string method is equally applicable to more complicated
polyatomic molecules with the minimum energy path obtained by evolving discrete points (a.k.a.
images) along “a string” towards the direction of decreasing the external potential. As the number
of atoms in the guest molecule increases, the minimum energy path becomes much more difficult
to calculate due to the drastic increase of pairwise interactions and the images in the reaction
coordinate. In this work, we employ a simplified yet more accurate version of the string method
to obtain the minimum energy path.??> Compared with the original string method, the simplified
string method is numerically more stable and accurate, yet it is computationally more efficient.??
According to the simplified string method,>? the evolution of the normalized reaction

coordinate is driven by the full gradient of the external potential

@ —VVm (Si) __ aVext (Si) . 8Vext (Si) . aVext (Si) . aVext (Si) . aVexl (Si) . an (Si) (5)
ox oy oz oa op oy

where ¢ is a fictitious time used in the iteration to search for the minimum energy path, and s,

represents image i on the string. During each iteration, the guest molecule is first updated according

to

0, (t)=6,(t)-ar—— k=1,.,6 (6)

where 6, represents a molecular coordinate (position or angle) corresponding to image i, the partial

derivative is evaluated at fictious time #, and the superscript ° represents the updated string.
Throughout this work, the forward Euler method is used to calculate the derivative of the external

potential with respect to €, , and At is set as 1x104.
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To identify the diffusion path, we first calculate the energy landscape for the guest molecule
at the entrance plane via a discrete grid. The position and orientation of the guest molecule that
minimize the external potential are used as the starting image of the string. Due to the periodic
boundary conditions, the guest molecule has the configuration at the starting and ending images.
Their difference lies only in the reaction coordinate, i.e., parameter s along the direction of the
minimum energy path. The initial string is generated by positioning the images evenly between
the starting and ending points. After that, each iteration updates the position and orientation of the
guest molecule according to the normalized reaction coordinate s (eq 6). After string evolution in
each step, interpolation/reparameterization (eq 7) is needed to retain the continuous shape of string
through the nanoporous materials.

When a guest molecule diffuses through a nanoporous material, the preferred molecular
orientation depends on the position at the molecular center of mass (COM). As a result, different
images have orientations independent from each other. We only need to interpolate the molecular

COM position of the evolved images according to the arc length

v =rf, 0+ Lm0 0|05 G

where IE .= Z‘r/” —I‘j‘.‘f1 is the string arc length for spatial coordinates (x, y, z) at image i after
j=2

evolution, L] is the entire string arc length for molecular COM position after evolution, and N is

the number of images used in the string. To prevent the abrupt change of the molecular orientation,

a smooth function is used for interpolating between neighboring images?>?

0,=(1-6)0+5(0.+0.,) ®)
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where § is the parameter to control the degree of smoothness. A small number, & =1x107*, is used
in this work to ensure the accuracy of molecular orientation that minimizes the external potential.
In Supporting Information, we provide animations for the entire string evolution process for ethene
in MOF-5.
2.3 GPU Implementation

In implementing the string method to predict the diffusivity of polyatomic molecules in
nanoporous materials, the computational cost is mostly affiliated with the calculation of the
external potential and its derivates. In our previous work where the string method was applied to

a single LJ particle, the external potential was pre-calculated by placing the guest molecule in a

three-dimensional grid. The external potential at any point can be interpolated with a linear scheme.

The procedure is not directly applicable to polyatomic molecules because the grid size grows
exponentially with the dimensionality. The calculation of the external potential as a function of
position and orientation in a fine grid is not only computationally prohibitive, but it is also
logistically challenging to store the potential energy data over such a large grid. Without the
support of a supercomputer with an enormous memory, the external potential has to be calculated
on-the-fly along with the string evolution.

In this work, we implement the massively parallel simplified string method with the graphic
processing unit (GPU). Figure 2(A) shows a schematic procedure. Compared with central
processing unit (CPU), GPU is designed for high-throughput data processing and paralleled tasks.
GPU enables the parallel calculation of the external potential on-the-fly and is much less memory
demanding because it involves only the external potential related to the images along the string
instead of entire energy landscape for the guest molecule inside framework material. As the

external potential and its derivates are calculated for each image on the string independent of each

10
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other, a paralleled implementation can significantly improve the speed and reduce the

computational cost.
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Figure 2. (A) Computational flowchart for the GPU implementation of the simplified string
method. (B) Schematic illustration of simple and massive GPU paralleled algorithms for
calculating the external potential for images on the string. Blue box represents the GPU thread.
We minimize the memory transfer between the host (CPU) and the device (GPU) in
implementation of the string method. As shown in Figure 2, the memory transfer takes place only
for reading the input information (such as the force-field parameters and the atomic structures of
the nanoporous material and guest molecule), and for checking the convergence and outputting the
final string configuration. The calculation is carried out only at the GPU device throughout the
string evolution. The most expensive step in string evolution lies in the calculation of the
derivatives of the external potential. Again, parallel implementation can significantly reduce the
computational cost. As shown in Figure 2(B), two different GPU paralleled algorithms have been
implemented and tested in this work. To calculate the derivatives of the external potential, we may
assign a GPU thread for a given set parameters (x, v, z, , 8, ). For a given set model parameters,
the external potential is calculated on a single GPU thread by the cumulative summation of all pair
potentials (V;j;) between atom i from the polyatomic molecule (guest) and atom j from the
nanoporous material (host). While this parallel scheme is intuitive and simple to implement, it does
not utilize all available GPU threads especially when the number of images on the string is
relatively small. Alternatively, we can assign one GPU thread for each pair of the interatomic
potential (Vj;) and calculate the external potential by the summation of V;; for all atomic pairs
evaluated via multiple GPU threads. In this work, we use the CUDA UnBound (CUB) library, a
configurable C++ template library developed by Nvidia for Compute Unified Device Architecture
(CUDA), to carry out the summation of 7;; on GPU.#* With this massively parallel implementation,

all GPU threads can be fully utilized even when the number of string images is relatively small.

12
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One caveat of the massively paralleled implementation is that it leads to a higher demand of the
memory usage. Because it stores all the pairwise interaction before summation, the massive GPU
paralleled algorithm limits its capability handling a large set of string images. It is also worth
mentioning that similar GPU-accelerated algorithms can also be developed to calculate the
potential energy surface of polyatomic molecule in nanoporous materials and we have
demonstrated such implementation for molecules modeled by single LJ site in our previous work.>*
The thermodynamic quantities would enable a rapid evaluation of properties, such as zero-
coverage adsorption amount, in nanoporous materials for gas storage and separation.
3. Results and Discussion
3.1 GPU Speedup

To benchmark different GPU-accelerated parallel methods for implementing the string method,
we take the diffusion of an ethene molecule in MOF-5 as a model system. Figure 3 compares the
computational costs for two implementations of GPU-accelerated parallel algorithms as a function
of the system size as measured in terms of the number of V% calculations (# of /¥") and the number
of V; calculations (# of V). Here, the speedup factor is obtained by the comparison of the
performance for Nvidia Tesla P100, which is used for all our GPU calculations, with that for the
serial CPU implementation on Intel Xeon E5-2640. Both simple and massive paralleled GPU
implementations outperform the serial CPU implementation regardless of the system size. The
number of V* calculations is solely determined by the number of images on the string, while the
number of V;; calculations for each image depends on the number of atoms at the guest molecule
and the number of atoms from the nanoporous material. When the number of images on the string
(equivalently, the number of V* calculations) increases, the speedup factor rises exponentially for

the simple GPU paralleled implementation until it reaches a plateau after all GPU threads are

13
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utilized. For the GPU device tested in this work, the speedup factor approaches an asymptotic limit
when it processes more than 100,000 images along the diffusion pathway (viz., the string). The

maximum speedup by the simple GPU paralleled algorithm is about 2500 folds of the CPU serial

implementation.
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Figure 3. Comparison of the computational time versus the number of the total potential (V) and
pair potential (V) evaluations for predicting ethene diffusion in MOF-5. The speedup factor is
benchmarked with CPU calculations conducted on Intel Xeon E5-2640. All GPU calculations are
carried out on Nvidia Tesla P100.

For the massive GPU paralleled implementation, the computational cost increases
exponentially with the number of string images irrespective of the system size. Because the fully
paralleled algorithm maximizes the usage of all active GPU threads, the speedup factor, which is
around 500, is almost independent of the number of string images. As mentioned above, the
massive GPU paralleled implementation consumes more memory space than the simple GPU
paralleled implementation (as shown in Figure S2). Thus, the upper limit for the number images
that can be processed by the massive GPU paralleled implementation is much lower than that for
simple GPU paralleled implementation. For most nanoporous materials considered in this work,

14
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the unit cell size varies from 10 A to 30 A, such that a string with hundreds of images would be
sufficient to preserve all atomistic details along the minimum energy path (MEP). As a result, the
massive GPU paralleled implementation has a better performance and thus used in all the
following calculations.

3.2 Calibration with MD simulation

We see above that excellent computational performance can be achieved by massively parallel
GPU-accelerated implementation of the string method. But how accurate is the theoretical
procedure for predicting diffusivity coefficients in comparison with conventional methods? In this
section, we compare our theoretical predictions for the diffusion coefficients of 8 polyatomic
molecules in MOF-5, a well-studied metal organic framework (MOF), with those from molecular
dynamics (MD) simulations. As mentioned before, our theoretical predictions are based on the
transition-state theory (TST) with the minimum energy path (MEP) calculated from the massive
GPU paralleled implementation of the string method.

As shown in Figure 4(A), the diffusion coefficients calculated in this work agree well with
those from MD simulation over a broad range of values. The good agreement affirms the accuracy
of the minimum energy path obtained from the GPU-accelerated calculations. Overall, TST
predicts the self-diffusivity of various polyatomic molecules in MOF-5 slightly higher than that
from MD simulation. The systematic error is introduced probably because TST neglects the barrier
recrossing in molecular hopping.** The barrier recrossing of gas molecule becomes more
significant especially at finite loadings. In this case, the dynamically corrected TST (dcTST) can
better estimate the hopping rate (ky.rs7=rkrsy) by correcting the recrossing event with the
transmission coefficient (x).#> 46 Another possible reason is that most MD simulations are not

carried in the single molecule limit thus the simulation results are affected by intermolecular

15
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interactions between the guest molecules. In principle, TST can be used to predict diffusivity
coefficients at finite gas pressure if MEP is replaced by the free-energy landscape. Alternatively,
the self-diffusivity at finite loading can be calculated from the diffusivity coefficient at infinite

dilution in combination with the excess-entropy scaling method.?* 47 It is worth mentioning that,

in comparison with MD, one of the most significant advantages of TST is computational efficiency.

While it takes up to several thousands of CPU hours to simulate the diffusion coefficient of CO,
(at the scale of 10 m?%/s), a relatively small polyatomic molecule, the same calculation can be
finished in this work within 30 seconds for each material by using a single GPU card. Although
both gas molecules (guest) and framework materials (host) are assumed to be rigid in this work,
the string method can also be used to obtain the minimum energy path when flexibility of gas
molecules and framework is significant such as large molecule squeezing through tight aperture.
In the latter case, the computation will be more demanding because we need to consider both the

guest-host interactions and the intramolecular potential.

16
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37 Figure 4. (A) Comparison of diffusion coefficients for 8 polyatomic molecules in MOF-5
predicted by the transition-state theory (TST) and by molecular dynamics (MD) simulations. The
42 MD results are from the literature.!®48->! (B) The minimum energy paths calculated from the GPU
44 paralleled implementation of the simplified string method versus the reaction coordinate. Here the
numbers 1-7 stand for images along the minimum energy path in MOF-5 for the ethene molecule.
49 (C) The positions and orientations of the ethene molecule corresponding to the 7 images labeled
51 in (B). (Ethene is modeled as a diatomic molecule according to TraPPE-UA force field. The

molecular structures of ethene in (C) are only for illustration purpose).
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Figure 4 (B) presents the minimum energy paths (MEPs) for 8 polyatomic molecules tested in
this work. For small molecules such as ethane, carbon dioxide and propane, their energy
landscapes along the diffusion path have a similar shape and exhibit only slightly different
potential energy barriers, suggesting a similar hopping pattern for the diffusion of small molecules
in MOF-5. According to the molecular orientation along the MEP shown in Figure 4(C), the center
of mass (COM) for the ethene molecule stays close to the metal cluster and organic linker in MOF-
5 instead of going through MOF-5 in the center of pore in order to maintain the minimized hots-
guest interactions. When the ethene molecule enters across the pore, its orientation also changes
so that the smaller edge of the molecular plane would be directed toward the angle minimizing the
external potential.

Figure 4(B) shows the minimum energy paths (MEPs) for benzene, paraxylene and
orthoxylene. These paths are significantly different from those for smaller molecules such as
ethene due to the molecular size. Even when comparing the potential energies and molecular
orientation along MEPs of large molecules, they are quite different from each other because, for
large molecules, even slight modifications (add/relocate) on the functional group would lead to
significant difference in their preferred orientation at the energy barrier and rotational and
translational activation energy along the reaction coordinate. In Figure 5, we compare the position
and molecular orientation of p-type xylene with those corresponding to o-type xylene along the
MEP in MOF-5. As discovered in NMR studies and by MD simulation,’* the p-type xylene
molecule, especially its methyl group, is located around the pore center when the hopping takes
place between neighboring cages (shown in Figure S3). For the o-type xylene, the COM position
is close to the metal cluster (viz., at the corner of pore) before hoping to the neighboring cages. In

addition, the molecular orientation of p-type xylene changes much less than o-type xylene along

18
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the MEP because p-type xylene has higher activation energy due to the rotational move as shown

in Figure 5.

Figure 5. Molecular positions and orientations of p-type xylene (A) and o-type xylene (B) in MOF-
5 along the minimum energy path. (P-type and o-type xylene are modeled as eight united group
sites according to TraPPE-UA force field. The detailed guest molecular structures are for
illustration purpose only). Black, red and blue dashed line represents the center of pore in MOF-
5, center of mass for p-type xylene when crossing the pore and center of mass for o-type xylene
when crossing the pore, respectively.
3.3 High-throughput Screening

Efficient prediction of diffusivity will likely open up opportunities for high-throughput
screening and, eventually, for the inverse design of nanoporous materials for practical applications
such as gas separation. Here, we demonstrate the capability of massively parallel GPU-accelerated
string method for high-throughput screening of MOFs useful for ethane/ethene separation, a
challenging yet important task in the chemical industry. Since ethane and ethene molecules have
similar physical characteristics such as the size and shape, previous studies indicate that MOFs

with pore limit diameter (PLD) between 3 A and 4 A are most efficient in terms of selectivity.
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We use PLD as an initial criterion to select 3080 candidates from the computational-ready,

experimental (CoRE) MOF 2019 database which covers over 14 000 porous structures.>*
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Figure 6. (A) Distribution of the computational time in high-throughput screening of 3080 MOF
candidates for the separation of ethane/ethene gases at room temperature. Distributions of (B) the
pore limit diameter (PLD) and (C) largest cavity diameter (LCD) of those MOFs with the highest
diffusion selectivity.

As shown in Figure 6(A), the diffusivity calculation for most MOFs (more than 90%) can be
accomplished within less than 30 seconds, which is significantly faster than conventional methods
such as molecular dynamics simulation (up to hundreds of CPU hours per material).33 The

massively parallel GPU-accelerated string method is also much faster than emerging methods that
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search only the tunnel space or the transition state with the polyatomic molecules represented by
a single-site LJ model, which typically cost ~0.5 CPU hour per material.'® The computational cost
of the string method depends not only on how many iterations it would take to identify the
minimum energy path but also on the number of atoms in the system including those from both
the guest molecule and the framework material (host). Ethene (3.23x4.18x4.84 A) and ethane
(3.81x4.08x4.82 A) have similar molecular shape and size. Because both are modeled as diatomic
molecules in the TraPPE force field, the computational costs of finding the minimum energy paths
for ethane and ethene are almost identical.>>

In Figure 6(B) and (C), we present the distributions of the pore limit diameter (PLD) and the
largest cavity diameter (LCD) for MOFs in the database with top 0.5% diffusion selectivity for the
separation of ethane/ethene gases at room temperature. Here, the diffusion selectivity is calculated

from the ratio of diffusivity, S,;,,=D,,/D,, and 1 and 2 refers to ethene and ethane,

respectively. For materials in the CORE MOF 2019 database, the PLDs are evenly distributed
between 3 A and 4 A, whereas the distribution of MOFs with the highest diffusion selectivity has
a notable peak between 3.4 A and 3.8 A. Although the range of the PLD from 3.4 A to 3.8 A is
significantly smaller than the kinetic diameter of ethane (4.443 A) and ethene (4.163 A) molecules
derived from the second virial coefficients, it falls into the perfect range for separating ethene from
ethane according to the molecular size and shape. The peak value (3.4-3.8 A) is larger than the
smallest edge of an ethene molecule (3.28 A) but smaller than that of ethane (3.81 A).53 Compared
with the LCD distribution of MOFs in the background, which follows approximately a normal
distribution with the mean between 4.5 A and 5 A, MOFs with top 0.5% diffusion selectivity has
a slightly higher mean, between 5 A and 5.5 A, in the LCD distribution. According to our previous

work,? 36 57 a nanoporous material with the LCD larger than the molecular size would impose
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more attraction along the minimum energy path, which is beneficial to achieve the diffusivity

coefficient at the scale of practical interest.
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Figure 7. (A) Energy landscape along the minimum energy path for ethane and ethene in YIGFIF,
a nanoporous material with the highest diffusion selectivity for the separation of ethane and ethene
gases at 300 K. (B) The molecular position and orientation of an ethene molecule along the
minimum energy path in YIGFIF.

In the Table S2, we present the diffusion coefficients and structural properties of top 10 MOFs
with the highest diffusivity. Among all MOFs investigated in this work, YIGFIF has a diffusion
selectivity of 57.69, which is the highest for the separation of ethane/ethene at 300 K. Figure 7
shows the energy landscape of ethane and ethene molecules along the minimum energy path in
YIGFIF. For ethane diffusing along the MEP in YIGFIF, the COM position is almost identical to
that for ethene. As shown in Figure 7(B), the rotation of an ethene molecule inside YIGFIF is
restricted due to strong confinement along the MEP in YIGFIF (PLD: 3.38 A and LCD 5.02 A).
However, the nanoporous material exerts a repulsive energy on ethane at the transition state much

stronger than that on ethene. The larger diffusion barrier may be attributed to the minimum cross-
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section area of YIGFIF (~3.38 A x4.94 A), which can be utilized to sieve ethane and ethene with
an excellent diffusion selectivity. Although YIGFIF is the most promising MOF candidate for the
separation of ethane/ethene as the membrane materials according to our screening, it has not yet
been experimentally tested for any practical applications.”® Compared with conventional ethene-
selective adsorbent materials (selectivity up to 48.7), membrane separation with YIGFIF would be
much less energy-intensive for industrial application with around 20% higher separation
selectivity.>? 3° For the state-of-art ethane-selective adsorbent materials (selectivity up to 4.4),
YIGFIF can achieve a much higher separation selectivity of ethane/ethene.%®
4. Conclusion

In this work, we have implemented a GPU-accelerated string method to calculate the minimum
energy path (MEP) for polyatomic molecules in nanoporous materials. The MEP calculation is
essential for predicting diffusivity using the transition-state theory. Both simple GPU parallel
algorithm and massive GPU parallel algorithm are tested and benchmarked with serial CPU
calculations. Compared with the serial CPU implementation on Intel Xeon E5-2640, GPU
implementations on Nvidia Tesla P100 may speedup the diffusivity calculation up to ~2500 folds
via the simple GPU parallel algorithm. The outstanding performance is attributed to massive
threads available on GPU and the minimized memory transfer between CPU (host) and GPU
(device). Although the simple GPU paralleled implementation can achieve up to three orders of
magnitude speedup compared to the serial CPU implementation, the speedup factor depends on
the number of images on the diffusion pathway (viz. the reaction coordinate represented by a string)
and is much lower than that could be achieved by massive GPU paralleled implementation,
especially when the number of images on the string is relatively small due to the insufficient usage

of GPU threads. For massive GPU parallel implementation, a constant speedup factor around 500
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is achieved regardless of the number of images on the string, an indication of excellent
parallelization for MEP calculations. Because most nanoporous materials have the largest edge in
the unit cell less than 30 A, the massive GPU paralleled implementation of the string method is
more advantageous for calculation of MEP for polyatomic molecules in nanoporous materials.
The diffusion coefficients of guest molecules in nanoporous materials can be calculated from
MEP via the transition-state theory (TST). The results are compared with the diffusion coefficients
from molecular dynamics (MD) simulation for 8 polyatomic molecules in MOF-5. Excellent
agreement between theory and simulation is achieved, further indicating the accuracy of MEP
obtained by the GPU-accelerated string method. Because TST underestimates the diffusion barrier
and recrossing of molecular hopping, and because most MD simulations are not run in the single-
molecule limit, the diffusivity from TST is slightly larger than that from simulation. While the
diffusion of small molecules (e.g., ethene, nitrogen and carbon dioxide) in MOF-5 shares a similar
hopping pattern, large molecules such as p-type xylene and o-type xylene have significantly
different trajectories for their positions and orientations along the minimum energy path. Different
from MD simulation whereby diffusivity is calculated from the statistical average of molecular
movements in random, the minimum energy path calculated from GPU-accelerated massively
parallel string method offers the microscopic details of molecular hopping that can be utilized to
guide the rational design of nanoporous materials for the separation of polyatomic molecules.
Finally, we have demonstrated the capability of massively parallel GPU-accelerated string
method for high-throughput screening MOFs for the separation of ethane and ethene, two
polyatomic molecules of similar size and shape that are of tremendous importance for the chemical
industry. In the high-throughput screening calculations, 3080 MOFs are selected from

computational-ready, experimental MOF database CoRE MOF 2019 according to their pore limit
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diameters (PLDs). The massively parallel GPU-accelerated string method is used to calculate the
diffusion selectivity for ethane/ethene separation. The diffusivity calculation can be completed
within 30 seconds per material for more than 90% of MOFs, which is significantly faster than MD
simulation (cost ~ hundreds of CPU hours per material). The GPU calculation outperforms even
emerging methods such as TuTraSt (cost ~ 0.5 CPU hour for a single LJ site).!% 33 While the
calculation of slow diffusion behavior (less than 1x10-'2 m?/s) is computationally prohibitive for
molecular dynamics, the computational cost for the string method does not change with the scale
of the diffusion coefficient. According to our high-throughput screening calculations, MOFs with
the pore limit diameter (PLD) from 3.4 to 3.8 A and the largest cavity diameter (LCD) between 5
and 5.5 A can efficiently separate ethene (with the molecular dimensions of 3.23x4.18x4.84 A)
from ethane (with the molecular dimensions of 3.81x4.08x4.82 A) by their molecular sizes and
shapes. YIGFIF (PLD=3.38 A and LCD=5.02 A) from the CoRE MOF 2019 database has been
identified with the highest diffusion selectivity for ethene/ethane separation, with a theoretical
selectivity that can reach up to 57.69 at 300 K.

The GPU-accelerated massively parallel implementation of string method enables efficient and
accurate calculation of diffusion coefficients for polyatomic molecules in nanoporous materials.
We expect that the computational platform will be generally useful for high-throughput screening
of nanoporous materials, for example, as the membrane for the separation of polyatomic molecules.
It can also be used to construct high-fidelity properties database for the inverse design of
nanoporous materials.

Supporting Information
It provides the force field parameters for all polyatomic molecules considered in this work, the

GPU memory usages of different GPU paralleled implementations and the structural properties of
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MOFs with the highest diffusion selectivity for the separation of ethane and ethene at 300 K.
Movies for the string evolution of ethene in MOF-5 are also provided. For download and use of
the computer codes for the string method implemented in this work, visit the GitHub repository
(https://github.com/MusenZhou/GaSSM).
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