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ABSTRACT

Internet-of-Things (IoT) devices are the building blocks to a stream
of automated smart environments including residential homes,
neighborhoods, schools, and office buildings. Due to their rapid
growth, quick production cycles, and large market space, IoT de-
vices are susceptible to undiscovered vulnerabilities and privacy
concerns. These connected devices are diverse, feature-rich, and
not standardized which makes their coexistence in a Smart Home
environment difficult for researchers to study. We propose WDPKR,
pronounced “woodpecker”, which stands for Wireless Device Pro-
filing Kit and Reconnaissance. WDPKR is a data collection and
analysis solution designed for IoT device profiling in smart home
environments to strengthen the analysis of 802.11 networks. In this
work in progress paper, we present our design of WDPKR and the
experimental results from testing our prototype. We also discuss
a smart home testbed and our next steps for WDPKR. We believe
that our design is feasible and useful for profiling IoT devices. We
conclude that WDPKR’s discovery, active traffic decryption, and
location mapping features are strong and worth furthering, and
highlight where WDPKR can continue to grow.

CCS CONCEPTS

- Computer systems organization — Embedded systems; Re-
dundancy; Robotics; « Networks — Network reliability.
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1 INTRODUCTION

Internet-of-Things (IoT) devices bridge the divide between the digi-
tal world and the physical one, linking information about a physical
environment to computerized control. Consumers add devices to
their home networks, creating smart homes of devices that commu-
nicate with each other to provide services such as monitoring or
task automation. However, these IoT devices represent a treasure
trove of data into their users’ lives, and as such, are a target for
malicious actors. Compounding the problem is a lack of standardiza-
tion in APIs between major IoT vendors: a HomeKit-aware device,
for example, may not recognize a device that operates only using
Google Home. This means that devices can potentially have an
inconsistent view of the network, making security breaches harder
to detect.
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One solution to this problem is the notion of a profile, a contract
to adhere to a set of possible actions. This profile is enforced at the
network-level. Any unexpected actions are a violation of the profile
is thus considered a compromise of the device. Previous work in
the profiling space requires the use of IoT device code in order to
statically generate a profile for a device for a network [5]. However,
this requires a priori knowledge of the code for a device, which
may not be available: smart home platform manufacturers may be
hesitant to release their code, or a legacy device may not support
any system at all out-of-the-box.

To address these shortcomings, we present WDPKR, a proposed
system that creates dynamic smart home profiles out of network
data. We believe that this is possible because (1) IoT devices have
a limited set of functionalities, which translates to a limited set
of network-visible features, and (2) these network features do not
change significantly over time. Thus, a “dynamic” profile for a
device represents a consistency of its features over time. In a multi-
vendor smart home, we can only consider a device’s network fea-
tures; vendor-specific information may not align across different
device platforms. Additionally, WDPKR is designed to be a soft-
ware platform operating on existing wireless hardware. The data
processing facilities of consumer-grade networking hardware is
limited, and thus WDPKR must be as performant as possible - the
use of advanced neural networks would be infeasible.

In order to develop dynamic profiling, we first assume that the
functionality of an (uncompromised) IoT device has a fixed set of
operations it performs. Profiling these operations depends on an
accurate set of fingerprints that capture a device’s runtime behavior.
These fingerprints require discovery and measurement of the smart
home environment to understand the characteristics of the devices
operating. As such, WDPKR requires all three, building up discovery
tools to perform fingerprinting and utilizing fingerprints to create
profiles dynamically. The research question of WDPKR, therefore,
surrounds the ability to capture the state of devices solely from
looking at dynamic traffic and that this state is unique enough to
tie to a specific device.

This paper. This project is a work-in-progress. We have a ten-
tative design, which we outline in Section 2. We then discuss our
WDPKR prototype, which represents our current progress in as-
sessing dynamic profiling, in Section 3. We conclude with a review
of related work and a discussion of our next research steps. While
there is still much work to be done using rigorous methods to create
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dynamic profiles for IoT devices consistently, we believe that our
methods are rigorous enough to accomplish our goal.

2 WDPKR DESIGN

We now discuss the proposed design of WDPKR, aiming to provide
dynamic profiling for wireless devices in a smart home setting. We
stress that the capabilities discussed in this section are those being
considered for development. We implement an initial prototype
of some of the capabilities described below and discuss their ef-
fectiveness in Section 3. We expect the methods to adapt as the
research progresses. We first discuss device discovery, which helps
us develop device fingerprinting, leading to our ultimate goal of
device profiling.

2.1 Discovery

Smart home device discovery, broadly speaking, uses scanning
capabilities to understand the structure of the IoT devices on a
wireless network. Some vendors employ specific techniques to
detect devices on a network, but these methods do not generalize
beyond the platform for which they are designed. Additionally,
legacy devices that do not communicate with any platform may not
have accessible orchestration commands. As such, WDPKR relies
on general techniques to perform device discovery.

Basic network scanning. WDPKR’s first discovery tool (and its
simplest) is a scan of the entire local area network. Such a scan
combs through the entire IP subnet used by the smart home gateway,
looking for devices that respond to port scanning. Devices that
respond are added to a list of discovered devices, along with any
associated open ports and identifying information returned from
the scan. This type of scan is prevalent and is the baseline technique
used in general for network asset discovery [1].

Wireless monitoring. WDPKR augments traditional scanning
techniques with continuous monitoring of the smart home’s wire-
less environment. WDPKR uses available wireless hardware in
monitor mode, ingesting all available 802.11 frames in its vicinity.
This allows it to identify traffic that might not be picked up on
the local network explicitly, such as devices operating on different
networks nearby.

Wireless monitoring can also help locate devices in physical
space. Smart home IoT devices are most often fixed in their loca-
tion once installed. For example, smart light bulbs typically stay
in their physical sockets for their entire lifespan. Thus, WDPKR
leverages signal strength (among other RF characteristics) in order
to determine the distance to a device [6].

The increased use of mesh networking in smart homes improves
the quality of data from wireless monitoring. Rather than having a
single WDPKR instance at the gateway, each mesh node can run
WDPKR. Each mesh node can independently collect information
over the local network and over the air, and come to a shared
understanding of the state of the network. A satellite node can
detect devices that might be far away physically from the central
node, and multiple nodes working in concert can pool distance
information together to pinpoint the exact location of a device.

Uncooperative devices. Some devices may choose not to be visible
on the smart home network. WDPKR still attempts to track these
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devices, as they may be surreptitiously stealing data or otherwise
attempting to be malicious while undetected. Continuous wireless
scans try to detect any device operating in range of WDPKR, re-
gardless if they are associated with the home network or not. This
will help identify devices attempting to spoof their location (as to
appear to be a part of the network) or otherwise lie about their
functionality.

2.2 Fingerprinting

We use the discovery methods discussed above to begin fingerprint-
ing the smart home network. Much of the research in fingerprinting
in the IoT space regards device classification (Section 4). In order
to create a dynamic profile, though, knowing which devices exist
in the environment is not enough. We must instead look at the be-
havioral patterns of a device, as it is these behaviors on which the
final profile will be based. We consider a model in which WDPKR
measures fingerprint data continuously, creating successive snap-
shots of a device’s state over time. This continuous fingerprinting
allows WDPKR capture a more holistic view of a device, allowing
us to be more confident in a device’s results.

Discrete flows. We plan to implement fingerprinting in WDPKR
by looking at the patterns of network flows on a device. The track-
ing network flows between endpoints is used by stateful firewalls,
which uses flows to identify valid communication. WDPKR plans
on using this technique to determine the set of possible flows an
uncompromised device as a fingerprint. During an initial “learning
period”, we plan to record flow data, such as source, destination,
bandwidth utilization, and inter-packet timing and then perform
fundamental statistical analysis to discern flows and their relevant
properties. We believe that only basic methods are necessary since
ToT devices have a limited set of operations that they support. We
also eschew using a more intensive method, such as deep packet
inspection, to keep the resource requirements to a minimum and
minimize overhead.

Active probing. In order to passive monitoring of network traf-
fic, WDPKR also performs probing of known devices. We plan on
implementing basic port scanning to identify services listening on
an IoT device’s ports. In instances where the service is known (e.g.,
httpd), WDPKR will collect additional information, such as library
version or protocols supported, to add to its fingerprint for the
device. We assume that the services supported by IoT devices are
updated infrequently, as IoT device software functionality is tied to
its physical functionality. Thus, active probing allows WDPKR to
snapshot the configuration of a device at a given point in time.

Location ranging. WDPKR builds upon the discovery functional-
ity in order to fix a device’s location in space. Our current WDPKR
prototype uses the free-space path loss equation metric in order
to calculate distance. Our testing (Section 3) shows that while it is
imprecise and can be subject to interference, it provides a rough
estimate of where a device should be. Several location measures,
taken throughout the day, can be merged to provide a range of
potential locations for a device. The idea is that, in a smart home
environment, there will be times when things are “still”, i.e., there
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is no movement, and WDPKR can take an accurate location mea-
surement. We additionally plan on exploring other metrics that can
be used in distance calculations.

Confidence. Because our fingerprinting is dynamic, there will be
a gap between the actual state of configuration of the device and
the state that can be ascertained through WDPKR’s methods. For
example, the location ranging discussed above may be imprecise due
to interference. However, we expect that the continuous location
measurements will center on or near the true device location with
our ongoing fingerprinting strategy. Periods of interference should,
we think, create outliers that can be eliminated. The fingerprint can
then be interpreted not as a specific configuration or state but as a
gradient of possible configurations, some more likely than others.
The variance around measurements then becomes inversely related
to the confidence of that measurements. We plan on crafting our
experiments around this fingerprinting gradient approach.

2.3 Profiling

Once we have built the discovery and fingerprint portions of WDPKR,
the profiling component is simply a composition of the two. As
discussed in Section 2.2, WDPKR aims to collect multiple finger-
print types continuously. Profiling acts as an enforcement layer
over an existing fingerprint set for a discovered device. The profil-
ing module intends to compare this known fingerprint against the
current state of the network. WDPKR assumes that a compromised
device has different network characteristics than normal, as the
malicious actor will be trying to exfiltrate data or pivot into other
devices on the smart home network. This can take the form of new
communication flows to attack-controlled domains, a change in the
configuration of services on the device, location spoofing, or more.
If there are any differences between known patterns and current
network activity, WDPKR knows a profile violation has occurred.

Aggregating the fingerprints is non-trivial. Our initial solution
involves using a per-device fingerprint information database and
using runtime data collection to match against database entries.
WDPKR will employ fuzzy hashing [9] to compare known finger-
print state to the current environment. The “fuzziness” allows slight
variations in fingerprint information to hash to the same value, but
not major ones. This method does assume that the fingerprints
collected by WDPKR do not change over time. We anticipate that
such a change is infrequent and easier to verify from the user’s side.
For example, the fingerprint may change if a manufacturer enables
new user-facing functionality on a device. In these cases, WDPKR
can compute a new fingerprint for the device.

Range authentication. Our profiling approach allows us to per-
form some interesting enforcement behaviors. For example, WDPKR
attempts to locate a device in space based on signal characteris-
tics, among others. WDPKR can instruct the wireless router to
adjust its power when communicating to only use the minimum
signal strength necessary to communicate with a device. This adds
physical-layer protection on top of the other security measures em-
ployed on the smart home network, a form of “range authentication”
that prevents devices outside of the smart home from spoofing as
being on the inside. This can be combined with techniques from
distance bounding [4, 10] to add additional security.

2021-02-08 05:23. Page 3 of 1-7.

3 INITIAL EXPERIMENTS
3.1 WDPKR Prototype

WDPKR is a command-line application written in Python using
object-oriented software design techniques. It leverages sniffing
and spoofing functionality from Scapy [3]. The WDPKR prototype
aims to make 802.11 data collection simple and effective, perform
active traffic decryption, locate devices and lays the groundwork
for device fingerprinting and profiling.

Active
Traffic
Decryption

passive
Traffic
. Capture

\
\

WDPKR
profiling

Traffic

Analysis Fingerprinting

Client
Location
Mapping

Figure 1: The current structure of our WDPKR prototype.

Passive traffic capture. WDPKR is capable of both live and file-
based passive traffic capture. It uses Scapy for both functions, and
users are able to specify the amount of time to capture packets or
the number of packets they wish to capture. The live capture re-
turns the packets captured to the user, and the file capture puts the
packets in a PCAP file for easy reuse and further analysis. A user
can also specify the interface on which to capture. By choosing a
WLAN interface in monitor mode, WDPKR is able to capture 802.11
frames. Additionally, WDPKR provides a command-line interface
and configuration file to help users easily take advantage of each
of WDPKR’s modules and features. See Figure 1 for a diagram of
WDPKR’s modules, Figure 2 for WDPKR’s help menu, and Fig-
ure 3 for the configuration file. Figure 4 shows a sample PCAP file
captured using WDPKR over 802.11 networks.

usage: wdpkr.py [-h] --config CONFIG [--ssid SSID] [-p PCAP] [-o OPEN]
[-n NAME]
{capture,attack, analyze,map}

WDPKR: Wireless Data Processing Kit & Reconnaissance
positional arguments:
{capture,attack, analyze, map}
perform passive capture, active decryption,
analysis, or mapping

optional arguments:

-h, --help show this help message and exit
--config CONFIG wdpkr.ini file location

--ssid SSID ssid of network to attack for active decryption
-p PCAP, open a pcap file for analysis or mapping

-o OPEN, json file to load a previous WDPKR session

-n NAME, name of this session

Figure 2: WDPKR command-line help menu.



[default]
interface = wlan0

l[gps]

# Configure latitude and longitude for location ranging.
latitude = 39.312285

longitude = -76.620257

altitude = 35.0 # in meters

[analysis]

# Select which modules to use and skip.
# Skip takes priority over Use.
use_modules = all

skip_modules = none

[psk]
# Pre-shared Keys for active traffic decryption.
WiFi SSID = 'password'

[known_devices]
# A lookup table for associating MAC addresses to known device names.
FFFFFFFFFFFF = broadcast

Figure 3: User configuration file.

Traffic analysis. WDPKR’s analysis module is two-pronged: rudi-
mentary and classifying. The rudimentary analyzer provides the
user with a JSON representation of the wireless environment’s state
given pre-captured frames through a PCAP file. The Analyzer class
processes features from packets sent over the 802.11 protocol using
a packet parser. The JSON representation includes a collection of
basic features for each device scanned on the network, including
Vendor Name, Device Type, # of frames sent and received, and loca-
tion data (see Client Location Mapping). Figure 5 contains sample
output from our Analysis Module detecting an access point device
and display its client list and AP Management Info extracted from
the capture.

Active traffic decryption. This WDPKR module aims to actively
decrypt encrypted packets captured across the network. By doing
so, WDPKR gains real-time information about the devices it is
able to attack. This module’s first implementation of this uses the
user-known WiFi password (WPA2-PSK). WDPKR ’s Decryption
class sends a deauthentication frame to simulate a disconnection
between a device and the WiFi signal. It then captures the resultant
4-way handshake to get the Pairwise Temporal Key (PTK).

Client location mapping. This module calculates the distance
between a device and the wireless client or access point (AP) using
the free-space path loss equation (1).

j 1)\2
— =DiDy |— 1
=, (M d) 1)
Which states the ratio of the power received Py, to the power trans-
mitted, Py, is equal to the distance of the transmitting and receiving
antennas times the free-space path loss factor. The distance formula
then becomes (2).

d= 10(27.55—2010g10(f)—|/1|)/20 (2)

The Client Location class uses Received Signal Strength Indicator
(RSSI) metrics from captured packets and GPS coordinates provided
by the user to calculate dbm in MHz and estimate the location range
of the devices.
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3.2 Experimental Setup

Testbed. The test data was collected in a laboratory setup at
Morgan State University to replicate a typical home network: net-
work devices connected wired or wirelessly to a standard consumer
router (TP-Link AC1750). The network consists of 60 devices com-
monly used in home network settings. The testbed contains 26
common home appliances (refrigerators, fans, smart plugs, etc.),
4 smart assistants, 6 general-purpose devices, 3 smart hubs, 9 IP
cameras, 7 media streaming devices, and two standalone sensors.
The devices range from a variety of manufacturers to capture the
broadest scope of the IoT market. These range from large regulated
companies such as Apple and Samsung to small companies such as
Govee and Gosund, and niche manufacturers with no easily found
company name. The testbed uses automation and scheduling to
reproduce routines typical in a small family home. This further
increases the robustness and legitimacy of the test data. Other wire-
less networks used nearby add noise and extraneous data that one
would find in the wild. The final goal is robust, secure legitimate
data that allows for testing in various real-world scenarios.

A map of the testbed by signal strength is given in Figure 6. The
IoT devices are clustered around three locations. Location 1, L1, is
the testbed’s primary functional portion, housing most of the IoT
testbed. Location 2, L2, encapsulates the media devices. Location
3 contains the hub devices. This location data is saved in order
to attest for similar signal strength readings since devices sharing
locations share similar location readings.

Methodology. Network data is captured remotely via a local Rasp-
berry Pi 4 with 4GB of RAM running Ubuntu 20.10 Desktop. Wire-
less network data is captured via Panda Wireless PAU06 300Mbps
Wireless N USB Adapter placed in monitor mode. Our current
WDPKR prototype captures all traffic wirelessly and saves packets
iteratively to reduce ram and CPU usage. WDPKR can scan in high
traffic areas without the use of excessive processing power.

3.3 Preliminary Results

Our WDPKR prototype collected over 260 MB of over-the-air data
over a 6 hour time period, generating a robust IoT dataset. By
running this packet data through the Analysis module, WDPKR
discovered and identified every device in the testbed. The JSON
representation of the rudimentary analysis includes data on the
access point and client device types. Figure 7 is a screenshot of how
a single device is represented in the output file post-analysis of a
15-minute capture. Its MAC address can decode the device. In this
case, we have a Nooie Cam 360, recognized as a client device that
has sent 5266 frames and received 8551 frames. The only device
on its "Prob_list" is the testbed’s TCP Link Router. This represents
WDPKR’s discovery phase, followed by a rudimentary analysis
including organized and labeled data about the capture that can
guide the project towards device fingerprints and profiling.

We tested WDPKR’s client location mapping module against the
testbed as well. As seen in Figure 7, it successfully calculated the
average dBm values of each device, in this case, the Nooie Cam
360, and the distance between each device and the access point.
We also estimate the distance between each device and the access
point using the free space loss formula. Preliminary results show a
potential correlation between dBm and distance values for devices
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Time Source Destination Protocol  Length Signal strength (dBm)  Info
1 ©.000000 8:49:62:¢0:30:23 Broadcast 802.11 275 -35dBm Beacon frame, SN=3921, FN=0, Flags=........ , BI=100, SSID=Wildcard (Broadcast)
2 0.003520 Roku_c@:30:23 (8c:4.. Tp-LinkT_77:51:23 (98:da:c4:77:.. 802.11 34 -33dBm Request-to-send, Flags=
3 0.004023 Roku_c@:30:23 (8c:4.. Tp-LinkT_77:51:23 (98: 34 -33dBm Request-to-send, Flag
4 0.004331 Roku_c@:30:23 (8c:49:6 28 -5dBm Clear-to-send, Flags=
5 0.004895 Roku_c@:30:23 (8c:4.. Tp-LinkT_77:51:23 (98:da:c4:77:.. 802.11 34 -33dBm Request-to-send, Flags=
6 0.005216 Roku_c@:30:23 (8c:49:62:c0:30:2.. 802.11 28 -5dBm Clear-to-send, Flags=........
7 0.006090 Roku_c@:30:23 Tp-LinkT_77:51:23 802.11 96 -33dBm QoS Data, SN=3664, FN=0, Flags=.p..... T
8 0.006399 Roku_c@:30:23 (8c:49:62:¢0:30:2.. 802.11 28 -5dBm Acknowledgement, Flags=........
9 0.010138 ArubaaHe_cc:92:el Broadcast 802.11 206 -73dBm Beacon frame, SN=3703, FN=@, Flags=........ , BI=100, SSID=MSU-Guest
10 0.018939 AmazonTe_5f:27:48 Tp-LinkT_77:51:23 802.11 44 -27dBm QoS Null function (No data), SN=1, FN=0, Flags=...P...T
11 0.018989 AmazonTe_5f:27:48 (40:b4:cd:5f:.. 802.11 28 -5dBm Acknowledgement, Flags=
12 0.026790 ArubaaHe_cc: Broadcast 802.11 226 -65dBm Beacon frame, SN=518, F ..., BI=10@, SSID=eduroam
13 0.028501 ArubaaHe_cc Broadcast 802.11 206 -65dBm Beacon frame, SN=519, FN=0, ..., BI=10@, SSID=MSU-Guest
14 0.030462 ArubaaHe_cc: Broadcast 802.11 229 -65dBm Beacon frame, SN=520, FN=@, Flags= ...., BI=10@, SSID=MSU-Secure
15 0.039463 Espressi_4a: Tp-LinkT_77:51:23 802.11 42 -37dBm Null function (No data), SN=281, FN=0, Flags=...P...T
16 0.039514 Espressi_4a:7f:al (84:0d:8e:4a:.. 802.11 28 -5dBm Acknowledgement, Flags=..
17 0.039641 Espressi_10:b8:cl Tp-LinkT_77:51:23 802.11 42 -33dBm Null function (No data), SN=1585, FN=0, Flags=...P...T
18 0.039829 Espressi_4a:7f:al (84:0d:8e:4a:.. 8062.11 28 -5dBm Acknowledgement, Flags=........
19 0.039930 Espressi_dl:cd:32 Tp-LinkT_77:51:23 802.11 42 -27dBm Null function (No data), SN=2718, FN=@, Flags=. T
20 0.039967 Espressi_dl:cd:32 (10:52:1c:d1:.. 802.11 28 -5dBm Acknowledgement, Flags=........
21 0.040981 Espressi_7e:78:76 Tp-LinkT_77:51:23 802.11 42 -37dBm Null function (No data), SN=3847, FN=0, Flags=...PR..T
22 0.041097 Espressi_7e:78:76 (84:f3:eb:7e:.. 802.11 28 -11dBm Acknowledgement, Flags=..
23 0.041375 Espressi_10:b8:c1 Tp-LinkT_77:51:23 802.11 42 -33dBm Null function (No data), SN=1585, FN=0, Flags=...PR..T
24 0.041524 Espressi_10:b8:cl (a@:20:a6:10:.. 802.11 28 -5dBm Acknowledgement, Flags=........
25 0.048437 Tp-LinkT_77:51:23 Broadcast 802.11 219 -5dBm Beacon frame, SN=1231, FN=0, Flags=. .., BI=100, SSID=CREAMHOMEV2.4
26 0.204353 8e:49:62:0:30:23 Broadcast 802.11 275 -37dBm Beacon frame, SN=3923, FN=0, Flags=. .., BI=100, SSID=Wildcard (Broadcast)

Figure 4: PCAP collection.

"08:3a:2f:11:33:a4
"Vendor": "Unknown",

rame_received
"0.837 meters"”,
-38.55097613882863",
delientilists Nl
o :a9:3h:22:
ice:
H(el
$25

i
"Frequency": "2412MHz",

"Authentication": "@0:0f:ac (Ieee 802.11) PSK",

:0f:ac (Ieee 802.11) AES (CCM)",
"NVR@83a2f1133a4"

Figure 5: Analysis module, access point identified.

sharing the same locations. Average dBm values remain the same
across network scans, which reveal that WDPKR could be used to
confirm a device remains in the same location. Further analysis is
needed to improve the confidence of the location results.

WDPKR’s active decryption module was tested on a smaller
home network of three devices and a single router. Using the net-
work owner’s known WPA2-PSK, WDPKR performed a deauthen-
tication attack and disconnected all three devices from the home
Wifl network. This decryption attack gives further insight into each
device and its vulnerabilities. This motivates the addition of more
decryption attacks into WDPKR’s toolset, which could contribute
security characteristics to a device profile.

4 RELATED WORK

Device selection. Past work that incorporated a large number
of real-world IoT devices and experimented with them on-hand
achieved better results [2, 13]. However, many lack strength in
2021-02-08 05:23. Page 5 of 1-7.
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Figure 6: Heatmap of device location in our testbed. The
“level” corresponds to the relative number of devices per
square foot.

dataset diversity through their selection of devices - focusing on in-
dividual families of devices such as Samsung Smart Things, Google
or Amazon limited their experiments. Works that diversified their
devices and device activities by choosing low and high-power de-
vices, varying brand names, and functionality types achieved more
interesting and applicable results [12].

Feature selection. Prior work has demonstrated the ability to
discover and investigate devices using a subset of packet features,
RF data, or RSSI data [8, 11, 13]. Features selected from packet
headers or payload information have been used to identify devices
and study their behavior. RF data has been used as the physical
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Table 1: Comparison of prior work.

Packet RF RSSI

Dataset Discovery Traffic Decryption Fingerprinting

Location Mapping Profiling

Stojkoska [11] X
Jafari [8] X
DEFT [13] X

HoMonit [14] X

IoT Inspector [7] X
WDPKR (this work) X

X
X
X
X
X
X X X X

"34:75:63:cc:@c:50": {
"Vendor": "Unknown”,
"Device_type": "Client",
"Frame_sent": 52
"Frame_received"”: 8551,
"Distance”: "@.514 meters”,
"Avg DBM": "-34.313330801367265",
*Prob Tast™: [

Y98:da:c4:77:51:23"

]

Figure 7: Analysis module results of a Nooie Camera 360.

layer alternative for identifying devices on a network [8]. RSSI data
has been used for locating devices in a home and detecting anom-
alies [11]. Device classification studies have employed port-based,
payload-based, statistical-based, and behavioral-based methods to
discover patterns across packets and identify devices [12]. Much
like in device selection, prior works lack robust feature selections.
These prior works have each focused on a different subsection of
device features. We have not seen work that studies a holistic view
of all features that can be extracted from a single device to help
identify it.

Fingerprinting. Fingerprinting methods vary across prior work,
but many focus on improving classifier accuracy and the ability
to detect new devices and fingerprint them quickly. Thangavelu
created a dynamic and scalable solution to this with a distributed
fingerprinting technique that relied on packet features [13]. Their
fingerprinting methodology aims to classify devices into device
types, whereas WDPKR approaches fingerprinting to analyze a
device’s behavior. It generates a fingerprint around the device’s
behavior before grouping it into a type or class of device. Prior
work has used various classification algorithms on traffic, including
Random Forest, SVM, KNN, and even deep learning methods for
fingerprinting [8]. In [7], crowd-sourced traffic and ARP spoofing
techniques are used to discover and identify devices. The work
focuses on labeling the data, generating statistics on the collected
traffic, and assessing the security and privacy trends they discover
across the devices. The developed tool could expand by using their
expansive dataset to train fingerprinting and profiling methods.

Profiling. Prior work has used fingerprinting methods to gen-
erate profiles for device behavior. In [2] each profile is based on
discrete fingerprints where each fingerprint is constructed from

data points from session packets. Zhang [14] uses automata to il-
lustrate stateful devices and generate profiles for each device type.
In [5], the authors used static analysis to develop a profile of IoT
devices by analyzing source code. This profiling method is limited
in its inability to work dynamically against software updates and
user re-configurations of devices. In general, a stateful profile of
a device needs to be adaptable to the changing characteristics of
IoT devices in real-time in order to effectively identify devices and
detect anomalies.

Table 1 compares WDPKR to prior work in terms of feature
sets and the WDPKR modules. Columns 1-3 illustrate the split of
research across packet-based, RF-based, and RSSI-based methods
to understand IoT devices. Column 4 indicates work that has built
a representative dataset through experimentation. Columns 5-9
demonstrate prior work has motivated each WDPKR module by
demonstrating their value to understanding IoT device security and
privacy individually. WDPKR is able to leverage the strength of the
modules together to provide a stronger profile for devices. A strong
profiling methodology will open WDPKR to anomaly detection as
well.

5 CONCLUSION

We present WDPKR, a proposed set of techniques for performing
dynamic profiling of smart home IoT devices. By building on dis-
covery and fingerprinting techniques, we believe that WDPKR can
achieve reliable, accurate profiles for these devices. We have devel-
oped a small prototype, which shows that our ideas have promise.
This project, however, is very much a work in progress, and we
have much to do. In particular, we wish to slowly build out our
WDPKR prototype so that it can perform more of the functionality
outlined in Section 2. We also wish to build out our experimental
setup to cover other IoT protocols, such as Zigbee, Z-Wave, and
Bluetooth. Additionally, we anticipate that we will collect a sizeable
amount of quality data in building WDPKR; we will contribute
the (labeled) IoT datasets generated in the course of this project
back to the community. We hope that, with more development
effort and experimentation, we can build WDPKR to effectively pro-
vide dynamic profiling for smart home networks using performant
scientific and statistical methods.
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