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Muon capture rates: Evaluation within the quasiparticle random phase approximation
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The quasiparticle random phase approximation is used in evaluation of the total muon capture rates for final
nuclei participating in double-f decay. Several variants of the method are used, depending on the size of the
single-particle model space used, or treatment of the initial bound muon wave function. The resulting capture
rates are all reasonably close to each other. In particular, the variant that appears to be most realistic results in
rates that are in good agreement with the experimental values. There is no necessity for an empirical quenching
of the axial current coupling constant g4. Its standard value g4 = 1.27 seems to be adequate.
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I. INTRODUCTION

The capture of negative muons from the 1s muonic atom
orbit,

W+ (ZN)—> v+ (Z—1.N+1) (1)

has been studied in detail for a long time (see the classic re-
views by Walecka [1], Mukhopadhyay [2], and Measday [3]).
Experimental determination of the total muon capture rate
is relatively straightforward, therefore it is known for many
stable elements, sometimes even for the separated isotopes
[4.5].

The nuclear response in this semileptonic weak process is
governed by the momentum transfer of the order of muon
mass. The region of the excited nuclear states near the giant
dipole resonance dominates in the final nuclei since the phase
space as well as nuclear response give preference to low
excitation energies. These features lead to the recent revival of
interest in the muon capture as a testing ground for theoretical
description of weak nuclear processes. In particular, the ques-
tion of the so-called axial current quenching phenomenon is
widely discussed in connection with the evaluation of OvBS-
decay nuclear matrix elements.

It is well known that using the nuclear shell model leads
to the prediction of the allowed Gamow-Teller B decays, as
well as of the two-neutrino double-8 decays (2vBf), which
are too fast compared to the experimental lifetimes. The cor-
responding enhancement factors are approximately the same
for all nuclei in the same shell, thus they can be conveniently
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described by a phenomenological effective axial vector cou-
pling constant g5 that is smaller than the g4 = 1.27 deduced
from the free neutron B decay [6,7]. Since the 2vB8 decay is
nothing else than two GT transitions occurring at once, similar
quenching appears when the 2vB g rate is calculated in the
shell model [8]. Recent careful analysis [9] suggests that when
all nuclear correlations, including the effects of the two-body
weak currents, and a proper treatment of effective operators,
are included, the GT transition strength is correctly described
without the need to use the quenching idea. However, the
advanced treatment of nuclear correlations, as in Ref. [9], is
not yet available for evaluation of the rate of the OvB8 and
2v BB decays, or of the muon capture.

The magnitude of quenching, i.e., the amount ¢ < 1 of the
ratio ¢ = g5 /g4. is nuclear model dependent. For example,
when the interaction boson model version IBM-2 is used [10],
the corresponding ¢ is considerably smaller than in the case of
the shell-model treatment [8]. Within the quasiparticle random
phase approximation (QRPA) the situation is more complex,
since the quenching amount ¢ is strongly correlated with the
particle-particle effective coupling parameter g,,. which is
often adjusted to correctly describe the 2vB 8 decay half-life
[11,12].

The quenching phenomenon has been firmly established
for the low momentum transfer GT-type nuclear transitions,
governed by the selection rules A7 < 1, Awr = 0 and involv-
ing dominantly the ot operator. However, the neutrinoless
double-B decay (OvBp) involves momentum transfer ¢ ~ 100
MeV, with no restriction on angular momentum and parity
change. This makes the muon capture, with analogous unre-
strictive selection rules and a magnitude of the momentum
transfer, an attractive testing ground for nuclear model de-
scription of the nuclear matrix elements for the OvB S decay.
One of the examples of the recent effort along these lines is
in Ref. [13] dedicated mostly to the experimental study of the
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nuclear y radiation following muon capture in the (™=, v xn)
reactions on the final nuclei involved in S8 decay.

In this work we use the QRPA to evaluate the total muon
capture rates for the OvBp decay candidate nuclei and com-
pare them with the experiment. The excitation energy and
multipolarity distributions are also presented. Previous anal-
ogous calculations of the total muon capture rate lead to
ambiguous conclusions. References [14-16] use a version of
QRPA and conclude that none, or only mild quenching is
needed. Similarly, the shell model applied to the muon capture

n 180 in Ref. [17] also required only minimal quenching

/gA ~ (0.95. On the other hand, in Ref. [18] based on
QRPA quite strong quenching g5 ff/gA ~ 0.5 is required to
describe the total muon capture rates of the OvpB-decay can-
didate nuclei.

This motivates us to use the formalism closely related to
the one used previously for the evaluation of the Ov 88 nuclear
matrix elements [12]. The paper is organized as follows: In
Sec. II the formalism is briefly described. In Sec. III we
discuss the choice of input parameters and study the cor-
responding uncertainties. In Sec. IV the results are shown
and conclusion about the amount of needed g4 quenching is
discussed. Our conclusions are presented in Sec. V.

II. FORMALISM

A. Effective weak Hamiltonian and 7' matrix

The effective weak lepton-nucleus interaction Hamiltonian
is of the standard form

Gg
Hy(x) = —= 0 (0)ye(l = y5)n(0)Ji(x) + He. (2
\/j " L
Here Gg = Gy cos Oc, O¢ is the Cabbibo angle. w(x) and v, (x)
are the muon and muonic neutrino fields, respectively. J* (x)
is the V-A hadronic current at the nucleon level renormalized
by the strong and electromagnetic interactions. We have

T = (n(p) dy*(1 = ys)u p(p))
— 2 a s 2 0P

=a(p)|egv(g)y” +igm(q )2 qp
my

— 8@y *ys — gr(@)q vs (). 3)

where m, is the nucleon mass, ¢, = (p' — p), is the mo-
mentum transfer, and p/ and p are the four momenta of
neutron and proton, respectively. For the nucleon form factors
ev (@), gm(q?). ga(g?). and gp(¢®) we use the usual dipole
parametrization

v (q?) _ (] B q_z)z
gv.m M ’
2\ 2

“o gy

with M, =850 MeV and M, =1086 MeV and
gv=gv0)=1,  ga=ga0)=1269, gu=gu0) =
(ttp — mp)gv = 3.70. The induced pseudoscalar form factor

is given by the PCAC relation

2
4@ = P ga (D). 5)
m2 —q

T

where m; is the pion mass.

Next, it is necessary to reduce the nucleon current to the
nonrelativistic form. By keeping terms up to 1/m, and ne-
glecting terms O(qg/m;) we get [19]

(p+p") 2,400 - q

NCa )— +¢r(q)
m

I =gv(g®) — .
P P

o" .
JL = —galg®)o + gp((f)% + v
m, 2

P

+(8V((12)+8M((12))i¥-
p

(6)

Note that usually nonrelativistic reduction is performed in the
Breit frame (¢o = 0 and p + p’ = 0 [19]), e.g., in the case of
the Ov BB decay [12] and the elastic electron nucleon (nucleus)
scattering of neutrinos on nuclei. etc. In these processes the
energies of incoming and outgoing leptons are approximately
the same or negligible.

Unlike that, the calculation of muon capture is performed
in the proton rest frame where go = E, — E,. q = p' — p =
—pv. and p' +p = —p, [20,21], since p = 0 in this frame.
E,, = m, — g is the energy of the bound muon in the k = —1
state in the muonic atom, where ¢, is the binding energy.
E, and p, are energy and momentum of emitted neutrino,
respectively. p, = p, = E, since we neglect neutrino mass.
Thus, within the nonrelativistic impulse approximation, the
hadronic current for muon capture on nuclei is expressed as

o 00 Pv
I = e @)+ 8agDS P o2 P : B
P mp

vO Py v
Jo = —galgo + gp(qz)pzip — (2
m, 2my,

) o X Py
— i(gv (@) + gu (PN (7)
m

p

Apart from a few small terms the structure of the current is the
same as in the case of the Ov BB decay.

The muon capture on nuclei occurs in the first order in
weak interaction. The corresponding S matrix is

(f SV iy =278(Ef +E, — Ei— E ) (f TV i), (8)

where the T matrix is

(fFTV i) = z)—/ f IO, 1) i)

x ®(Ey. 1)Ye(l = y5)®(E,. T)dr.  (9)

Nuclear current takes the form

A

JFO.r) =1,

n=1

(&) + ¢ AN )s—r,)  (10)
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and wave functions of the bound « = —1 muon ¢, (E,,. r) and
emitted neutrino ¢, (E,, r) are given by
1 8- 1(1’) Xm
¢ (E, 1) = (
g Var \=if_1(r) (@ - ) X
] Xl‘l‘l .
@y (E. 1) = —| . e, (1)
IJE( P‘Xm)

The energy of emitted neutrino follows from the energy con-
servation guaranteed by the § function and is determined by
the equation

Ey+ /M; + p2 = (my — ep+ M;) = 0. (12)

Here, the energies of the initial i) and final f) states are E; =
M,' and Ef =
clei the nuclear recoil energy p? /(2M r) is of the order of tens

of keV and can be safely neglected, as well as the effect of
center of mass of muon-nuclear system.

M % + p2, respectively. For medium-heavy nu-

B. Muon capture rate
The differential muon capture rate summed over all final
excited states k) can be written as

dF—ZnZ(S(E +E—E —E )Z (kT i

spin

2 _dk
Q2m)

(13)
Here, the squared T matrix is summed over all spin orienta-
tions of the neutrino and daughter nucleus and averaged over
all spin orientations of the muon and the parent nucleus.
Inserting Eqgs. (9) and (11) for the squared T -matrix ele-
ment, we find the total capture rate. When only parity even
operators, relevant for the ground-state expectation value, are
kept, the total capture rate takes the form

2

(Gpmy,)
27

The quantities Bgx (K =V, A, P) are

I'=my (CvBav + CaBga + CpByp). (14)

EZ
Bok = ), — Box (D). (15)
k Iz
where E,, = p,, = E, + E; — E. The sum is over all states
k) in the nucleus (Z — 1, N 4 1) that can be reached by
the corresponding operators involved in the squared matrix
elements

Bl&)[((pvk
Ji MM
iy T Dy(ri)
x (Mg Z‘L’/ PO =S5 TiM) 2.
j=1 My
(16)
Here, JiM;) (JiMy)) is the initial (final) nuclear state

with spin J; (J;) and spin-projection M; (My). J; = 2J; + 1,
Dy(r)=g-1(r)/~/4m and

Oy =1, Os=0;, Op=0j Py, (17)

The effective coupling constants in Eq. (14) are

) Pz,
CV = 8v((1 )(1 + (zmp)2>
) P
Ca = Gi(qH) + (gv(ghH + gM<q2>>2m
Cr = (2m 7 (gﬁ(q )= 28(@)gpa) — 2y
+<g’;>2<q2>:;—; — (gv(gH + gM<q2>>2>. (18)
"

Here, the dimensionless pseudoscalar form factor is
2mpmy,

do(q?) = mugp(q?) = e 2 ¢a(g?). The coefficients Cy 4 p
only weakly depend on “the neutrino momentum Py, For a
sake of simplicity they are not included in the calculation of
Bgk but are evaluated for some average neutrino momentum
Pv.

Often used [23-26] alternative reduction of the nucleon
current to its nonrelativistic form is based on a renormaliza-
tion procedure of nucleon current due to strong interaction of
Ref. [22]. This, so-called Fujii-Primakoftf form, of the con-
stants Cy, C4, and Cp in Eq. (14) is

Cv=Gy. Ca=G3,

Pv
2my, )

Ga = —8a(q>) — (gv(@*) + gM(qz))zp

Cp = G3 —2GsGp,  (19)

with

Gy

8v((12)(

P

Gp

(6h(") + 8" = 8v(q") + gn (@)1~ (20)
P
These two forms of the constants Cy, C4, and Cp differ in the
recoil order terms p, /(2m,).
In order to make the analogy to the evaluation of the Ov 3
matrix element more explicit we introduce Fermi, Gamow-
Teller, and tensor squared matrix elements,

Boy = Bov. Bagr = Bea. Bor = 3Bep — Boa. (21)

Their explicit form will be given in Sec. IIF. The muon
capture rate then takes the form

Ggm?)’
F =, (Grm)”

() (C* (g‘“ff)2

where the (g5 T)2 appears as a scale parameter. The constants
Cp. Cy, and Cgy are given by

+ CorBocr + Cr Bd:[), (22)

1 Cp
_ (2 —
Cf‘—Gv= C[_(ge—ff)Z?"
1 Cp
CG]‘ = %’i‘—ff)z (CA + T) (23)
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TABLE 1. The coefficients Cr, Csr, and Cr [see Eq. (23)]
calculated within the present approach [see Eq. (18)] and in the
Fujii-Primakoff approximation [see Eq. (19)].

E, present approach Fujii-Primakoff
MeV) &' Cp Cer Cr Cr Cer Cr
75 0.80 0976 0.797 -0.241 1.054 1.165 -0.333
1.00 0976 0.821 —0.197 1.054 1.091 -0.296
1.27 0976 0.847 —-0.158 1.054 1.030 -0.265
85 0.80 0965 0.805 -0.239 1.052 1203 -0.359
1.00 0965 0.823 -0.197 1.052 1.117 -0.317
1.27 0965 0.844 —0.159 1.052 1.048 -0.282
95 0.80 0955 0.818 -0.234 1.051 1241 -0.385
1.00 0955 0.828 —-0.195 1.051 1.145 -0.337
1.27 0955 0.844 -0.159 1.051 1.067 -0.298

In Table I we compare the Cp, Cgy, and Cy coefficients
introduced in the present approach with those governing the
Fujii-Primakoff approach. We note that the coefficients Cg
(K = F, GT, T) are less dependent on the neutrino energy E,
than the coefficients Cy, C4, and Cp, and only slightly depen-
dent on the parameter g°,

In this paper we use two alternative ways to include the
bound muon wave function in the muon capture rate for-
mula. Traditionally, in order to simplify the calculation, it
is assumed that the muon wave function and nuclear matrix
elements can be separated. This is done by averaging muonic
wave function over the nuclear charge density distributions (to
be determined and discussed later). We have then

(®2)
Bog = m? Bg. (24)
"

Thus, while the Bgx depends on the bound muon wave func-

tion &, in the case of the factorization that dependence is
(P2 "
3“) . The quantities Bk thus are pure

separated into the factor

m
nuclear quantities, indepenaent of the muon wave function &.
However, as we explain further in Sec. II C, it is possible
to include the bound muon wave function g_;(r) directly,
without factorization. We will show later that these two alter-
natives lead to essentially equivalent resulting capture rates.
The final numerical results on the muon capture rate are
therefore presented with both the nonfactorization and the tra-
ditional way with factorization. Comparison will be presented
with the properly normalized Bgk:
By = e B (25)
K < ¢2 > K -

m

C. Integration with the muon wave function
In all previous theoretical evaluations of the muon capture
rate the factorization in Eq. (24) was used:

2\2 &2
S (Ggm,)” (®7)
o on mZ

off\2 By
x (83 <Cr@4—§)z +CorBar + C»I-By). (26)

However, if the quatities Bg are replaced by By (K =F,GT,
and T') the capture rate without factorization of muon wave
function is obtained.

The squared nuclear matrix elements By gy ¢ in Eq. (26)
can be expressed in general as

Br = (0] Yttt F(rj.m) 0f),
jk
Bory = (0 > 1t FO (xp. v 0. 0%) 0F). (27)
jk

Let us define the distribution functions Dg(r;). and
Dg(ri.rn)(K=F,GT.and T) as

D[.‘(F]) = (OlJr Z‘L’;T:S(l’] — l’/‘)]:[;(l‘j.’ I‘k) Oz+>

jk
Der.y(r) = (0} Y 17 5t8(r — 1))
jk
x FOUT (x5, vx., 0. 0x) OF), (28)
as well as
Dy (ry. 12)
= (0f Z T T 8(r — rj)8(ry — r)FE(xg, 1) 0FF)
jk
Dgy.1(ry. 12)

=0} Y 1t 80 — (=)
jk

x FOU 1 (v, . 0. 0%) OFF) (29)

Obviously, the D functions are normalized as

o0
By — / D (r)dn.
0

o0
By :/ D (r1, ry)dridrs. (30)
0

Once the Dk (ry. r>) have been calculated one can avoid the
factorization of the (averaged) muon wave function and of the
sum of squared nuclear matrix elements. The relevant quantity
is then

11 o
oy 8-1(r)g-1(r)Dk(r. r2)dridry - (31)
T }’llﬂ 0
instead of ®2/m; By in the Eq. (22). We will show below
that the two alternative approaches of treating the bound muon
wave function lead to very similar muon capture rates.

D. Separation of the muon wave function

For medium and heavy nuclei considered in the present
work the relativistic effects on the bound muon are essential,
thus the muon wave function is obtained by solving the Dirac
equation. In it the nuclear potential is based on the Fermi-type
charge distribution, with parameters specified in Table II.

The wave function of the bound x = —1 muon is given in
Eq. (11). The effect of the nuclear charge distribution on the
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TABLE II. The effective charge Z.; of Ref. [17] is shown in col. 2 and Z.; determined in the present work in col. 9. The half-way radius
Crms 18 n col. 6. The Fermi distribution p(r) = 1/{1 + exp[(r — ¢ms)/a]} is chosen such that the mean square radius (r2) has its experimental
value [28] shown in col. 5; the surface thickness a = 0.545 fm is used. The muon wave function (@i) / mi averaged over the nuclear charge

distribution p(r) is shown in col. 7 using g* (1) + fZ(r) and only g* ,(r) in col. 8. &, in col 4 is the binding energy of the muon in the x = —1
state.
Zet £ (r?) Coms p(r) = po{l +expl(r — cams)/al}™
Elem. Ref. [17] Nucl. [MeV] [fm] [fm] (fIDi)g/mf4 (@i)z/mi Zet
Ti 17.38 BTi 1.268 3.592 3.828 5.449 x 107* 5.461 x 107 17.654
Se 23.24 1°Se 2.760 4.140 4.659 1.087 x 1073 1.092 x 1073 23.405
Kr 82Kr 3.046 4.192 4.737 1.177 x 1073 1.183 x 1073 24.223
Mo 26.37 SMo 3.939 4.385 5.019 1.407 x 1073 1.415 % 1073 26.328
Ru IXRu 4.247 4.453 5.119 1.470 x 1073 1.480 x 1072 26.935
Cd 28.20 LWcd 4.877 4.577 5.297 1.588 x 1072 1.600 x 1073 28.069
Sn 28.64 L6Sn 5.203 4.625 5.367 1.647 x 1073 1.660 x 1073 28.621
Te 29.03 24Te 5.513 4718 5.500 1.673 x 1073 1.686 x 1072 29.017
Xe 28Xe 5.838 4.777 5.585 1.715 x 1073 1.729 x 1073 29.477
30Xe 5.836 4.782 5.591 1.712 x 1073 1.726 x 1073 29.464
Ba 29.99 34Ba 6.168 4.832 5.663 1.755 x 1073 1.771 x 1073 29.922
6Ba 6.167 4.833 5.664 1.754 x 1073 1.770 x 1073 29.919
Sm 31.01 120Sm 7.140 5.039 5.955 1.819 x 1073 1.837 x 1073 30.978

muon, relevant for the muon capture, can be described by the
overlap

*© 8271(”)
2\ _ 2
<¢M>g = /0 Wp(r)r dr 32)
or, essentially equivalently
00 2
@i)z — / wp(”ﬂdﬁ (33)
0 47

The nuclear charge distribution p(r) =~ 1/{1 4+ exp[(r —
Crms)/a]} s normalized to Z, the proton number.

In Fig. 1 we show examples of the radial muon wave func-
tions g_i(r) and f_;(r). Since the small component f_;(r)
vanishes at the origin its effect on the muon capture is negli-
gible.

0.06 Errrrrrrr e e P P SESSNN e .
; . "se ;
0.05E RN - "Ru
« : ]
o = E 3
= : ]
B E e
< : 3
= E 3
N E 3
= E =
N F |
= : E
0.01F =
o mie—_. h=f =~ 3
Fo et s A T T T e P e e 3

0 2 8 10 12 14

1 [fm]

FIG. 1. The radial dependence of the bound muon wave func-
tions g_;(r) and f_,(r) for "®Se, '®Ru, and **Ba.

Traditionally [27] the quantity (®7) is replaced by the
empirical parameter Z.¢ using

(3

3
ny,

4 7TZ<¢f¢)
eff:?

o3
TZ

V4 Z

Zk (34)

m
Using (®2), instead of (®2), makes little difference as seen
in Table II. Also, we tested that ZZ; is insensitive to variations
of ¢ms. By changing it by 1% changes ZZ; also by approxi-
mately the same amount. Replacing the Fermi distribution by
the sharp surface nuclear charge distribution also changes Z;
by only a small amount.

E. Evaluation of the matrix elements through a product of two
one-body matrix elements

When considering muon capture on even-even nuclei with
the O ground state (all ground states relevant for double-S
decays are 0" ground states) we can simplify the evaluation
of the quantities By 4_p (without the factor CIJi /’”Z) in Eq. (14)
tofind (/ =V, A, P)

EL .
B =4r) W BY(JF. pvy)- (35)
woH
where p,, =E,, =E, +E; — EJ;r and
2
By (U7 pu) = Y] 07 (pu) | p) TUF)
pn
By(JT . py)
2
= > D>l 0L PTW(IT)  (36)

L=J.J£1 pn
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with
Oy (p) =" ji(pur)Yim ().
O (p) = it jL(pur{YL(R,) ® o1} um.

o RT=1
or,(p) =1 1(‘/2J+ ] Ji—1(pur)

x C1% 10101Y-1(2,) ® 01}ym

2J 43,
REYES Jre1(Per)CI10101Yr11(R,) ® Ul}/M)-
(37)
and
1

To(J7) = ——— (T | [¢]E,)s | OF).

o (J7) T © | e, cpls | 0F7)
= Uyl X,y + UpUnYy. (38)

The one-body operators c;C',, (the tilde denotes the time-
reversed state) appear in the reduced matrix elements. In them,
¢ creates a neutron, and ¢, annihilates a proton. Such matrix
elements in Eq. (38) depend on the BCS coefficients u;. v,
(r = p.n) and on the QRPA vectors X}, and Y,,,. The nu-
clear structure information resides in these quantities.

F. Calculation through two-body matrix elements

There is an alternative and equivalent way to evaluate the
squared matrix elements By gy y K = [Fermi (F), Gamow-
Teller (GT ), and tensor (T)]. It can be expressed as sums over
the final states, labeled by their angular momentum and parity
J™ and indices k in the QRPA as follows (K = F, GT ,and T):

EZ
— Vk
Be=3 ) %
J,?,J pnp'n’ 12

X(_])in+/,,/+J+J 27 + 1 /:p {.n J ]

Jn Iy j ]

x(n(1), p'2): T | Ok(py) | p(1). n'(2): T)

) (O [ [y L IIIIE | Ly Tl 1 0f). (39)

As in Eq. (35) the reduced matrix elements of the one-body
operators c;C'n depend on the BCS coefficients u;. v; and on
the QRPA vectors.

The two-body operators Oy gy are given by

Or(py) jo(puriz)
<Ogr(py) =11 « —jo(puri)on . (40)
Or(pv) | j2(puri2) Sia

Their matrix elements depend on the relative distance ry;.
In the above derivation we used

ipyTg ,—I] <r-dQV .
/e”" ke~ 'Py /H = jo(purkj),

aQ,

/ (0k  Pu)(oj - Po)eP e P e

1
= 5[io<pvrk,~>ak,~ — a(pr)Ski ()] (41

with

(Tk]':(fk~0','

Sk]'(l'k]')ZSO'k'f‘k,'O’,"f‘k/‘—O'k'O’j. (42)

Note that the squared matrix elements By, Bgy, and By are
analogous to the matrix elements associated with the second-
order process contributing to electron scattering on nuclei.
These matrix elements contain a summation over pairs of
nucleons inside the nucleus with relative distance r;;.

III. CHOICE OF INPUT PARAMETERS AND SENSITIVITY
OF THE RESULTS

In this section we discuss the choice of empirical input
parameters and the sensitivity of calculated rates to them. The
first choice to be made are the nuclear single-particle energies
and the corresponding wave functions. The eigenvalues of
the Coulomb-corrected Woods-Saxon potential with Bertsch
parametrization [29] are used. In order to test the dependence
on the single-particle basis we performed our calculation with
two choices of single-nucleon basis. The small basis has 11
levels (oscillator shells N = 0-3 plus the g9/» from N = 4)
for **Ti, 16 levels (oscillator shells N = 04 plus the /111>
from N = 5) for "°Se and *Kr, 18 levels (oscillator shells
N = 0-4 plus the D3/2: f7/2, and h]]/z from N = 5) for %Mo
and '"Ru, 21 levels (oscillator shells N = 0-5) for ''°Cd, 22
levels (oscillator shells N = 0-5 plus the ij3, from N = 6)
for '°Sn, *Te, 2Xe, 13%Xe, **Ba, **Ba, and "*°Ba, 23
levels (oscillator shells N = 0-5 plus the go/> and ij3/, from
N = 6) for °°Sm. All single-particle states in the small basis
are bound.

The large model space contains 28 levels (oscillator shells
N = 0-6) for **Ti, "Se, ¥Kr, **Mo, '“Ru, ''°Cd, '"°Sn and
35 levels (oscillator shells N = 0-7 without ji3,2 from N = 7)
for '1°Sn, '*Te, *%Xe. *°Xe, **Ba, '*°*Ba, and '*’Sm. Some
of the neutron states in the large basis are quasibound or truly
unbound.

Our results suggest that the smaller basis is inadequate
since adding additional states changes the capture rate signif-
icantly. To test the convergence of the larger single-particle
space we checked that subtracting few upper levels makes
only small difference.

In QRPA we treat the muon capture as the creation of
the correlated proton-hole—neutron-particle states. Experi-
mentally only a fraction of the final states remains bound in
the final odd-odd (Z — 1. N + 1) nucleus, while most final
states involve the emission of one or more neutrons. It is
therefore clear that highly excited states in the final nucleus
are present. Hence, it is important to include in the calculation
as many neutron single-particle states above the Fermi level
as possible. On the other hand, the quasibound or unbound
states included in the large single-particle space in this work
do not have the correct asymptotic behavior. It is, therefore,
likely that the optimal single-particle space is between the
boundaries developed in this work.
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FIG. 2. The muon capture rate of "°Se as function of constants
&> &y and gh=0 used to renormalize, respectively, the particle-
hole, isovector and isoscalar channels of particle-particle interaction
of the nuclear Hamiltonian. The small model space and factorization
of muon wave function and nuclear matrix elements is assumed. The
positions of the black points indicate the fixed values of these param-
eters in general calculation of the capture rate, namely g,;, = 1.000,
gﬁ;l = 1.067, and g;io = 0.833.

The residual nuclear interaction enters the QRPA equation
of motion. In this work we use the Brueckner G-matrix el-
ements [30] calculated with a realistic one-boson-exchange
Argonne V18 potential [31].

The pairing interaction has been included in the standard
way, i.e., the coupling constant g, of the 7 =1,J = 0 in-
teraction was slightly renormalized in order to reproduce the
experimental pairing gaps. In addition, it iS customary in the
application of the QRPA method in the evaluation of the S8
nuclear matrix elements to adjust the particle-hole coupling
parameter g,;, as well as the two isospin components of the
particle-particle coupling parameter gf,'p (see Refs. [32,33]).

We show an example how the capture rate depends on
the renormalized parameters g,, and gf,'p in Fig. 2. Over the
whole range of realistic g values the capture rate changes by
less than 10%, with the exception of the known singularity
for gﬁ,fo > 1. Our calculation use safely smaller values of

gl;o. For each model space we fixed values of these coupling
constants by the condition of the partial restoration of SU(4)
symmetry applied for a corresponding double-8 decay transi-
tions, as described in Ref. [33].

In order to compare the results with and without factoriza-
tion of the muon wave function, as well as the results with
the small and large single-particle model space, we show in
Table III the calculated squared nuclear matrix elements By
and By [see Eq. (25) for the definition] for the 13 final nu-
clei participating in the double-p decay transitions. Typically,
the Gamow-Teller matrix elements are dominant. However,
the Fermi and Tensor matrix elements give a non-negligible
contributions. Note that the ratio Bg; /By is on average about
2.8 £ 0.1, close to the value Bgy/Byr = 3 corresponding to
the pure S = O state.

TABLE III. The squared matrix elements Bx (K = F, GT, and
T) for daughter isotopes of the double-g decay transitions. Bgx and
Bk correspond to cases with and without factorization of the muon
wave function. Small (s) and large (1) single-particle model spaces
are considered.

BK EK
Nucl. m.s. F GT T F GT T
BT S 2.010 5.715 0.460 1.845 5.253 0433
| 2.379 7.308 1.239 2.230 6.829 1.269
Se S 3.140 8.697 1.098 2.802 7.735 1.005
| 3.620 10.37 1.948 3.336 9.473 1.931
22Kr S 2.938 8.356 1.107 2.614 7.385 1.001
| 3.566 10.303 2.060 3.303 9.426 2.025
%Mo S 3.514 9.493 1.098 3.171 8.478 1.008
| 4.249 12.301 2.289 3.908 11.084 2.237
100RY S 3.627 9.175 1.011 3.246 8.169 0.923
| 4.485 12.765 2.290 4.091 11.405 2.229
10cq S 4.028 11.593 1.845 3.629 10.175 1.669
| 4.703 13.169 2.426 4273 11.706 2.312
1165 S 4.462 11.734 1.631 3.892 10.100 1.474
| 4.733 12.990 2.399 4275 11.464 2.258
124Te S 3.544 9.925 1.426 3.126 8.627 1.294
| 3.966 11.407 2.351 3.692 10.299 2.331
128Xe S 3.611 10.179 1.462 3.170 8.818 1.321
| 4.193 12.084 2.455 3.876 10.864 2.414
130%e S 3.277 9.452 1415 2.906 8.229 1.282
| 3.877 11.322 2.380 3.634 10.251 2.349
134Ba S 3.373 9.796 1.432 2.953 8.429 1.280
| 4.152 12.153 2.472 3.842 10.891 2414
136Ba S 3.065 9.170 1415 2.704 7.907 1.265
| 3.866 11.505 2.449 3.617 10.357 2.394
30Sm s 3.575 10.057 1.561 3.247 8.964 1.427
| 4.627 13.317 2.803 4383 12.191 2.772

The squared matrix elements using the large model space
are about 10-20 % larger in comparison with those for the
small model space. The capture rate with and without fac-
torization of the muon wave function can be obtained by
inserting Bx and By into Eq. (22), respectively. Thus, a dif-
ference of these squared matrix elements quantifies the effect
of the factorization treatment. It is not very significant, but is
increasing with Z of the nucleus. The entries weakly depend
on the ¢ value. They were evaluated with the g that repro-
duces the empirical value of the muon capture rate.

In Table IV we show the contributions of individual J*
multipoles to the matrix elements and the total capture rate
for °Se and '*°Ba. The entries were evaluated without the
factorization of the muon wave function, using the small and
large single-particle model spaces. The present way of choos-
ing the nonrelativistic reduction of the weak Hamiltonian was
used. In both cases the 17,27, 1, and 2 multipoles account
for 70-80 % of the capture rate.

IV. RESULTS

As described above we consider several variants when
evaluating the muon capture rate. Some of them are prefer-
able, but we comment on the others as well.
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TABLE IV. The multipole decomposition of the matrix elements §K (K=V.A.P.F.GT,and T) [see Egs. (39) or (35)] and muon capture
rate I s for Se and '*Ba evaluated in the small (s) and large (1) single-particle model spaces.

Nucl. ms I o* 1+ 2+ 3+ 4+ 0" 1- 2- 3~ 4= 5= all
Bx(J™)

%Se s VF 0306 0000 0561 0000 0008 0000 0000 1.808 0.000 0.119 0.000 0.001 2.802
A,GT 0000 1.125 0439 0943 0.007 0.013 0983 1773 2.156 0.106 0.187  0.001 7.735

P 0000 0.504 0.000 0410 0.000 0.006 0983 0000 0926 0000 0.084 0.000 2914

T 0000 0387 -0439 0286 -0.007 0005 1965 —1.773 0.622 —0.105 0.065 —0.001  1.005

1 VE 0570 0000 0711 0.000 0011 0.000 0000 1901 0000 0.143 0.000 0001 3.336
A,GT 0.000 2.091  0.635 1.093 0011 0019 1.085 1700 2472  0.131 0233 0002 9.473

P 0000 1012 0000 0481  0.000 0009 1.085 0000 1.108 0.000 0.106 0.000 3.801

T 0000 0946 —-0.635 0351 -0.011 0007 2.169 —1.700 0.851 —0.131 0.083 —0.001 1.931

1—‘pres (J+)/Fpres
s 0.019 0.116  0.091 0.098 0.0 0.001 0071 0338 0224 0021 0.019 0.000 1.000
1 0.035 0.167 0.110 0.090 0.002 0.002 0.059 0294 0201 0022 0.019 0.000 1.000
By (J™

Ba s V,F 0753 0.000 0.859 0000 0022 0.000 0.000 0933 0.000 0.135 0.000 0.002 2.704
A,GT 0000 2354 0.684 1012 0019 0028 1.018 1428 1.007 0.134 0219 0.002 7.907

P 0000 1.045 0.000 0448 0.000 0017 1.018 0000 0434 0000 0.098 0.000 3.057

T 0000 0780 —0.684 0333 -0.019 0010 2036 —1428 0296 -0.134 0.075 -0.002 1.265

1 VF 1.092 0000 1.023 0000 0027 0.000 0.000 1277 0000 0.195 0.000 0.002 3.617
A,GT 0.000 3.465 0898 1.154 0.026 0038 1.192 1530 1.561  0.183 0304 0.002 10.357

P 0000 1676 0.000 0517 0000 0017 1.192 0000 0709 0.000 0.137 0.000 4.250

T 0000 1563 -0.898 0398 -0.026 0014 2385 —1.530 0.565 —0.183 0.106 —0.002 2.394

1—‘pres (J+)/Fpres
s 0.048 0239  0.141 0.103 0.004 0.003 0.072 0240 0.103 0025 0.022 0.000 1.000
1 0.070 0245  0.149 0.084  0.004 0.003 0056 0225 0.113 0030 0.022 0.000 1.000

First, two variants, small and large, of the single-particle
level set are considered. The larger one seems to be prefer-
able. However, note the issue of the unbound neutron states
discussed in Sec. III. As seen in the Table III the calculated
capture rates using the small single-particle space are typically
~20% smaller than those in the large single-particle space.
Second, the bound muon wave function can be included in
the factorized form, as the ZX: factor, or without factoriza-
tion. Again, we consider the variant without factorization
preferable. The corresponding capture rates are ~10% smaller
than those evaluated with factorization. We also verified that
the two prescriptions, described in Secs. IIE and ITF lead
to the same results. This is an important test of our pro-
cedures and codes. Finally, there are two ways of reducing
the weak Hamiltonian to its nonrelativistic form. As follows
from Table I and the results in this section using the present,
and preferable, prescription results in capture rates that are
(20-30)% smaller than those based on the traditional Fujii-
Primakoff prescription.

Let us discuss first briefly the energy and multipolarity
distributions in the final (Z — 1. N + 1) odd-odd final nucleus.
Note that some, actually most, states in the final nucleus are
unbound and lead eventually to the emission of one or more
neutrons.

The energy distributions of the final states in muon capture
on "°Se and '*°Ba are shown in Figs. 3 and 4. The results
with small and larger single-particle spaces are shown. The
discrete final states are replaced with the Gaussian peaks

of 100 keV width. With the larger single-particle space not
only additional higher excitation energy states are populated,
but the distribution among the lower-energy states are also
noticeably changed. The fraction of bound states below the
neutron emission thresholds of 7.33 MeV in "°As is 0.32 for
the large single-particle space and 0.36 for the small one. In
136Cs the neutron emission threshold is 6.83 MeV, and the

FIG. 3. Energy spectra of muon capture rate on "°Se. Results for
the small (sms, 22 lev.) and the large (Ims, 36 lev.) single nucleon
model spaces are presented.
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FIG. 4. Energy spectra of muon capture rate on '**Ba. Results
for the small (sms, 22 lev.) and the large (Ims, 36 lev.) single-nucleon
model spaces are presented.

corresponding bound state fractions are 0.17 for the large
space and 0.21 for the small one.

In Fig. 5 the average excitation energies associated with
the largest GT matrix elements are shown for all considered
nuclei. The shift between the small and large single-particle
spaces, as well as the considerable shift between the evalu-
ation with and without the factorization of the bound muon
wave function are clearly visible. However, the pattern of the
average excitation energy as a function of the mass number A
is very similar in all four variants.

In Figs. 6 and 7 the same energy spectra as in Figs. 3
and 4 are shown, but separated into different multipoles. Only
the large single-particle model space is used. hence the scale
difference. As is also seen in Table IV the 1=, 27, 1+, and 2+
multipoles dominate, each accounting for roughly comparable
contributions.

20.0 e e ——————— r———T———— ——
18.0F E

> : ]
] F ]
2 16.0 a 3
Ak ]
G 140F 3
84| d E
V F ]
[ e—enf sms ]

120F w—anf, Ims E

F e wf sms 3

' a—awf, Ims E

10.0 rTTTTTTTI FTTTTTTTI ITTTTT NI [TTYTTIT NTTRTYITI FATYTTTIT ITTTTIITI (TTTTTTITI ITRTTIITI FATYITIETI NTRRTNT FITNIITE:

40 50 60 70 80 90 100 110 120 130 140 150 160

A

FIG. 5. The average energies of excited state associated with
the Gamow-Teller matrix elements Bgt and §¢GT. nf (wf) denotes
case without (with) factorization of muon wave function and nuclear
matrix element. sms (Ims) stands for small (large) model space
calculation.
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FIG. 6. Multipole contributions to the energy spectra of muon
capture rate on °Se The same notation as in Fig. 3 is assumed. The
large single-particle space is considered.

As mentioned in Sec. I, there seems to be a discrepancy
between the calculated muon capture rates based on the QRPA
method in the older Refs. [14,16] where none, or only mild,
quenching of g4 was required and more recent Ref. [18]
where rather substantial quenching is indicated. To address
this discrepancy explicitly using the present method of calcu-
lation, we compare in Table V the calculated rates in Ref. [18]
and here, with both ways of choosing the constants in the
nonrelativistic Hamiltonian. The experimental capture rates
I'gp. empirically adjusted for the individual isotopes, are also
shown. Our results in columns 4 and 5 use, for this purpose
only, the same g‘;ff = (0.8 as in Table II of Ref. [18]. One can
see that the muon capture rates in Ref. [18] are 2-3 times
faster that in our work. At the same time. obviously, the
I'orpa Of Ref. [18] are substantially larger than experiment,
thus requiring even smaller gjff. Our results are smaller than
the experiment, thus requiring g5 > 0.8. The origin of the
discrepancy is unknown at the present time.
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FIG. 7. Multipole contributions to the energy spectra of muon
capture rate of '**Ba. The same notation as in Fig. 4 is assumed. The
large single-particle space is considered.
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TABLE V. Comparison of the experimental muon capture rates
['gp, based on the empirical Goulard-Primakoft [5] formula with
the rate T'grpa calculated in Ref. [18] and those evaluated in this
work when using the present I'p.s and the Fujii-Primakoff I'zp
parametrizations. Both I'js and I'pp were evaluated using the large
single-particle model space. All calculations use the same g¢T = 0.8,

and the rates are in units of 10°/s.

nucleus r(;p FQRPA Fpres FFP
76Se 7.00 16.4 3.50 4.66
8 Kr 7.22 16.5 3.76 5.00
%Mo 9.90 20.4 5.32 7.06
10RY 11.2 16.7 5.77 7.65
1165 12.7 15.7 6.61 8.73
128Xe 124 21.2 6.37 8.39
130xe 11.1 23.6 597 7.87
136Ba 11.1 21.1 7.61 10.0

To see the differences of the results here and in Ref. [18]
more clearly we compare in Fig. 8 the results of both works
for ®Se and '*°Ba used as examples. The differences in
both the energy and multipole distributions are quite notice-
able. It appears that the present approach leads to somewhat
less strength at lower excitation energy and correspondingly
more strength at higher energies compared to the results of
Ref. [18].

Note, that the experimental data are mostly for elements,
not for individual isotopes. Thus, instead of using them di-
rectly, we use for comparison with calculations the so-called
Goulard-Primakoff empirical formula [5] that describes suffi-
ciently well the muon capture rate for all nuclei with given A
and Z,

Fgg(A-, Z)= Z4ffG1|:] + Gzi - G3A — 2
¢ 2Z 2Z
—G4(A_Z+A_2Z>i|- 43)
2A 8AZ ’

where G; =261, G, = —0.040. G3 = —0.26, G4 =3.24
(TRIUMF data fit). While the agreement of the Goulard-
Primakoff empirical formula with the few measured capture
rates for individual isotopes is not perfect, the discrepancies
never exceed ~10%.

Our main results are shown in Fig. 9 where the experimen-
tal total capture rates are compared with the calculated rates
for g5 = 1.27 and 1.0, and for all final nuclei participating in
the double-B decay. Clearly, for these results, obtained with
the large single-particle model space, the experimental data
are bracketed by these two ¢ values.

More details are shown in Table VI. Here the results with
and without muon wave function factorization are shown for
both single-particle spaces and for ¢5f = 0.8, 1.0, and 1.27.
The experimental data for the natural elements from Ref. [3]
and for separated isotopes from Ref. [13] are also shown for
comparison.

Finally, in Fig. 10 we display the values of the effec-
tive axial current coupling constant gf}ff needed to obtain the
empirical total muon capture rate as given by the Goulard-
Primakoff formula. It is encouraging to note that for the

76,

Se 1MBa

LI e

0 5 10 15 20 25 5 10 15 20 25 30

E,. [MeV] E,. [MeV]

FIG. 8. Multipole and energy distributions of the muon capture
rate of "*Se and '*°Ba expressed as fractions of the total capture rate.
In the top panels are our results, evaluated using the large single-
particle model space. In the bottom panels are the results of Ref. [18].
The energy scale refers to the excitation energy in the final odd-odd
nuclei.

preferred variant with the large single-particle space and
present prescription of reducing the weak Hamiltonian to its
nonrelativistic form (blue line) no quenching at all is required.
But given the approximations involved this level of agreement
is perhaps somewhat accidental. However, the figure shows
clearly that no matter what gj‘:f > 1.0 is required to reproduce
the experimental muon capture rates.

V. CONCLUSIONS

The study of muon capture on nuclei is an important test
of the ability of nuclear models to describe this semileptonic
weak process. Muon capture is characterized by the relatively

16§
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48
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FIG. 9. A comparison of experimental and theoretical total cap-
ture rates for the final nuclei participating in the double-g decay.
Measurements were performed for a for a given isotope in Ref. [13]
and for elements with the natural abundance of isotopes in Ref. [3].
Theoretical results were obtained with large model space for g4 =
1.00 and 1.27.
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TABLE VI. The calculated muon capture rates for the final nuclei
participating in double-B decay. The rates are evaluated for g¢f
values 0.80, 1.00, and 1.27, as indicated. They are obtained with the
present approach with (with fact.) and without (no fact.) factorization
of muon wave functions. The small (s) and large (1) single-particle
level spaces are considered. I'cy,. is the experimental total capture
rate for the stable elements with natural abundance of isotopes [3]
and for a given isotope [13]. All values of capture rates are in units
109571,

I‘pres
with fact. no fact.
nuclide Cexp. isotope g s 1 s 1

nalTq 2.590£0.012 ®Ti  0.80 1.08 1.32 0.99 1.23

2.60 £0.04 1.00 147 1.81 135 1.69
BTy 2.3234+0.015 1.27 2.15 2.67 197 249
nige 5,681 +0.037 %Se  0.80 3.30 3.83 294 3.50
5.70 £0.05 1.00 447 522 398 4.77
%Se  6.300 £ 0.004 1.27 6.53 7.66 5.81 7.00

£Kr  6.576+0.017 ®Kr  0.80 340 4.10 3.01 3.76
1.00 4.61 560 4.08 5.12
1.27 6.76 822 596 7.52

Mo 9.2340.07 %Mo 0.80 4.73 5.87 4.24 5.32
9.61440.15 1.00 6.39 8.01 5.72 7.24
9.09+0.18 1.27 930 11.8 832 10.6

Ru 10Ru  0.80 4.92 643 4.38 5.77

1.00 6.60 874 5.88 7.84
1.27 954 12.8 850 11.5

nted  10.63+£0.11 °cd  0.80 6.31 7.20 5.58 6.44
10.61+0.18 1.00 8.59 9.79 7.59 8.74

116¢cq 8.86+£0.15 1.27 126 143 11.1 128

ntgn 10.704+0.14 1165y 0.80 690 743 5.96 6.61
10.444+0.18 1.00 9.30 10.1 8.03 8.94
10.5+04 1.27 135 147 11.7 13.1

nal e 9.27+0.10 24Te  0.80 5.76 647 5.03 5.89
9.06+0.11 1.00 7.83 8.83 6.83 8.02

1.27 115 13.0 9.99 11.8

Xe 2Xe 0.80 6.05 7.03 526 637

1.00 822 9.60 7.14 8.67
1.27 120 141 105 127
130%e  0.80 545 6.53 4.86 5.97
1.00 7.56 893 6.61 8.14
1.27 11.1 132 9.70 12.0

"Ba 10.18+£0.10 13Ba  0.80 5.88 7.19 5.09 6.50
9.9440.16 1.00 8.03 9.84 6.93 8.87

127 11.8 145 102 13.0

136Ba  0.80 543 8.11 4.72 6.14

1.00 743 10.6 6.45 839

127 11.0 146 9.48 124

"tSm 12.22+0.17 30Sm  0.80 6.34 823 5.69 7.61
1§m  11.754+0.07 1.00 8.62 112 7.72 104

1.27 12.6 165 113 152

large momentum transfer of the order of muon mass, and
hence involves many multipolarities and a wide range of
excitation energies. The quasiparticle random phase approx-
imation is a method designed to describe collective nuclear
effects. Thus, as a test of the method, the total muon capture
rate is, we believe, a characteristic that should be considered

1.6 g AR L L L L] L L L L T
E e—e present (sms)
E =—a present (Ims) J
15 4—o FP (sms) E
E 4—a FP (Ims)
14F

| d
40 50 60 70 80 90 100 110 120 130 140 150 160

FIG. 10. Effective axial-vector coupling constant g5 needed to

reproduce the empirical Goulard and Primakoff muon capture rate
[gp. Calculations were performed for the same nuclei as in Fig. 9.
Results shown are for the present and Fujii-Primakotf approaches of
reducing the weak Hamiltonian to its nonrelativistic form. Both the
small (sms) and large (Ims) single-particle spaces were used.

first, in preference to the description of the individual final
states that each represent only a small fraction of the total
capture rate.

In this work we show that the QRPA method is capable to
describe the muon capture rate in agreement with experiment
in a many nuclei, spanning a large interval of Z and A. To
reach such a conclusion we used a variety of procedures.
Some of them have been used before, some others are new.
It is important to note that the resulting calculated capture
rates are relatively close to each other, independently of the
variant employed. This shows that they are relatively stable.
It is also an important test of our procedures, since many of
the variants require separate, and seemingly quite different,
computer codes.

In particular, our aim is to test whether the idea of the axial
current quenching is needed to describe the muon capture.
If it would be the case, we would expect that the calculated
capture rates would exceed the experimental ones by an ap-
proximately constant factor for a large group of nuclei. Our
results show that, at least for the QRPA method as described
here, this is not the case. We describe the capture rates reason-
ably well with the standard value of g4 = 1.27. There is no
necessity of any quenching. More details, such as the fraction
leading to the bound states in the (Z — 1, N + 1) nucleus, or
the branching ratios for the individual bound states, might be
also eventually used as additional tests of the model.
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