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SUMMARY

We consider evaluating new or more accurately measured predictive biomarkers for treatment selection
based on a previous clinical trial involving standard biomarkers. Instead of rerunning the clinical trial
with the new biomarkers, we propose a more efficient approach which requires only either conducting a
reproducibility study in which the new biomarkers and standard biomarkers are both measured on a set
of patient samples, or adopting replicated measures of the error-contaminated standard biomarkers in the
original study. This approach is easier to conduct and much less expensive than studies that require new
samples from patients randomized to the intervention. In addition, it makes it possible to perform the
estimation of the clinical performance quickly, since there will be no requirement to wait for events to
occur as would be the case with prospective validation. The treatment selection is assessed via a working
model, but the proposed estimator of the mean restricted lifetime is valid even if the working model is
misspecified. The proposed approach is assessed through simulation studies and applied to a cancer study.
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1. INTRODUCTION

A biomarker used to predict the response to a treatment is called a predictive biomarker. For example,
patients with colon cancer can be treated by surgery alone or surgery plus chemotherapy. Surgery alone is
less expensive and has fewer side effects than surgery plus chemotherapy, but it may be less effective as
well, at least for some patients. For an individual patient, it is desirable to identify whether or not the patient
will benefit more from the extra chemotherapy based on a biomarker or a set of biomarkers. A possible
useful biomarker in this context is the c-myc gene, which is over-expressed in approximately 70 percent of
human colonic tumors. Based on a study conducted by the Eastern Cooperative Oncology Group (ECOG),
Augenlicht and others (1997) suggested that the c-myc gene may be of clinically prognostic importance
in patients with colon cancer. Using a subset of the cases from this clinical trial, Li and Ryan (2006)
found that there is an interaction between the c-myc gene expression levels and the two treatments for
the response of disease progression-free survival; Song and Zhou (2011) investigated using the observed
c-myc gene expression level for treatment selection.
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Evaluation of X on treatment selection

Fig. 1. Overview of the three cases, where Z denotes the standard biomarkers, X denotes the new biomarkers, and 4
denotes the treatment.

To evaluate the potential of biomarkers for treatment selection, approaches have been proposed that try
to minimize the population event rate under (optimal) treatment selection criteria (Song and Pepe, 2004;
Brinkley and others, 2010; Cai and others, 2011; Zhang and others, 2012; Janes and others, 2011, 2014)
or maximize the population mean (restricted lifetime) (Song and Zhou, 2011).

However, biomarker measurements may contain measurement error, or the current biomarkers may
not be very effective for treatment selection. In the ECOG study, the c-myc gene expression levels were
measured with error (Li and Ryan, 2006). It is of interest to evaluate the amount of gain that could
be achieved with respect to treatment selection if the biomarkers were accurately measured. In another
aspect, a new technology may improve the measurement of biomarkers or a new biomarker may be
identified with better predictability capacity. For example, with the development of polymerase chain
reaction technique, the measurement of c-myc gene expression level may become more accurate. If we
call the measurement of c-myc gene level in the original study the standard biomarker, and the improved
measurement using advanced techniques the new biomarker, then we would like to assess the capacity
of the new biomarker for making treatment selections. With a slight abuse of terminology, we refer both
newly identified biomarkers and more accurately measured biomarkers as new biomarkers. Ideally, one
would like to re-run the previous study, or perform a new study very similar to it, so that one could measure
the new biomarkers using prospectively collected samples. But this is often not feasible. Such a procedure
would entail large additional costs associated with obtaining samples of tumor tissues with measurement of
disease progression-free survival through a multi-year randomized clinical trial. Moreover, it may not even
be feasible to perform such a study. We propose a more efficient approach which requires only conducting
a reproducibility study where the new biomarkers and the standard biomarkers will be measured on a
set of patient samples or replicated measurements of the inaccurately measured standard biomarkers.
Importantly, there is no need to re-run the clinical trial. This makes the study easier to conduct and much
less expensive. In addition, it will make it possible to perform the estimation of the clinical performance
of the new biomarkers quickly, since there will be no requirement to wait for events to occur. The idea of
our approach is summarized in Figure 1. The outcome and the standard biomarkers are observed in the
clinical trial, while the new biomarkers and the standard biomarkers are observed in the reproducibility
study. We make inference on the new biomarkers versus the outcome to assess the capacity of the new
biomarkers on treatment selection. There are related studies in the literature (Boostra and others, 2013a,
2013b) aiming to predict outcome with new biomarkers observed on a subset in the original study, but
their objectives are different from what is considered in this article.

In this article, we consider the setting in which the outcome is time to an event of interest (survival time),
which may be subject to right censoring. To characterize the inter-relations between the biomarkers and the
treatment arms, we adopt a working proportional hazards model with interactions between the treatment
and the biomarkers. The relation between the standard markers and the new markers is modeled through
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a classical measurement error model. Various approaches have been proposed to estimate the regression
coefficients in the presence of covariate measurement error under the proportional hazards model, however,
most were derived under the assumption of linear covariate effects. These include regression calibration
(Prentice, 1982; Dafni and Tsiatis, 1998; Wang and others, 2000), SIMEX (Greene and Cai, 2004),
likelihood based approaches (Wulfsohn and Tsiatis, 1997; Faucett and Thomas, 1996; Henderson and
others, 2000; Xu and Zeger, 2001; Song and others, 2002b), conditional score (Tsiatis and Davidian,
2001; Song and others, 2002a), and correction approaches (Huang and Wang, 2000), among others. Here,
we extend the conditional score approach to the proportional hazards model with interactions. In addition,
we propose to use the mean restricted lifetime to evaluate the performance of the predictive biomarkers and
derive the optimal treatment selection strategy under the working model. To estimate the mean restricted
lifetime, we propose a SIMEX estimator and establish the asymptotic properties using the empirical
process and stochastic integral techniques.

The novelty of this article includes the following aspects. First, our idea of evaluating new biomarkers
without re-running the clinical trial is novel, which could greatly reduce the study time and cost. Second,
the adoption of the measurement error model and techniques under this circumstance is novel. Third,
we propose well-justified resampling-based inference which extends the technique of Peng and Huang
(2008). To the best of our knowledge, the overlay of the resampling-based inference with the already
resampling-based SIMEX approach is new.

The article is organized as follows. In Section 1, we give the model definition. We derive an empirical
estimator for the optimal treatment selection and propose an approach to evaluate and compare the new
biomarkers and standard biomarkers on treatment selection in Section 2. We investigate the finite sample
performance of the proposed approach in Section 3, and we apply the approach to the ECOG data in
Section 4. Some discussions are given in Section 5. The regularity conditions and sketched proofs are
given in the supplementary material available at Biostatistics online.

2. MODEL DEFINITION

Let T denote the survival time, and C denote the censoring time. The observed survival data are V' =
min(7T,C)and A = I(T < C), where I(-) is the indicator function. Let Z denote a vector of K continuous
standard biomarkers, and X denote a vector of K continuous new biomarkers. Remember that, with a slight
abuse of terminology, we refer both newly identified biomarkers and more accurately measured biomarkers
as new biomarkers. Let 4 denote the treatment, where 4 = 0 denotes the control or standard treatment,
and 4 = 1 denotes the new treatment. Suppose a randomized clinical trial has been conducted to evaluate
the standard biomarkers for treatment selection with the observed data {(V;, A;,4,,Z;) :i=1,...,n}. We
are interested in evaluating the treatment selection capacity of the new biomarkers X.

For an individual with the new biomarkers X, intuitively, we may assign the subject to treatment 4 = 1
if

E(TIA=1,X) > E(T|4=0,X)
and A = 0 otherwise. That is, Aox(X) = I (D(X) > 0), where
DX)=E(TA=1,X)—E(T|4=0,X).
This is an extension of the treatment rule for binary outcomes where the probability of success is compared
for the two treatments (Janes and others, 2014). However, when censoring exists, the mean (unrestricted)

survival time may not be estimable if the largest observed survival time is censored without some tail
correction on the estimated survival function (Klein and Moeschberger, 2003). Alternatively, we consider
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the mean restricted survival time (lifetime) up to a given time L. The technique of restricting survival time
has been used previously in estimating the mean lifetime and quality-adjusted lifetime (Zhao and Tsiatis,
1997; Chen and Tsitais, 2001) . Specifically, Let 7* = min(7, L) be the restricted survival time, and

D*(X) = E(T*|4 = 1,X) — E(T*]4 = 0,X),

then the optimal treatment A7, (X) = I(D*(X) > 0); that is, if D*(X) > 0, select 4 = 1; otherwise, select
4 = 0. The capacity of treatment selection based on A, (X) can be evaluated by the population mean
restricted lifetime under the optimal treatment selection, that is,

Ox (Ayy,) = E[E{T"|4 = A5, (X)}]. 2.1

opt

Without loss of generality, we assume an additive measurement error model
Z=X+e, (2.2)

where e ~ N(0, X), and e is independent of (X, 4, T, C). This is a natural model when the new biomarkers
are obtained by improving the accuracy of measurement, but may represent a more general relationship
between standard biomarkers and “true” new biomarkers. For example, if we have standard biomarkers
Z* and new biomarkers X* and there exist functions g, and g,, which could be vector valued, such that

21(Z") = @(X") +e, (2.3)

it reduces to model (2.2) with Z = g(Z*) and X = g,(X™). For simplicity of presentation, we assume
that g, and g, are known. When g; and g, are unknown, the relationship between the standard biomarkers
and the new biomarkers can be estimated as discussed in Section 6.

To ensure the identifiability of model (2.2), we need to have either validation data or replicated data
on Z. We consider three cases. In case 1, a validation data set is available from an external reproducibility
study. The observations in the reproducibility study are {(X,Z) : i = 1,...,m}. In case 2, an internal
validation data set of a size m is available in the original data set. Although we may directly evaluate the
new marker using the validation set in this case, it would be more efficient to use the whole data set. In case
3, replicated error-contaminated observations are available on some subjects in the original study. Case 3
is only feasible when the new biomarkers are obtained by improving the accuracy of measurement while
cases 1 and 2 also cover the situation when the new biomarkers are truly different variables. To unify the
notations in the three cases, the observed data in the original study is denoted by {(V;, A;, 4;, Z;, R.X;) :
i=1,...,nj=1,...,J;}, where J; denotes the number of replicates for subject i, which always equals
one in cases 1 and 2; R; = 1 for a subset of i € Y C {1,...,n}. The set Y contains m elements for case
2, while it is empty for cases 1 and 3.

3. ESTIMATION
3.1. Estimation of the optimal treatment

To estimate ®y, we adopt a working model, which assumes the survival time depends on the new
biomarkers X and the treatment 4 through a proportional hazards model

A(1X, A) = ho(t) exp(B] X + Bod + B3 XA), 3.1)

where A(f) is an unspecified baseline hazard function, and 8 = (B],B,,B7)" are the regression
parameters. Extension to more flexible survival models is discussed in Section 6.
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Under model (3.1), we have
L L
D*(X):/ S(t|ﬂ,A0,1,X)dt_/ S(t|5ﬂ’A0’0’X)dt9
0 0

where S(7|B, Ao, 4, X) = exp{—Ao(t) exp(BI X + A + BIAX)} with A¢(r) = fot Ao(u)du being the
baseline cumulative hazard function. Thus D*(X) > 0 if and only if 8, + X < 0, which implies
A5, (X) = A4(B,X) 2 I(B,+ B{X < 0).In fact, it can be easily seen that A, (X) = Agpt(X) under model
(3.1); that is, the optimal treatment based on the mean restricted survival time equals the optimal treatment
based on the mean unrestricted survival time.

If X were observed, an ideal estimator ,3’ of B could be obtained by the standard partial likelihood
approach, and the ideal estimator of 4., (X) is 21{,pt(X ) = A(BI ,X). Here and henceforth, we use the
superscript “I” to denote the ideal approach. Since X is not observed in the original study or only observed
in a subset YT, we may estimate 8 through measurement error approaches.

We adopt the conditional score approach (Song and others, 2002a) for cases 1 and 3 as it is simple
to compute. The conditional score estimator was originally derived for the proportional hazards model
without interactions. Here we extend it to model (3.1). Specifically, assume X is known for now. Following
similar arguments as those in Song and others (2002b), we may obtain the “complete sufficient statistic”
for X;, H; = Z; + J7'S (Bl + BT A4;) dN;(u). Here Z; = J;' Zf;l Z;. The conditional score estimating
equation can be written as

Gi(t, 8,2, H,4)

Un(ﬂa EaHaA) = n_l Z/ (HiT’ADHiTAi)T - =
i=1 70 GO(t,ﬂ,E,H,A)

} dN,(t) = 0, (3.2)

where © > L is a fixed time, G, g4(t, 8, S, H, A) = n' 31 Gu(t, B, £, H, A),

Gri(ta /85 Z’HaA) = Yi(t)([{iraAiaI-Il‘TAi)T®r
x exp { B Hi + Pod; + By H A — (1 = p) (B] + B3 4:) (2/J) (B1 + B34 /2],

with a® = 1,a, aa” for a vectora and r = 0, 1,2, respectively; N;(t) = I(V; < t, A; = 1) is the counting
process for the events, and Y;(¢) = I(V; > ¢) is the at-risk process. The error variance ¥ may be estimated
by the method of moments estimator 3. from the validation data or the replicated data (Song and others,
2002a).

In case 2, X is observed in a subset Y. The partial likelihood estimator ,éT of B may be obtained
using observations in Y only. But this approach is not efficient as the information not in Y is not used.
To improve the efficiency, following Wang and Song (2016), an improved estimator can be obtained.
Specifically, it is the best linear combination of AT and -, which equals 7 — Q8™ — V), where
,BT’N and BN are the naive estimates of 8 obtained by substituting W for X using the observations in Y
and the whole data set, respectively, and Qis given in Appendix A in the supplementary material available
on Biostatistics online. For simplicity, both this estimator and the conditional score estimator are referred
to as error-corrected estimators henceforth.

Denote the error-corrected estimators of 8 by B€. The optimal treatment can be estimated by ﬁfpt X)) =

A(BC,X). Here and henceforth, we use the superscript “C” to denote the error-corrected approach. For
now, assume model (3.1) holds.

ProrosiTioN 1 Under the conditions C1-C4 given in Appendix B available on Biostatistics online, almost
surely, B¢ exists and converges to 8. In addition, n'/? (8¢ — B) converges to a mean zero normal distribution.
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If model (3.1) is not the true model, it is used as a working model to obtain the treatment selection
criterion. Fine (2002) showed that even if model (3.1) does not hold, the partial likelihood estimator ,é’
still converges to some constant 8* = (B;7, B;, B;7). It can be shown that the error-corrected estimators
are consistent estimators of 8*. Given the value of X', 4( B’ ,X) will converge to a valid treatment selection
criterion 4(B*,X), which is equal to 4., (X) when model (3.1) is correctly specified. When model (3.1)
is misspecified, 4(8*, X) is the optimal treatment under (3.1), but may not equal to the optimal treatment
Aopt(X). We consider evaluating 4(8*,.X') and propose an empirical estimator of Oy (4(8*, X)).

3.2. Estimation of Oy
With some algebra, it can be shown that

Ox(A(B*, X)) =E[E{T"|4 = A(B", X)}] (3.3)

L
=E(A(/3*,X))/ exp {—A@l4d = 1,A(B*,X) = D} ds
0
L
+ {1 —E(A(ﬁ*,X))}/ exp {—A(t|4 = 0,4(8",X) = 0)} dz,
0

where forr = 0,1, A(¢t|4 = r,A(B,X) = r) is the cumulative hazard function conditional on 4 = r and
A(B,X) = r. If X were observed in the clinical trial, E(4(8*,X)) could be estimated by the empirical
estimator E(A(B', X)) = n~" Y1 (B} + BLX; < 0), and A(1]4 = r,A(B*,X) = r) could be estimated
by Nelson—Aalen type estimators [\(tlA = r,A(ﬁ[ ,X) =r), where

d](I/, =u, Ai = laAi = rsA(ﬁa)(i) = r)
Yo IV = u, 4y =1, A(B, X)) =)

A =ra@x =n =3 [
i=1 Y0
Then an estimator of ®y (A4(8*, X)) could be
L
& = @) [ exp|-Acia = 14500 = D) ar
0
A A L A A
n {1 - E(A(,sf,)())} / exp {—A(t|A —0,A(B",X) = 0)} dr. (3.4)
0

However, X is not observed in the original study or only observed in a subset Y. To deal with the
measurement error, we may apply the SIMEX approach (Carroll and others, 2006). Assuming X is known
for now, for an increasing sequence of value of ¢ starting from 0, for example, ¢ = 0,0.25,0.5,...,2, and
b=1,2,...,Blet Wl = RX;+(1—R)Zi+/TJ > 212k, where ©12(21/%)T = T, and &?, ~ N (0,1).
Calculate the naive estimator @? by replacing X; by W/, and B’ by fCin (3.4). Let

B B
O =By 0! =B" Y Ej(T"|d=AB . W) Wh).
b=1 b=1

Extrapolate (¢, ég) to ¢ = —1 to get the SIMEX estimator (:))C( A regression model is usually adopted for
the extrapolation, such as the quadratic and nonlinear (rational linear) extrapolation (Carroll and others,
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20006). Specifically, suppose that (:3; = h(6,¢) + €, where ¢, is an error term with mean 0. Let 6 be the
least square estimator of 6. Then the SIMEX estimator can be written as

6 = h@,-1).

When X is not known, it can be replaced by the estimator by obtained from the validation data or the
replicated data. Specifically, ¥ =m™"' 3" (Zf —X)® incase 1, X = (3. (/i — D} YL I(J; >
1) Zjil(Zij —Z)® incase3and ¥ = m~' ! Ri(Zi — X;)®? in case 2.

ProposITION 2 Under the regularity conditions C1-C3 given in Appendix B available on Biostatistics
online, ®, is a consistent estimator of @y (4(*, X)) and n'/2(®), — Oy (4(B*,X))) converges to a mean
zero normal distribution. Further, with the additional conditions C4—C6, C:))C( is a consistent estimator of
Ox (A(B*, X)) and n'*(OF — Ox(4(B*,X))) converges to a mean zero normal distribution.

Proposition 2 indicates that even if the model (3.1) is misspecified, the empirical estimator C:))C( is still
a valid estimator of the mean restricted lifetime under the treatment selection criterion constructed based
on the working model.

Model-based estimation. If the working model is the true model, a model-based estimator can be
obtained. Noting that

L
E(T*|4) = E[E(T"|4,X)|A] = E [/ S(t|B, Mo, 4, X)dt
0

A:| . 3.5)

If X; were observed, an ideal estimator of ® could be
I — [*
A\ % _ al NI Hl
O, = . él [O S, B, A ,AUP,J.,X,-)dt, (3.6)

where [\{)(t) is the Breslow estimator of A (¢). This cannot be applied directly since X is not observed in
the clinical trial. By analogy to the empirical estimator, the SIMEX approach can be adopted to estimate
®y when X is not observed.

If model (3.1) is misspecified, it can be shown that the model-based estimator (:)j; x actually estimate
Opis = E[E{fOL S*(t1B, Ay, A, X) [ dt|A = A(B*, X)}] with S*(¢|B, A}, 4,X) = exp{—A} (1) exp(B{X +
B5A + BiXA)} and Aj(t) = fOL dE{N()}/E(Y (t) exp{BiX + B;A + B;XA}), which is different from the
optimal mean restricted lifetime ®y (4(8*, X)) under the working model. For example, under the scenario
considered in our simulation studies in Section 4, if the true model is A(¢]X,4) = Ao(¢) exp(—2.5X —
0.5X% + 0.24 + 5.0X4 + X?4), the optimal mean restricted lifetime is 6.82, the optimal mean restricted
lifetime is 6.79 under working model (3.1), while ®,,;; =6.60. Therefore the model-based estimator may
not work well for estimation of the mean restricted lifetime under the working model in this case, while
the empirical estimator is still a valid estimator.

We will focus on the empirical estimation for its robustness. This approach may be applied to the
standard biomarkers as described in Section 3.4, which will facilitate the comparison of the standard
biomarkers and the new biomarkers.

3.3. Marker-independent treatment selection

Marker-independent treatment selection would assign all subjects to one treatment 4 = a (a = 0 or
1) if it has been shown significantly better than the other treatment without taking into consideration of
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their marker values, for example, through the log-rank test. The corresponding mean restricted lifetime is
E(T*|4 = a), which can be estimated by fOL exp{—A(t|4 = a)}dt, where

~ e [V St A =1,4,=a)
A("A_“)‘;/ SIETYEY)

is the Nelson—Aalen estimator of the cumulative hazard function A (1|4 = a) given 4 = a.

3.4. Compare the standard and new biomarkers

To compare the new biomarkers to the standard biomarkers, we need to estimate the capacity of the
standard biomarkers Z on treatment selection. This can be evaluated by a working model that replaces X
by Z in (3.1), that is,

AtIZ,A) = Aj(t) exp(B Z + BoA + B} ZA). 3.7)

This approach is called the naive approach under the literature of measurement error models. Let 8V be
the partial likelihood estimator based on the working model (3.7), where the superscript “N” is used to
denote naive estimators. It can be shown that BN converges to some constant 8% (Fine, 2002). Given Z,
the optimal treatment selection criterion under the working model is ©, = A(B*,Z) = (B85 + B{'Z < 0)
and can be estlmated by A(ﬂN 7). The mean restricted lifetime E(T*|4 = A(B*,Z)) can be estimated
empirically by ©) = E, ,(T*|4 = A(B", Z); Z), which is obtained by substituting Z for X and A" for A’
in (3.4).

Another way to evaluate a treatment selection rule 4 is to evaluate the probabilities of subjects mis-
assigned to the non-optimal treatment. If the optimal treatment is 1, the misassignment probability is

Py(A) =P(A=0and 4o, = 1), (3.8)
and if the optimal treatment is 0, the misassignment probability is
Pi(4) =P =1and Ay = 0). (3.9)

The overall misclassification probability P(4) = Py(4) + P1(A) = P(A # Aqp). Thus, we may compare
the treatment selection rules A(8*,X) and A(8*,Z) based on (3.8) and (3.9).

In the simulation studies, if § is estimated by ﬁ, the misassignment probabilities Py(4 (X)) and P, (4(X))
of using biomarker X can be estimated by PO(A(ﬁ,X)) =n"! Yo I(A(B,X) =0and 4, = 1) and
ﬁ’l (A(;f? X)) =nt Y0 14 (/_‘3 ,X) = land A,y = 0), and the estimated misassignment probabilities of
using Z are obtained by substituting Z for X. Note that }30 , /§ ,X) and P 4, ,3 ,X) converge to zero for
a consistent estimator ,é of 8.

In practice, X is not observed in the original study or only observed in a subset Y. If (3.1) is correctly
specified, the overall misassignment probability of using Z equals

P(A2)) = 2[P(A(B",2) = 1) — P(A(B,X) = 1],

where P(A(B",Z) =1) can be estimated by P(4(BY,Z) = 1)=n"zf:11(A(;§N,Z)= 1), and

P(A(B,X) = 1) can be estimated by P(4(B,X) = 1) = n p I(A(B€,X) = 1) if X were observed.
Since X is not observed, we may apply the SIMEX approach to obtain the estimate of P(4(8,X) = 1).
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When the original data contain replicated observations, Z may be replaced by the mean Z of the
replicated observations, which has better performance than Z with reduced measurement error, and we
may compare the treatment selection using Z vs. X.

3.5. Resampling-based inference

Since the asymptotic variance for the empirical estimator depends on the unknown density and hazard
functions, the estimation requires smoothing and may not work well when 7 is not large. We develop a
resampling-based approach by analogy to that used in Peng and Huang (2008). We describe how to derive
the variance estimator for (:),C( in case 3; the process is similar in the other two cases. Specifically, we
generate {n; : i = 1,...,n} from a known nonnegative distribution with mean 1. Using 7; as weights in
the method of moment estimating equation, we first obtain the perturbed estimator 37 of %, where the
superscript “P” stands for the perturbed estimator. Then using 7; as weights and replacing ¥ by 7 in
the conditional score estimating equation (3.2), we obtain the perturbed estimator ﬁC’P of B. Next, we
obtain the perturbed estimator (:)Lc; through the perturbed SIMEX process where for each ¢ and b, replace

X by Wyl = ZP + JTJ7 PEP2el in Ex(T*|14 = AL;X) with ZF = n™' Y"1 n,Z:. By repeatedly

opt?
generating {n; : i = 1,...,n}, we obtain a large number of realization of @,C(‘P, denoted by {@f(f R .Ttcan
be shown that conditional on the observed data, n'/*{©5 — ©¢} has asymptotically the same distribution
as n'/2(@¢ — Oy ). Thus the variance of ©S can be estimated by the sample variance of {7}, and the

g r=1»
confidence interval of ®y can be constructed through Wald method or by the percentiles of @§f When the
error variance is estimated from the validation data in case 1, the perturbed estimator of %7 of ¥ is obtained
from the validation data with a separately generated set of perturbation variables {nf j=1,...,m}.

4. SIMULATION STUDIES

We conducted simulation studies to evaluate the performance of the proposed approaches. Mimicking
the case of c-myc gene in the ECOG study, we consider treatment selection using one biomarker. The
new biomarker X was generated from a standard normal distribution, and the measurement error was
generated from a normal distribution with mean 0 and variance ¥ = 0.1,0.3,0.5, or 0.7. The survival
data contains observations of (V, A,4,Z) on n = 500 or 2000 subjects, where 4 was generated from
a Bernoulli distribution with probability 0.5, mimicking treatment assignment in a randomized clinical
trial. The survival time was generated based on model (3.1) with 8, = 2.5, B, = —0.2, B3 = —5.0,
and Ay(¢#) = 0.4. The optimal mean restricted lifetime under 4,,; equals 6.93. The censoring time was
generated from an exponential distribution with mean 20 and truncated at 12. The censoring rate was
30%. We considered three cases: (i) the error variance is estimated from an external validation data set
that contains observations of (X, Z) on 500 subjects; (ii) the error variance is estimated from replicated
observations of Z in the original data with J; = 2 fori = 1,...,n; (iii) an internal validation data set is
available with m = 0.2n. For each setting, 500 simulated data sets were generated.

We obtained the error-corrected estimators and naive estimators of B, Aoy, and E(T*|4 = Agy)
as described in Section 3. As a benchmark, we also obtained the ideal estimators of B, Aqy, and
E(T*|A = Aop), assuming X is observed in the survival data. When the error is large, the root to the
conditional score estimating equation U,(8) = 0 may not exist, and there may exist some “outliers.” We
calculate the bias based on the median of the estimates, and the standard error by the normalized median
absolute deviation (MAD) via the resampling method. The 95% Wald confidence intervals were calculated
correspondingly. For the SIMEX approaches, we adopted the rational linear extrapolation, and used the
quadratic extrapolation as a backup if the rational extrapolation failed (Carroll and others, 2006). The
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perturbation variable n was generated from a location-scale transformation of beta(+/2 — 1, 1) and we set
R = 500 in the resampling process and B = 500 in the SIMEX process.

The results of estimating 8 for n = 500 and 2000 are shown in Tables S1 and S2 in the supplementary
material available at Biostatistics online, respectively. Compared to the ideal estimates, the naive estimates
show clear bias with the coverage probabilities well below the nominal level; the coverage probabilities
worsen when the sample size increases and error variance gets larger. The error-corrected estimates perform
reasonably well for n = 500, and the performance improves when the sample size increases to n = 2000.

We also estimated the misassignment probabilities using the standard biomarker and the new biomarker
for Ay = 0 and 1 separately. The misassignment probabilities would be zero if the treatment assignment
was based on the true model with the true regression coefficients. The estimated misassignment proba-
bilities are shown in Table 1. The estimated misassignment probabilities of the error-corrected estimates
based on the new marker are close to the ideal estimates, and they are much lower than those from the
naive approach based on the standard biomarker. When » = 2000 and error standard variance increases
from 0.1 to 0.7, the estimated total misassignment rate increases from 0.49% to 2.03% in case 1, 0.64%
to 0.84% in case 2, and 0.44% to 0.93% in case 2 from the error-corrected approaches based on the new
biomarker, while from 9.76% to 22.21% in case 1, 9.76% to 22.14% in case 2, and 6.96% to 17% in case
3 from the naive approach based on the standard marker. This shows the advantage of adopting the new
biomarker, especially when the measurement error is large.

We further estimated the mean restricted lifetime within 10 years using the new biomarker and the
standard biomarker. The results are shown in Table 2. The optimal mean restricted lifetime is 6.93 using
the new marker, whereas when X !/2 increases from 0.1 to 0.7, the mean restricted lifetime based on the
standard marker decreases from 6.72 to 6.02 in cases 1 and 2 and 6.82 to 6.35 in case 3. The estimates
perform reasonably well for » = 500 and improves when » = 2000.

Under this setting, the average survival time for treatment 4 = 1 is significantly longer than 4 = 0
without adjusted for the biomarker value. Therefore, marker-independent treatment selection will assign
all subjects to treatment 1. The corresponding mean restricted lifetime within 10 years is 3.984, which
is much shorter than marker based estimates. The corresponding misassignment rate is 48.4%, which is
much higher than marker based estimates.

We also consider a simulation setting when the true model is misspecified as (3.1). The simulation setting
is the same as case 1 above except that the true model is A(¢|.X, 4) = Ao(¢) exp(—2.5X — 0.5X% +0.24 +
5.0XA+X?A4) with Ay(#) = 0.4. In this case, the treatment selection based on the working model (3.1) is not
optimal overall. Based on the working models (3.1) and (3.7), we estimated the misassignment probabilities
and the mean restricted lifetime using the new biomarker and the standard biomarker, respectively. The
results for n = 2000 are shown in Tables S3 and S4 in the supplementary material available at Biostatistics
online. For estimation of the overall misassignment rate, the estimate is 3.53% from the ideal approach.
When the error variance increases from 0.1 to 0.7, the estimates from the error-corrected approach based
on the new biomarker are close to that from the ideal approach, while the estimates based on the standard
biomarker increase considerably from 10.21% to 22.53% for the naive approach with the error variance
increases from 0.1 to 0.7. The optimal mean restricted lifetime based on the new marker is 6.79 under
model (3.1), while the mean restricted lifetime based on the standard marker decreases from 6.59 to 5.92
when X increases from 0.1 to 0.7. The estimates of the mean restricted lifetime perform well.

5. APPLICATION

We applied the proposed approach to a subset of the ECOG clinical trial, which was analyzed in Li and Ryan
(2006), where c-myc expression level was measured via dot plots on 92 patients randomized to receive
surgery alone or surgery plus chemotherapy, both progression-free survival and overall survival were
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Table 1. Simulation results for estimation of treatment misassignment rate (%).

n =500 n = 2000
Aopl =0 Aopl =1 Aopl =0 Aopt =1

»1/2° Marker Method Est SD Est SD Est SD Est SD
New Ideal 0.35 0.61 0.41 0.64 0.19 0.30 0.18 0.28

Case 1
0.1 New EC 0.49 0.79 0.56 0.89 0.26 0.38 0.23 0.36
Standard Naive 491 1.06 493 1.07 494 0.54 482 0.52
0.3 New EC 0.77 1.24 0.75 1.21 0.40 0.62 0.38 0.57
Standard Naive 8.00 1.27 7.99 1.26 8.12 0.64 7.84 0.61
0.5 New EC 1.02 1.62 1.07 1.81 0.69 1.17 0.54 0.87
Standard Naive 10.00 1.40 9.63 1.39 9.98 0.73 9.61 0.71
0.7 New EC 1.31 2.33 1.92 3.62 1.04 2.04 0.99 1.97
Standard Naive 1146 1.51 10.85 148 11.37 0.77 10.84 0.71

Case 2
0.1 New EC 0.60 0.95 0.66 0.96 0.32 047 0.32 048
Standard Naive 491 1.08 483 1.03 491 0.54 485 0.53
0.3 New EC 0.71 1.07 0.75 1.08 0.38 0.55 0.38 0.57
Standard Naive 8.05 1.26 7.82 1.24 8.09 0.67 7.88 0.64
0.5 New EC 0.73 1.11 0.78 1.12 0.41 0.59 0.41 0.61
Standard Naive 993 141 9.54 1.33 9.95 0.70 9.63 0.71
0.7 New EC 0.74 1.13 0.80 1.14 0.42 0.61 0.42 0.63
Standard Naive 11.30 145 10.78 143 11.30 0.74 10.84 0.75

Case 3
0.1 New EC 0.47 0.73 0.43 0.71 0.21 0.33 0.23 0.35
Standard Naive 3.59 0.96 3.47 0.88 3.50 048 346 047
0.3 New EC 0.60 0.94 0.57 091 0.25 0.40 0.31 0.45
Standard Naive 596 1.13 5.80 1.08 5.92 0.56 5.80 0.55
0.5 New EC 0.75 1.27 0.71 1.09 0.31 0.49 0.39 0.56
Standard Naive 743 1.23 7.26 1.19 7.44 0.62 7.25 0.59
0.7 New EC 0.78 1.28 0.96 1.56 0.47 0.76 046 0.72
Standard naive 8.60 1.26 8.30 1.34 8.64 0.68 8.36 0.65

EC, error corrected; Est, estimate; SD, empirical standard deviation.

recorded. The results for overall survival are presented as follows while the results for progression-free
survival are presented in the supplementary material available at Biostatistics online.

Based on the log-rank test, surgery plus chemotherapy is better than surgery alone for overall survival
(p-value = 0.0186). Thus marker-independent treatment selection would assign all patients to surgery
plus chemotherapy. Using this subset of data, Li and Ryan (2006) found marginally significant interac-
tion between treatment 4 = [ (surgery plus chemotherapy) and log c-myc gene expression level X for
progression-free survival (p-value = 0.073) and overall survival (p-value = 0.112) under model (3.1), and
Song and Zhou (2011) evaluated bisecting the observed c-myc gene expression level Z for treatment selec-
tion. It is conjectured that a more accurate measurement of c-myc gene expression level might improve
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Table 2. Simulation results for estimation of ®x and ©3.

n =500 n = 2000
2 True  Method B MAD RMAD CP B MAD RMAD CP

Estimation of Oy

6.931 Ideal —0.034 0245 0247 0950 —0.013 0.122 0.123 0.982
Case 1
0.1 6.931 EC 0.007 0.379 0474 0948 —0.007 0.168 0.197 0.978
0.3 6.931 EC —0.041 0498 0.637 0942 —0.032 0.242 0272 0950
0.5 6.931 EC —0.101 0.582 0.805 00913 —0.104 0.283 0.345 0.948
0.7 6.931 EC —0.211 0.632 0.894 0.922 —-0.141 0333 0411 00910
Case 2
0.1 6.931 EC 0.013 0.402 0452 0906 —0.007 0.176 0.195 0.964
0.3 6.931 EC —0.033 0440 0.603 0940 —0.041 0.211 0256 0.962
0.5 6.931 EC —0.016 0.578 0.776 0920 —0.064 0.286 0.324 0936
0.7 6.931 EC —0.059 0.700 0.966 0.890 —0.086 0.320 0.394 0.936
Case 3
0.1 6.931 EC 0.001 0.353 0412 0934 0.015 0.149 0.179 0.952
0.3 6.931 EC —0.019 0367 0477 0964 —0.012 0.186 0.211 0.958
0.5 6.931 EC —0.026 0425 0.549 0970 —0.025 0.228 0.249 0.958
0.7 6.931 EC —0.043 0550 0.676 0.920 —0.013 0.265 0.293 0.938

Estimation of ©3

Case 1
0.1 6.720 Naive —0.039 0.255 0.255 0940 —0.009 0.114 0.127 0.958
0.3 6.411 Naive —0.032 0.283 0.263 0.968 —0.040 0.119 0.132 0.956
0.5 6.186 Naive —0.053 0271 0270 0942 —0.013 0.142 0.134 0964
0.7 6.017 Naive —0.035 0264 0274 0938 —0.011 0.135 0.136 0974
Case 2
0.1 6.720 Naive —0.036 0.262 0.255 0940 —-0.011 0.125 0.127 0.958
0.3 6.411 Naive —0.026 0257 0265 0952 —0.015 0.121 0.131 0.952
0.5 6.186 Naive —0.022 0255 0271 0942 —0.008 0.126 0.134 0.954
0.7 6.017 Naive —0.019 0261 0274 0940 —-0.011 0.121 0.136  0.962
Case 3
0.1 6.818 Naive —0.023 0251 0.253 0958 —0.001 0.121 0.126  0.940
0.3 6.629 Naive —0.023 0.243 0.258 0.958 0.000 0.135 0.129 0.942
0.5 6.476 Naive —0.016 0.258 0.262 0.954 0.003 0.131 0.131 0.954
0.7 6.347 Naive —0.018 0274 0.267 0938 —0.005 0.136 0.132 0.948

EC, error corrected; B, empirical bias based on the median; MAD, empirical median absolute deviation; RMAD,
resampling median absolute deviation; CP, empirical coverage probability of 95% confidence interval.

its capacity for treatment selection. In this subset, 26 subjects have replicated c-myc gene expression
measurements with the estimated measurement error standard deviation equal to 0.20. The plot of the
residuals Z; — Z; and the corresponding Q—Q plot indicate that it is reasonable to assume the error is
normal with constant variance (Figure 2).

We checked the proportional hazards assumption in model (3.7) using the method in Therneau and
Grambsch (2006, Chapter 6.2). To check the proportional hazards assumption in model (3.1), as X is not
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Fig.2. Left, residual plot; right, Q—Q plot of the residuals.
Table 3. Analysis of the ECOG data for overall survival.
Estimation of Cox model coefficients
log(c-myc) TRT log(c-myc)x TRT
Est (RMAD) Est (RMAD) Est (RMAD)
Model based on X 0.715 (0.548) —0.027 (0.488) —1.355(0.975)
Model based on Z 0.582 (0.396) —0.105 (0.428) —1.126 (0.691)
Estimation of 5-year restricted lifetime
Est CI
All assigned to surgery alone 3.85 (3.41-4.29)
All assigned to surgery+chemotherapy 4.10 (3.66-4.53)
Treatment selection using X 4.39 (3.79-5.00)
Treatment selection using Z 4.13 (3.71-4.55)

Est, estimate; RMAD, resampling median absolute deviation; CI, 95% confidence interval.

available, we adopted SIMEX approach to obtain the error-corrected p-values. There is no evidence of
violation of the proportional hazards assumptions in both models.

We would like to assess the amount of gain of improving c-myc gene expression level measurement
on treatment selection and to compare treatment selection based on the true value X and the error-
contaminated observation. To reduce variation from SIMEX and bootstrap, we took larger values of
R = 5000 in the resampling process and B = 5000 in the SIMEX process. Under the working proportional
hazards model (3.1) and (3.7), the estimated coefficients and standard errors are shown in Table 3. The
error-corrected estimates of log c-myc level and the interaction are larger in magnitude. Among the 92
subjects, 48 (47.8%) patients were assigned to surgery alone and 44 to surgery plus chemotherapy. An
estimate of 87% patients would be assigned to surgery plus chemotherapy if the treatment is selected

020z 1snbny Q| uo Jesn juswyedaq sjeuas ‘salelqi eibioss) Jo Ausiaaiun Aq | /€078S/81 0BEXN/SONSNEISOIq/S60 | 0 1 /10P/a[01B-80UBADPE/SOIISIIEISOIC/WO00 dNo olwapede//:sdiy Woll papeojumo(]



14 X. SonG AND K. K. DOBBIN

using Z, and 82% if the treatment is selected using X. This suggested that 10% patients might be assigned
to the wrong treatment if model (3.1) is true and the treatment is selected using Z. The estimated mean
restricted lifetime within 5 years is 3.85 if all patients are assigned to surgery alone, and 4.10 if all are
assigned to surgery plus chemotherapy. The estimated mean restricted lifetime within 5 years is 4.40
when the treatment is selected using X while 4.13 when the treatment is selected using Z. There is no
significant difference between the mean restricted life times (95% confidence interval —0.07, 0.61). With
the consideration of the possible side effects of chemotherapy, the treatment selection based on the new
marker seems to be better as less patients are assigned to surgery plus chemotherapy.

6. DiscussION

We have proposed a novel method to evaluate a new biomarker based on data from a reproducibility
study. Our approach assumes that the reproducibility study samples and the clinical trial samples are
randomly drawn from a common target population. It is beyond the scope of this article to address the
impact of violations of this assumption.

We have aimed on maximizing the population mean-restricted lifetime. This method can be extended
to other statistical measures, for example, L-year survival rate, or a more flexible utility function that
incorporates notions of cost and quality of life. Although we have focused on survival time as outcomes,
the approach can be adapted to discrete and continuous outcomes with minor modifications.

For simplicity, we have adopted proportional hazards models as working models. The estimation of
mean restricted lifetime under the treatment selection criterion based on the working model is still valid
even if the model is misspecified. Our approaches may also be extended to more flexible models, for
example, by allowing time-varying treatment or covariate effects, or including nonparametric functions
of covariates in the survival model. Other types of survival models, such as the accelerated failure time
model or the additive hazards model, may also be used. Such extensions may warrant further investigation.

In addition, we have assumed a classical measurement error model between the new marker and the
standard marker. An more flexible model such as (2.3) with g; and g, unknown may be adopted and could
be estimated using data from the reproducibility study with validation data based on parametric models
or spline approximation. In some situations, both markers might involve measurement error while the
measurement error for the new marker might be smaller. It would be of interest to extend our approaches
to accommodate such complexity.

The model of equation (2.2) assumes that the new assay reduces error compared to the existing assay.
This is motivated by the fact that often newer technologies provide better measurements than existing
technologies. However, the new technologies are often more expensive as well. There is a cost—benefit
tradeoff for many new assays. Our modeling approach can help in the quantification of how large the
potential benefit might be from a new assay that is under consideration. This can be used to make the “go”
versus “no go” decision on whether or not to switch to the new marker in the future. In other words, by
quantifying the benefit, our method gives the information needed to make this decision. Another application
of our approach is to the setting where a gold standard treatment-selection biomarker exists along with an
approximation to the biomarker. The approximation may be based for example on pathological evaluations,
like the Magee score as an approximation to the OncotypeDX score (Farrugia and others, 2017). Our
approach provides a framework in which to understand the relationship between two such scores as
predictors of a clinically important survival outcome.

7. SOFTWARE

The R code and a sample data set are available on GitHub (https://github.com/xsong88/Evaluate-
Biomarkers).
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SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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