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ABSTRACT

Diffusion of a lithium salt through a diblock copolymer electrolyte was studied using vibrational
spectroscopy. Lithium bis-trifluoromethylsulfonimide (LiTFSI) was dissolved in a lamellar-
structured, high-molecular-weight polystyrene—poly(ethylene oxide) diblock copolymer at various
concentrations (0 — 4.51 moly;resi/kgpeo). The diffusion coefficient of LiTFSI was determined
from time-resolved Fourier Transform infrared spectroscopy attenuated total reflectance (FTIR-
ATR) as a function of the salt concentration. By applying the Beer-Lambert law, FTIR-ATR was
used to detect concentration changes. Mutual diffusion was driven by putting in contact two
polymer electrolyte membranes with different salt concentrations. Thus, mutual diffusion
coefficients were obtained without the influence of electric fields or electrode interfaces. The
accuracy of the simple experimental approach and straightforward analysis were validated by
comparison to diffusion coefficients reported from measurements in electrochemical cells. Both
methods yield mutual diffusion coefficients of lithium salt that are only weakly (and non-
monotonically) dependent on salt concentration. There is some indication in the spectra that there
exist two populations of salt with different dissociation states. This could explain the observed
non-monotonic concentration dependence of the mutual diffusion coefficient of the salt. This

hypothesis will be examined quantitatively with complementary measurements in future work.
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INTRODUCTION

The demand for safe and high-capacity energy storage continues to increase in view of the
emergence of applications such as electric vehicles and portable electronic devices. Fundamental
challenges for energy storage systems include achieving higher energy density, chemical stability
for long lifetime, facile material and device processing, and reasonable cost.!> 2 In conventional
rechargeable (secondary) lithium-ion batteries, lithium ions transport between the anode and the
cathode through a liquid electrolyte during charging or discharging. Porous polymer membrane
separates the anode and the cathode, and liquid electrolyte fills the pores of the polymer separator
to provide ionic transport. Despite the high ionic conductivity, the instability and the flammability
of the liquid electrolytes can cause serious safety problems.?

Solid polymer electrolytes can replace the liquid electrolytes and polymer separators to enhance
safety and chemical stability. An advantage of polymer electrolytes is that they are compatible
with lithium metal,* > which has much higher specific energy than graphite. However, the
maximum power (i.e. maximum discharge rate) of a polymer-electrolyte battery is much lower
than that of conventional batteries that contain liquid electrolytes. Ionic conductivity of an
electrolyte is commonly taken as a direct measure of the maximum charge or discharge rate that
can be achieved in a battery. For a binary electrolyte, this is not true even in the dilute limit, where
limiting current is a function of salt diffusion coefficient and transference number. It is less clear
how a concentrated (non-ideal) electrolyte will perform in a battery, especially if the transport
parameters are concentration-dependent. In fact, much less complex systems than polymer
electrolytes demonstrate counter-intuitive behavior when analyzed with a complete
electrochemical model. For example, supporting electrolyte (which increases conductivity) acts to

decrease the limiting current.®
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The polymer that has been most extensively studied for use as a polymer electrolyte is
poly(ethylene oxide) (PEO). It provides ionic conductivity when it dissolves lithium compounds.’
The low glass transition temperature, T,, of PEO enables segmental motion of the polymer chain
at room temperature, which is the basic transport mechanism of ions in dry polymer electrolytes.
On the other hand, the low T, allows dendrites to grow from the lithium electrode surface.
Incorporating PEO into a block copolymer with polystyrene (PS) enhances mechanical strength
and suppresses dendrite growth.® ° The ratio of PEO to PS in PS - PEO block copolymer, SEO,
dictates morphology, which is important because it impacts both mechanical strength and ionic
conductivity.!°

Lithium bis-trifluoromethylsulfonimide (LiTFSI) is a suitable salt for lithium salt/polymer
electrolyte system due to its low dissociation energy and chemical and thermal stability.!!-!3 Two
strong electron-withdrawing groups stabilize the imide anion and facilitate dissociation.!* The
transport of ions in polymer electrolyte display non-monotonic behavior with salt concentration'>-
17" indicating that ion transport is a complex function of various factors, such as polymer
dynamics,'® 1° conformational states of lithium salts,'® and morphological changes of polymer
domains."

Balsara's group has shown that ion transport in polymer electrolytes increases at sufficiently high
salt concentration,!® but their study focused exclusively on low molecular weight SEO, whose
microstructure is strongly affected by salt concentration. High molecular weight SEO is of more
practical interest, providing the mechanical strength necessary to separate electrodes (and block
dendrites) over long-term cycling.* Interestingly, high salt concentration has been shown to
suppress dendrite formation in liquid electrolytes,?® perhaps due to double-layer protection.?! It

would be natural to ask if high salt concentration can be combined with polymer mechanical
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strength to yield lithium metal batteries with high charge and discharge rates and long lifetimes. A
first step is to accurately determine the transport parameters across a broad salt concentration
range. The purpose of the present study is to examine the concentration-dependence of the salt
diffusion coefficient with time-resolved FTIR-ATR spectroscopy, which yields the mutual
diffusion coefficient without the simplifying assumption of thermodynamic ideality.??
Furthermore, small concentration steps can be used to empirically determine the salt-concentration
dependence of the diffusion coefficient. This study is important for improving solid polymer
electrolyte battery performance and for demonstrating that time-resolved FTIR-ATR spectroscopy

can be used to study diffusion in concentrated, all-solid systems.

Background

Current in a battery can be described by the transport properties of the ions present. To fully
represent transport for a binary electrolyte, three independent transport parameters are needed,
such as ionic conductivity, & salt mutual diffusion coefficient, D, and cation transference number,
t% . The maximum current density that can be achieved at steady state is the limiting current

density, i;. Assuming dilute solution in a binary monovalent electrolyte, i; can be expressed as?’

2DFcqyy

(1—=t%)L (1

i
where F is Faraday’s constant, c,,, is the average concentration of salt in the electrolyte, and L is
the membrane thickness. In concentrated electrolyte, a numerical model would be required to
determine the limiting current. However, equation (1) serves to demonstrate the importance of the
salt diffusion coefficient in determining the limiting current. Despite its importance, measurement
of this diffusion coefficient has been limited by the difficulty of measurement and the complexity

of analysis. The diffusion coefficient appearing in equation (1) is a mutual diffusion coefficient of
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the salt. In other words, it is measured in the presence of a concentration gradient and quantifies
the rate at which the concentration gradient is dissipated by thermally activated random
fluctuations of salt molecules (i.e. neutral combinations of ions).

We are aware of three methods that have been used to measure diffusion coefficients in dry
polymer electrolytes. Pulsed-field-gradient nuclear magnetic resonance (PFG-NMR) has been
used to investigate transference numbers and diffusion coefficients.!> 1 The diffusion coefficients
obtained from PFG-NMR are self-diffusion coefficients of ions (determined in the absence of a
concentration gradient). It is possible to calculate a mutual diffusion coefficient of the salt from
the self-diffusion coefficients of the ions, if a thermodynamic factor is determined (see Supporting
Information). Additional steps are required to determine the thermodynamic factor, which can be
quite large in non-ideal, concentrated polymer electrolyte.!s- 2425

Another method is restricted diffusion, which Newman and coworkers have shown to be valid
for concentrated systems as well as dilute systems.?® In the restricted diffusion measurement, the
cell potential exponentially decays to the equilibrium potential as the concentration gradient
decays to zero due to diffusion. Thus, cell potential is a proxy for concentration gradient, and
mutual diffusion coefficient of the salt is being measured. However, concentration-dependence of
the salt diffusion coefficient and/or the thermodynamic factor can cause the concentration gradient
to be nonlinear. Of course, a calibration can be conducted to relate the cell potential and
concentration gradient, but the theoretical relationship between the two is dependent on
transference number for which there remains large uncertainty due to complexity of the
measurement as well as electrolyte non-ideality.

Our group developed a method to visualize the complete concentration profile in an electrolyte

using "Li magnetic resonance imaging (MRI).?” By monitoring the concentration profile over time,
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the mutual diffusion coefficient of the salt was determined. In this case, MRI intensity is expected
to be linearly related to salt concentration. Unlike previous reports that used restricted diffusion,
the Li MRI study found a strong (exponential) concentration dependence of the mutual diffusion
coefficient of LiTFSI in SEO. However, there remains uncertainty regarding the concentration-
dependence of the 7Li relaxation times, which affect the measured MRI intensity and could cause
it to scale nonlinearly with concentration. It has been reported that the relaxation time can be
concentration dependent,?® and that was not accounted for in our previous MRI study. Thus,
another spectroscopic technique is desirable to evaluate the certainty of reported mutual diffusion
coefficients of salt in polymer electrolytes.

Fourier transform infrared — attenuated total reflectance (FTIR-ATR) spectroscopy has been
used for numerous studies of small molecule diffusion in polymer membranes.?? It was first
validated by Fieldson and Barbari in 1993.2° Since then it has been used to study diffusion of
liquids®® and vapors3! with particular emphasis on water sorption in fuel cell membranes3? and
protective coatings.’* However, to the best of our knowledge it has not been applied to a completely
solid system, such as SEO/LiTFSI.

In this report, lithium salt diffusion in diblock copolymer electrolyte is measured with FTIR-
ATR spectroscopy. FTIR-ATR spectroscopy has the advantage that it is a measurement without
electric current, i.e., concentration gradient is the only driving force for the transport of LiTFSI
salt. Another merit of the FTIR-ATR measurement is its relatively simpler and faster analysis as
compared to conventional electrochemical methods that have been used in studies of diffusion
coefficient of salts in block copolymers. The concentration dependence of the mutual diffusion
coefficient of the lithium salt in the block copolymer found in this work agrees with reports using

the electrochemical restricted diffusion technique.
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A high molecular weight PS-PEO diblock copolymer was synthesized via anionic

polymerization.3* The molecular weights (Mn) of the PS block and the PEO block were 121 kg/mol

and 165 kg/mol, respectively. The PEO volume fraction was 0.58 at 90 °C and the polydispersity

index of the block copolymer was 1.11. The SEO was freeze dried under vacuum and stored at -

20 °C after the synthesis. For polymer electrolyte preparation, the SEO was allowed to warm to

room temperature, dried under vacuum at 60 °C, and transferred to an argon-filled glovebox.

LiTFSI was mixed with SEO at various concentrations as reported previously.?” We report the

molar ratio of lithium ions to ethylene oxide repeat units in this paper. The molar ratio was denoted

as r, and the values were between 0 to 0.2. The » values of the experiments are shown in Table 1.

Thin polymer membranes were cast as described elsewhere.?* The O, and H,O level in the

glovebox were kept under 0.2 ppm during the preparation of the membranes.

Table 1. Molar ratio(») of Li" to ethylene oxide of membranes

Page 8 of 34

r

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

Test 7

ro (Layer 2)

0.050

0.085

0.105

0.125

0.150

0.170

0.200

ri(Layer 1)

0.000

0.020

0.050

0.085

0.105

0.125

0.150

Ar = (rz—r1)

0.050

0.065

0.055

0.040

0.045

0.045

0.050

r1+71;
Tavg = ( 2 )

0.025

0.0525

0.0775

0.105

0.1275

0.1475

0.175

Cavg(molyirrsi/Kgpeo)

0.56

1.18

1.75

2.37

2.88

3.33

3.95
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FTIR-ATR
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From IR ATR Crystal To IR
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Figure 1. Schematic of two polymer electrolyte membranes on an FTIR-ATR crystal.

Two layers of membranes with different concentrations of lithium salt were prepared. The
membrane with the lower concentration (layer 1) was placed on an attenuated total reflectance
crystal (Golden Gate™ single reflection diamond ATR, Specac) in a Fourier transform infrared
spectrometer (Frontier, Perkin Elmer) acting as a control volume where salt diffuses. A thicker
membrane with a higher concentration (layer 2) was placed on a spacer such that it is above layer
1 acting as a source of diffusant with approximately constant concentration. The thicknesses of
layer 1 and layer 2, measured before each experiment, were about 100 um and 400 um,
respectively. The membranes were separated by spacer initially to prevent salt flux during thermal
equilibration.

To simplify the analysis, we adopted a differential diffusion method by maintaining a small salt
concentration gradient.®> In this way, the diffusion coefficient can be assumed to be constant over

the small concentration range of each experiment, and Fick's second law of diffusion written as

ac d%c
3t = Defiy 2 - (2)

Desr 1s the effective, concentration-averaged diffusion coefficient.
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f ZD(C)dC

3)

Defr=——
eff fcidc

where ¢; and ¢, are the concentration of layer 1 and layer 2, respectively. Using differential
diffusion with small Ac provides more accurate concentration-averaged diffusion coefficients.3¢ In
this study, the » differences (Ar) were kept at 0.05 = 0.015. The concentration of each layer is
shown in Table 1 for 7 different tests. At least two measurements were conducted for each test
condition. The temperature of the ATR was increased from room temperature to 120 °C within 90
seconds and allowed to equilibrate for 25 minutes. Then layer 2 was pressed into contact with layer
1 (Figure 1). With the two membranes in contact, Li" and TFSI- neutral ion pairs began to transfer
from layer 2 to layer 1 via diffusion. Time-resolved infrared spectra were collected by a liquid-
nitrogen-cooled mercury-cadmium-telluride (MCT) detector in the wavenumber range of 4000 cm-
I'to 450 cm! with 4 scans per spectrum at a resolution of 4 cm™! at intervals of 10 s for 90 minutes.

If there is large thickness difference between [; and [, (I, — [1 > l;, Figure 1), we can assume
an infinite diffusant reservoir such that the concentration of layer 2, c,, is constant during the

experiment. The boundary and initial conditions in this case would be

c=cpatz=1,t>0 4)
dc

=0atz=0,£>0 (5)
c=crat0<z</[,t=0 (6)

An analytical solution to Fick’s second law in one-dimension is given: 22 2931, 36,37

c—c1 4 o  (=1)"
e 1—;x2n=02n+1exp(—Df2t)cos (f2) (7)
where
2n+Dm
f= 20 ()
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To express the solution in terms of FTIR-ATR absorbance, it must be related to concentration.
This can be done by incorporating an expression for the ATR evanescent wave into the Beer-

Lambert law with an assumption of weak absorption,
A= [ ecexp (— 2yz)dz 9)
where ¢ is the molar extinction coefficient, and y is the reciprocal of penetration depth, d,.

Substitution of equation (7) into equation (9) and integration gives

A— A 8y w 1 [exp(=Df?t)[fexp (—2yl) + (—1)"2y]
Ag—t0 = L~ i —exp (—2y1)] X I T @2y + f* (10)

where A is the integrated IR absorbance at time t, A¢q is the absorbance at equilibrium, and A is

the absorbance at time zero.
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RESULTS

FTIR-ATR spectra between 650 cm! and 1500 cm! of SEO/LiTFSI electrolyte at 120 °C with
different » values are shown in Figure 2(a). An FTIR-ATR spectrum of pure LiTFSI was measured
for comparison and is shown in Figure 2(b). The peak assignments of LiTFSI are shown in Table
2. The asymmetric SO, stretch (v,SO,, 1335 cm1)*8-40 and the symmetric SO, stretch (v;SO,, 1137
cm )38 39 41 a5 well as v,SNS (1060 cm™)3* 40 and v,CF; (1193 c¢m)*%-40 all increase with
increasing salt concentration. The v,SO, (1137 cm!) and the v,SNS (1060 cm™!) overlapped with
the COC stretching band (1110 cm!) of PEO*> 4 which decreased with increasing salt
concentration. The CH, twisting (tCH,, 1250, 1294 cm™!)* and CH, wagging («CH,, 1325, 1350
cm)* on PEO chains overlapped with the v,SO, band. The v,CF; band is the most suitable for
time-resolved spectroscopic analysis because its change with concentration is most pronounced,
and it does not overlap with other peaks.

Representative spectra of the v,CF; between 1161 cm! to 1214 cm! are shown in Figure 3(a).
The spectra transition from orange at the beginning of the experiment to blue at final equilibrium,
which is at 90 minutes. As shown in Figure 3(a), the v,CF; peak (1193 cm!) of TFSI increases

with increasing time, as the salt diffuses into the region of detection near the crystal surface.
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o
Absorbance

VaSOZ

28 1400 1200 1000 800
30 Wavenumber(cm'1)

32 Figure 2. FTIR-ATR spectra of (a) SEO/LiTFSI at various salt concentrations and (b) pure LiTFSI

34 at 120 °C.

Table 2. Infrared band assignment of LiTFSI.

41 Band Peak (cm!) Vibration Assignment Reference

43 740 v.SNS 3840
45 790 vCS + vSN 39

o 1060 vaSNS 39,40
2 1137 v,SO, 3%,40,41
o 1185 v.CFs 38-40
- 1240 v,CF; 3%

o 1335 v,80, 340
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Figure 3. (a) Time-resolved FTIR spectra of asymmetric CF; stretching vibration from 0 to 90

minutes at 120 °C. (b) Normalized integration of CF; absorbance as a function of time.

Diffusion of the lithium salts was quantitatively analyzed by integrating the area of the spectra
of the v,CF; at each time point and regressing a diffusion model to the normalized integrated
absorbance values. The diffusion coefficients were obtained by fitting Equation (10) to the
normalized integrated absorbance values.

The results of the modeling are shown in Figure 3(b). The integrated absorbance increased with
time. The diffusion coefficients were obtained from the best fit to each data set. The values of the
diffusion coefficients are reported in Table S1. The deviation between the experimental data and
the model could imply that 1) diffusion is non-Fickian or 2) assumptions or boundary conditions
of the analytical model do not properly represent the system. In particular, we assumed that the

concentration at the upper boundary of layer 1 is a constant, but the salt concentration is not really
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constant during the experiment. To reflect the change of the salt concentration at the interface of
the membranes and to allow for a concentration-dependent diffusion coefficient, we conducted
numerical analysis of diffusion through both membrane layers, which extended the control volume

so that the upper boundary is at [, (Figure 1)

d
+=0atz=0,t>0 (11)
dc
T=0atz=1I5t>0 (12)

and initial conditions

c=crat0<z<l;,t=0 (13)

c=catlj <z<1,t=0 (14)
with the diffusion coefficient allowed to have an exponential dependence on concentration,D = D,
exp (ac). The results, however, showed constant diffusion coefficients (a = 0) meaning the
diffusion coefficient does not significantly change within the concentration range of each test (Ar
<0.065).

Salt diffusion was numerically modeled throughout both layers, i.e. with the boundary
conditions presented in Equations (11) — (14). Representative regressions of the numerical model
are shown in Figure 3(b) and follow the experimental data closely. Although the diffusion
coefficients from the numerical analysis were constant within the small concentration increment
used in a given test, the salt diffusion coefficient exhibited weak concentration dependence over a
wider range of r as shown in Figure 4(a) and reported in Table S1. The average diffusion
coefficient for 0 < r,y, < 0.15 from the numerical model is 1.6 + 0.3 x 107 cm?/s. There is an

apparent minimum in D at r,,, = 0.1475 followed by an increase at r,,, = 0.175.
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Figure 4. (a) Mutual diffusion coefficients of LiTFSI in SEO membranes from experiment (A,

Mn = 286 kg/mol, 120 °C, FTIR) and reference!¢ (x, Timachova et al., Mn = 32 kg/mol, 90 °C,

restricted diffusion). (b) Diffusion coefficient of LiTFSI in the conducting phase of SEO

membranes (D.) (¥, 286 kg/mol, 120 °C, FTIR, corrected using morphology factor) and in PEO!S

(+, Pesko et al., Mn = 5 kg/mol, 90 °C, restricted diffusion). The FTIR data are the average of at

least two experiments, and the error bars represent one standard deviation. The error bar for the

lowest concentration (r,,, = 0.025) is not visible because it is smaller than the data point. Error

bars are not shown for the references.
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DISCUSSION

In Figure 2(b), v,CF3 is at 1200 cm’!, and v,CF}; is at 1243 cm! for solid LiTFSI. Both symmetric
and asymmetric vibration peaks of CF; are at lower wavenumber when salt is dissolved in SEO
(Figure 2(a)). There is a slight shift of the v,CF; with increasing salt concentration. This has also
been found for LiTFSI dissolved in water. Interestingly, no such shift with salt concentration was
found for v,CF; of LiTFSI in PEO.#! This might indicate that the presence of PS in SEO has some
influence on the chemical environment of the conductive phase. In Figure 2(a), a similar shift is
found for vCOC, which could indicate that the shift is due to interaction between the ions and the
polymer. Finally, complex changes in shape and magnitude of v,SNS are apparent with increasing
concentration. The splitting into two peaks at higher concentrations could be an indication that
there are two populations of ions in different dissociation states. This could explain the non-
monotonic concentration dependence of the apparent mutual diffusion coefficient of the salt. In
future work, we plan to quantitatively analyze these and Raman spectra in an attempt to gain more
insight into the physical cause of the non-monotonic concentration dependence of the salt diffusion
coefficient.

Diffusion of LiTFSI in lamellar SEO has been reported previously.?’> 4 Timachova et al.
reported the mutual diffusion coefficients of LiTFSI in SEO (32 kg/mol, lamellar) in a
concentration range from 0.03 to 0.30 of r, at 90 °C by the restricted diffusion method.!® The
values of the diffusion coefficient were between 6.0 x 10-® and 9.6 x 10-% cm?/s, presenting non-
monotonic behavior with salt concentration, similar to the results of our study as shown in Figure
4(a). The diffusion coefficient showed a local minimum at » = 0.18, while our result has an apparent
minimum at » = 0.1475. The differences between this study and the reference are the molecular

weight and the temperature. The effect of the molecular weight on salt diffusion in SEO was
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studied by Mullin et al.* The diffusion coefficients of SEOs (r = 0.085) at 90 °C increased with
increasing SEO molecular weight and reached a plateau at 30 kg/mol. The plateau value was 8§ x
10-% cm?/s corresponding to the average of Timachova’s. Thus, the difference in the absolute values
of the diffusion coefficients in Figure 4(a) is most likely due to the two studies being conducted at
different temperatures. Diffusion coefficients in condensed phases are known to increase with
increasing temperature. The cause of the difference in concentration at which the minimum occurs
is unknown but is also potentially due to the temperature difference. This is the subject of further
investigation, as temperature can affect ion dissociation state.*6

A straightforward measurement of diffusion of lithium salts in solid polymer electrolyte was
conducted by Chandrashekar et al.?” The diffusion coefficients of LiTFSI in SEO measured by
MRI at 120 °C was found to be concentration-dependent. The concentration dependence was given
by an exponential diffusion model, D = Dyexp (ac) with a = 21 £ 1 L/mol. The concentration
dependence of the mutual salt diffusion coefficient from the MRI study is dramatically different
from the weak, non-monotonic concentration dependence seen in the current study. However, the
MRI diffusion coefficient calculated at the average concentration of that study (0.8 M) and 120 °C
was 2.4 x 107 cm?/s, which agrees with our results. As mentioned previously, the exponential
dependence could be due to the intensity of MRI being a non-linear function of salt concentration
as a result of the 7Li relaxation time being concentration dependent. In the MRI study, the
electrolytes were in contact with lithium metal, which can affect the local magnetic field.*” This
could have also contributed to the observed concentration dependence.

The non-monotonic behavior of diffusion coefficient as a function of salt concentration has been
observed for homopolymer by Pesko et al.!> Mutual diffusion coefficients of LiTFSI in 5 kg/mol

PEO at 90 °C in 0 < <0.16 were measured using restricted diffusion measurements and are shown
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in Figure 4(b)."> The diffusion coefficients increased until » = 0.06 and decreased within 0.06 < r
< 0.14 and then increased again from the minimum at » = 0.14. We note that the diffusion
coefficient of the current study cannot be directly compared with those from Pesko et al. due to
differences in molecular weight, temperature, and morphology (lamellar block copolymer versus
homopolymer).*® In order to address the morphology difference, it is possible to calculate an
effective diffusion coefficient in the conductive phase of SEO (D) using the morphology factor,
f10

D= fD, (15)
D is the measured mutual diffusion coefficient of the salt. The morphology factor is dictated by
tortuosity and connectivity of the conducting phase and varies with the block copolymer
morphology. Since the block copolymer used in this study has lamellar morphology, f was taken
as 2/3, which is the ideal morphology factor for a lamellar-structured block copolymer with
randomly oriented grains. Despite the significant difference in molecular weight between the
report of Pesko et al. and this work, the trends of the diffusion coefficient as a function of salt
concentration agree remarkably well. This calls into question the supposition that the presence of
PS in SEO affects the chemical environment of the conductive phase, and motivates a careful look
at salt dissociation in both PEO and SEO. Note that the absolute value difference between literature
and this work in Figures 4(a) and 4(b) are similar, indicating that the difference is due primarily to
the temperature difference. Both literature reports were conducted at 90 °C, whereas this work was
conducted at 120 °C.

The reason for the complex behavior of diffusion coefficient has not been explained clearly. It
is thought to be related to the salt diffusion mechanism, chain dynamics, and dissociation level of

the salt. Studies on the salt dissociation in liquid or polymer electrolytes have reported that the
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lithium salts are not fully dissociated at high salt concentration and the associated salts results in
ion-pairing effects.’>> 4% 3 In many cases, ion solvation has been implicated to explain
concentration dependence of electrolyte transport coefficients.!”- 3% 31-33 Cameron et al. proposed
a crosslink model in which anions form crosslinks with cations in neighboring chains at
sufficiently high ion concentration. This in turn increases electrolyte viscosity, i.e., decreases
diffusivity.®! The increase of ionic crosslinking with increasing salt concentration has been
conventionally accepted, however, quantitative analysis has not been conducted systematically.
Hayamizu et al. claimed that mobility decreased due to the larger size of diffusant in concentrated
solution where salt dissociation is restricted.>* The relationship between the degree of dissociation
and the transport mechanism is not simple because of the presence of neutral ion pairs and charged
single ions. Despite the complexity of possible underlying mechanisms contributing to the non-
monotonic concentration dependence of mutual diffusion, mutual diffusion coefficient values
(such as those measured with time-resolved FTIR-ATR spectroscopy) are needed to build battery
models containing concentrated (non-ideal) electrolytes. They are also the values needed to
calculate the limiting current, which dictates the maximum charge/discharge rate of batteries.
FTIR-ATR is a preferable method to qualitatively and quantitatively investigate the dissociation
and conformation of species. It provides reliable measurement of mutual diffusion coefficients
without additional experimental or mathematical steps. In forthcoming work, FTIR spectroscopy
will be complemented with Raman spectroscopy, which is more sensitive to symmetric vibrations
than is IR. The two techniques will be used to examine salt dissociation in PEO and SEO polymers
with quantitative peak analysis. Correlations between dissociation state populations and transport

parameters will be looked for.
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CONCLUSIONS

The diffusion of lithium salt in diblock copolymer was studied with time-resolved FTIR-ATR

oNOYTULT D WN =

spectroscopy, free from electrodes and electric current. Thus, sample preparation and experimental
10 set-up is simple and analysis is straightforward. The diffusion coefficient of LiTFSI in SEO
membranes extracted using a numerical model decreased at low salt concentration then showed an
15 increase at high salt concentration. The weak concentration dependence disagrees with our
17 previous ’Li MRI study but is in agreement with other literature reports. This includes the presence
of a shallow local minimum followed by a weak increase of the salt diffusion coefficient at the
22 highest salt concentrations investigated. Further use of spectroscopic measurements such as
24 Raman spectroscopy monitoring the state of salt association are expected to give more fundamental

insight into the behavior of the mutual diffusion coefficient of the salt.
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Theoretical background of the relationship between different types of diffusion coefficients,
brief introduction of restricted diffusion technique, and the diffusion coefficients obtained from
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Figure 1. Schematic of two polymer electrolyte membranes on an FTIR-ATR crystal.

84x41mm (600 x 600 DPI)

ACS Paragon Plus Environment



oNOYTULT D WN =

Absorbance

The Journal of Physical Chemistry

vCS+vSN
v,SNS

VaSOZ

L

1400 1200 1000 800
Wavenumber(cm'1)

Figure 2. FTIR-ATR spectra of (a) SEO/LITFSI at various salt concentrations and (b) pure LITFSI at 120 °C
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29 156x93mm (300 x 300 DPI)

60 ACS Paragon Plus Environment



oNOYTULT D WN =

The Journal of Physical Chemistry

Cavg (MOl ires K9 ) Caug (MO ireskOeq)
90 1.0 20 3.0 4.0 5.0 20 1.0 2.0 3.0 4.0 50
10 10
(a) SEQ 1 FTR (b) PEQ t FTIR
X Timachova =+ Pesko
v * ? Y
atag |4
& £ | +
1w x E10° +
Q x * Q
x - o+
108 108
0.00 0.05 0.10 0.15 0.20 025 0.00 0.05 0.10 0.15 0.20 0.25
Tavg (mol e /MmOl ) Tavg (Mol ;7o /mole )

Caption : Figure 4. (a) Mutual diffusion coefficients of LiTFSI in SEO membranes from experiment (A, Mn =
286 kg/mol, 120 °C, FTIR) and referencel6 (x, Timachova et al., Mn = 32 kg/mol, 90 °C, restricted
diffusion). (b) Diffusion coefficient of LiTFSI in the conducting phase of SEO membranes (Dc) (V, 286
kg/mol, 120 °C, FTIR, corrected using morphology factor) and in PEO15 (+, Pesko et al., Mn = 5 kg/mol, 90
°C, restricted diffusion). The FTIR data are the average of at least two experiments, and the error bars
represent one standard deviation. The error bar for the lowest concentration (ravg = 0.025) is not visible
because it is smaller than the data point. Error bars are not shown for the references.
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