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Abstract

Pulsed nuclear magnetic resonance (NMR) is widely used in high-precision magnetic field mea-
surements. The absolute value of the magnetic field is determined from the precession frequency
of nuclear magnetic moments. The Hilbert transform is widely used to extract the phase func-
tion from the observed free induction decay (FID) signal and then its frequency. In this paper,
a detailed implementation of a Hilbert-transform based FID frequency extraction method is de-
scribed. How artifacts and noise level in the FID signal affect the extracted phase function are
derived analytically. A method of mitigating the artifacts in the extracted phase function of an FID
is discussed. Correlations between noises of the phase function samples are studied for different
noise spectra. We discovered that the error covariance matrix for the extracted phase function is
nearly singular and improper for constructing the x? used in the fitting routine. A down-sampling
method for fixing the singular covariance matrix has been developed, so that the minimum y?-fit
yields properly the statistical uncertainty of the extracted frequency. Other practical methods of

obtaining the statistical uncertainty are also discussed.
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I. INTRODUCTION

Proton nuclear magnetic resonance (NMR) magnetometers are widely used in high pre-
cision magnetic field measurements [1]. The magnetic field magnitude B is determined by
measuring the proton spin precession angular frequency w, = vB using a proton-rich ma-
terial, where « is the gyro-magnetic ratio of a proton. The magnetization of the detection
material is aligned with the magnetic field B in thermal equilibrium. In the pulsed NMR
measurement scheme, a pulsed oscillating magnetic field (7 /2-pulse) transverse to B with an
angular frequency near w; is generated by a coil surrounding the detection material, which
tips the magnetization into the transverse plane. After the 7 /2-pulse, the precessing magne-
tization generates an oscillating signal that can be picked up in the same coil, amplified, and
detected. The signal amplitude decays due to the relaxation of the magnetization. There-
fore, the detected signal of the pulsed NMR is referred to as the free induction decay (FID).
FID signals can be analyzed by hardware spectrometers, or be digitized and stored so that
more sophisticated analysis algorithms can be performed by a computer or an embedded
system. Often the FID signal is mixed with a sinusoidal reference with an angular frequency
wr ~ ws. The mixed signal is then passed through a low-pass filter that keeps the |ws — wg|

component. This reduces the sampling frequency requirement, data rate and readout noise.

Pulsed proton NMR magnetometers typically have a precision better than 1 part-per-
million (ppm), and they have already been used in many nuclear physics and high-energy
physics experiments [2, 3]. For example, the Muon g — 2 Experiment [4] at Fermilab uses
pulsed NMR probes to measure the magnetic field in the storage ring, and the uncertainty
budget for FID frequency extraction is 10 part-per-billion (ppb). To achieve such a high
precision, it is critical to evaluate the systematic and statistical uncertainties introduced
by the read-out system. Due to saturation effects of the amplifiers, imperfections of the
mixer, and pedestal instabilities of the Analog to Digital Converter (ADC), the FID signal
is distorted and a non-zero baseline is added to the signal. Understanding how biases are
introduced through these effects quantitatively will help in determining specifications of
components when designing an NMR magnetic field measurement system, and estimating
the systematic uncertainties when they are irreducible. On the other hand, noises introduced
by the electronics lead to statistical uncertainty in the FID frequency measurement, and it

is important to understand this relationship in order to fully describe the uncertainty of the



FID frequency measurement.

Many methods for improving the accuracy and resolution of FID frequency measurements
have been developed recently for medical applications [5] and weak field measurements [6].
For high-energy physics experiments that require sub-ppm level uncertainties, one challenge
is to make measurements in regions with a significant field inhomogeneity. In an inhomo-
geneous magnetic field, the nuclear spin precession frequencies vary across the volume of
the detection material, and the superposition of signals with different frequencies results in
an FID with a broadened and complicated frequency spectrum. Using advanced frequency
extraction algorithms, the average NMR frequency sensed by the probe can be resolved
with a precision better than its frequency-domain line width. The FID analysis method [7]
developed by Cowan et. al. relates the average NMR frequency to the derivative of the FID
phase function, which can be extracted using several methods like zero-crossing counting
and the Hilbert-transform method described in Sec. II. Noise and error analyses have been
performed on proton-NMR magnetometers using zero-crossing based frequency extraction
methods [8, 9]. However, the noise spectrum in the phase function and the statistical un-
certainty of the FID frequency extracted using the Hilbert-transform method have not been
thoroughly investigated. The goal of this study is to quantify the systematic uncertainties
caused by artifacts, and develop a method for determining the statistical uncertainty of the
FID frequency extraction. A detailed implementation of the phase function extraction using
the Hilbert transform and Cowan’s method for frequency determination are described in
Sec. II. The mechanism of how the discrete Hilbert transform and artifacts like the signal
distortion and baseline affect the phase function of an FID is presented in Sec. III. The
systematic uncertainties caused by these effects and a mitigation method are discussed as
well. Furthermore, the noise spectrum in the phase function and the statistical uncertainty

for Cowan’s method are discussed in Sec. IV.

II. FID FREQUENCY EXTRACTION METHOD

In an inhomogeneous magnetic field, the general form of an FID resulting from the

superposition of signals with different frequencies can be modeled as
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where N is a normalization constant, ¢ is the initial phase, and 75 is the intrinsic transverse
relaxation time constant of the detection material [10]. The spectrum density function g(w)
is normalized so that fj;o g(w)dw = 1, and g(w)dw is proportional to the amplitude of the
signal with an angular frequency within the range (w,w+dw). The function f(¢) is complex,
and the measured signal is its real part f.. The FID function f(¢) can be expressed in the

form of a general complex function

ft) = A(t) exp(i®(t)), (2)

where A(t) and ®(¢) are real. According to Ref. [7], the average NMR frequency w weighted
by g(w) can be determined by calculating the derivative of ®(¢) at ¢t = 0:

o= [ ugtorts 3)

4o (t)

dt

Y

t=0

and t = 0 corresponds to the time when the 7/2-pulse starts. This average frequency
corresponds to the average field sensed by the probe weighted by the signal amplitude for
the frequency interval.

The phase function ®(¢) can be constructed using the Hilbert transform. The Hilbert
transform (#) of an arbitrary function u(t) is defined as [11]:

Ut +7) —ult—1)

H{u(t)} = L lim / i (@)

T e—0

Particularly, the Hilbert transform of exp(—t/T5) cos(wt) (w > 0,t > 0) is exp(—t/T3) sin(wt).
According to Eq. 1, the physical FID signal f.(t) is essentially a linear superposition of
functions exp(—t/Ty) cos(wt + ¢g) with weight Ng(w). Because the Hilbert transform is
linear, the Hilbert transform, f;(¢), of the FID signal must be the superposition of the
exp(—t/Ty) sin(wt + ¢p) with the same weight. Therefore,

Ho=new (1) [ " () sin(ut + o) 5)

[e.o]

Then the envelope function, A(t), and the phase function, ®(¢), of an FID can be obtained
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A(t) =/ f2 () + F2 (D), (6)

®(t) = tan " (fi(t)/ f,(t)). (7)

The Hilbert transform can be performed via the Fourier transform (F):

H{u(t)} = F~{—isgn(w) F{u(t)}}, (8)

and therefore Fourier transform algorithms are often used to compute the Hilbert transform
of a function. Because the FID waveforms in this analysis are discrete, in this paper H and
F represent discrete Hilbert and Fourier transforms.

The constant initial phase ¢ in Eq. 1 can be factored out, and thus, ®(t) — ¢y can be

written explicitly as

(9)

B(r) — 6y = tan”! (fff 9() sin<wt>dw> |

[ g(w) cos(wt)dw

Therefore, ®(t) — ¢ is an odd function of ¢, and its Taylor expansion at ¢ = 0 contains
only odd orders. The third and higher order derivatives of ®(¢) at ¢ = 0 are related to

higher-order moments of g(w) [7]. The phase function is then fit to a truncated power series
(I)ﬁt(t) = ¢0 + pit +p3t3 + p5t5 + - (10)

and w is the fitted value of p; according to Eq. 3.

The validity of this method has been studied with simulated FIDs that are constructed
using artificial g(w) functions. In this study, the g(w) function is derived from a realistic
magnetic field map in the Muon g — 2 experiment [12] and the geometry of the NMR probes
used in this experiment. The magnetic field in the muon beam storage ring is ~1.45 T. The
NMR probes for scanning and monitoring the magnetic field have a coil with a length of
1.5 cm and a diameter of 4.6 mm, and the detection material is petroleum jelly filled in a
cylindrical cell inside the coil and that extends twice as long as the coil length. The proton-
precession frequency in this magnetic field is about 61.79 MHz, and the local oscillator
[13] reference frequency is set to 61.74 MHz so that the frequency of the measured FID is
near 50 kHz. The magnetic field has a peak-to-peak 90 ppm fluctuation around its ~45-m

perimeter. The fluctuations are short-ranged, resulting in gradients larger than 1 ppm/mm
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(~62x2m Hz/mm in terms of angular frequency) at many locations. To exemplify the
FID frequency extraction, an FID measured in a typical magnetic field with a gradient of
0.3 ppm/mm and a second-order derivative of 5 ppb/mm? along the probe axis is simulated,
and the simulated spectrum density function is shown in Fig. 1. Due to the nonzero second-
order spatial derivative of the field, g(w) is not symmetric and thus ®(¢) is nonlinear [7]. The
FID constructed using this g(w) function is shown in Fig. 2a together with the extracted
envelope function. The extracted phase function is shown in Fig. 2b, along with a fit to
Eq. 10 truncated at the order of ¢” in the window of 0 to 2.5 ms. The fitted value of p;
is different from the true value of w (evaluated using Eq. 3) by 0.1x27 Hz, well below the
uncertainty budget of 0.6x2w Hz [4] for the FID frequency extraction in the Muon g — 2
experiment. The fit accuracy can be improved by adjusting the fit region and the truncation
order of the fit function. For example, if the end of the fit range is reduced to the time when
the FID envelope drops to 70% of its maximum amplitude, and the truncation order is t°,
the difference between the fitted value and the truth of @ is below 0.01x27 Hz. In the

following studies, this choice of fit range and truncation order is used.

x107°
’8‘ grrrrrrrrrr T T T T T T T T T T

S 25

20F
15F

10—

x10°

487 498 495 50 501 502 503 504
w/2m [Hz]
FIG. 1: Spectrum density function g(w) for a simulated FID of an NMR probe that
measures a magnetic field with both a first-order derivative (0.3 ppm/mm) and a

second-order derivative (5 ppb/mm?) along the probe axial direction.

The accuracy of the fit described above is achieved for an FID without noise or artifacts,
even with a ~350x 271 Hz full-width-half-maximum (FWHM) of the corresponding g(w). As
long as the fit range is within the Taylor series convergence radius of ®(t), the fit accuracy

can be improved by increasing the truncation order. However, the fit accuracy is also limited
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(a) FID and its envelope (b) Phase

FIG. 2: FID, envelope and phase. The pattern seen in the FID plot is an artifact due to
the discretized data points. The insert in Fig. 2a is a magnified view of the FID near
t = 0.6 ms to show its sinusoidal-oscillation pattern. In Fig. 2b, to better visualize the

non-linear component of the phase function, wyt is subtracted from ®(¢), where wy is an

angular frequency close to w. The fit region is magnified.

by the effects of artifacts, which will be described in Sec. IITD.

III. ARTIFACTS AND SYSTEMATIC UNCERTAINTIES

The FID frequency extraction method described in Sec. II relies on the fitting of the phase
function, so it is crucial to understand how the artifacts, created by the discrete Hilbert-
transform or intrinsic to the FID waveform, affect the phase function extraction. These
artifacts and their effect in the phase function are discussed in Sec. III A to Sec. III C, and

a mitigation method will be described in Sec. II1D.

A. Discrete Hilbert Transform of a Finite-length Waveform

The discrete Hilbert transform of the digitized FID waveform with a finite length does
not produce the exact Hilbert transform for a continuous and infinitely-long function, and
thus Eq. 5 is not accurately produced. This artifact is obvious in the frequency domain. For

the function cos(wpt) with wy > 0, according to Eq. 8, the discrete Fourier transform (for
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w > 0) of its Hilbert transform is

T/At—

,F{?‘[{COS((U()t _ ?Z Z z(wo w)kAt + e—z(wo—‘rw)kAt) At (11>
k=
é (wo “T) N ﬁ Sin(wo;wT) N
2i sin(“2“At) 2i sin(“o At)

where At is the sampling period and T is the length of the digitized waveform. However,
the discrete Fourier transform (for w > 0) of sin(wyt), which is the exact Hilbert transform

of cos(wpt), is

T/At—1
1 , .
f{sin(wot)} _ 2_Z Z (ez(wofw)kAt - efz(woer)kAt) At (12)
k=0
_ A Sin(252T) i) p_pyy At sin(257) k) (7 )
21 sin(#22 At) 2i sin(“5= At) ’

whose second term in the final line is the negative of that in Eq. 11. Comparing Eq. 11 and
Eq. 12 and those corresponding expressions for w < 0, the difference between the discrete

Hilbert transform and the exact Hilbert transform of cos(wyt) is

Ah(t) := H{cos(wpt)} — sin(wpt) (13)
_ ‘Fil Sgn(u))At Sln(%T) e*isgn(wz)wofiw (T*At) '

In the following example, Ah(t) is computed numerically with wy = 27 x 50 kHz, At =
0.1 ms, and 7" = 20 ms. The value of |Ah(t)| is large near the edges of the waveform as
shown in Fig. 3, but if ¢ is two or more oscillation periods away from the edges, |Ah(t)| is
less than 1.5% of the amplitude of the original waveform (which is 1 in this example) and
Ah(t) is a slow-varying function. With a non-zero Ah(t), for f(t) = cos(wpt), the extracted

phase function is

P(t) = tan™! ( (14)

= wot + cos(wot) Ah(t) — cos(wot) sin(wot) A2 (t) +

sin(wot) + Ah(t) )

cos(wot)

Therefore, Ah(t) causes an artifact in the phase function ®(¢), which includes all terms on
the right-hand side of Eq. 14 except wyt. Up to the linear order of Ah(t), the artifact is an
oscillation with an angular frequency wy and an envelope Ah(t) as shown in Fig. 3. The

method of mitigating this artifact is described in Sec. ITID.
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FIG. 3: The artifact ®(¢) — wpt in the extracted phase function caused by the discrete

Hilbert transform. Only the beginning section up to 1 ms is shown.

B. Artifacts of the FID Waveform

In the following parts of this section, FIDs from the magnetic field scanner probe [14] in
the Muon g—2 Experiment are chosen for illustration and algorithm validation. One example
FID is shown in Fig. 4. The 7/2-pulse is fired at 300 us, and the signal amplifier is turned
on at 350 us. It is obvious that the upper and lower envelopes do not have the same shape
before ~600 us, indicating a time-dependent baseline or signal distortion. By definition,
a baseline is a slow-varying function added to the ideal FID. Therefore, the baseline of a
measured FID waveform can be determined by finding the line that intersects with the FID
waveform at even intervals within the range of one or two complete oscillations, assuming
the phase function is linear in this time range. The extracted baseline for the FID in Fig. 4
is shown in Fig. 5. For this FID, the maximum of the baseline absolute value is <0.5% of

the amplitude of the FID.

After the baseline is determined, the positive amplitude (from the baseline to a local
maximum) and the negative amplitude (from the local minimum to the baseline) of the FID
are investigated. Throughout the entire FID, the positive amplitude is consistently smaller

than the negative amplitude. This effect is also illustrated in Fig. 5, and in this beginning
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FIG. 4: The early section of a trolley FID exhibits the signal distortion and the

time-dependent baseline.

part of the FID, the positive amplitude is ~10% smaller than the negative amplitude. In
the frequency domain, such a waveform distortion results in higher-order harmonics in the
power-density spectrum as shown in Fig. 6

The time-dependent baseline and the waveform distortion are caused by the readout
electronics, and they can be reduced by optimizing the circuit design. However, they may
be irreducible when there are constraints on the choice of components, for example, power
consumption, vacuum compatibility, and magnetic footprint. In these cases, it is important
to understand how these artifacts affect the extracted phase function and how to mitigate

their effects.

C. Effects of the Baseline and Signal Distortion on the Phase Function

Because the difference between the FIDs with and without the artifacts is usually less
than 10% of the FID oscillation amplitude in its full range, the artifacts can be treated
as small perturbations on the FID signal. In this section, the perturbations on the phase

function are derived analytically up to the leading order.

Suppose the measured FID waveform with a nontrivial baseline is f,.(t) = A(t) cos(®(¢))+
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FIG. 5: The extracted baseline and FID with the positive amplitude corrected. To better

visualize the shape of the extracted baseline, the 10-times exaggerated baseline is shown as

the dashed blue line.

b(t), where b(t) is the baseline. The Hilbert transform of f,. is f;(t) = A(t) sin(®(t)) + b;(t),
where b;(t) is the Hilbert transform of b(¢). To simplify the following expressions, define
a(t) = b(t)/A(t) and «;(t) = b;(t)/A(t). The envelope and phase of f,.(t) can be extracted
using Eq. 6 and Eq. 7. Alternatively, one can also extract them by explicitly writing the
complex function f,(¢) +if;(t) into the modulus-argument form while keeping o and «; up

to the linear order:

fr+ifi = Alexp(i®) + a + icy;) (15)
= Aexp(i®)(1 + (o + iay;) exp(—i®P))
= Aexp(i®)(1 + acos(P) + a; sin(P) + i(a; cos(P) — asin(P))

~ Aexp(i®)\/1 + 2a cos(®) + 2a; sin(P)
% exp (z ton-! ( a; cos(P) — asin(P) ))

1+ acos(®) + a; sin(P)

~ A(l+ acos(®) + a; sin(P)) exp(iP + ia; cos(P) — iasin(P)).

Assuming the baseline is slow-varying compared to the fast oscillation cos(®(t)), b(t) is
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FIG. 6: FID power spectrum with higher harmonics. The power is defined as the square of

the signal.

approximately a constant and b;(t) is approximately zero. After dropping «;, the extracted

FID envelope and phase become

A () = A(t) + b(t) cos(@(1)), (16)
Dexit) = (1) — a(t) sin((1)). (17)

Therefore, the baseline results in ripples b(t) cos(®(¢)) in the envelope function, and also
ripples —a(t) sin(®(t)) in the phase function. The frequencies of the envelope ripple and the
phase ripple are the same as the FID frequency, but the phase of the ripple in the phase
function is 4+ /2 different from the FID oscillation phase, where the + sign depends on the
sign of a(t). The amplitude of the ripple of A(t) depends on the baseline size b(t), while the
amplitude of the phase ripple depends on the baseline-to-amplitude ratio «(t).

For the signal distortion, it is easier to treat them as higher-order harmonics. Suppose
the m’th order harmonic term is B(t) A(t) exp(im®(t)). A complex FID waveform with this
term is f(t) = A(t)(exp(i®(t)) + B(t) exp(im®P(t))), and keeping up to the linear order of
B(t), it becomes

f=Aexp(i®)(1+ Sexp(i(m — 1)P)) (18)
~ A(l+ pcos((m —1)P)) exp(i® + i sin((m — 1)P)).

13



Therefore, higher-order harmonics also result in ripples in the envelope and phase function.
The ripple frequency of an m’th order harmonic term is m — 1 times the FID base frequency.
Particularly, the slow-varying baseline can be treated as the case when m = 0, and the ripple
frequencies for the baseline and the second-order harmonic term are the same, which is the
FID base frequency.

The extracted envelope and phase functions of the FID in Fig. 4 are shown in Fig. 7.
For this FID, the second harmonic term [(¢) dominates the other harmonic terms and
the baseline. The phases of the ripples in the extracted envelope and phase functions are

consistent with the derivation described above.

340E""""'"""“"""""%0.12?
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FIG. 7: Ripples on the extracted FID envelope (blue) and phase function (red). To better
visualize the ripples on the phase function, wyt is subtracted from ®(¢), where wy is an

angular frequency close to w.

D. Artifact-related systematic uncertainty and mitigation method

The ripples caused by the artifacts in the phase function will affect the fit result of the
average frequency. The bias of the fit result is sensitive to the starting and ending points of
the fit range relative to the ripple phase. We simulated an FID with a ~50 kHz frequency
and with artifacts that made the amplitude of the phase ripple 0.03 rad. For such an FID,

14



if the start of the fit range is fixed and the width of the fit range varies within 1+ 0.02 ms,
the bias of the w extraction caused by the phase ripple varies within £0.6 x 27 Hz. The
magnitude of the bias depends strongly on the overall fit range. The longer the fit range is,
the smaller the bias is.

Because the ripple in the phase function oscillates at the same frequency as the FID, it can
be mitigated by a moving-average smoothing method with the averaging window 7T,,, which
is the same as the FID oscillation period. T, can be determined using an approximated
FID frequency found by fitting the extracted ®(¢) without the ripple mitigation. If the
ripples are totally eliminated, the extracted FID frequency will not be sensitive to the end
points of the fit region within an FID cycle. However, the smoothing is discrete and thus Ty,
cannot perfectly match the FID cycle period Ty. If AT = Ty — T, is small, the amplitude
of the remaining ripple after smoothing is AT /Tj of the original amplitude. Moreover, the
smoothing distorts the phase function for samples within 7, from the edge of the FID.
Because the discrete Hilbert transform also introduces large ripples near the edges, the
actual fit window should start at least one or two oscillation cycles from the FID sample
with the largest amplitude. If the smoothing is applied multiple times, then multiples of T,
should be avoided when determining the fit range.

For those FIDs with a fast-decreasing envelope or a fast-varying baseline, «(t) varies
significantly within one oscillation period and thus the smoothing is less effective. For such
FIDs, the phase function ®(t¢) usually has large nonlinear terms, so the systematic bias of
the FID frequency extraction becomes significant. In these cases, it is better to use the
simulated FID to estimate the systematic biases as long as the analysis algorithms and
parameters (like the truncation order of the fit function) are chosen the same as those in
real measurements.

There are other ways to mitigate the effects of the baseline and the signal distortion, but
the running-average phase smoothing method has more advantages. Although the baseline
can be extracted from the FID waveform as described in Sec. III B and then corrected, it is
difficult to formulate the systematic uncertainty caused by an imperfect baseline extraction.
The slow-varying baseline and higher-order harmonics can be filtered out in the frequency
domain, but such filters also affect the phase function extraction and complicate the system-
atic uncertainty analysis. On the other hand, the running-average phase smoothing method

is simple to implement, and the systematic uncertainty analysis described above is also
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straight-forward. The smoothing operation can also be easily incorporated in the statistical

uncertainty analysis described in Sec. IV.

IV. NOISE AND STATISTICAL UNCERTAINTY

The statistical uncertainty of @ is given by the minimum-y? fit of Eq. 10 to the extracted
phase function ®(t), provided that the uncertainty of each ®(¢) sample and the correlation
between samples are set correctly. In this section, the noise in ®(¢) is derived given the
signal noise. The phase noise covariance matrix for constructing the y2, bias of the fit
results, and the goodness of the fit are investigated for the white noise and a few generic
noise spectra. It is important to obtain the correct expression of the x? and make sure that
the covariance matrix is invertible so that the fit yields unbiased and consistent results of @
and its error bar. A method of handling non-invertible covariance matrices is described. The
performances of two other less rigorous methods, the unweighted and diagonal minimum-y?

fit methods, are discussed as well.

A. Noise in the Phase Function

The noise in the detected signal is a random sequence N (t) added to the FID waveform:
fr(t) = A(t) cos(®(t)) + N(t). Following the same procedure described in Sec. IIIC and
replacing b(t) with N(t), one gets the complex form of the FID waveform with noise N ()

frt+ifi = A1+ ncos(®) + n; sin(P)) (19)

x exp(i® + in; cos(P) — insin(P)),

where n(t) = N(t)/A(t) and n;(t) = H{N}(t)/A(t). Therefore, the noise in the phase

function is
ne(t) = n;(t) cos(P(t)) — n(t) sin(P(t)). (20)

Unlike the slow-varying b(t), the Hilbert transform of N(¢) is not negligible and must be
kept in the noise analysis. This formula has been verified using simulated FIDs with injected

noises.
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B. White Noise

For simplicity, we first assume that N(¢) is a Gaussian white noise, and we let the
distribution of N(¢) have a mean of zero and a standard deviation of ox. The standard
deviation of n(t) thus increases as A(t) decreases with time. For a white noise N (), different
noise samples are statistically independent, so different samples of n(t) are also independent.
Because N;(t) is derived from N (t), the correlation between samples of N (¢) and N;(t) must
be taken into account. So is the correlation between samples of n(t) and n,(t). If the Hilbert
transform is performed via discrete Fourier transform as in Eq. 8, the covariance matrix

element for sample-j from n(t) and sample-k from n;(¢) is then (see Appendix A)

1 (—1)F7 o

COV (nfty). (1)) = s 21)
for j # k. For j = k, the matrix element is zero. Among the samples of n;(t) (see
Appendix B)

o2
COV (n(t;), mi(tn)) = —57~0 (22)

A(ty) "
if the two samples are not close to the ends of the sequence [15]. According to Eq. 20, 21

and 22 the covariance matrix for n,(t) can be calculated:

ik = COV(ng(t;), ng(te)) (23)
s L= (2D on(@(t)sin(@(t)  cos(9(0)) sin(®(1,)
= () T T WINTT ( A(t)Alty) At Alry) )

where 0;; is the Kronecker Delta. The covariance matrix in Eq. 23 parameterizes the statis-
tical distribution of the ®(t) fluctuations. Therefore, when fitting the phase function, the

x? to be minimized is

X2 = (D(t)) — Prc(t;)) 25 ((tr) — e (tr) (24)
= (O — 05 )TV 1D — Dyy),

where ®g(t) is the polynomial fit function defined in Eq. 10. The standard minimum-x? fit
procedure then yields the fit value of W and its statistical uncertainty o,.

However, the matrix Y is nearly singular and becomes difficult to invert numerically.
The approximate singularity of ¥ indicates that there are strong constraints on the ny(t)

elements. This can be better revealed in the frequency domain. For a typical FID with a
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slow-varying envelope and a nearly linear phase, assuming A(t) is a constant and ®(t) = wot,

the Fourier Transform of n, is
i, _
ng(w) = i(n(w — wp) (1 —sgn(w — wp)) — n(w + wo) (1 + sgn(w + wyp))). (25)

Because the Fourier Transform is discrete, w in Eq. 25 ranges from —7n/At to +7/At. The
amplitude spectrum of n4(w) for such a typical FID is shown in Fig. 8. Since n,(t) is a real

function, n4(—w) = ng(w) and the following discussions are for w > 0.
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FIG. 8: Spectrum of the amplitude of 72,(w). The noise has a standard deviation that
equals 2% of the FID maximum amplitude, and the average FID frequency is 50 kHz. The
black curve is for one instance of the noise, and the red curve is obtained by averaging over

500 simulated FIDs with the same signal but independent noises.

For w < wy, the amplitude of 7i,(w) is v/2 times that for wy < w < m/At — wy, because
ng(w) = i((wy — w) — n(w + wy)), (26)

which is a linear combination of two independent frequency components. If the independent
variable w of n(w) is greater than the Nyquist angular frequency 7/At, n(w) is close to zero.
Therefore, for w > 7 /At — wy, fg(w) = —in(w + wy) ~ 0. After expressing 7,(w) explicitly

in terms of ny(t), one gets woT'/2m constraint equations for w > m/At — wy:
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¥ing(jAL) e ®UAD = (27)

Therefore, the degrees of freedom for ny(t) is reduced by wy1'/27, which makes ¥ singular. A
more detailed explanation is given in Appendix C. The most straightforward way to remove
these almost-redundant degrees of freedom in n,(t) is to down-sample n,(t) by a factor of
two before fitting so that ng(t) does not have Fourier components at those high angular
frequencies. Moreover, according to Eq. 23, the off-diagonal elements are zero if & — j is
a even number. In this instance, the covariance matrix ¥ for the down-sampled n4(t) is a
diagonal matrix

N = ig,k (28)
A% (tyy) T

which simplifies the computation of its inverse.
The smoothing method described in Sec. II1 D for artifact mitigation affects the covariance

matrix X, as well. The smoothing can be expressed in a matrix form as
Ds(t;) = Sik®(tk), (29)

and for ¢ far from the ends of the sequence (more than W/2 from each end)

Sk = for |j — k| < W/2, (30)

W+1
where W is the smoothing window size. The covariance matrix for the smoothed phase func-
tion is then S¥.S7. From another point of view, the smoothing operation is a convolution
of ny(t) with a square-pulse kernel function, and thus, in the frequency domain, the Fourier
transform of ny(t) is multiplied with the Fourier transform of the square-pulse kernel func-
tion, which is a sinc function sin(rT,w)/(7T,w) with T, representing the duration of the
smoothing window. After the smoothing, the noise spectrum becomes the black curve shown
in Fig. 9. Therefore, the smoothing operation is a low-pass filter with zeros at frequencies
of multiples of 1/T,, that greatly suppresses frequencies higher than 1/7,. Applying the
smoothing function multiple times will further suppress high-frequency noise components.
As discussed above, to make the covariance matrix of the smoothed phase noise regular, the
phase function has to be down-sampled so that n4(w) # 0 up to the Nyquist angular fre-
quency after the down-sampling. For a single-iteration smoothing, the down-sample factor

should be at least T,,/(2At).
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FIG. 9: Spectrum of the amplitude of 7,(w) for smoothed ny(t), compared with that for

the phase noise without smoothing as shown in Fig. 8.

The scheme of obtaining the covariance matrix described above was verified using simu-
lated FIDs with the same signal and 500 independent white-noise waveforms. The bias and
consistency of the extracted w and its statistical uncertainty are also investigated in this
way. Fitting each of these FIDs yields @, o, and x?/v, where v is the degree of freedom.
The mean of the extracted w is statistically consistent with the true value used in the sim-
ulation, and the standard deviation of these 500 i values is statistically consistent with the
mean of the 500 o,, values. The distribution of x?/v is centered around 1. This test was
performed for FIDs with different 73 (the time when the envelope first decays to 1/e of the
initial FID amplitude) values and phase non-linearities, and this fit scheme always yielded
error bars consistent with the statistics and x?/v consistent with 1. Because the fit yields a
x?/v consistent with 1, the goodness of the fit can be tested using a x*-test. Then, one can
use the goodness of the fit to determine whether the truncation order of the fit function is

sufficient.

The statistical uncertainty (o) of the extracted average frequency w increases with the
noise-to-signal ratio, and decreases with the length of the fit window. It also increases with
the truncation order of the fit polynomial due to the increase of degrees of freedom. The fit

window and truncation order can be optimized in order to minimize the total uncertainty
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depending on how non-linear the phase function is. In principle, o, also depends on the
shape of the envelope function A(t). To study this effect, we determined the o, for simulated
FIDs with different 73 values and envelope shapes. The fit window is adjusted accordingly
as described in Sec. II. To generate such set of FIDs, one can scan through various ranges
of first and second order spatial derivatives of the magnetic field where the probe is placed.
As shown in Fig. 10, the relationship between o, and the actual fit window length has a low
dispersion, indicating that under the influence of the same noise, o, depends predominantly

on the fit window length, not the shape of A(t).

—
o
w

s(@)/2n [Hz]

107"

1 0—2 Il 1 1 ‘ 1 1 1 1 1 1 1 ‘ 1 1 1
107 103
t[s]

FIG. 10: o, versus the actual length of the fit window. Truncation order is set to t> and

oy is 0.16% of the maximum amplitude of the FID.

C. Generic Noise Spectrum

The white noise model is a good approximation of noises in a wide range of magnetometer
signals. In some applications, low-pass or band-pass filters are used to improve the signal-
to-noise ratio of the FID. For example, the read-out electronic system for the Muon g — 2
magnetic field scanner probes has a low-pass filter with a cut-off frequency at 90 kHz. The
frequency-domain spectra of the noises in the FID and the phase function after smoothing

are shown in Fig. 11. In these cases, the noise power spectrum is not a constant and thus
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the phase noise covariance matrix is not as simple as the form of Eq. 23. If a large ensemble
of noise waveforms are available, the corresponding phase noise can be calculated using
Eq. 20, and the covariance matrix element ¥, can be determined by calculating the ensemble
average of ny(t;)ne(ty). The ensemble of noise waveforms can be obtained by taking data
with the magnetometer in a field outside its dynamic range and leaving the configurations
of the electronics the same so that all sources of noise are included. Because the phase noise
function n,(t) depends on the FID envelope and phase function, the noise covariance matrix
has to be evaluated for each FID. Due to the filter effect, the high-frequency cut-off of n4(w)
is much lower than /At —wy. Therefore, a larger down-sampling factor A is needed so that
7/(AAt) is smaller than the cut-off frequency of 74(w), and thus, the covariance matrix 3,y
becomes invertible. After obtaining an invertible noise covariance matrix, it can be used to
construct the x? in the FID frequency extraction and statistical uncertainty determination.
If the smoothing operation is performed, the shape of n4(w) for frequencies lower than the
first zero position is similar to that for white noises (the red dashed curve in Fig. 8) because
the spectrum N(w) is flat near wy (50 kHz). As more smoothing iterations are performed,
the more similar these two spectra become. Many results of the studies performed for the

white noise can be directly used for these measured FIDs with realistic noises.
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FIG. 11: Frequency-domain spectra for noises in the signal (N(w)) and the smoothed

phase function (74(w)) of the Muon g — 2 magnetic field scanner probe.

In some cases, the noise spectrum may have sharp spikes at certain frequencies on top

of a continuous spectrum. These peaks may be caused by electromagnetic interference with
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other devices. Suppose the single-frequency noise is N(t) = Ny cos(wnt + $on) and the FID
phase function is ®(t) = wpt. According to Eq. 20, the phase noise is

no(t) = 05

sin((wN — WQ)t + q)ON), (31)

which is an oscillation at angular frequency |wy — wp| that can be mitigated using the
moving-average smoothing method. However, if |wy — wp| is too small, the size of the
smoothing window may be comparable to T3 so the actual fit window will be very small
after eliminating the edges. Therefore, noises with angular frequencies peaked near wy are
almost irreducible. Furthermore, the polynomial fit of ®(t) is affected more by low-frequency
noise, particularly when 27 /|wy — wpl| is longer than the fit window. For noises with sharp
spikes in the frequency domain spectrum, the resolution depends on the FID frequency, and
the resolution of the probe becomes significantly poorer when the FID frequency gets close

to a noise frequency spike.

D. Unweighted and diagonal Minimum-y? Fit

Calculating the noise covariance matrix, particularly for the generic noise, is computation-
intensive, so it is not suitable for online or large-scale FID analyses. Instead, the unweighted
minimum-x? fit (assuming X, o< d;;) or the diagonal minimum-y? fit (keeping only diagonal
elements of Y1) are used if the minimized x*-value is not used as a check of the goodness of
the fit. The biases of the expectation and standard deviation of the extracted w are analysed
using simulated FIDs with various envelope shapes, phase functions, and noise spectra. For
both the unweighted and the diagonal fit, the fit result of w is always unbiased, and the stan-
dard deviations of @ determined using these two methods are about 0 to 10% larger than the
fit result with the proper noise-correlation treatment described above. Therefore, if the un-
weighted or the diagonal fit is used, the fit result is not biased and the statistical uncertainty
of the extracted w can be determined via the standard deviation of multiple measurements
in the same field, but the y?/v cannot be used as an indicator of the goodness of the fit.
However, if the down-sampling factor is significantly large, the diagonal fit generates the fit
uncertainty and the minimal x? very close to those given by the fit with the correct noise
covariance matrix. This effect can be explained using the auto-correlation spectrum of the

smoothed ny(t) shown in Fig. 12. For this ne(t), if two samples are separated by more than
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20 us, their auto-correlation is effectively zero. If the period after down-sampling is larger
than 20 us, the noise covariance matrix is essentially diagonal. This method can be applied
when it is essential to obtain the statistical uncertainty from each FID and acceptable to

worsen the statistical uncertainty with a sufficiently large down-sampling factor.

5

Auto Correlation [rad?]
o

—
_II|IIII|IIII|IIII|IIII|III_

100 200 300 400 500
t [us]

0
0

FIG. 12: Auto-correlation of samples in n,(t) for the noise of the Muon g — 2 magnetic

field scanner probe.

V. CONCLUSIONS

We have presented a detailed prescription of implementing Cowan’s method for extracting
the FID frequency, which can be used in high-precision magnetometers. The phase function
and the envelope function of an FID are determined using the Hilbert Transform. We have
developed the methods for analyzing the effects caused by artifacts like the discrete Hilbert
transform, baseline and signal distortion. These methods can be applied in the analysis
frameworks of existing magnetometers to obtain systematic uncertainties, and they can
also contribute to future designs of NMR read-out electronics to calculate the tolerances of
artifacts. To leading order, these artifacts result in ripples in the phase function and the
envelope function. A running-average method for smoothing the phase function has been

developed to mitigate these effects. The remaining bias caused by the artifacts depends on
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their details, and it is recommended to use simulated FIDs with these artifacts to quantify
their systematic biases on the frequency extraction. In general, small 7} times and large

nonlinear terms in the phase function amplify these biases.

Furthermore, the relationship between the noise in the phase function and the noise in
the FID waveform has been derived to the leading order as shown in Eq. 20. The method for
obtaining an invertible noise covariance matrix used in the minimal-x? fit has been described
for the white and generic noise sources. The spectra of the noise in the phase functions
have been discussed. The consistency between the statistical uncertainty generated by the
minimum-x? fit and the standard deviation of the extracted FID frequency has been verified
using simulated FIDs. This method is useful in determining the resolution of an NMR probe
from a single shot when repeated measurements of the same field are difficult to achieve,
and a y?-test can be performed to determine the goodness of the fit. We have also verified
that the fit results obtained through the unweighted and diagonal fits are not biased, and
one can use these methods to extract the FID frequency without significantly worsening the

resolution when the computing power is limited.
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Appendix A: Correlation between n(t) and n;(t) samples for white noise

According to Eq. 8, the Hilbtert transform of an arbitrary noise function N(t) is
1 [~ .
N;(t) = —/ / N(7)(—i)sgn(w) “"(tf)dw} dr (A1)
2m Jo
1 oo oo
/ iN(1)et=T dw} dr + — [/ (—i)N(1)e™ = T)dw} dr
—o0 0

o7 27

/ [/ N(r );ie_M(t 7) dw} 0
_ ;/0 [/0 N(T)sin(w(t—T))dw] ar.

The integration over 7 starts from 0 because the signal starts from ¢t = 0. Because of

the finite sampling frequency, the integration over w is truncated at 7/At where At is the
interval between samples. One can then simplify Eq Al by performing the integration over

w and get

Ny(t) = P.V. {% /OOO V() = T))dT} . (A2)

t—T

The principal value of the integral is taken, because the integrand of Eq. Al is zero for

t = 7. Expressing the integral in Eq. A2 as a sum over the discrete samples of N(t), the
k-th sample of N;(t) is

L1
1 1 T (t t
Nt =2 3 Nyt @Bl ) 4, (43)
L vyt b =1
-1
1 1 —cos(m(k —1))
= — N(t)
T otk k=1
-1
1 1—(—1)kt
== N(t)) ,
T ok k=1

where t, = kAt and L is the total number of samples of N(t).
If N(t) is a white noise, any pair of different samples are statistically independent, and

thus the expected value of N(t;)N () is
(N(t;)N(t)) = djron, (A4)
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and then the expected value of N(t;)N;(tx) for j # k is

(N (t;)Ni(te)) :% (NN W) == (A5)
1=0,1£k
S R
=5 2 %k k(—l>
1=0,14£k
L (1)
w(k—j5) "

For j = k, (N(t;)N;(tx)) = 0 because the N;(t;) does not depend on N(t;) according to
Eq. A3. Finally, for n(t) and n;(t) defined in Sec. IV, the covariance matrix element between

sample j and k is

COV(n(t;), ni(t)) = <n(ty)m(tk)> (A6)

Appendix B: Correlation between different n;(t) samples for white noise

The expected value of N;(t;)N;(tx) can be calculated directly using Eq. A3

J

<Ni<tj>Ni<tk>>=%<[ > N(tm);] [i Ny =V ]> (B1)

m=0,m#j 1=0,l#k
L—1 L—1 .
1 1— (=1)=m 1 — (—1)k
= N(tn)N
= > D (N(E)N(n) i—m -
m=0,m##j l=0,l#£k
I = % — —1)j—m1—(—1)’f—l
T moN T k—1

m=0,m##j [=0,l#k

0% = (1= (=)™ - (1)
:_Z(())<()>'

T T (7 —m)(k —m)

If j and k are not close to the ends (0 or L), then the bounds of the sum in Eq. Bl can

be extended to (—oo, +00). The following discussions assume that j and k are not close to
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the ends. Particularly, for j = k, Eq. B1 becomes

ey =% 3 LR

2 - 2
T m=—00,m#j ('] m)

(B2)

2 ©© 4
_ 99N =
B 7T2mZ:1(2m+1)2
oy
w2 8

— 2.

According to Eq. Bl, it is obvious that (N;(¢;)N;(tx)) = 0 when j — k is an odd number.
When j — k is an even number, Eq. B1 can be further simplified as

PR RNS  w  € Bl GV il
(Ni(tj)Niti)) = 5 mzoo%jﬁm# Gt (B3)
_ox S Q—(=17 ™[ 1 1
2 m:_oo;?éjm#k —J {j -m k- m]
=0

Therefore, the covariance matrix element between sample j and k of n;(t) is

_ (Nity) Niltw))
A(t;)Altk)

~ -V
~

A2(t)) 7"

(B4)

where the approximation depends on how far j and k are from the ends. One can use Eq. B1

to compute (N;(t;)N;(tx)) and (n;(t;)ni(ty)) accurately. For example, (N;(t;)N;(tx))
0.50% for j = k =0, while (N;(¢;)N;(tx)) = 0.9750% for j =k =T7.

Appendix C: Rank of the covariance matrix

Let L be the total number of samples in the fit region. The dimension of the > matrix in

Eq. 23 is L x L. ¥ is invertible if and only if its rank is L, or equivalently, linear equations

2X =0 (C1)
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have only one solution X = 0. By definition,
Y= <n¢n£> , (C2)

where n, is a column-vector representing the phase noise in the fit region. The Fourier

transform of n4(t) expressed as a vector product is
n(w) = nZ;Z(w), (C3)

where Z(w) is a column-vector with the j-th element Z;(w) = exp(—iw(jAt)). According
to Eq. 27, for w > 7 /At — wy approximately

i(w) =ng Z(w) = 0. (C4)
After multiplying n, to both sides of Eq. C4 and taking the expected value, one gets
(ngny) Z(w) = LZ(w) = 0. (C5)

Because of the discrete Fourier transform, w can only be an integer times Aw = 27 /T up
to the Nyquist angular frequency 7/At, where 7" is the duration of the entire signal. In the
region (w/At — wo, m/At), there are wy/Aw = w1 /21 values of w that satisfies Eq. C5. In
other words, there are wy7'/27 non-trivial solutions to the linear equations in Eq. C1. The

rank of matrix ¥ is then L — w7 /27, and thus, 3 is not intervible.
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