Computational Thinking Growth During
a First-Year Engineering Course

Russ Meier
Dept. of Electrical Engineering
and Computer Science

Noemi V. Mendoza Diaz
Dept. of Educational
Administration and Human
Resource Development
Texas A&M University
College Station, TX, USA
nmendoza@tamu.edu

Milwaukee, WI, USA
meier@msoe.edu

Abstract— This full research-track paper demonstrates growth in
computational thinking in a cohort of engineering students
completing their first course in engineering at a large
Southwestern university in the United States. Computational
thinking has been acknowledged as a key aspect of engineering
education and an intrinsic part of multiple ABET outcomes.
However, computing is an area where some students have more
privileges (e.g. access and exposure to meaningful use of
computers) than others. Integrating computing into engineering,
especially early in the curriculum, may exacerbate existing
experiential disadvantages students from excluded social
identities experience. Most introductory engineering programs
have a component of programming and/or computational
thinking. A comprehensive literature review showed that no
existing computational thinking framework fully met the needs of
students and professors in engineering and computer science. As
a result, this team created the Engineering Computational
Thinking Diagnostic (ECTD). This diagnostic was assessed and
improved during the 2019-2020 academic year. Data was
collected from a cohort in a first-year engineering course that
included topics in mathematics, engineering problem solving, and
computation. Pre- and post-test data analysis with 62
participants documents statistically significant student growth in
computational thinking in this course. Significant differences
were not found by gender or a limited racially-based analysis.
This diagnostic is of interest and relevance to all institutions
providing engineering and computing programs. The short-term
impact of this research includes an innovative approach to gauge
student abilities in computational thinking early in a course in
order to add appropriate intervention activities into lesson plans.
The long-term impact is the creation of a measurement of student
learning of computational thinking in engineering for courses
and programs that wish to develop this important skill in their
students.

Keywords—computational thinking, first-year engineering
education, learning and teaching effectiveness, assessment
metrics.

I. INTRODUCTION AND RESEARCH MOTIVATION

Undergraduate engineering and computer science students
spend at least four years learning the theories, techniques, and
skill sets required to practice their chosen field. The acquisition
of this technical knowledge is accompanied by a gradual self-
actualization of belonging in the community of professionals.
This enculturation into the engineering and computer science
professions differs for every student because each student has
unique life experiences. Demographics, socioeconomic factors,

This material is based upon work supported by the National Science
Foundation under Grant No. 1949880
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2020 IEEE

Milwaukee School of Engineering

So Yoon Yoon
Dept. of Engineering Education
University of Cincinnati
Cincinnati, OH, USA
yoons5@ucmail.uc.edu

Deborah A. Trytten
Dept. of Computer Science
University of Oklahoma
Norman, OK, USA
dtrytten@ou.edu

and entry-level preparedness all contribute to the speed and
success of enculturation.

One of the critical points in engineering and computer
science enculturation is the first-year experience. Research at a
large institution in the United States discovered many factors
affecting student success and enculturation during the first year
of engineering education [1]. The key results of that study
were that struggling students found computational thinking
particularly challenging, tasks related to computational
thinking demotivated them, and tasks related to computational
thinking made them question their choice of major. Many
engineering and computer science curricula include
foundations of computation or computer programming during
the first year. Yet, the connection between enculturation and
these computing courses is not well-documented in the
literature.

The evident gap in this area of research, along with the
results from the initial study, led to a broader multi-institutional
research project into how computational thinking affects the
formation of engineers. With funding from the United States
National Science Foundation, a team of researchers is working
to understand the multiple factors that affect computational
thinking development and improve the way computational
thinking is taught to engineers at the college level. The
research questions addressed in this paper are:

1. What are the learning gains of students who attended an
introductory first-year engineering course that includes
computation thinking topics when assessed by the ECTD?

2. How do the learning gains of students differ by gender and
race?

To help answer these questions, the research project has
developed and deployed an instrument called the Engineering
Computational Thinking Diagnostic (ECTD) that gauges
growth in computational thinking. This diagnostic can be used
by an instructor as a pre-test to determine both skills and
deficits in a group of students beginning a first course in
computation. At the end of the course, the instructor can use
the instrument as a post-test comparison tool to measure
growth in computational thinking. This paper demonstrates the
use of the diagnostic at a large university in the United States
to gauge the development of computational thinking skills in
one cohort of first-year engineering students.

II. LITERATURE REVIEW

National and international reports and publications
corroborate the importance of computation in the formation of
engineers [2-9]. Of course, the development of computational
thinking skills is also of primary importance in computer
science students.

Computation skills are also acknowledged universally,
beyond the engineering and technical fields, to the extent that
several pre-university initiatives have been launched. Example
K-12 programs including fundamentals of computation or
programming include Hour of Code, Code.org, Project Lead
the Way, Girls Who Code, and Black Girls Code. And, a
recent United States presidential initiative, Computer Science
for All, was announced and funded [10-11]. Capacity to code is
directly linked to technological independence and
advancement. It is generally believed that it should start as
early as possible in the educational pathway.

The literature also reveals a disparity in representation of a
variety of social identity groups in the fields of computer
science and engineering. Margolis and Fisher exposed factors
that caused women to be underrepresented at Carnegie Mellon
University [12]. Underrepresentation is also prevalent in racial
and ethnic minority groups and those from low socioeconomic
status, [13-15]. The challenge of building computational skills
in all areas of human initiative and specifically in engineering
is not simple.

Computing, coding, programming, algorithmic thinking
and computational thinking are all terms used in the
engineering and computer science education literature. Authors
link these concepts with technological and engineering
knowledge advancement [3, 9, 16-21]. The relationship
between engineering education and computing skills is
formalized in The Taxonomy of Engineering Education
Research where “Computing skills (syn: Computing
knowledge)” are included in the student outcome category
[22]. The most prevalent reported relationships between
engineering and all these terms are in the context of problem
solving, systems thinking, modeling, simulation, and design [2,
4, 23-28]. However, the way engineers understand
computational thinking evinced by these papers differs from
the frameworks in computational thinking in the literature.

Defining computational thinking appropriate to an
engineering context is surprisingly difficult. Most
computational thinking frameworks suggested by different
groups and researchers do not specifically target engineering.
For example, the International Society for Technology in
Education (ISTE) and the Computer Science Teachers
Association (CSTA) both have well designed and vetted
frameworks, but these frameworks were designed for K-12
teaching [29, 30]. Brennan and Resnick also defined a
computational thinking framework during their work with
Scratch (a graphical programming language widely used in K-
12) for the MIT Media Lab [31]. However, the concepts in this
framework are centered on programming. While programming
is a powerful tool for engineering, computational thinking is
broader than programming [32].

The Collaborative Process to Align Computing Education
with Engineering Workforce Needs (CPACE) defined
computing needs based on current engineering workforce
needs. The project stakeholders were from one geographic
region of the United States and included community colleges,
industry, researchers, engineering faculty, engineering students
and business leaders [4]. While their work is at the college
level and centered on engineering, it combined information
technology and computational thinking and is not focused on a
broad view of developing computational thinking skills as part
of enculturation into the engineering profession. A framework
for computational thinking is also not a diagnostic test for
computational thinking. These frameworks have learning
objectives, but lack a validated testing mechanism.

The most prominent existing test for computational
thinking is the Computer Science Principles (CSP)
examination. The College Board, a non-profit organization
headquartered in the United States, offers the CSP. The CSP
has a well-designed computational thinking framework as well
as a diagnostic examination; however, it was designed to
represent general education computer science at the college
level and is not specifically responsive to the needs of
engineering [33]. General college students and engineering
college freshman have different backgrounds, especially in
mathematics. The prerequisite mathematics for the CS
Principles examination is given below [34]. Students with only
this mathematical background would be unlikely to pursue, let
alone succeed, in engineering. Any diagnostic test for a general
audience will have to avoid using the mathematically intense
parts of computation that engineers most need.

“...a student in the AP Computer Science
Principles course should have successfully
completed a first-year high school algebra
course with a strong foundation in basic linear
functions and composition of functions...In
addition, students should be able to use a
Cartesian (x,y) coordinate system to represent
points in a plane.” [34, pp. 4]

The CSP is part of a system of examinations that are used
by secondary students to gain college credit in the U.S. The
examination is lengthy and expensive. The CSP consists of a
portfolio of two performance tasks that are developed over the
course of a year and a two-hour multiple-choice examination
with seventy-four questions [35]. The examination costs
between $94 and $182, depending on where the examination is
taken and when it is scheduled [36]. Students that are enrolled
in college are not permitted to take the CSP examination.
Therefore, the CSP cannot be used to gauge computational
thinking among engineering students.

In order to develop and deploy a survey that educators
could use to gauge computational thinking in engineering
students, a framework for computational thinking was
developed that built upon aspects of earlier work and
emphasized aspects recognized by the expertise of professors
in the area of engineering education and computer science who
had taught computational thinking and programming to
engineers for several years.

The framework in Table 1 underlies the ECTD, which
incorporates five aspects of computational thinking: (a)
Abstraction, (b) Algorithmic Thinking and Programming, (c)

Data Representation,

Organization, and Analysis, (d)

Decomposition, and (e) Impact of Computing. Table I
delineates how the most recent ABET student outcomes from
2019-2020 are aligned with the framework in the literature as
well as the framework for the ECTD. Key terms are defined as

expressing these methods in an appropriate language.
Data Representation, Organization, and Analysis:
Transforming raw data into information and
knowledge.

Pattern Matching: Finding similarities between data
or algorithms.

Automation: Plugging pieces into an algorithm to help
with a result, sometimes involving programming.

below. Decomposition: Breaking a problem or system apart
® Abstraction: A new representation of a thing, a into smaller components that can be more easily and
system, or a problem that reframes a problem by completely analyzed.
hiding details irrelevant to the question at hand. Impact of Computing: Considering both the potential
e Algorithmic Thinking and Programming: harm and benefits to multiple groups when making
Developing systematic methods to solve problems and computing choices and decisions.
TABLE L ENGINEERING COMPUTATIONAL THINKING DIAGNOSTIC (ECTD) FRAMEWORK COMPARED WITH THE LITERATURE
ECTD /;fgf ISTE [29] CSP [33] CPACE [4] CSTA [30] B”””‘"E;;‘]R"S”’Ck
Abstraction 1,7 Abstraction Abstraction Modehng‘ and
Abstraction
Algorithms
Algorithmic Algorithms
6,7 Thinking and and Multiple Programming
Algorithmic Programming | Programming Programming | Constructs e.g. loops,
Thinking and selection
Programming
1,7 Pattern Matching
1,7 Automation
Digital
Data Representation Data
Representation Data and of Information Data and
o 6,7 . .
, Organization, Information Analysis
and Analysis Information
Organization
Decomposition 1,7 Decomposition
2 Global Impact ggglacsigf
Impact of puting
Computing
2 The Internet Networks Networks &
the Internet

“The ABET outcomes are: 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of
engineering, science, and mathematics; 2. an ability to apply engineering design to produce solutions that meet specified needs with
consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors; 6. an
ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw
conclusions; 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

ISTE = International Society for Technology in Education; CSP = Computer Science Principles; CPACE = Collaborative Process
to Align Computing Education with Engineering Workforce Needs; CSTA = Computer Science Teachers Association

The Engineering Computational Thinking Diagnostic
operationalizes all these aspects of computational thinking in
two versions of the diagnostic of 15 question-items, each with
five multiple choice options. Two example items from the
ECTD are given below, with correct answers in bold. The first
focuses on decomposition and the second focuses on the
impact of computing.

Decomposition: The Rubik’s cube in the figure is composed
of 53 blocks. A program counts the number of blocks traversed
from the origin to the desired block by first traversing along the
x-axis, then the y-axis, and finally the z-axis. For example, the
block labeled 6 is the 6" block accessed. How many blocks are
traversed to get to the block with the frog icon?

a) 6 b) 11

c) 18

Fig. . An example of decomposition item question in the ECTD

d) 78 e) 86

Students can answer this question by decomposing the
problem into three parts: counting the number of 25 block
planes parallel to the x-y axis of the cube that have been
traversed, then adding in the number of 5 block rows parallel
to the x axis that have been traversed, and lastly adding in the
last individual block. The distractors were designed to identify
students who traversed the block in orders other than those
requested. For example, if you traverse the first three levels of
25 blocks, and then traverse along the y axis instead of the x as
first, you will touch 78 blocks (answer d). We made the
correct answer one of the extremes to keep the student trick of
avoiding choosing extreme answers from being successful.

Impact of Computing: You have designed a system called
TestFile that allows students at your university to share
examinations from previous semesters of the same class with
the same professor. Users pay $50 for this service or have to
upload at least ten examinations from their previous semester
classes. Which of the following statements is true?

a) This system is fair to students who are in their first
semester at your institution because they can always pay
$50 if they don’t have examinations to share.

b) This system respects the intellectual property of the
professors who teach at your institution, since the graded
examinations that are given back to students are the
student’s personal property.

¢) This system is unfair to students who are in their first
semester at your institution because they do not have

examinations to share and would have to pay for the
service or have an academic disadvantage.

d) You could not be charged with academic misconduct for
setting this system up at your own institution because it’s a
free country.

e) Students who use your system could not be charged with
academic misconduct because you have made the system
available to everyone in the class.

This problem addresses a number of issues in the social
impact of computing, including unequal access to resources
(money, time in higher education), intellectual property
ownership, and academic integrity. Each distractor is based on
a misunderstanding of one of these critical elements. For
example, choice a) would be chosen by a student who didn’t
realize that not everyone has an extra $50 to pay for
educational resources. Answer b) would be chosen by a student
who didn’t understand that people who create intellectual
property (like a professor’s examinations) may have the right
to control distribution beyond the intended audience.

The purpose of this study is to present the preliminary
results of the application of this diagnostic to first-year
engineering students before and after an introductory
engineering course. As stated earlier, the research questions
guiding this research paper are:

1. What are the learning gains of students who attended an
introductory first-year engineering course that includes
computation thinking topics when assessed by the ECTD?

2. How do the learning gains of students differ by gender and
race?

III. METHOD

Participants. The population of the study was the entire
2019 first-year engineering cohort at a large Southwestern
university in the United States. Institutional Review Board
(IRB) approval was obtained and participants were recruited
via IRB-approved emails. To avoid participation bias,
recruitment emails were distributed to all first-year engineering
students by faculty members not affiliated with the research
team. Pre-test recruitment emails were sent twice in the second
week of the Fall semester. About 800 students responded to the
pre-test version of the ECTD. After factor analysis to gauge the
effectiveness of the ECTD questions, changes to questions
were made before post-test use of the ECTD. At the start of the
Spring semester, two recruitment emails were sent to recruit
participants from the same population for post-test
measurement. While around 100 students responded to the
post-test version of the ECTD, 62 students were identified for
completion of both the pre-post ECTD. Table II shows
demographic information of these 62 participants.

TABLE II. PARTICIPANTS” DEMOGRAPHICS
Race and Ethnicity
Gender Sub-total
Hispanic | AIAN | Asian | Black | Multiracial | White
Female 1 1 3 0 3 10 18
Male 7 0 10 1 0 26 44
Total 8 1 13 1 3 26 62

Note. AIAN = American Indian or Alaska Native

Data Analysis. Based on the sample size, the research team
conducted a paired sample #-test or Wilcoxon signed ranks test,
which is a counterpart of the paired sample #test in
nonparametric tests, to determine if there is a significant
difference between the pre- and post-ECTD results. Due to the
small sample size by subgroups of gender and minority status,
we conducted a Mann-Whitney U test, which is a counterpart
of independent samples #-test in nonparametric tests, to explore
subgroup differences in the pre-post changes on the ECTD
scores. Here, minority status was grouped as White versus non-
White students due to the small sample size.

IV. RESULTS

Table III shows the descriptive statistics on the pre-post
ECTD scores by gender and minority status. The differences
between the pre-post mean scores were all positive, indicating
the gain of student learning on computational thinking.

TABLE IIL DESCRIPTIVE STATISTICS ON THE PRE-POST ECTD SCORES

Subgroup N A;’re-scoreSD Al;ost-sco;eb Aézl;:
Female 18 7.89 2.54 11.67 2.03 3.78
Male 44 8.95 2.93 11.16 2.97 2.21
Non-White 26 8.54 3.37 10.77 3.29 2.23
White 36 8.72 2.43 11.69 2.20 2.97
Total 62 8.65 2.84 11.31 2.73 2.66

Table IV shows the statistical testing results on the pre-
post differences by gender and minority status. The paired
sample t-test indicates a significant mean difference of 2.26
between pre and post-ECTD scores with #(61) — 7.4, p < 0.001
with a significant correlation of » = 0.480 between pre-post
scores. Similarly, paired sample #-test and Wilcoxon signed
ranks tests shows significant increases on the post-scores for
each subgroup by gender and minority status. The Cohen’s d
effect sizes on the pre-post changes were all positive and
medium to large [38]. Perceptually, the magnitudes of the
change were larger for female and White students.

TABLE IV. STATISTICAL TESTING ON PRE-POST ECTD SCORES
Paired Sample t-test Wil;z);zrst i;é; :’ed
Subgroup N Cohen's d
t | df p z p
Female 18 - - - -3.635 | <0.001 1.637
Male 44 | -53 | 43 | <0.001 - - 0.747
Non-White | 26 - - - -3.003 0.003| 0.669
White 36 | -7.6 | 35 | <0.001 - - 1.278
Total 62 | -7.4 | 61 |<0.001 - - 0.956

On average, female students increased 3.78 points and
male students increased 2.21 points on the post-ECTD.
However, the Mann-Whitney U test shows nonsignificant
difference by gender on the changes of the pre-post scores,

with U = 301.0, Z = -1.489, p = 0.137. Similarly, non-White
students increased 2.23 and White students increased 2.97
points on the post-ECTD. However, the Mann-Whitney U test
shows nonsignificant difference by gender on the changes of
the pre-post scores, with U=375.5, Z=-1.332, p=0.183.

V. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

The research team applied the Engineering Computational
Thinking diagnostic in order to partially answer the research
question What are the learning gains of students who attended
an introductory first-year engineering course that includes
computation thinking topics when assessed by the ECTD?
Students spend four years in most university engineering
curricula and growth in computational thinking may occur
across all four years. The application of the ECTD at the start
of the first year of engineering yields an assessment outside of
traditional course assignments to help identify students at-risk
of failure in first-year engineering computation courses and to
measure growth in the cohort of students that completed the
course by comparing pre- and post-test performance.

This paper demonstrates that the first-year engineering
course did result in engineering students increasing their
computational thinking skills in a statistically significant way.
While this result is not surprising, it does provide some
verification both of student learning and of the ECTD’s ability
to detect student learning. If the statistical results had not been
significant, either the course’s ability to deliver student
learning in computational thinking or the ECTD’s ability to
identify student learning in computational thinking would have
been suspect.

The absence of statistically significant differences between
male and female students and White and non-White students
could have several interpretations. A possible interpretation is
that the ECTD is not biased for or against male, female, White
or non-White students. It was somewhat surprising, however,
that statistically significant differences in computational
thinking gains were not seen along either gendered or racial
lines, especially given the well-known inequities in
computational experience that have historically favored males
over females and Whites over non-Whites [12,14].

While the differences in group means were not significant,
it is notable that female students seemed to gain more in
computational thinking than male students, both starting with
lower scores and ending with higher scores. Starting with
lower scores would be predicted by the literature [12]. The
pattern in White versus non-White students was different.
Non-white students started with lower scores than white
students, as would be predicted given societal inequities and
the literature, but also ended with lower scores [14]. Since non-
White students more often come from lower socioeconomic
groups, it is possible that non-White students have more
competing responsibilities (e.g. family obligations, work) that
keep them from making the same gains in computational
thinking [39]. There also could be other unidentified social
processes at work in the engineering course. It is possible that
these results might be statistically significant had the sample
size been larger. As such, readers should treat these results as

preliminary until the larger studies that are planned in the near
future can be completed and published.

Unfortunately, Spring 2020 proved to be a challenging
semester not only at the institution where data was collected
but worldwide due to the Covid-19 global pandemic. This
impaired the ability of the team to gain sufficient participants
to make broader claims about which engineering students
benefit the most from computational thinking instruction. For
example, comparisons by other social identities, including
intersectional identities, were planned, however the sample size
was insufficient. The results that are presented should be
viewed as preliminary until a larger sample data from the fully
validated instrument can be collected and analyzed.

The availability of the ECTD provides an avenue for
engineering programs to evaluate how the integration of
computational thinking is impacting their programs. As an
example, consider how the integration of computational
thinking might impact program diversity and inclusion efforts.
While the claim that computational skills are necessary for
future engineers is not controversial, there are risks to
including computational thinking early in engineering
programs. Computing is an area of great inequality, where
students with greater privileges (who are more likely to be
from dominant social groups) have substantially more
opportunities to gain pre-university experience with computers
and computational thinking [12, 14]. Prior experience with
computing may give students from the dominant social groups
further advantages. Computing is, after all, one of the least
diverse disciplines in all of academia for many reasons. It is
therefore possible that integrating computational thinking into
introductory engineering classes, may exacerbate the
substantial challenges that engineering programs have in
attracting and retaining more diverse students.

In order to address this issue, much larger scale
experiments will need to be run, especially at large institutions
and institutions with greater diversity. These experiments will
enable the evaluation of the ways in which computational
thinking skill development is influenced by a student’s gender,
race/ethnicity, disability status, socioeconomic status, and other
social identities.

In time, this team hopes that the availability of the ECTD
will make it possible for many institutions to systematically
examine alternatives for integrating computational thinking
into engineering and other related disciplines. Questions that
could be considered include:

e In what ways do students who are taught computational
thinking in lower division classes learn compared to
students who are taught in upper division classes? For
example, do students who have had calculus learn
computational thinking more effectively than those with
lower levels of demonstrated mathematical achievement?

e In what ways can the ECTD provide insight about the
learning of computational thinking in areas related to
engineering (such as science, technology and
mathematics) and in different engineering majors? For
example, in what ways do environmental engineers learn
computational thinking compared to electrical engineers?

(1

[2]

B3]

[4]

[3]

(6]

(7]

(8]

9]

[10]

[11]

[12

—

[13]

Can ECTD results be used to inform individual students
which pathways in engineering are more likely to be
successful?

In what ways can the results of the ECTD, when used as a
pretest, inform instruction in computational thinking? Is it
possible to use the ECTD to identify areas where
particular groups of students may struggle in advance and
make teaching decisions that lead to better student
outcomes?

In what ways could the ECTD provide information about
how effective individual instructors are at developing
computational thinking skills in students? In this way, the
ECTD could even be used as one component in the
evaluation of teaching. This analysis could lead to the
identification of patterns of teaching that lead to success in
computational thinking for students.

REFERENCES

Mendoza Diaz N.V., Yoon Y. S., Richard J., “Exploring Enculturation
in the First-Year Engineering Program (Year III)” In Proceedings of the
American Society for Engineering Education, 20/9. Tampa, Florida,
USA.

Sorby, S. A., & Baartmans, B. J., “The Development and Assessment of
a Course for Enhancing the 3-D Spatial Visualization Skills of First
Year Engineering Students”, Journal of Engineering Education, 89(3),
pp. 301-307, 2000.

Thuné, M., & Eckerdal, A., “Variation theory applied to students’
conceptions of computer programming”, European Journal of
Engineering Education, 34(4), pp. 339-347, 2009.

Vergara, C. E., Urban-Lurain, M., Dresen, C., Coxen, T., MacFarlane,
T., Frazier, K., ... & Sticklen, J., “Aligning computing education with
engineering workforce computational needs: New curricular directions
to improve computational thinking in engineering graduates”,
In Frontiers in Education Conference, 2009.

Magana, A. J., Brophy, S. P., & Bodner, G. M., “Instructors' intended
learning outcomes for using computational simulations as learning
tools”, Journal of Engineering Education, 101(2), pp. 220-243, 2012.

Gross, S., Kim, M., Schlosser, J., Lluch, D., Mohtadi, C., & Schneider,
D., “Fostering computational thinking in engineering education:
Challenges, examples, and best practices”, In Global Engineering
Education Conference (EDUCON), pp. 450-459, 2014.

Meyer, M., & Marx, S., “Engineering dropouts: A qualitative
examination of why undergraduates leave engineering”, Journal of
Engineering Education, 103(4), pp. 525-548, 2014.

Magana, A. J., Falk, M. L., Vieira, C., & Reese, M. J., “A case study of
undergraduate engineering students' computational literacy and self-
beliefs about computing in the context of authentic practices.
“Computers in Human Behavior, 61, pp. 427-442, 2016.

Xia, B. S., & Liitidinen, E., “Student performance in computing
education: an empirical analysis of online learning in programming
education environments”, European Journal of Engineering Education,
42(6), pp. 1025-1037, 2017.

The White House, “Computer Science of All”, Retrieved from
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-
science-all, Accessed 5-29-2020.

Romm, T., “Recode: President Trump and his daughter Ivanka are
unveiling a new federal computer science initiative with major tech
backers”, Retrieved from
https://www.recode.net/2017/9/25/16276904/president-donald-trump-
ivanka-tech-stem-computer-science-coding-education-amazon-google,
Accessed 5-29-2020.

Margolis, J., & Fisher, A., “Unlocking the clubhouse: Women in
computing”, MIT Press, 2003.

Buzzetto-More, N. A., Ukoha, O., & Rustagi, N., “Unlocking the
barriers to women and minorities in computer science and information

https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://www.recode.net/2017/9/25/16276904/president-donald-trump-ivanka-tech-stem-computer-science-coding-education-amazon-google
https://www.recode.net/2017/9/25/16276904/president-donald-trump-ivanka-tech-stem-computer-science-coding-education-amazon-google

[14

[y

[15]

[16

—

[17]

[18

[t

[19

[}

[20

[

(21]

[22

—

(23]

[25

—_

systems studies: Results from a multi-methodolical study conducted at
two minority serving institutions”, Journal of Information Technology
Education: Research, Volume 9, pp. 115-131, 2010.

Margolis, J., “Stuck in the shallow end: Education, race, and
computing”, MIT Press, 2010.

Varma, R., “Making computer science minority-friendly”,
Communications of the ACM, 49(2), pp. 129-134, 2006.

Blikstein, P., Kabayadondo, Z., Martin, A., & Fields, D., “An
assessment instrument of technological literacies in makerspaces and
FabLabs”, Journal of Engineering Education, 106(1), pp. 149-175, 2017.

Chan, CK., Zhao, Y. and Luk, L.Y., “A validated and reliable
instrument investigating engineering students’ perceptions of
competency in generic skills”, Journal of Engineering Education,
106(2), pp. 299-325, 2017.

Shyamala, C. K., Velayutham, C. S., & Parameswaran, L., “Teaching
computational thinking to entry-level undergraduate engineering
students at Amrita University”, In Global Engineering Education
Conference (EDUCON), pp. 1731-1734,2017.

Nelson, K. G., Shell, D. F., Husman, J., Fishman, E. J., & Soh, L. K.,
“Motivational and self - regulated learning profiles of students taking a
foundational engineering course”, Journal of Engineering Education,
104(1), pp. 74-100, 2015.

Walker, H. M., “Computational thinking in a non-majors CS course
requires a programming component”’, ACM Inroads, 6(1), pp. 58-61,
2015.

Lowe, D. B., Scott, C. A., & Bagia, R., “A skills development
framework for learning computing tools in the context of engineering
practice”, European Journal of Engineering Education, 25(1), pp. 45-56,
2000.

Finelli, C. J.,, “EER Taxonomy (Version 1.1)”, Retrieved from
http://taxonomy.engin.umich.edu/wp-content/uploads/2018/05/EER-
Taxonomy-Version-1.1.pdf, Accessed 5-29-2020.

Hacker, M., “Integrating Computational Thinking into Technology and
Engineering Education”, Technology and Engineering Teacher, 77(4),
pp. 8-14, 2018.

Magana, A. J., Falk, M. L., Vieira, C., Reese Jr, M. J.,, Alabi, O., &
Patinet, S., “Affordances and challenges of computational tools for
supporting modeling and simulation practices”, Computer Applications
in Engineering Education, 25(3), pp. 352-375, 2017.

Cooper, S., & Dann, W., “Programming: a key component of
computational thinking in CS courses for non-majors”, ACM Inroads,
6(1), 50-54, 2015.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Miller, L. D., Soh, L. K., Chiriacescu, V., Ingraham, E., Shell, D. F., &
Hazley, M. P., “Integrating computational and creative thinking to
improve learning and performance in CS1”, In Proceedings of the 45th
ACM Technical Symposium on Computer Science Education, pp. 475-
480, 2014.

Wing, J. M., “Computational thinking and thinking about computing”,
Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 366(1881), pp. 3717-
3725, 2008.

Yasar, O., & Landau, R. H., “Elements of computational science and
engineering education”, SIAM review, 45(4), pp. 787-805, 2003.

Krauss, J., & Prottsman, K., “Computational Thinking and Coding for
Every Student: The Teacher’s Getting-Started Guide”, Corwin Press,
2016.

Computer Science Teachers Association CSTA, “About the CSTA K-12
Computer Science Standards”, Retrieved from:
https://www.csteachers.org/page/standards, Accessed 5-29-2020.
Brennan, K., & Resnick, M., “New frameworks for studying and
assessing the development of computational thinking”, In Proceedings
of the 2012 Annual Meeting of the American Educational Research
Association, pp. 1-25,2012.

Isbell, C. L., Stein, L. A., Cutler, R., Forbes, J., Fraser, L., Impagliazzo,
J.,, ... & Xu, Y., “(Re) defining computing curricula by (re) defining
computing”, ACM SIGCSE Bulletin, 41(4), pp. 195-207, 2010.

College Board, “AP Computer Science Principles”, Retrieved from:
https://apstudent.collegeboard.org/apcourse/ap-computer-science-

principles/course-details, Accessed 5-29-2020.

College Board, “AP Computer Science Principles, Including the
Curriculum Framework”, 2017.

College Board, “AP Computer Science Principles: The Exam”,
https://apcentral.collegeboard.org/courses/ap-computer-science-
principles/exam, Accessed 5-29-2020.

Board, “AP

Students: Exam Fees”,

uidelines/exam-fees,

College

https://apstudents.collegeboard.org/exam-policies-

Accessed 5-29-2020.

ABET, “Criteria for Accrediting Engineering Programs, 2020-2021”,
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-
accrediting-engineering-programs-2020-2021/, Accessed 5-29-2020.

Cohen, J., “Statistical Power Analysis for the Behavioral Sciences”,
Lawrence Erlbaum, Hillsdale, NJ, 1988.
Mendoza Diaz, N., “Hispanics in Engineering”, Proceedings of the 121*

ASEE Annual Conference and Exponsition, June 2014, Indianapolis, IN,
USA, 2014.

http://taxonomy.engin.umich.edu/wp-content/uploads/2018/05/EER-Taxonomy-Version-1.1.pdf
http://taxonomy.engin.umich.edu/wp-content/uploads/2018/05/EER-Taxonomy-Version-1.1.pdf
https://www.csteachers.org/page/standards
https://apstudent.collegeboard.org/apcourse/ap-computer-science-principles/course-details
https://apstudent.collegeboard.org/apcourse/ap-computer-science-principles/course-details
https://apcentral.collegeboard.org/courses/ap-computer-science-principles/exam
https://apcentral.collegeboard.org/courses/ap-computer-science-principles/exam
https://apstudents.collegeboard.org/exam-policies-guidelines/exam-fees
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2020-2021/
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2020-2021/

