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Abstract— This full research-track paper demonstrates growth in 

computational thinking in a cohort of engineering students 

completing their first course in engineering at a large 

Southwestern university in the United States. Computational 

thinking has been acknowledged as a key aspect of engineering 

education and an intrinsic part of multiple ABET outcomes. 

However, computing is an area where some students have more 

privileges (e.g. access and exposure to meaningful use of 

computers) than others. Integrating computing into engineering, 

especially early in the curriculum, may exacerbate existing 

experiential disadvantages students from excluded social 

identities experience. Most introductory engineering programs 

have a component of programming and/or computational 

thinking. A comprehensive literature review showed that no 

existing computational thinking framework fully met the needs of 

students and professors in engineering and computer science. As 

a result, this team created the Engineering Computational 

Thinking Diagnostic (ECTD). This diagnostic was assessed and 

improved during the 2019-2020 academic year. Data was 

collected from a cohort in a first-year engineering course that 

included topics in mathematics, engineering problem solving, and 

computation. Pre- and post-test data analysis with 62 

participants documents statistically significant student growth in 

computational thinking in this course. Significant differences 

were not found by gender or a limited racially-based analysis. 

This diagnostic is of interest and relevance to all institutions 

providing engineering and computing programs. The short-term 

impact of this research includes an innovative approach to gauge 

student abilities in computational thinking early in a course in 

order to add appropriate intervention activities into lesson plans. 

The long-term impact is the creation of a measurement of student 

learning of computational thinking in engineering for courses 

and programs that wish to develop this important skill in their 

students. 

Keywords—computational thinking, first-year engineering 

education, learning and teaching effectiveness, assessment 

metrics. 

I. INTRODUCTION AND RESEARCH MOTIVATION 

Undergraduate engineering and computer science students 
spend at least four years learning the theories, techniques, and 
skill sets required to practice their chosen field. The acquisition 
of this technical knowledge is accompanied by a gradual self-
actualization of belonging in the community of professionals. 
This enculturation into the engineering and computer science 
professions differs for every student because each student has 
unique life experiences. Demographics, socioeconomic factors, 

and entry-level preparedness all contribute to the speed and 
success of enculturation.  

One of the critical points in engineering and computer 
science enculturation is the first-year experience. Research at a 
large institution in the United States discovered many factors 
affecting student success and enculturation during the first year 
of engineering education [1].  The key results of that study 
were that struggling students found computational thinking 
particularly challenging, tasks related to computational 
thinking demotivated them, and tasks related to computational 
thinking made them question their choice of major. Many 
engineering and computer science curricula include 
foundations of computation or computer programming during 
the first year. Yet, the connection between enculturation and 
these computing courses is not well-documented in the 
literature.  

The evident gap in this area of research, along with the 
results from the initial study, led to a broader multi-institutional 
research project into how computational thinking affects the 
formation of engineers. With funding from the United States 
National Science Foundation, a team of researchers is working 
to understand the multiple factors that affect computational 
thinking development and improve the way computational 
thinking is taught to engineers at the college level. The 
research questions addressed in this paper are:  

1. What are the learning gains of students who attended an 
introductory first-year engineering course that includes 
computation thinking topics when assessed by the ECTD?  

2. How do the learning gains of students differ by gender and 
race?   

To help answer these questions, the research project has 
developed and deployed an instrument called the Engineering 
Computational Thinking Diagnostic (ECTD) that gauges 
growth in computational thinking. This diagnostic can be used 
by an instructor as a pre-test to determine both skills and 
deficits in a group of students beginning a first course in 
computation. At the end of the course, the instructor can use 
the instrument as a post-test comparison tool to measure 
growth in computational thinking. This paper demonstrates the 
use of the diagnostic at a large university in the United States 
to gauge the development of computational thinking skills in 
one cohort of first-year engineering students.  



II. LITERATURE REVIEW  

National and international reports and publications 
corroborate the importance of computation in the formation of 
engineers [2-9]. Of course, the development of computational 
thinking skills is also of primary importance in computer 
science students. 

Computation skills are also acknowledged universally, 
beyond the engineering and technical fields, to the extent that 
several pre-university initiatives have been launched. Example 
K-12 programs including fundamentals of computation or 
programming include Hour of Code, Code.org, Project Lead 
the Way, Girls Who Code, and Black Girls Code.  And, a 
recent United States presidential initiative, Computer Science 
for All, was announced and funded [10-11]. Capacity to code is 
directly linked to technological independence and 
advancement. It is generally believed that it should start as 
early as possible in the educational pathway. 

The literature also reveals a disparity in representation of a 
variety of social identity groups in the fields of computer 
science and engineering. Margolis and Fisher exposed factors 
that caused women to be underrepresented at Carnegie Mellon 
University [12]. Underrepresentation is also prevalent in racial 
and ethnic minority groups and those from low socioeconomic 
status, [13-15]. The challenge of building computational skills 
in all areas of human initiative and specifically in engineering 
is not simple.  

Computing, coding, programming, algorithmic thinking 
and computational thinking are all terms used in the 
engineering and computer science education literature. Authors 
link these concepts with technological and engineering 
knowledge advancement [3, 9, 16-21]. The relationship 
between engineering education and computing skills is 
formalized in The Taxonomy of Engineering Education 
Research where “Computing skills (syn: Computing 
knowledge)” are included in the student outcome category 
[22]. The most prevalent reported relationships between 
engineering and all these terms are in the context of problem 
solving, systems thinking, modeling, simulation, and design [2, 
4, 23-28]. However, the way engineers understand 
computational thinking evinced by these papers differs from 
the frameworks in computational thinking in the literature. 

Defining computational thinking appropriate to an 
engineering context is surprisingly difficult. Most 
computational thinking frameworks suggested by different 
groups and researchers do not specifically target engineering. 
For example, the International Society for Technology in 
Education (ISTE) and the Computer Science Teachers 
Association (CSTA) both have well designed and vetted 
frameworks, but these frameworks were designed for K-12 
teaching [29, 30]. Brennan and Resnick also defined a 
computational thinking framework during their work with 
Scratch (a graphical programming language widely used in K-
12) for the MIT Media Lab [31].  However, the concepts in this 
framework are centered on programming. While programming 
is a powerful tool for engineering, computational thinking is 
broader than programming [32].  

The Collaborative Process to Align Computing Education 
with Engineering Workforce Needs (CPACE) defined 
computing needs based on current engineering workforce 
needs. The project stakeholders were from one geographic 
region of the United States and included community colleges, 
industry, researchers, engineering faculty, engineering students 
and business leaders [4]. While their work is at the college 
level and centered on engineering, it combined information 
technology and computational thinking and is not focused on a 
broad view of developing computational thinking skills as part 
of enculturation into the engineering profession. A framework 
for computational thinking is also not a diagnostic test for 
computational thinking. These frameworks have learning 
objectives, but lack a validated testing mechanism. 

The most prominent existing test for computational 
thinking is the Computer Science Principles (CSP) 
examination. The College Board, a non-profit organization 
headquartered in the United States, offers the CSP. The CSP 
has a well-designed computational thinking framework as well 
as a diagnostic examination; however, it was designed to 
represent general education computer science at the college 
level and is not specifically responsive to the needs of 
engineering [33]. General college students and engineering 
college freshman have different backgrounds, especially in 
mathematics. The prerequisite mathematics for the CS 
Principles examination is given below [34]. Students with only 
this mathematical background would be unlikely to pursue, let 
alone succeed, in engineering. Any diagnostic test for a general 
audience will have to avoid using the mathematically intense 
parts of computation that engineers most need. 

“…a student in the AP Computer Science 

Principles course should have successfully 

completed a first-year high school algebra 

course with a strong foundation in basic linear 

functions and composition of functions…In 

addition, students should be able to use a 

Cartesian (x,y) coordinate system to represent 

points in a plane.” [34, pp. 4] 

The CSP is part of a system of examinations that are used 
by secondary students to gain college credit in the U.S. The 
examination is lengthy and expensive. The CSP consists of a 
portfolio of two performance tasks that are developed over the 
course of a year and a two-hour multiple-choice examination 
with seventy-four questions [35]. The examination costs 
between $94 and $182, depending on where the examination is 
taken and when it is scheduled [36]. Students that are enrolled 
in college are not permitted to take the CSP examination. 
Therefore, the CSP cannot be used to gauge computational 
thinking among engineering students. 

In order to develop and deploy a survey that educators 
could use to gauge computational thinking in engineering 
students, a framework for computational thinking was 
developed that built upon aspects of earlier work and 
emphasized aspects recognized by the expertise of professors 
in the area of engineering education and computer science who 
had taught computational thinking and programming to 
engineers for several years.  



The framework in Table I underlies the ECTD, which 
incorporates five aspects of computational thinking: (a) 
Abstraction, (b) Algorithmic Thinking and Programming, (c) 
Data Representation, Organization, and Analysis, (d) 
Decomposition, and (e) Impact of Computing. Table I 
delineates how the most recent ABET student outcomes from 
2019-2020 are aligned with the framework in the literature as 
well as the framework for the ECTD. Key terms are defined as 
below.  

● Abstraction: A new representation of a thing, a 

system, or a problem that reframes a problem by 

hiding details irrelevant to the question at hand. 

● Algorithmic Thinking and Programming: 

Developing systematic methods to solve problems and 

expressing these methods in an appropriate language. 

● Data Representation, Organization, and Analysis: 

Transforming raw data into information and 

knowledge. 

● Pattern Matching: Finding similarities between data 

or algorithms.  

● Automation: Plugging pieces into an algorithm to help 

with a result, sometimes involving programming. 

● Decomposition: Breaking a problem or system apart 

into smaller components that can be more easily and 

completely analyzed. 

● Impact of Computing: Considering both the potential 

harm and benefits to multiple groups when making 

computing choices and decisions.

TABLE I.  ENGINEERING COMPUTATIONAL THINKING DIAGNOSTIC (ECTD) FRAMEWORK COMPARED WITH THE LITERATURE  

ECTD 
ABET 

[37]* 
ISTE [29] CSP [33] CPACE [4] CSTA [30] 

Brennan & Resnick 

[32] 

Abstraction 1, 7 Abstraction Abstraction 
Modeling and 

Abstraction 
  

Algorithmic 

Thinking and 

Programming 

6, 7 

 Algorithms 
Algorithmic 

Thinking and 

Programming 

Algorithms 

and 

Programming 

 

 Programming 

Multiple Programming 

Constructs e.g. loops, 

selection 

1, 7 Pattern Matching     

1, 7 Automation     

Data 

Representation

, Organization, 

and Analysis 

6, 7 

 
Data and 

Information 

Digital 

Representation 

of Information Data and 

Analysis 

Data 

 
Information 

Organization 
 

Decomposition 1, 7 Decomposition     

Impact of 

Computing 

2  Global Impact  
Impacts of 

Computing 
 

2  The Internet Networks 
Networks & 

the Internet 
 

*The ABET outcomes are: 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of 
engineering, science, and mathematics; 2. an ability to apply engineering design to produce solutions that meet specified needs with 
consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors; 6. an 
ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw 
conclusions; 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.  

ISTE = International Society for Technology in Education; CSP = Computer Science Principles; CPACE = Collaborative Process 
to Align Computing Education with Engineering Workforce Needs; CSTA = Computer Science Teachers Association  

  



The Engineering Computational Thinking Diagnostic 
operationalizes all these aspects of computational thinking in 
two versions of the diagnostic of 15 question-items, each with 
five multiple choice options. Two example items from the 
ECTD are given below, with correct answers in bold. The first 
focuses on decomposition and the second focuses on the 
impact of computing. 

Decomposition: The Rubik’s cube in the figure is composed 
of 53 blocks. A program counts the number of blocks traversed 
from the origin to the desired block by first traversing along the 
x-axis, then the y-axis, and finally the z-axis. For example, the 
block labeled 6 is the 6th block accessed. How many blocks are 
traversed to get to the block with the frog icon?  

 

 

a) 6            b) 11            c) 18            d) 78            e) 86 

Fig. 1. An example of decomposition item question in the ECTD 

 Students can answer this question by decomposing the 
problem into three parts: counting the number of 25 block 
planes parallel to the x-y axis of the cube that have been 
traversed, then adding in the number of 5 block rows parallel 
to the x axis that have been traversed, and lastly adding in the 
last individual block. The distractors were designed to identify 
students who traversed the block in orders other than those 
requested. For example, if you traverse the first three levels of 
25 blocks, and then traverse along the y axis instead of the x as 
first, you will touch 78 blocks (answer d). We made the 
correct answer one of the extremes to keep the student trick of 
avoiding choosing extreme answers from being successful.  

Impact of Computing: You have designed a system called 
TestFile that allows students at your university to share 
examinations from previous semesters of the same class with 
the same professor.  Users pay $50 for this service or have to 
upload at least ten examinations from their previous semester 
classes. Which of the following statements is true?  

a) This system is fair to students who are in their first 
semester at your institution because they can always pay 
$50 if they don’t have examinations to share. 

b) This system respects the intellectual property of the 
professors who teach at your institution, since the graded 
examinations that are given back to students are the 
student’s personal property. 

c) This system is unfair to students who are in their first 
semester at your institution because they do not have 

examinations to share and would have to pay for the 
service or have an academic disadvantage. 

d) You could not be charged with academic misconduct for 
setting this system up at your own institution because it’s a 
free country. 

e) Students who use your system could not be charged with 
academic misconduct because you have made the system 
available to everyone in the class. 

This problem addresses a number of issues in the social 
impact of computing, including unequal access to resources 
(money, time in higher education), intellectual property 
ownership, and academic integrity. Each distractor is based on 
a misunderstanding of one of these critical elements. For 
example, choice a) would be chosen by a student who didn’t 
realize that not everyone has an extra $50 to pay for 
educational resources. Answer b) would be chosen by a student 
who didn’t understand that people who create intellectual 
property (like a professor’s examinations) may have the right 
to control distribution beyond the intended audience. 

The purpose of this study is to present the preliminary 
results of the application of this diagnostic to first-year 
engineering students before and after an introductory 
engineering course. As stated earlier, the research questions 
guiding this research paper are: 

1. What are the learning gains of students who attended an 
introductory first-year engineering course that includes 
computation thinking topics when assessed by the ECTD? 

2. How do the learning gains of students differ by gender and 
race?   

III. METHOD 

Participants. The population of the study was the entire 
2019 first-year engineering cohort at a large Southwestern 
university in the United States. Institutional Review Board 
(IRB) approval was obtained and participants were recruited 
via IRB-approved emails. To avoid participation bias, 
recruitment emails were distributed to all first-year engineering 
students by faculty members not affiliated with the research 
team. Pre-test recruitment emails were sent twice in the second 
week of the Fall semester. About 800 students responded to the 
pre-test version of the ECTD. After factor analysis to gauge the 
effectiveness of the ECTD questions, changes to questions 
were made before post-test use of the ECTD. At the start of the 
Spring semester, two recruitment emails were sent to recruit 
participants from the same population for post-test 
measurement. While around 100 students responded to the 
post-test version of the ECTD, 62 students were identified for 
completion of both the pre-post ECTD. Table II shows 
demographic information of these 62 participants. 

TABLE II.  PARTICIPANTS’ DEMOGRAPHICS 

Gender 
Race and Ethnicity 

Sub-total 
Hispanic AIAN Asian Black Multiracial White 

Female 1 1 3 0 3 10 18 

Male 7 0 10 1 0 26 44 

Total 8 1 13 1 3 26 62 

Note. AIAN = American Indian or Alaska Native 



Data Analysis. Based on the sample size, the research team 
conducted a paired sample t-test or Wilcoxon signed ranks test, 
which is a counterpart of the paired sample t-test in 
nonparametric tests, to determine if there is a significant 
difference between the pre- and post-ECTD results. Due to the 
small sample size by subgroups of gender and minority status, 
we conducted a Mann-Whitney U test, which is a counterpart 
of independent samples t-test in nonparametric tests, to explore 
subgroup differences in the pre-post changes on the ECTD 
scores. Here, minority status was grouped as White versus non-
White students due to the small sample size. 

IV. RESULTS 

Table III shows the descriptive statistics on the pre-post 
ECTD scores by gender and minority status. The differences 
between the pre-post mean scores were all positive, indicating 
the gain of student learning on computational thinking.  

TABLE III.  DESCRIPTIVE STATISTICS ON THE PRE-POST ECTD SCORES 

Subgroup N 
Pre-score Post-score Mean 

Gain M SD M SD 

Female 18 7.89 2.54 11.67 2.03 3.78 

Male 44 8.95 2.93 11.16 2.97 2.21 

Non-White 26 8.54 3.37 10.77 3.29 2.23 

White 36 8.72 2.43 11.69 2.20 2.97 

Total 62 8.65 2.84 11.31 2.73 2.66 

 

Table IV shows the statistical testing results on the pre-

post differences by gender and minority status. The paired 

sample t-test indicates a significant mean difference of 2.26 

between pre and post-ECTD scores with t(61) – 7.4, p < 0.001 

with a significant correlation of r = 0.480 between pre-post 

scores. Similarly, paired sample t-test and Wilcoxon signed 

ranks tests shows significant increases on the post-scores for 

each subgroup by gender and minority status. The Cohen’s d 

effect sizes on the pre-post changes were all positive and 

medium to large [38]. Perceptually, the magnitudes of the 

change were larger for female and White students.  

TABLE IV.  STATISTICAL TESTING ON PRE-POST ECTD SCORES 

Subgroup N 
Paired Sample t-test 

Wilcoxon Signed 

Ranks Test Cohen's d 

t df p Z p 

Female 18 ̶ ̶ ̶ -3.635 < 0.001 1.637 

Male 44 -5.3 43 < 0.001 ̶ ̶ 0.747 

Non-White 26 ̶ ̶ ̶ -3.003 0.003 0.669 

White 36 -7.6 35 < 0.001 ̶ ̶ 1.278 

Total 62 -7.4 61 < 0.001 ̶ ̶ 0.956 

 

On average, female students increased 3.78 points and 

male students increased 2.21 points on the post-ECTD. 

However, the Mann-Whitney U test shows nonsignificant 

difference by gender on the changes of the pre-post scores, 

with U = 301.0, Z = -1.489, p = 0.137. Similarly, non-White 

students increased 2.23 and White students increased 2.97 

points on the post-ECTD. However, the Mann-Whitney U test 

shows nonsignificant difference by gender on the changes of 

the pre-post scores, with U = 375.5, Z = -1.332, p = 0.183.   

V. DISCUSSION, CONCLUSIONS, AND FUTURE WORK 

The research team applied the Engineering Computational 
Thinking diagnostic in order to partially answer the research 
question What are the learning gains of students who attended 
an introductory first-year engineering course that includes 
computation thinking topics when assessed by the ECTD? 
Students spend four years in most university engineering 
curricula and growth in computational thinking may occur 
across all four years. The application of the ECTD at the start 
of the first year of engineering yields an assessment outside of 
traditional course assignments to help identify students at-risk 
of failure in first-year engineering computation courses and to 
measure growth in the cohort of students that completed the 
course by comparing pre- and post-test performance.  

This paper demonstrates that the first-year engineering 
course did result in engineering students increasing their 
computational thinking skills in a statistically significant way. 
While this result is not surprising, it does provide some 
verification both of student learning and of the ECTD’s ability 
to detect student learning. If the statistical results had not been 
significant, either the course’s ability to deliver student 
learning in computational thinking or the ECTD’s ability to 
identify student learning in computational thinking would have 
been suspect. 

The absence of statistically significant differences between 
male and female students and White and non-White students 
could have several interpretations. A possible interpretation is 
that the ECTD is not biased for or against male, female, White 
or non-White students. It was somewhat surprising, however, 
that statistically significant differences in computational 
thinking gains were not seen along either gendered or racial 
lines, especially given the well-known inequities in 
computational experience that have historically favored males 
over females and Whites over non-Whites [12,14].  

While the differences in group means were not significant, 
it is notable that female students seemed to gain more in 
computational thinking than male students, both starting with 
lower scores and ending with higher scores.  Starting with 
lower scores would be predicted by the literature [12]. The 
pattern in White versus non-White students was different.  
Non-white students started with lower scores than white 
students, as would be predicted given societal inequities and 
the literature, but also ended with lower scores [14]. Since non-
White students more often come from lower socioeconomic 
groups, it is possible that non-White students have more 
competing responsibilities (e.g. family obligations, work) that 
keep them from making the same gains in computational 
thinking [39]. There also could be other unidentified social 
processes at work in the engineering course. It is possible that 
these results might be statistically significant had the sample 
size been larger. As such, readers should treat these results as 



preliminary until the larger studies that are planned in the near 
future can be completed and published. 

Unfortunately, Spring 2020 proved to be a challenging 
semester not only at the institution where data was collected 
but worldwide due to the Covid-19 global pandemic. This 
impaired the ability of the team to gain sufficient participants 
to make broader claims about which engineering students 
benefit the most from computational thinking instruction.  For 
example, comparisons by other social identities, including 
intersectional identities, were planned, however the sample size 
was insufficient. The results that are presented should be 
viewed as preliminary until a larger sample data from the fully 
validated instrument can be collected and analyzed.  

The availability of the ECTD provides an avenue for 
engineering programs to evaluate how the integration of 
computational thinking is impacting their programs. As an 
example, consider how the integration of computational 
thinking might impact program diversity and inclusion efforts. 
While the claim that computational skills are necessary for 
future engineers is not controversial, there are risks to 
including computational thinking early in engineering 
programs. Computing is an area of great inequality, where 
students with greater privileges (who are more likely to be 
from dominant social groups) have substantially more 
opportunities to gain pre-university experience with computers 
and computational thinking [12, 14]. Prior experience with 
computing may give students from the dominant social groups 
further advantages. Computing is, after all, one of the least 
diverse disciplines in all of academia for many reasons. It is 
therefore possible that integrating computational thinking into 
introductory engineering classes, may exacerbate the 
substantial challenges that engineering programs have in 
attracting and retaining more diverse students. 

In order to address this issue, much larger scale 
experiments will need to be run, especially at large institutions 
and institutions with greater diversity. These experiments will 
enable the evaluation of the ways in which computational 
thinking skill development is influenced by a student’s gender, 
race/ethnicity, disability status, socioeconomic status, and other 
social identities.  

In time, this team hopes that the availability of the ECTD 
will make it possible for many institutions to systematically 
examine alternatives for integrating computational thinking 
into engineering and other related disciplines. Questions that 
could be considered include: 

• In what ways do students who are taught computational 
thinking in lower division classes learn compared to 
students who are taught in upper division classes? For 
example, do students who have had calculus learn 
computational thinking more effectively than those with 
lower levels of demonstrated mathematical achievement? 

• In what ways can the ECTD provide insight about the 
learning of computational thinking in areas related to 
engineering (such as science, technology and 
mathematics) and in different engineering majors? For 
example, in what ways do environmental engineers learn 
computational thinking compared to electrical engineers? 

Can ECTD results be used to inform individual students 
which pathways in engineering are more likely to be 
successful? 

• In what ways can the results of the ECTD, when used as a 
pretest, inform instruction in computational thinking? Is it 
possible to use the ECTD to identify areas where 
particular groups of students may struggle in advance and 
make teaching decisions that lead to better student 
outcomes? 

• In what ways could the ECTD provide information about 
how effective individual instructors are at developing 
computational thinking skills in students? In this way, the 
ECTD could even be used as one component in the 
evaluation of teaching. This analysis could lead to the 
identification of patterns of teaching that lead to success in 
computational thinking for students. 

REFERENCES 

[1] Mendoza Diaz N.V., Yoon Y. S., Richard J., “Exploring Enculturation 
in the First-Year Engineering Program (Year III)” In Proceedings of the 
American Society for Engineering Education, 2019. Tampa, Florida, 
USA. 

[2] Sorby, S. A., & Baartmans, B. J., “The Development and Assessment of 
a Course for Enhancing the 3‐D Spatial Visualization Skills of First 
Year Engineering Students”, Journal of Engineering Education, 89(3), 
pp. 301-307, 2000. 

[3] Thuné, M., & Eckerdal, A., “Variation theory applied to students’ 
conceptions of computer programming”, European Journal of 
Engineering Education, 34(4), pp. 339-347, 2009. 

[4] Vergara, C. E., Urban-Lurain, M., Dresen, C., Coxen, T., MacFarlane, 
T., Frazier, K., ... & Sticklen, J., “Aligning computing education with 
engineering workforce computational needs: New curricular directions 
to improve computational thinking in engineering graduates”, 
In Frontiers in Education Conference, 2009. 

[5] Magana, A. J., Brophy, S. P., & Bodner, G. M., “Instructors' intended 
learning outcomes for using computational simulations as learning 
tools”, Journal of Engineering Education, 101(2), pp. 220-243, 2012. 

[6] Gross, S., Kim, M., Schlosser, J., Lluch, D., Mohtadi, C., & Schneider, 
D., “Fostering computational thinking in engineering education: 
Challenges, examples, and best practices”, In Global Engineering 
Education Conference (EDUCON), pp. 450-459, 2014. 

[7] Meyer, M., & Marx, S., “Engineering dropouts: A qualitative 
examination of why undergraduates leave engineering”, Journal of 
Engineering Education, 103(4), pp. 525-548, 2014. 

[8] Magana, A. J., Falk, M. L., Vieira, C., & Reese, M. J., “A case study of 
undergraduate engineering students' computational literacy and self-
beliefs about computing in the context of authentic practices. 
“Computers in Human Behavior, 61, pp. 427-442, 2016. 

[9] Xia, B. S., & Liitiäinen, E., “Student performance in computing 
education: an empirical analysis of online learning in programming 
education environments”, European Journal of Engineering Education, 
42(6), pp. 1025-1037, 2017. 

[10] The White House, “Computer Science of All”, Retrieved from 
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-
science-all, Accessed 5-29-2020. 

[11] Romm, T., “Recode: President Trump and his daughter Ivanka are 
unveiling a new federal computer science initiative with major tech 
backers”, Retrieved from 
https://www.recode.net/2017/9/25/16276904/president-donald-trump-
ivanka-tech-stem-computer-science-coding-education-amazon-google, 
Accessed 5-29-2020. 

[12] Margolis, J., & Fisher, A., “Unlocking the clubhouse: Women in 
computing”, MIT Press, 2003. 

[13] Buzzetto-More, N. A., Ukoha, O., & Rustagi, N., “Unlocking the 
barriers to women and minorities in computer science and information 

https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://www.recode.net/2017/9/25/16276904/president-donald-trump-ivanka-tech-stem-computer-science-coding-education-amazon-google
https://www.recode.net/2017/9/25/16276904/president-donald-trump-ivanka-tech-stem-computer-science-coding-education-amazon-google


systems studies: Results from a multi-methodolical study conducted at 
two minority serving institutions”, Journal of Information Technology 
Education: Research, Volume 9, pp. 115-131, 2010. 

[14] Margolis, J., “Stuck in the shallow end: Education, race, and 
computing”, MIT Press, 2010. 

[15] Varma, R., “Making computer science minority-friendly”, 
Communications of the ACM, 49(2), pp. 129-134, 2006. 

[16] Blikstein, P., Kabayadondo, Z., Martin, A., & Fields, D., “An 
assessment instrument of technological literacies in makerspaces and 
FabLabs”, Journal of Engineering Education, 106(1), pp. 149-175, 2017. 

[17] Chan, C.K., Zhao, Y. and Luk, L.Y., “A validated and reliable 
instrument investigating engineering students’ perceptions of 
competency in generic skills”, Journal of Engineering Education, 
106(2), pp. 299-325, 2017.  

[18] Shyamala, C. K., Velayutham, C. S., & Parameswaran, L., “Teaching 
computational thinking to entry-level undergraduate engineering 
students at Amrita University”, In Global Engineering Education 
Conference (EDUCON), pp. 1731-1734, 2017. 

[19] Nelson, K. G., Shell, D. F., Husman, J., Fishman, E. J., & Soh, L. K., 
“Motivational and self‐regulated learning profiles of students taking a 
foundational engineering course”, Journal of Engineering Education, 
104(1), pp. 74-100, 2015. 

[20] Walker, H. M., “Computational thinking in a non-majors CS course 
requires a programming component”, ACM Inroads, 6(1), pp. 58-61, 
2015. 

[21] Lowe, D. B., Scott, C. A., & Bagia, R., “A skills development 
framework for learning computing tools in the context of engineering 
practice”, European Journal of Engineering Education, 25(1), pp. 45-56, 
2000. 

[22] Finelli, C. J., “EER Taxonomy (Version 1.1)”, Retrieved from 
http://taxonomy.engin.umich.edu/wp-content/uploads/2018/05/EER-
Taxonomy-Version-1.1.pdf, Accessed 5-29-2020. 

[23] Hacker, M., “Integrating Computational Thinking into Technology and 
Engineering Education”, Technology and Engineering Teacher, 77(4), 
pp. 8-14, 2018. 

[24] Magana, A. J., Falk, M. L., Vieira, C., Reese Jr, M. J., Alabi, O., & 
Patinet, S., “Affordances and challenges of computational tools for 
supporting modeling and simulation practices”, Computer Applications 
in Engineering Education, 25(3), pp. 352-375, 2017. 

[25]  Cooper, S., & Dann, W., “Programming: a key component of 
computational thinking in CS courses for non-majors”, ACM Inroads, 
6(1), 50-54, 2015. 

[26] Miller, L. D., Soh, L. K., Chiriacescu, V., Ingraham, E., Shell, D. F., & 
Hazley, M. P.,  “Integrating computational and creative thinking to 
improve learning and performance in CS1”, In Proceedings of the 45th 
ACM Technical Symposium on Computer Science Education, pp. 475-
480, 2014. 

[27] Wing, J. M., “Computational thinking and thinking about computing”, 
Philosophical Transactions of the Royal Society of London A: 
Mathematical, Physical and Engineering Sciences, 366(1881), pp. 3717-
3725, 2008. 

[28] Yasar, O., & Landau, R. H., “Elements of computational science and 
engineering education”, SIAM review, 45(4), pp. 787-805, 2003. 

[29] Krauss, J., & Prottsman, K., “Computational Thinking and Coding for 
Every Student: The Teacher’s Getting-Started Guide”, Corwin Press, 
2016. 

[30] Computer Science Teachers Association CSTA, “About the CSTA K-12 
Computer Science Standards”, Retrieved from: 
https://www.csteachers.org/page/standards, Accessed 5-29-2020. 

[31] Brennan, K., & Resnick, M., “New frameworks for studying and 
assessing the development of computational thinking”, In Proceedings 
of the 2012 Annual Meeting of the American Educational Research 
Association, pp. 1-25, 2012. 

[32] Isbell, C. L., Stein, L. A., Cutler, R., Forbes, J., Fraser, L., Impagliazzo, 
J., ... & Xu, Y., “(Re) defining computing curricula by (re) defining 
computing”, ACM SIGCSE Bulletin, 41(4), pp. 195-207, 2010. 

[33] College Board, “AP Computer Science Principles”, Retrieved from: 
https://apstudent.collegeboard.org/apcourse/ap-computer-science-
principles/course-details, Accessed 5-29-2020. 

[34] College Board, “AP Computer Science Principles, Including the 
Curriculum Framework”, 2017. 

[35] College Board, “AP Computer Science Principles: The Exam”, 
https://apcentral.collegeboard.org/courses/ap-computer-science-
principles/exam, Accessed 5-29-2020. 

[36] College Board, “AP Students: Exam Fees”, 
https://apstudents.collegeboard.org/exam-policies-guidelines/exam-fees, 
Accessed 5-29-2020. 

[37] ABET, “Criteria for Accrediting Engineering Programs, 2020-2021”, 
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-
accrediting-engineering-programs-2020-2021/, Accessed 5-29-2020. 

[38] Cohen, J., “Statistical Power Analysis for the Behavioral Sciences”, 
Lawrence Erlbaum, Hillsdale, NJ, 1988. 

[39] Mendoza Diaz, N., “Hispanics in Engineering”, Proceedings of the 121st 
ASEE Annual Conference and Exponsition, June 2014, Indianapolis, IN, 
USA, 2014. 

 

http://taxonomy.engin.umich.edu/wp-content/uploads/2018/05/EER-Taxonomy-Version-1.1.pdf
http://taxonomy.engin.umich.edu/wp-content/uploads/2018/05/EER-Taxonomy-Version-1.1.pdf
https://www.csteachers.org/page/standards
https://apstudent.collegeboard.org/apcourse/ap-computer-science-principles/course-details
https://apstudent.collegeboard.org/apcourse/ap-computer-science-principles/course-details
https://apcentral.collegeboard.org/courses/ap-computer-science-principles/exam
https://apcentral.collegeboard.org/courses/ap-computer-science-principles/exam
https://apstudents.collegeboard.org/exam-policies-guidelines/exam-fees
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2020-2021/
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2020-2021/

