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Abstract—Motivated by average-case trace reconstruction and

coding for portable DNA-based storage systems, we initiate the

study of coded trace reconstruction, the design and analysis

of high-rate efficiently encodable codes that can be efficiently

decoded with high probability from few reads (also called traces)

corrupted by edit errors. Codes used in current portable DNA-

based storage systems with nanopore sequencers are largely

based on heuristics, and have no provable robustness or perfor-

mance guarantees even for an error model with i.i.d. deletions and

constant deletion probability. Our work is the first step towards

the design of efficient codes with provable guarantees for such

systems. We consider a constant rate of i.i.d. deletions, and per-

form an analysis of marker-based code-constructions. This gives

rise to codes with redundancy O(n/ log n) (resp. O(n/ log log n))
that can be efficiently reconstructed from exp(O(log2/3 n)) (resp.

exp(O(log log n)2/3)) traces, where n is the message length. Then,

we give a construction of a code with O(log n) bits of redundancy

that can be efficiently reconstructed from poly(n) traces if the

deletion probability is small enough. Finally, we show how to

combine both approaches, giving rise to an efficient code with

O(n/ log n) bits of redundancy which can be reconstructed from

poly(log n) traces for a small constant deletion probability.

Index Terms—Coding, Deletion channel, DNA storage, Trace

reconstruction.

I. INTRODUCTION

T
RACE reconstruction was originally introduced by Batu,
Kannan, Khanna, and McGregor [1], motivated by prob-

lems in sequence alignment, phylogeny, and computational
biology. The setting for the problem is as follows: There is an
unknown string x 2 {0, 1}n, and our goal is to reconstruct it.
Towards this goal, we are allowed to ask for traces of x, which
are obtained by sending x through a deletion channel. This
channel independently deletes bits of x with a given deletion
probability d. Traces are subsequences of x, and they are i.i.d.
according to the output distribution of the deletion channel on
input x. We wish to minimize the number of traces (or, in
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other words, independent samples from the output distribution
of the deletion channel on input x) required for reconstructing
x with high probability.

Since its introduction, the problem of trace reconstruc-
tion has been studied from several different perspectives.
Two of the main perspectives correspond to worst-case trace
reconstruction [1]–[5], where the reconstruction algorithm
must work simultaneously for all strings in {0, 1}n, and
average-case trace reconstruction [1]–[3], [6]–[8], where the
reconstruction algorithm is only required to work with high
probability, taken over the choice of string and the randomness
of the reconstruction algorithm for a uniformly random string.
More precisely, the goal of worst-case trace reconstruction is
to design (or prove the existence of) a reconstruction algorithm
Rec such that for every x 2 {0, 1}n it holds that

Pr
T1,...,Tt

[Rec(T1, . . . , Tt) = x] � 1� 1/n,

where the Ti are i.i.d. according to the output distribution of
the deletion channel with deletion probability d on input x, for
t = t(n) as small as possible. On the other hand, for average-
case reconstruction we only require that the reconstruction
algorithm Rec has small average error probability, i.e.,

2�n
X

x2{0,1}n

Pr
T1,...,Tt

[Rec(T1, . . . , Tt) = x] � 1� 1/n (1)

with t = t(n) as small as possible, where for each x the Ti

are i.i.d. according to the output distribution of the deletion
channel on input x.

The number of traces required for average-case trace recon-
struction is, as expected, much smaller than that required for
worst-case trace reconstruction. The problem in question has
also been studied from a combinatorial coding perspective [9]–
[12].

The above described results on average-case trace recon-
struction can be interpreted from a coding-theoretic perspec-
tive: They state that there exist very large codebooks which
can be reconstructed efficiently from relatively few traces.1
However, no efficient encoders are known for such codes, and
it may also be possible to further reduce the number of traces
required for reconstruction by relaxing the size of the code.

This point of view naturally leads to the problem of coded
trace reconstruction: The goal is to design high rate, effi-
ciently encodable codes whose codewords can be efficiently
reconstructed with high probability from very few traces with
constant deletion probability. Here, “high rate” refers to a rate

1If there exists a reconstruction algorithm Rec satisfying (1) for some t,
then a simple averaging argument shows that there exists a set G of size at
least 2n�1 such that, for all x 2 G, Rec reconstructs x with probability
at least 1 � 2/n from t traces. Therefore, G is a large code that can be
reconstructed from t traces.
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approaching 1 as the block length increases. We remark that
in such a case, the number of traces must grow with the block
length of the code. Coded trace reconstruction is also closely
related to and motivated by the read process in portable DNA-
based data storage systems, which we discuss below.

a) Motivation: A practical motivation for coded trace
reconstruction comes from portable DNA-based data storage
systems using DNA nanopores, first introduced in [13]. In
DNA-based storage, a block of user-defined data is first
encoded over the nucleotide alphabet {A,C,G, T}, and then
transformed into moderately long strands of DNA through
a DNA synthesis process. For ease of synthesis, the DNA
strands are usually encoded to have balanced GC-content, so
that the fraction of {A, T} and {G,C} bases is roughly the
same. To recover the block of data, the associated strand of
DNA is sequenced with nanopores, resulting in multiple cor-
rupted reads of its encoding. Although the errors encountered
during nanopore sequencing include both deletions/insertions
as well as substitution errors, careful read preprocessing
alignment [13] allows the processed reads to be viewed as
traces of the data block’s encoding. As a result, recovering
the data block in question can be cast in the setting of trace
reconstruction. Due to sequencing delay constraints2, it is of
great interest to minimize the number of reads required to
reconstruct the data block.

The trace reconstruction procedures associated to the codes
used by practical portable DNA-based storage systems [13],
[14] are largely based on heuristics. The trace reconstruction
algorithm proposed in [13] operates on carefully designed
coded strings, but makes use of multiple sequence alignment
algorithms which are notoriously difficult to analyze rigor-
ously. The trace reconstruction algorithm from [14] does not
make use of specific read-error correction codes and is a
variation of the Bitwise Majority Alignment (BMA) algorithm
originally introduced in [1]. However, the BMA algorithm is
only known to be robust when the errors correspond to i.i.d.
deletions and the fraction of errors is at most O(1/ log n),
where n denotes the blocklength of the code. Moreover,
the proposed codes have been designed only for a fixed
blocklength. As a result, the codes from [13], [14] have no
robustness or performance guarantees for trace reconstruction
even under i.i.d. deletions with constant deletion probability.
Consequently, our work on coded trace reconstruction is the
first step towards the development of codes with provable
robustness guarantees and good performance for trace recon-
struction in portable DNA-based data storage systems.

We note that, in practice, multiple strings are sequenced
at the same time, and so one must have a way of telling
which traces come from each string. In the original practical
implementation of the DNA-based storage system that uses
nanopore readouts [13], the codewords were augmented by
prefix and suffix address strings, which are special short strings
at large Hamming distance from each other. These strings are
needed for indicating the position of the codewords in the the
long information-bearing string as well as for random access.

2Current Oxford nanopore sequencers can process roughly 450 nucleotides
per second.

Given that address strings are the first to pass through the
nanopores and that they are known to the receiver, a mix-
ture of reads from different codewords can be automatically
partitioned into clusters without using specialized algorithms.
On the other hand, the follow-up work on portable DNA-
based storage [14] relies on clustering algorithms for read
reconstruction (see also [15]). With this in mind, it would
also be interesting to study codes that simultaneously have
good clustering and trace reconstruction properties, and we
leave this as an open problem. We note that the study of codes
with good clustering properties in relation to DNA-based data
storage was initiated recently in [16], but trace reconstruction
properties are not considered there.

A. Related work

Recently, there has been significant interest both in trace
reconstruction and coding for settings connected to DNA-
based data storage.

Regarding trace reconstruction, a chain of works [1]–[3],
[6]–[8] has succeeded in substantially reducing the num-
ber of traces required for average-case trace reconstruction.
The state-of-the-art result, proved by Holden, Pemantle, and
Peres [8], states that exp(O(log1/3 n)) traces suffice to re-
construct a random n-bit string under arbitrary constant
deletion probability. Much less is known about the worst-
case trace reconstruction problem. The current best upper
bound of exp(O(n1/3)) traces was proved concurrently by
De, O’Donnell, and Servedio [4] and Nazarov and Peres [5]
through algorithms that rely only on single-bit statistics from
the trace. They also showed that this upper bound is tight for
this restricted type of algorithms. The gap between upper and
lower bounds for trace reconstruction for both the average- and
worst-case settings is still almost exponential. The state-of-the-
art lower bounds, both derived by Chase [17] improving upon
an approach of Holden and Lyons [18], are close to log5/2 n
traces for average-case trace reconstruction and n

3/2 traces
in the worst-case setting. Trace reconstruction has also been
studied over a large class of sticky channels [19], motivated
by nanopore sequencers. A channel is said to be sticky if it
preserves the block structure of the input, i.e., no input runs
are completely deleted, and no new runs are added to it. In
particular, the deletion channel is not a sticky channel.

Another line of work has focused on combinatorial settings
related to coded trace reconstruction [9]–[12]. The reported
works study the number of traces required for exact recon-
struction when each trace is subjected to a bounded number
of adversarial edit errors, and the string may be assumed
to belong to a code from some general class. We note that
Levenshtein [9] also studies a version of probabilistic trace
reconstruction where the string is sent through a memoryless
channel, but the deletion channel is not included in this family
of channels. Other closely related combinatorial reconstruction
problems consist in recovering a string from a subset of its
substrings [20]–[22].

Coded trace reconstruction is also related to the multi-use
deletion channel. In fact, the decoding problem for this channel
can be interpreted as coded trace reconstruction with a fixed
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number of traces. Some results are known about the capacity
of this channel for small deletion probability [23], and about
maximum likelihood decoding [24].

Recent works have also examined coding for other channel
models inspired by DNA-based storage. The model studied
in [25]–[28] views codewords as sets comprised of several
sequences over some alphabet, and the (adversarial) errors
consist of erasure and insertion of sequences in the set, as
well as deletions, insertions, or substitutions within some of
the sequences. Each sequence in the set corresponds to a
different DNA strand whose contents are reconstructed via
high throughput sequencing-based procedures that introduce
errors. The goal is to recover the whole set from the erroneous
sequences. This is fundamentally different from our model, as
we focus on the correct reconstruction of a long single strand
of DNA from multiple sequencing attempts and high prob-
abilistic deletion error rates, which is especially relevant for
portable nanopore DNA-based data storage systems. Another
model similar to the one described above, motivated by the
permutation channel, is studied in [29]. However, codewords
there consist of multisets of symbols in some alphabet, and
errors are comprised of deletions, insertions, substitutions, and
erasures of symbols in the multiset. An information-theoretic
treatment of related but abstracted models of DNA-based data
storage may be found in [30], [31]. More recently, a model for
clustering sequencing outputs according to the relevant DNA
strand and codes that allow for correct clustering have been
studied in [16].

Finally, although we focus on portable DNA-based storage
systems with nanopore sequencers [13], [14], there has also
been significant activity on practical aspects of other types of
DNA-based storage, e.g., [32]–[34]. General overviews of the
field can be found in [35], [36].

a) Concurrent and subsequent work on trace recon-
struction: Several works on many different aspects of trace
reconstruction have appeared concurrently and subsequently
to the preparation and submission of this paper. Chase [17]
improved upon the trace reconstruction lower bounds derived
by Holden and Lyons [18]. Srinivasavaradhan et al. [37]
studied symbolwise MAP decoding from a small number
of traces. Davies, Racz, and Rashtchian [38] studied trace
reconstruction over trees (in the graph-theoretic sense), where
standard trace reconstruction corresponds to recovering a path.
Ban et al. [39] considered the problem of trace reconstruction
of distributions over small sets of strings (a setting commonly
known as population recovery). Efficient population recovery
algorithms have also been studied [40]. Krishnamurthy et
al. [41] explored alternative and generalized forms of trace
reconstruction (e.g., trace reconstruction over matrices and
sparse strings). Sini and Yaakobi [42] made some progress
on combinatorial trace reconstruction from a small number of
deletions, insertions, and substitutions.

The problem of coded trace reconstruction has also been
considered concurrently and independently by Abroshan et al.
[43]. They focus on the setting with a constant number of
deletions (as opposed to constant rate). The code they consider
is obtained by concatenating several blocks, each block being
a codeword of a Varshamov-Tenengolts code. Subsequently

to our work, Brakensiek, Li, and Spang [44] built upon our
techniques and results. In terms of code constructions, they
improve upon the number of traces required as a function of
the rate. However, their construction for rate 1 � ✏ requires
superpolynomial preprocessing whenever ✏ = o

⇣
log logN
logN

⌘
,

where N denotes the code block length. In contrast, all our
code constructions in that regime are efficiently encodable and
reconstructible.

B. Channel model
The channel model used for representing nanopore systems

may be summarized as follows. For a given input string
x 2 {0, 1}n, a deletion probability d, and an integer t(n), the
channel returns t(n) traces of x. Each trace of x is obtained by
sending x through a deletion channel with deletion probability
d, i.e., the deletion channel deletes each bit of x independently
with probability d, and outputs a subsequence of x containing
all bits of x that were not deleted in order. The t(n) traces
are i.i.d. according to the output distribution of the deletion
channel with deletion probability d on input x.

Given a code C ✓ {0, 1}n, we say that C can be efficiently
reconstructed from t(n) traces if there exists a polynomial
p(n) = ⌦(n) and a polynomial-time algorithm Rec such that
for every c 2 C it holds that

Pr
T1,...,Tt

[Rec(T1, . . . , Tt) = c] � 1� 1/p(n),

where the Ti are i.i.d. according to the output distribution of
the deletion channel with deletion probability d on input c

for i = 1, . . . , t. In words, the reconstruction algorithm Rec
recovers every codeword c 2 C from t(n) i.i.d. traces of c with
probability at least 1�1/p(n) over the probability distribution
of the traces. We remark that this definition corresponds to
worst-case trace reconstruction restricted to codewords of C.
The goal of coded trace reconstruction is to design efficiently
encodable codes C that can be efficiently reconstructed from
t(n) traces for t(n) as small as possible.

Remark 1: We have decided to require reconstruction suc-
cess probability 1 � 1/p(n), where p is some polynomial,
both for concreteness and for consistency when comparing
our results to previous works on trace reconstruction (which
generally also require success probability 1 � 1/p(n)). The
general tradeoff between code rate, number of traces, and
success probability is not a focus of this work. However, it is
natural to consider other settings (say, requiring only success
probability 1 � o(1)), and we leave this as an interesting
direction for future research.

In view of the above, we note that the difference (in terms of
number of traces required) by algorithms with some constant
success probability s > 1/2 and algorithms with success
probability 1 � 1/p(n) is relatively small. Indeed, given any
algorithm Rec with success probability s > 1/2 using t traces,
we can obtain an algorithm Rec0 with success probability
1�1/n using O(t log n) traces. This is achieved by repeating
Rec O(log n) times, each on a new batch of t traces, and
choosing the most common output of Rec. By a straightforward
application of the Chernoff bound, we obtain the desired
result. Of course, there is still much room for improvement if
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one aims for trace reconstruction with sublogarithmic number
of traces.

C. Our contributions

We initiate the study of coded trace reconstruction for
efficiently encodable, high-rate codes against a constant rate
of deletions. The codes we construct have redundancy o(n),
where n is the message length, are efficiently encodable,
and can either be efficiently reconstructed from significantly
fewer traces than what is guaranteed (only existentially) by
state-of-the-art average-case trace reconstruction results, or
satisfy additional desirable properties for their use in DNA
storage systems. More specifically, the following are our main
contributions:

a) Combining markers and worst-case trace reconstruc-
tion.: We analyze the performance of marker-based construc-
tions coupled with worst-case trace reconstruction algorithms.
These constructions have the advantage that they can be easily
adapted to work with a large range of inner codes.

At a high level, the construction operates by splitting an
n-bit message into short blocks of length O(log2 n), encoding
each block with an inner code satisfying a certain constraint,
and adding markers of length O(log n) between the blocks.
The structure of the markers and the property of the inner code
imply that, with high probability, we can split the traces into
many shorter sub-traces associated with substrings of length
O(log2 n), and then apply the worst-case trace reconstruction
algorithm on the sub-traces. Our main result in this context is
Theorem 2.

Theorem 2: For every constant deletion probability d < 1,
there exists an efficiently encodable code C ✓ {0, 1}n+r

with redundancy r = O(n/ log n) that can be efficiently
reconstructed from exp(O(log2/3 n)) traces.

Note that, although the number of traces required by The-
orem 2 does not improve upon the best result for average-
case trace reconstruction [8], this result is interesting for
several reasons: First, the codes provided by Theorem 2 are
efficiently encodable. As mentioned before, average-case trace
reconstruction results only imply the existence of codes with
good trace reconstruction properties, and give no efficient
encoders. Second, as we discuss below, the construction that
leads to Theorem 2 can be easily adapted (by considering
different instantiations of the inner code and reconstruction
algorithms) to yield codes that either require much fewer
traces to be reconstructed (with larger redundancy), or satisfy
additional desirable properties for DNA storage. Finally, we
remark that, with significantly more effort, we are able to ex-
tend these initial ideas to construct efficiently encodable codes
with the same redundancy as Theorem 2 that only require
poly(log n) traces for efficient reconstruction for some small
enough constant deletion probability, which is a significant
improvement upon the number of traces required by average-
case trace reconstruction. We discuss this below.

b) Adding a second level of markers.: The inner code in
the construction of Theorem 2 only needs to satisfy a simple
constraint. This gives us a lot of freedom in instantiating the
inner code, and so we are able to extend the construction above

in several ways. As a particularly interesting instantiation of
the inner code, we can iterate the marker-based construction
by further dividing each block of length log2 n into blocks of
length (log log n)2 and adding markers of length O(log log n)
between them. The reconstruction procedure is then almost
the same, except that, in this setting, it is almost guaranteed
that reconstruction of a small fraction of blocks will fail.
Nevertheless, this problem can be easily resolved by adding
error-correction redundancy to the string to be encoded. This
leads to the following result, which can be extended beyond
two marker levels.

Theorem 3: For every constant deletion probability d <

1, there exists an efficiently encodable code C ✓ {0, 1}n+r

with redundancy r = O(n/ log log n) that can be efficiently
reconstructed from exp(O(log log n)2/3) traces.

c) Codes with balanced GC-content.: We take advantage
of the fact that we can instantiate the marker-based construc-
tions with a large range of inner codes to construct high-rate
marker-based codes over the {A,C,G, T} alphabet with three
important properties: The codes are efficiently encodable, have
balanced GC-content (which is important both for accurate
DNA synthesis and sequencing), and provably require few
traces to be efficiently reconstructed. We follow the same ideas
as the marker-based constructions above, but with different
markers and an inner code over a larger alphabet and with
stronger constraints. In this context, we obtain the following
results.

Theorem 4: For every constant deletion probability
d < 1, there exists an efficiently encodable code C ✓
{A,C,G, T}n+r with redundancy r = O(n/ log n) and bal-
anced GC-content that can be efficiently reconstructed from
exp(O(log2/3 n)) traces.

Theorem 5: For every constant deletion probability
d < 1, there exists an efficiently encodable code C ✓
{A,C,G, T}n+r with redundancy r = O(n/ log log n) and
balanced GC-content that can be efficiently reconstructed
from exp(O(log log n)2/3) traces.

d) Leveraging average-case trace reconstruction algo-
rithms.: The result of Theorem 2 may be further improved by
considering a more careful design of the high-rate inner code
to be used in the marker-based constructions, provided that the
deletion probability is a small enough constant. This allows for
using a modified version of an algorithm for average-case trace
reconstruction described in [2] which leads to a substantial
reduction in the number of traces required for reconstruction
and barely any rate changes. Towards achieving this goal,
we first design a low-redundancy code that can be efficiently
reconstructed from polynomially many traces. The proposed
coding scheme relies on the fact that we can efficiently encode
n-bit messages into strings that are almost subsequence-unique
(see Definition 12) via explicit constructions of almost k-
wise independent random variables (see Section II-B). The
average-case trace reconstruction algorithm from [2] operates
on subsequence-unique strings, and a simple adaptation of the
algorithm suffices for our approach. In summary, we have the
following result.

Theorem 6: There exists an absolute constant d? > 0 such
that for all d  d

? there exists an efficiently encodable code
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C ✓ {0, 1}n+r with redundancy r = O(log n) that can be
efficiently reconstructed from poly(n) traces with deletion
probability d.
An important step in our analysis is to show how to adapt this
code for use as an inner code in the marker-based construction.
Some care is needed, since the global structure of the strings
we deal with changes significantly due to the presence of the
markers. In particular, the bootstrapping method in the trace
reconstruction algorithm from [2] no longer works, and we
must find a way to circumvent this issue. Our findings for this
scenario are described in the next theorem.

Theorem 7: There exists an absolute constant d? > 0 such
that for all d  d

? there exists an efficiently encodable code
C ✓ {0, 1}n+r with redundancy r = O(n/ log n) that can be
efficiently reconstructed from poly(log n) traces with deletion
probability d.

A summary of our main results can be found in Table I. For
simplicity, our exposition mostly focuses on constructions of
binary codes, although it provides some guidelines and simple
coding procedures for quaternary codes. It is also important
to note that designing a code with a given rate R for coded
trace reconstruction is inherently harder for smaller alphabets.
Indeed, the existence of a binary code C ✓ {0, 1}n with rate R

that can be efficiently encoded and reconstructed from t traces
with error probability ✏ implies the existence of a Q-ary code
C0 (for Q = 2q) with the same rate R that can be efficiently
encoded and reconstructed from t traces with error probability
at most q✏. To see this, consider the code

C0 = {(c1, c2, . . . , cq) : ci 2 C, i = 1, . . . , q} ✓ {0, 1}q·n.

Clearly, the code C0 is Q-ary code of length n and rate R.
Moreover, let T denote a trace of some c

0 = (c1, c2, . . . , cq) 2
C0. Observe that the trace T

i obtained by replacing each Q-
ary symbol in T by the i-th bit of its binary expansion has
the same distribution as a trace of c

i. As a result, applying
the transformation T 7! T

i to each of the t traces of c
0 and

running the reconstruction algorithm associated with C allows
us to recover c

i with error probability at most ✏. Since this
holds for every i = 1, . . . , q, a union bound over all i shows
that we can simultaneously recover c1, c2, . . . , cq from t traces
of c0 with error probability at most q✏.

D. Organization
The paper is organized as follows: In Section II, we define

relevant notation and discuss known results that we find useful
in our subsequent derivations. We describe and analyze general
marker-based constructions in Section III. Then, we show how
to reduce the number of traces required for a small deletion
probability in Section IV. We discuss some open problems in
Section V.

II. NOTATION AND PRELIMINARIES

A. Notation
We denote the length of a string x by |x|, and its Hamming

weight by w(x) = |{i : xi 6= 0}|. Given two strings x and
y over the same alphabet, we denote their concatenation by
xky. For a string x, we define x[a, b) = (xa, xa+1, . . . , xb�1)

and x[a, b] = (xa, xa+1, . . . , xb). If |x| = n, we define
x[a, ·] = (xa, xa+1, . . . , xn). We say that y is a subsequence
of x if there exist indices i1 < i2 < · · · < i|y| such xij = yj .
Moreover, y is said to be a substring of x if y = x[a, a+|y|) for
some 1  a  |x|� |y|+1. Given two strings x, y 2 {0, 1}n,
we write x + y for the bitwise XOR of x and y. A run
of length ` in a string x is a substring of x comprising `

identical symbols. Sets are denoted by calligraphic letters such
as S, T . Random variables are denoted by uppercase letters
such as X , Y , and Z. The uniform distribution over {0, 1}t
is denoted by Ut, and the binomial distribution on n trials
with success probability p is denoted by Bin(n, p). The binary
entropy function is denoted by h and all logarithms log are
taken with respect to the base 2.

B. Almost k-wise independent random variables
We start by defining almost k-wise independence and

present a related result that are needed for our subsequent
derivations.

Definition 8 (✏-almost k-wise independent random vari-
able): A random variable X 2 {0, 1}m is said to be ✏-
almost k-wise independent if for all sets of k distinct indices
i1, i2, . . . , ik 2 {1, . . . ,m} we have

|Pr[Xii = x1, . . . , Xik = xk]� 2�k|  ✏

for all (x1, . . . , xk) 2 {0, 1}k.
The following result gives an efficient construction of an

✏-almost k-wise independent random variable which can be
generated from few uniformly random bits.

Lemma 9 ([45]): For every m, k, and ✏ there exists a func-
tion g : {0, 1}t ! {0, 1}m with t = O

⇣
log

⇣
k logm

✏

⌘⌘
such

that g(Ut) is an ✏-almost k-wise independent random variable
over {0, 1}m, where Ut denotes the uniform distribution over
{0, 1}t.

Moreover, g(z) can be computed in time poly(m, 1/✏) given
z. In particular, if ✏ = 1/poly(m), then g can be computed in
time poly(m).

C. Nearly-optimal systematic codes for edit errors
We require systematic codes that are robust against edit

errors (deletions and insertions). Nearly-optimal systematic
codes for adversarial edit errors have been recently con-
structed using optimal protocols for deterministic document
exchange [46], [47]. The following result is relevant to our
analysis.

Lemma 10 ([46], [47]): For every m and t < m there exists
an efficiently encodable and decodable systematic code Cedit ✓
{0, 1}m+r with encoder Encedit : {0, 1}m ! {0, 1}m+r and
redundancy r = O

�
t log2 m

t + t
�

that can efficiently correct
up to t edit errors. In particular, if t = ⇥(m) then the
redundancy is r = O(m).

D. Trace reconstruction
Next, we discuss several results pertaining to the worst-

case and average-case trace reconstruction problem that will
be useful for our constructions.
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Redundancy Number of traces Observations
n

logn exp(log2/3 n) Any constant deletion probability, balanced GC-content
n

log logn exp((log logn)2/3) Any constant deletion probability, balanced GC-content
n

logn poly(logn) Small enough constant deletion probability

TABLE I
SUMMARY OF THE PROPERTIES OF OUR MAIN CODE CONSTRUCTIONS. WE HAVE OMMITTED HIDDEN CONSTANTS FROM THE PARAMETERS FOR

SIMPLICITY.

1) Worst-case trace reconstruction: For worst-case recon-
struction, the state-of-the-art result used in Section III is
summarized below.

Lemma 11 ([4], [5]): For every n and constant deletion
probability d there exists an algorithm that reconstructs an
arbitrary string x 2 {0, 1}n with probability at least 1 �
exp(�2n) from exp(O(n1/3)) traces in time exp(O(n1/3)).

2) Trace reconstruction of subsequence-unique strings:
One of the key tools for our constructions in Section IV
is a modified version of the efficient trace reconstruction
algorithm [2] for what we refer to as subsequence-unique
strings. This algorithm may also be used for average-case
trace reconstruction. We start by defining subsequence-unique
strings.

Definition 12 (w-subsequence-unique string): A string x 2
{0, 1}n is said to be w-subsequence-unique if for every 1 
a, b  n such that a+w, b+ 1.1w  n+ 1, and either a < b

or b+ 1.1w < a+ w, we have that the substring x[a, a+ w)
is not a subsequence of x[b, b+ 1.1w).
We remark that the constant 1.1 in Definition 12 is arbitrary,
and can be replaced by another constant close to 1. Since
we make no effort to optimize constants in our results, we
use the same constant as in [2]. Intuitively, a string x is w-
subsequence-unique if no length w substring of x appears
as a subsequence of another slightly longer substring of x

(except for the trivial case where the longer substring contains
the shorter one). Note that these strings have been defined
under the name “substring-unique” in [2]. We chose to change
this name to avoid confusion with a different definition under
the same name described in [22]. The following result about
subsequence-unique strings was established in [2].

Lemma 13 ([2, Theorem 2.5]): For w = 100 log n and a
small enough constant deletion probability d, there exists an
algorithm that reconstructs every w-subsequence-unique string
x 2 {0, 1}n with probability 1�1/poly(n) from poly(n) traces
in time poly(n).
Since a uniformly random string is w-subsequence-unique
with high probability, Lemma 13 applies to average-case trace
reconstruction. As we make explicit use of the algorithm
behind Lemma 13, for the sake of clarity we provide next a
more in-depth discussion of the method. However, before we
proceed to the actual description of the algorithm, we briefly
introduce some definitions and basic related results.

Given integers i and j and a deletion probability d, we
denote the probability that the i-th bit of a string appears as
the j-th bit of its trace by P (i, j). Then, we have

P (i, j) =

✓
i� 1

j � 1

◆
(1� d)jdi�j

.

The following lemma states some useful properties of P (i, j).

Lemma 14 ([2, Lemma 2.2]): If j  (1 � 3d)i, then
P (i, j) � 2

P
i0>i P (i0, j). Furthermore, if (1 � 4d)i < j <

(1� 3d)i, we have P (i, j) � exp(�6di).
Intuitively, the second part of Lemma 14 suggests that we have
a good idea of the position of xi in the trace if i is small. The
following result makes use of this observation. It states that
we can recover the first O(log n) bits of an arbitrary string
with poly(n) traces, which is required to bootstrap the trace
reconstruction algorithm from [2].

Lemma 15 ([2, Theorem 2.1]]): Fix a string x 2 {0, 1}n,
and suppose that we know x1, . . . , xh�1. Then, there is an
algorithm that recovers xh from exp(O(hd log(1/d))) traces
of x with probability 1� o(1), provided that d < 1/3.

In the second part of the algorithm, we must look for
matchings of certain strings within the traces. To this end,
we introduce the following definition.

Definition 16 (Matching): Fix a string x 2 {0, 1}n, and let
T denote a trace of x. Then, we say that there is a matching of
x[a, b) in T if there exists some u such that T [u�(b�a), u) =
x[a, b).
Matchings of w-subsequence-unique strings have useful prop-
erties, as formalized in the following lemma.

Lemma 17 ([2, Lemma 2.4]): If x is w-subsequence-unique
and there is a matching of x[a, a+w) in T , say at T [u�w, u),
then the probability that Tu�1 does not come from x[a+w, a+
1.1w) is at most nd0.001w.
We are now in a position to describe the algorithm introduced
in [2]. We begin by setting w = 100 log n, v = w/d, and
j = (v � 0.1w)(1 � 3d). Then, to recover a w-subsequence-
unique string x we proceed with two steps: First, we use the
algorithm from Lemma 15 to recover the first v bits of x with
poly(n) traces. Now, suppose we have recovered x1, . . . , xi�1

for i � 1 � v. Our next goal is to recover xi with poly(n)
traces. Note that if i is relatively large, we cannot use the
algorithm from Lemma 15 to recover xi as it would require
more than poly(n) traces. To achieve our goal, we instead
focus on finding matchings of the substring x[i�v�w, i�v)
within the trace. Let T denote a trace of x and suppose there is
a matching of x[i�v�w, i�v) in T at positions T [u�w, u).
Then, we set V = T [u, ·], i.e., we let V be the suffix of
the trace following the matching. The key property is that
Pr[Vj = 1] satisfies a threshold property depending on the
value of xi. More precisely, there exist two positive values
B1 > B0 sufficiently far apart such that Pr[Vj = 1]  B0 if
xi = 0 and Pr[Vj = 1] � B1 if xi = 1. Moreover, all terms
in these inequalities can be estimated with a small error from
poly(n) traces of x. As a result, we can reliably estimate xi

by checking whether Pr[Vj = 1]  B0 or Pr[Vj = 1] � B1.
We prove next the threshold property for Pr[Vj = 1]. Let R
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denote the position in x of the bit appearing in position u� 1
in the trace T of the matching for x[i� v�w, i� v). In other
words, R denotes the position in x of the last bit appearing in
the matching in T . We may write

Pr[Vj = 1] =
nX

r=1

Pr[R = r] Pr[Vj = 1|R = r]

= ✏i(x) +
i�v+0.1wX

r=i�v

Pr[R = r] Pr[Vj = 1|R = r]

= ✏i(x) +
i�v+0.1wX

r=i�v

Pr[R = r]
nX

`=r+1

P (`� r, j)x`

= ✏i(x) +
i�v+0.1wX

r=i�v

Pr[R = r]
i�1X

`=r+1

P (`� r, j)x`

+
i�v+0.1wX

r=i�v

Pr[R = r] · P (i� r, j)xi

+
i�v+0.1wX

r=i�v

Pr[R = r] ·
nX

`=i+1

P (`� r, j)x`,

where the second equality follows from Lemma 17 with 0 
✏i(x)  nd

�0.001w. Using the first part of Lemma 14, we
conclude that

Pn
`=i+1 P (`� r, j)  1

2P (i� r, j). As a result,
when xi = 0 we have

Pr[Vj = 1]  ✏i(x) +
i�v+0.1wX

r=i�v

Pr[R = r]
i�1X

`=r+1

P (`� r, j)x`

+
1

2

i�v+0.1wX

r=i�v

Pr[R = r]P (i� r, j), (2)

and when xi = 1 we have

Pr[Vj = 1] � ✏i(x) +
i�v+0.1wX

r=i�v

Pr[R = r]
i�1X

`=r+1

P (`� r, j)x`

+
i�v+0.1wX

r=i�v

Pr[R = r]P (i� r, j). (3)

By the second part of Lemma 14, since i � r  v and
v = w/d, we have P (i � r, j) � 2�9w. Combining this with
Lemma 17 for d small enough means that the gap between the
right hand side of (2) and (3) is at least 2�(9w+1). To finalize
the argument, we note that (i) we can efficiently approximate
Pr[Vj = 1] to within an error of, say, 2�100w with high
probability from poly(n) traces of x, and (ii) we can efficiently
approximate Pr[R = r|R < i] to within the same error
given that we know x1, . . . , xi�1, provided d is small enough.
Since Pr[R < i] � 1 � nd

�0.001w by Lemma 17, we can
further efficiently approximate Pr[R = r] to within an error
of, say, 2�50w with high probability. From these observations it
follows that we can estimate xi correctly with high probability
from poly(n) traces, where the degree of the polynomial is
independent of i, as desired.

III. MARKER-BASED CONSTRUCTIONS

We start with simple constructions of high-rate codes that
can be efficiently reconstructed from a few traces. The idea

behind the approach is the following: Each codeword contains
markers, consisting of sufficiently long runs of 0’s and 1’s.
Between two consecutive markers, we add a short block
containing a codeword from an inner code satisfying a mild
constraint.

Intuitively, the runs in the markers will still be long in
the trace, and so we hope to be able to correctly identify
the positions of all markers in a trace with high probability.
After this is done, we can effectively split the trace into many
shorter, independent sub-traces corresponding to a block (and
possibly some bits from the two markers delimiting it). Then,
we can apply worst-case trace reconstruction algorithms to
the sub-traces. The savings in the number of traces required
for reconstruction stem from the fact that sub-traces are
short, and that each trace can be utilized simultaneously (and
independently) by all blocks. This idea for reconstruction
almost works as is, except that the process of identifying
the markers in a trace may be affected by long runs of 0’s
originating from a block between two markers. However, this
can be easily solved by requiring that all runs of 0’s in each
block are short enough. Many codes, including codes with low
redundancy, satisfy the desired property, and hence make for
good candidates for the inner code.

We describe and analyze a code based on the idea dis-
cussed above in Section III-A. Then, we consider a follow-
up construction in Section III-B which requires fewer traces,
at the expense of a decrease in the rate. At a high-level, this
second code is obtained by introducing two levels of markers
and adding some simple error-correction redundancy to the
message prior to other encodings. Finally, in Section III-C
we extend these ideas to the {A,C,G, T} alphabet in order
to obtain high-rate codes with desireable properties for use
in DNA-based storage. Namely, these codes have balanced
GC-content and can be reconstructed from few traces. Such
codes are designed by exploiting the fact that the marker-
based constructions can be instantiated with a large range of
inner codes, and we can make the inner code satisfy stronger
constraints than before.

A. A simple construction

Here we provide a precise description of the encoder Enc
for our code C and prove Theorem 2. For simplicity, we
consider d = 1/2 throughout. This choice of d is arbitrary,
and the construction and analysis can be easily generalized to
all constant d 2 (0, 1).

Let ` = 50 log n, and define two strings M0 = 0` and
M1 = 1`. Then, a marker M is a string of length 2` of the
form M = M0kM1 = 0`k1`. We also require an efficiently
encodable and decodable inner code C0 ✓ {0, 1}m+r with
encoder Enc0 : {0, 1}m ! {0, 1}m+r, where m = log2 n and
r is the redundancy, satisfying the following property.

Property 18: For all c 2 C0 and substrings s of c with
|s| =

p
m, it holds that w(s) � |s|/3.

In other words, every codeword of C0 has many 1’s in all short
enough substrings. Such efficient codes exist with redundancy
r = O(logm) = O(log log n), which is enough for our needs.
We provide a simple construction in Section III-A1.
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Fig. 1. The general encoder for C. By considering different instantiations
of the inner code C0, this construction is used to prove Theorem 2 (see
Section III-A), Theorem 4 (with slightly different markers due to the use
of a 4-ary alphabet, see Section III-C), and Theorem 7 (see Section IV-B).

Suppose we wish to encode an n-bit message x 2 {0, 1}n.
The encoder Enc on input x proceeds through the following
steps:

1) Split x into n/m blocks, each of length m

x = x
(1)kx(2)k · · · kx(n/m);

2) Encode each block x
(i) under the inner code C0 to obtain

x
(i) = Enc0(x(i)) 2 {0, 1}m+r;

3) Set the encoding of x, denoted by Enc(x), to be

Enc(x) = 1`kx(1)kMkx(2)kMk · · · kMkx(n/m)k0`.

We remark that the first run 1` and the last run 0` are
superfluous, and are added only to make the analysis simpler.
Computing Enc(x) from x and decoding x from Enc(x) can
both be done efficiently if the inner code C0 is efficiently
encodable and decodable. Figure 1 illustrates the encoding
procedure for C with a general inner code C0 satisfying
Property 18 detailed above.

We now compute the redundancy of C. It is straightforward
to see that

|Enc(x)|  n

m
(|M |+ |x(1)|) = n+O

✓
n

log n

◆
+

nr

log2 n
. (4)

As mentioned before, we have r = O(logm) = O(log log n).
Therefore, C can be made to have redundancy O

⇣
n

logn

⌘
.

In the remainder of this section, we prove Theorem 2 using
C via a sequence of lemmas. For convenience, we restate the
theorem below.

Theorem 19 (Theorem 2, restated): There is an efficient
algorithm that recovers every c 2 C from exp(O(log2/3 n))
traces in time poly(n) with probability 1� 1/poly(n).
The reconstruction procedure works as follows: First, we show
that the markers M still contain long enough runs after they
are sent through the deletion channel. Then, we show that
no long runs of 0’s originate from the sub-traces associated
with each block. This implies that we can correctly identify
the position of the “01” string of each marker in the trace.
As a result, we can split the trace into smaller “sub-traces”,
each one associated to a different block x

(i). Then, we apply
a reconstruction algorithm to the set of sub-traces associated
to each block in order to reconstruct the blocks, and thus

Fig. 2. The reconstruction procedure for C. This high-level approach is
used across our work in combination with trace reconstruction algorithms
of different levels of sophistication.

the whole codeword. This general reconstruction procedure
is illustrated in Figure 2.

To obtain Theorem 2, we show that we can apply the worst-
case trace reconstruction algorithm from Lemma 11 to recover
each block with high probability and with the desired number
of traces. We shall see in Section IV that a careful instantiation
of the inner code C0 allows us to use more sophisticated trace
reconstruction algorithms.

We start by proving that the markers M still contain long
runs after they are sent through the deletion channel.

Lemma 20: Let 0L01L1 be the output of the deletion channel
on input M . Then,

Pr[L0 > 10 log n, L1 > 0] � 1� n
�3

.

Proof: The result follows by a standard application of the
Chernoff bound. More precisely, we have E[L0] = 25 log n
since ` = 50 log n and d = 1/2, and hence

Pr[L0  10 log n] = Pr[L0  E[L0]� 15 log n]

 exp

✓
�152 log2 n

2E[L0]

◆

 n
�4

.

To conclude the proof, we note that Pr[L1 = 0] = 2�` =
n
�50. A union bound over the two probabilities yields the

desired lower bound.
We now show that no long runs of 0’s originate from the sub-
traces associated with each block.

Lemma 21: Let c 2 C0. Then, a trace of c does not contain
a run of 0’s of length at least 10 log n with probability at least
1� n

�4.
Proof: Since c 2 C0, a run of 0’s of length at least 10 log n

in the trace of c requires that there is a subsequence of c

with length at least 10 ⇥ logn
2 � 1 = 5 log n � 1 comprised

only of deleted 1’s without any undeleted 1 in between them.
The probability that a fixed subsequence of 1’s with length
5 log n�1 is completely deleted is at most n�4.5. Since there
are at most O(log2 n) such sequences in c, by the union bound
it follows that the desired probability is at most n�4.
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The next lemma follows immediately by combining Lem-
mas 20 and 21 with the union bound over the n/ log2 n blocks.

Lemma 22: Consider the following event E: We correctly
identify the separation between the traces of 0` and 1` from
every marker in the trace of Enc(x) by looking for all 1’s that
appear immediately after a run of at least 10 log n 0’s.

Then, E happens with probability at least 1�n
�2 over the

randomness of the trace.
We are now ready to prove Theorem 2. Let E denote

the event described in Lemma 22. Then, Lemma 22 implies
that, conditioned on E, we can split a trace T of Enc(x)
into n/ log2 n sub-traces T

(1)
, . . . , T

(n/ log2 n) satisfying the
following:

• The sub-traces T
(i) are independent for

i = 1, 2, . . . , n/ log2 n;
• Each sub-trace T

(i) is distributed like a trace of
1`kx(i)k0` conditioned on the high probability event E.

In fact, each sub-trace T
(i) can be identified by looking for

the (i� 1)-th and i-th runs of 0 of length at least 10 log n in
the trace T , and picking every bit in T immediately after the
(i� 1)-th run up to and including the i-th run.

Observe that 1`kx(i)k0` has length O(log2 n). Suppose that
we have t = exp(O(log n)2/3) independent traces T1, . . . , Tt

of Enc(x). Let Eall denote the event that E holds for all Ti

simultaneously. Combining Lemma 22 with the union bound
yields

Pr[Eall] � 1� t/n
2
> 1� 1/n. (5)

Fix some trace reconstruction algorithm A, and let E
(i)
indFail

denote the event that A fails to recover a fixed string
y
(i) = 1`kx(i)k0` from t independent traces of y(i). Assuming

that Eall holds, the sub-traces T
(i)
1 , . . . , T

(i)
t (note that T

(i)
j

denotes the i-th sub-trace of the j-th trace) are distributed as t
independent traces of y(i), each also satisfying the conditions
that the first run 1` is not completely deleted, the last run 0`

has length at least 10 log n in the trace, and there is no run of
0’s of length at least 10 log n in the trace of x

(i). We denote
the event that these conditions hold for all of the t independent
traces of y(i) by E

(i)
split. Finally, we let Efail denote the event that

we fail to recover Enc(x) from the t i.i.d. traces T1, . . . , Tt.
Then, we have

Pr[Efail]  Pr[Efail, Eall] + Pr[¬Eall]

= Pr[(9i : E(i)
indFail), (8i : E

(i)
split)] + Pr[¬Eall]

 Pr[9i : E(i)
indFail] + 1/n (6)


n/ log2 nX

i=1

Pr[E(i)
indFail] + 1/n. (7)

The first equality follows from the discussion in the previous
paragraph, the second inequality follows from (5), and the
third inequality follows by the union bound. Instantiating
A with the worst-case trace reconstruction algorithm from
Lemma 11, we conclude from (7) that

Pr[Efail]  n · exp(�2 log2 n) + 1/n < 2/n.

As a result, we can successfully recover x from
exp(O(log n)2/3) traces of Enc(x) with probability at least

1 � 2/n. To conclude the proof, we note that we can repeat
the process O(log n) times and take the majority vote to boost
the success probability to 1�1/p(n) for any fixed polynomial
p of our choice. The total number of traces required is
still exp(O(log2/3 n)). Since recovering each x

(i) from the
associated traces takes time exp(O(log2/3 n)) and the inner
code C0 has an efficient decoder, the whole procedure is
efficient.

Remark 23: By modifying the inner block length m from
log2 n to log1+�

n for an arbitrary constant � 2 (0, 1), the
reasoning above can be adapted to yield efficiently encodable
codes with redundancy O(n/ log� n) which are efficiently
reconstructible from exp(O(log

1+�
3 n)) traces.

1) Instantiating the inner code: What remains to be done is
to instantiate the inner code C0 with the appropriate parameters
and properties. To this end, we present a simple construction
of an efficiently encodable and decodable inner code C0 with
encoder Enc0 : {0, 1}m ! {0, 1}m+r and redundancy r =
O(logm). We can then obtain the desired code by setting
m = log2 n. The starting point is the following result.

Lemma 24: Let g : {0, 1}t ! {0, 1}m be the function whose
existence is guaranteed by Lemma 9 with k = 3w and ✏ =
2�10w for w = 100 logm (hence t = O(logm)). Fix some
x 2 {0, 1}m and consider the random variable Y = x +
g(Ut). Then, with probability at least 1� 2/m, we have that
Y satisfies the following property:

Property 25: One has w(Y [a, a + w)) � 0.4w simultane-
ously for all 1  a  m� w + 1.

Proof: Fix some a. Then, we have

Pr[w(Y [a, a+ w)) < 0.4w]

=
X

y:w(y)<0.4w

Pr[Y [a, a+ w) = y]


X

y:w(y)<0.4w

(2�w + 23w✏)

 2wh(0.4) · 2�w+1

 2

m2
.

The first inequality follows because Y is ✏-almost k-wise
independent, and the second inequality follows from a standard
bound on the volume of the Hamming ball and the fact that
23w✏ < 2�w. Since there are at most m choices for a, by the
union bound we conclude that Y fails to satisfy the desired
property with probability at most m·2/m2 = 2/m, as desired.

Given x 2 {0, 1}m, we evaluate Enc0(x) as follows: We iterate
over all z 2 {0, 1}t until we find a z such that y = x+ g(z)
satisfies w(s[a, a+ w)) � 0.4w. Such a string z is known to
exist by Lemma 24 and can be found in time poly(m) since
t = O(logm). Then, we set Enc0(x) = zk[x+ g(z)].

Observe that the redundancy of C0 is exactly |z| = t =
O(logm), and that we have encoders and decoders for C0

running in time poly(m) since t = O(logm). To see that
C0 satisfies the property required in this section, fix some
substring s of Enc0(x) such that |s| =

p
m. Then, w(s) �

0.4w · |s|/w � t � 0.39|s| provided that m is large enough.
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Finally, we remark that the code used in this marker-
based construction is just an example of a viable inner code
C0. Any structured family of codes satisfying Property 18
may be used instead, and one may envision adding more
constraints to C0, depending on the application constraints at
hand. We exploit this fact in Sections III-B and III-C. For
example, in Section III-C we will require that C0 is a code
over {A,C,G, T} satisfying an analogue of Property 18 while
also having balanced GC-content.

B. Adding a second level of markers

In our next construction, we exploit the fact that the marker-
based construction from Section III-A can be instantianted
with a large range of inner codes to prove Theorem 3. To do
so, we show that we can iterate the marker-based construction
so that we can split a trace into even smaller sub-traces with
high probability. This leads to a code requiring fewer traces,
but with a penalty in the redundancy. We restate Theorem 3
for convenience, where we now use n0 to denotes the message
length so as to avoid confusion.

Theorem 26 (Theorem 3, restated): There exists an ef-
ficiently encodable code C0 ✓ {0, 1}n0+r0 with encoder
Enc0 : {0, 1}n0 ! {0, 1}n0+r0 and redundancy r0 =
O(n0/ log log n0) that can be efficiently reconstructed from
exp(O(log log n0)2/3) traces with probability at least 1�2/n0.

As before, for simplicity we set d = 1/2 throughout the
section. We will use the same construction blueprint as in
Section III-A, except for the following differences:

• We assume the n-bit message x belongs to a binary outer
code Cout ✓ {0, 1}n with encoder Encout : {0, 1}n0 !
{0, 1}n and relative (Hamming) distance3 30/ log2 n0.
In particular, we have x = Enc0(x0) for some x0 2
{0, 1}n0 .
Such efficiently encodable and decodable codes are
known to exist with redundancy n�n0 = O

⇣
n0

log logn0

logn0

⌘

(see Appendix A for a proof). The reasons for using this
encoding will be made clear later;

• We consider a different instantiation of the inner code C0

than the one in Section III-A1, which we describe below.
If C denotes the code obtained via the reasoning of Sec-

tion III-A (with the different instantiation of the inner code C0

that we describe below) and Enc corresponds to its encoder,
then the encoder Enc0 : {0, 1}n0 ! {0, 1}n0+r0 for our final
code C0 is obtained by composing the encoders of Cout and C,
i.e.,

Enc0 = Enc � Encout.

We illustrate the encoder detailed above in Figure 3.
a) Instantiating the inner code C0.: We proceed to de-

scribe the encoder Enc0 for (our instantiation of) the inner
code C0 of C. Essentially, our chosen instantiation of C0 uses
the encoder detailed in Section III-A and illustrated in Figure 1
along with the code constructed in Section III-A1, both with
different blocklengths.

3The relative Hamming distance of a code is defined as its minimum
Hamming distance normalized by its block length.

Fig. 3. The encoder for C0, which is used to prove Theorem 3 (see Sec-
tion III-B). The only differences from the encoder described in Section III-A
consist in the addition of an outer error-correcting step and the fact that we
use a specific instantiation of the inner code C0.

Given y 2 {0, 1}m, where m = log2 n, we split y into
m/ log2 m blocks of length log2 m,

y = y
(1)ky(2)k · · · ky(m/ log2 m)

.

Then, we take C00 ✓ {0, 1}m0+r0 with encoder Enc00 :
{0, 1}m0 ! {0, 1}m0+r0 as the efficiently encodable and
decodable code constructed in Section III-A1 with message
length m

0 = log2 m and redundancy r
0 = O(logm0) =

O(log logm). For each i, we define y
(i) = Enc00(y(i)).

Moreover, we let `
0 = 50 logm, and define the marker

M
0 = 0`

0k1`0 . Then, we define Enc0(y) as

Enc0(y) = M
0ky(1)kM 0ky(2)kM 0k · · · kM 0ky(m/ log2 m)kM 0

.

Observe that we can efficiently decode y from Enc0(y) pro-
vided that C00 is efficiently decodable.

We first compute the redundancy of the inner code C0 and
the resulting code C obtained as in Section III-A. We have

|Enc0(y)| = m+
m

log2 m
· (|M 0|+O(log logm))

= m+O

✓
m

logm

◆
.

Thus, C0 has redundancy r = O(m/ logm). Plugging r

into (4) and recalling that m = log2 n, we conclude that C
has redundancy

O

✓
n

log n

◆
+O

✓
n log2 n

log2 n · log log n

◆
= O

✓
n

log log n

◆
.

As a result, since n = n0 +O

⇣
n0

log logn0

logn0

⌘
, the code C0 has

redundancy r0 = O(n0/ log log n0), as desired.
We now show that C0 satisfies Property 18. First, we observe

that C00 satisfies Property 25 with m
0 in place of m. Then, since

each M
0 has weight 0.5|M 0|, we conclude that every substring

s of Enc0(y) such that |s| =
p
m satisfies

w(s) � 0.4w · |s|/w � `
0 � 0.39|s|,

provided m is large enough, since `
0 = O(logm). As a result,

Lemma 22 holds for this choice of inner code, and we can
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hence focus solely on the trace reconstruction problem for
strings of the form

1`kEnc0(y)k0`

= 1`kM 0ky(1)kM 0k · · · kM 0ky(m/ log2 m)kM 0k0`, (8)

where ` = O(log n) = O(
p
m), and provided the number of

traces used is significantly smaller than n.
b) The trace reconstruction algorithm.: Since the instan-

tiation of C0 above satisfies Property 18, the results from
Section III-A (along with the high-level reconstruction pro-
cedure pictured in Figure 2) imply that it now suffices to
design a trace reconstruction algorithm for strings of the
form 1`kc0k0`, where c

0 2 C0. With this in mind, we give
a reconstruction algorithm for strings of the form (8) that re-
quires exp(O(log2/3 m)) = exp(O(log log n0)2/3) traces and
time, and succeeds with probability at least 1� 1/poly(m) =
1�1/poly(log n0). We have the following two lemmas whose
proofs are analogous to those of Lemmas 20 and 21 and hence
omitted.

Lemma 27: Let 0L01L1 be the output of the deletion channel
on input M 0. Then,

Pr[L0 > 10 logm,L1 > 0] � 1�m
�3

.

Lemma 28: Let c 2 C00. Then, a trace of c does not contain
a run of 0’s of length at least 10 logm with probability at least
1�m

�3.
Combining Lemmas 27 and 28 with the union bound leads to
the following analogue of Lemma 22.

Lemma 29: Consider the following event E0: We correctly
identify the separation between the traces of 0`

0
and 1`

0
from

every marker in the trace of Enc0(x) by looking for all 1’s
that appear immediately after a run of at least 10 logm 0’s.

Then, E0 happens with probability at least 1 � m
�2 over

the randomness of the trace.
As in Section III-A, Lemma 29 implies that, conditioned on

E
0 happening for a trace T of 1`kEnc0(y)k0`, we can split T

into independent sub-traces T (i) each distributed like a trace of
1`

0kEnc00(y(i))k0`0 conditioned on the high probability event
E

0.
Let A denote the worst-case trace reconstruction algorithm

from Lemma 11 for strings of length O(m0) = O(log2 m),
with failure probability at most exp(�⌦(log2 m)). A reason-
ing similar to that preceding (7) with Lemma 29 in place
of Lemma 22, and the code C0 designed in this section in
place of C shows that, using algorithm A, we fail to recover
Enc0(y) from exp(O(log2/3 m)) i.i.d. traces of 1`kEnc0(y)k0`
with probability at most

m · exp(�⌦(log2 m)) + 1/m < 2/m. (9)

Let A0 denote the algorithm that recovers Enc0(y) from
exp(O(log2/3 m)) i.i.d. traces of 1`kEnc0(y)k0` with failure
probability at most 2/m as described above. We hope to
instantiate (7) directly with A0 to obtain the desired upper
bound on the reconstruction failure probability for C. However,
this approach does not produce a satisfactory result as the
failure probability of A0 is 2/m = 1/poly(log n), which is
too large to be used in the union bound.

Recall from Section III-A (see also Figure 1) that, given
x 2 {0, 1}n, the codeword Enc(x) of C is obtained by splitting
x into n/ log2 n blocks x

(i) and encoding each block with
the encoder Enc0 associated with C0. From the discussion
in the previous paragraph, a fraction of blocks x

(i) will be
reconstructed with errors. Below we argue that this fraction is
of size at most 10/ log2 n0 with probability at least 1� 2/n0.
The reasoning is similar in spirit to that used to derive (6),
and it suffices to complete the proof of Theorem 3. In fact,
suppose we recovered x̃, which is a guess of x with at
most a (10/ log2 n0)-fraction of incorrect blocks. In particular,
the relative Hamming distance between x̃ and x is at most
10/ log2 n0. Since the relative distance of Cout is at least
30/ log2 n0 and we assumed that x 2 Cout, it follows that
Decout(x̃) = Decout(x) = x0. Therefore, we conclude that we
can recover the underlying message x0 with probability at least
1 � 2/n0 from exp(O(log2/3 m)) = exp(O(log log n0)2/3)
i.i.d. traces of Enc0(x). This proves Theorem 3.

As the last step, we show that the fraction of bad blocks
is small enough with high probability. Suppose that we have
access to t = exp(O(log2/3 m)) i.i.d. traces T1, . . . , Tt of
Enc(x), where Enc is the encoder associated with C. Let E

denote the event from Lemma 22, and let Eall denote the event
that E holds for all Ti simultaneously. As before, assuming
that Eall holds, the sub-traces (T (i)

1 , . . . , T
(i)
t )1in/ log2 n are

independent between all i, and each tuple T
(i)
1 , . . . , T

(i)
t is

distributed as t independent traces of 1`kEnc0(x(i))k0`, each
T

(i)
j also satisfying the conditions that the first run 1` is not

completely deleted, the last run 0` has length at least 10 log n
in the trace, and no run of 0’s has length at least 10 log n in the
trace of Enc0(x(i)). Denote the event that both these conditions
hold for t independent traces of 1`kEnc0(x(i))k0` by E

(i)
split.

Invoking the trace reconstruction algorithm A0 defined above,
let I

(i)
indFail denote the indicator random variable of the event

that A0 fails to recover 1`kEnc0(x(i))k0` from t independent
traces of 1`kEnc0(x(i))k0`. Taking into account the previous
discussion, we let Efail denote the probability that more than a
(10/ log2 n0)-fraction of blocks x

(i) is recovered with errors.
Then, we have

Pr[Efail]  Pr[Efail, Eall] + Pr[¬Eall]

= Pr

2

4
n/ log2 nX

i=1

I
(i)
indFail >

n

log2 n
· 10

log2 n0

, 8i : E(i)
split

3

5

+ Pr[¬Eall]

 Pr

2

4
n/ log2 nX

i=1

I
(i)
indFail >

n

log2 n
· 10

log2 n0

3

5+ 1/n0.

(10)

The first equality follows from the discussion in the previous
paragraph, and the second inequality follows from Lemma 22
and the fact that n > n0. Recalling (9), which asserts that the
failure probability for A0 is at most 2/m, shows that

Pr[I(i)indFail]  2/m = 2/ log2 n < 2/ log2 n0
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holds for every i. Since the I
(i)
indFail are independent for all

i, a standard application of the Chernoff bound yields the
following lemma.

Lemma 30: We have

Pr

2

4
n/ log2 nX

i=1

I
(i)
indFail >

n

log2 n
· 10

log2 n0

3

5  n
�10
0 .

We remark that the Chernoff bound yields a stronger upper
bound than the one featured in Lemma 30. However, for
simplicity we use a weaker upper bound that still suffices
for our needs. Combining (10) with Lemma 30 allows us to
conclude that Pr[Efail] < 2/n0, as desired.

C. A code for DNA-based data storage decodable from a few
traces

We describe next how to adapt the ideas from Sections III-A
and III-B and combine them with techniques from [48] in
order to construct codes over the alphabet {A,C,G, T} that
have balanced GC-content and provably require few traces for
reconstruction. As already pointed out, strings with balanced
GC-content are significantly easier to synthesize than their
non-balanced counterparts. Therefore, constructions accomo-
dating this constraint are well-suited for use in DNA-based
data storage.

The constructions follow those outlined in Sections III-A
and III-B (see also Figures 1 and 3). The only modifications
are the choice of markers and the definition of the inner code.
We focus on discussing these changes and their properties
within the setting of Section III-A. The full argument and
the extension for the two-level marker-based construction of
Section III-B follow in a straightforward manner.

We first describe the modified markers. The marker M used
throughout the section is of the form M = (AC)`k(TG)`,
where ` = 25 log n and n is the message length. Observe
that this marker has the same length as the original marker in
Section III-A. Moreover, M has balanced GC-content.

In order to proceed as in Section III-A we need to design
an efficiently encodable and decodable inner code C0 ✓
{A,C, T,G}m0

with balanced GC-content which satisfies a
property analogous to Property 18.

Suppose that C0 has encoder Enc0 : {0, 1}m !
{A,C, T,G}m0

and that m0 = m/2 + r, where m = log2 n
as in Section III-A and r denotes the redundancy to be
determined. Given the composition of M , the property we
wish C0 to satisfy is the following:

Property 31: For all c 2 C0 and substrings s of c with
|s| =

p
m, it holds that at least |s|/3 symbols of s are T or

G.
Similarly to Lemma 21, it can be shown that if C0 satisfies
Property 31, then with high probability a trace of c 2 C0 will
not contain long runs consisting only of symbols A and C.
As a result, with high probability we can easily split a trace
into multiple sub-traces associated with different blocks as
in Section III-A (see the high-level reconstruction procedure
in Figure 2). This is accomplished by looking for all long
substrings of the trace consisting only of A’s and C’s in the
trace. The reason is that, with high probability, each such

substring consists of the trace of an (AC)` substring from
a marker M possibly with some extra symbols prepended. In
that case we can correctly identify the separation between the
traces of (AC)` and (TG)` in all markers by looking for the
first T or G after every sufficiently long substring of A’s and
C’s.

We proceed to describe the encoder Enc0 of the inner
code C0 that has redundancy r = O(logm). We combine
a technique from [48] with the code from Section III-A1.
As an additional ingredient in the construction, we require
an efficiently encodable and decodable binary balanced code
C1 with encoder Enc1 : {0, 1}m/2 ! {0, 1}m/2+r1 . Nearly-
optimal constructions of such codes are known, and they have
redundancy r1 = O(logm) [49], [50]. Let C2 ✓ {0, 1}m/2+r2

denote the code from Section III-A1 with encoder Enc1 :
{0, 1}m/2 ! {0, 1}m/2+r2 and redundancy r2 = O(logm).
By padding one of C1 or C2 appropriately, we may assume
that r1 = r2 = r, i.e., that both codes have the same
block length. Similarly to [48], we define the bijection  :
{0, 1}n ⇥ {0, 1}n ! {A,C,G, T}n as

 (a, b)i =

8
>>><

>>>:

A, if (ai, bi) = (0, 0),

T, if (ai, bi) = (0, 1),

C, if (ai, bi) = (1, 0),

G, if (ai, bi) = (1, 1).

The code C0 is defined via an encoding Enc0 : {0, 1}m !
{A,C,G, T}m/2+r of the form

Enc0(x) =  (Enc1(x
(1)),Enc2(x

(2))),

where x = x
(1)kx(2) 2 {0, 1}m/2 ⇥ {0, 1}m/2. It is clear that

decoding x from Enc0(x) can be performed efficiently. We
hence have the following lemma.

Lemma 32: The inner code C0 has balanced GC-content and
satisfies Property 31.

Proof: Suppose that c =  (c1, c2), where c1 2 C1 and
c2 2 C2. To see that c has balanced GC-content, note that the
number of C’s and G’s in c equals the weight of c1. We have
w(c1) = |c1|/2 since C1 is a balanced code, and hence c has
balanced GC-content. To verify that C satisfies Property 31,
note that the number of T ’s and G’s within a substring c[i, j]
equals w(c2[i, j]). Since C2 satisfies Property 18, the proof
follows.

Given Lemma 32, we can now proceed along the steps
described in Section III-A by splitting a trace of C into many
short sub-traces associated with different blocks, and then
applying a worst-case trace reconstruction algorithm on each
block. We remark that although the algorithm from Lemma 11
works for worst-case trace reconstruction over binary strings,
it can be easily adapted for quaternary strings. In fact, if t

traces suffice for a worst-case trace reconstruction algorithm
to reconstruct a string in {0, 1}n with high probability, then a
simple modification of this procedure recovers any quaternary
string in {A,C,G, T}n with 2t traces. This is achieved by
mapping the symbols in the first t traces over {A,C,G, T}
to traces over {0, 1} according to, say, A 7! 0, C 7! 0, G 7!
1, T 7! 1, and the symbols in the last t traces according to
A 7! 0, C 7! 1, G 7! 0, T 7! 1. We can now run the binary
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worst-case algorithm on both sets of t traces, and recover the
original string over {A,C,G, T} from the two outputs.

Taking into account the previous discussion, applying the
reasoning from Section III-A to the marker M and inner code
C0 defined in this section leads to Theorem 4, which we restate
for completeness.

Theorem 33 (Theorem 4, restated): For every deletion
probability d < 1, there exists an efficiently encodable code
C ✓ {A,C,G, T}n+r with redundancy r = O(n/ log n)
and balanced GC-content that can be efficiently reconstructed
from exp(O(log n)2/3) traces.

Following the reasoning from Section III-B with the mod-
ified markers and C00 instantiated with the inner code C0 we
designed in this section proves Theorem 5, which we also
restate for completeness.

Theorem 34 (Theorem 5, restated): For every constant
deletion probability d < 1, there exists an efficiently en-
codable code C ✓ {A,C,G, T}n+r with redundancy r =
O(n/ log log n) and balanced GC-content that can be effi-
ciently reconstructed from exp(O(log log n)2/3) traces.

Two comments are in place regarding the choice of markers.
First, the marker sequence M = (AC)`k(TG)` may lead to
hairpin formations when single stranded DNA is used. Hair-
pins are double-stranded folds, but may be easily controlled
through addition of urea or through temperature management.
Second, repeats such as marker repeats are undesirable as they
may lead to issues during DNA synthesis. To mitigate this
issue, one can alternate marker sequences. For example, two
valid marker options are (AC)`k(TG)` and (AG)`k(TC)`,
and any other marker where the sets of symbols used in each
side are disjoint and C and G do not appear in the same side
is appropriate for use in the construction.

Note that alternating markers in turn requires alternating the
inner codes used between markers. This can be accommodated
in a straightforward manner. Suppose that the block x

(i)

precedes an (AC)`k(TG)` marker. Then, we encode x
(i) as

usual with Enc0 as defined in this section. However, if x
(i)

precedes an (AG)`k(TC)` marker, then we encode x
(i) by

first computing Enc0(x(i)), and then swapping all G’s and C’s
in the encoding. Observe that in both cases the encoding has
balanced GC-content. Moreover, since C0 satisfies Property 31,
with high probability the trace of each block’s encoding
will not have long substrings containing only A’s and C’s
(resp. A’s and G’s) before an (AC)`k(TG)` marker (resp.
(AG)`k(TC)` marker). As before, this means that, with high
probability, we can correctly split the full trace into the
relevant sub-traces by alternately looking for long substrings
composed of A’s and C’s only, and of A’s and A’s and G’s
only. In fact, the end of such long substrings corresponds to
the beginning of the traces of the (TG)` and (TC)` substrings
of the marker, respectively.

IV. REDUCING THE NUMBER OF TRACES FOR SMALL
CONSTANT DELETION PROBABILITY

In Section III-A, we gave a construction of marker-based
codes that requires a few traces for reconstruction. A simple
property of the inner code ensured that we can correctly

identify all markers with high probability, effectively dividing
the global trace into many independent, shorter traces (see
Figures 1 and 2). After this, we applied the state-of-the-art
worst-case trace reconstruction algorithm from Lemma 11 on
each short trace in order to obtain the desired codes.

It seems plausible, however, that one could design the inner
code more carefully so that many fewer traces are needed to
recover the short codewords contained between the markers.
This is the main problem we address in what follows. We
design a code that, when used as the inner code in the
construction from Section III-A, leads to an almost exponential
reduction of the number of traces required for reconstruction
with only a slight decrease in the code rate, provided that the
deletion probability is a sufficiently small constant. The trace
reconstruction algorithm we use is a variation of the algorithm
for average-case trace reconstruction described in [2, Section
2.3].

Our starting point is a low redundancy code with the
property that it can be reconstructed from poly(n) traces.
We discuss this construction in Section IV-A. Then, in Sec-
tion IV-B we show how to adapt this code so that it can
be successfully used as an inner code in the marker-based
construction introduced in Section III.

A. Low redundancy codes reconstructible from polynomially
many traces

In what follows, we prove Theorem 6. We restate the result
for convenience.

Theorem 35 (Theorem 6, restated): For small enough dele-
tion probability d, there exists an efficiently encodable code
C ✓ {0, 1}n+r with encoder Enc : {0, 1}n ! {0, 1}n+r and
redundancy r = O(log n) that can be efficiently reconstructed
from poly(n) traces with probability at least 1� exp(�n).
The code we construct to prove Theorem 6 will be the starting
point for the proof of Theorem 7 in Section IV-B. Roughly
speaking, our code encodes n-bit messages into codewords
that are almost w-subsequence-unique for w = O(log n), in
the sense that all but the first O(log n) bits of the codeword
comprise a w-subsequence-unique string. This is possible
because an ✏-almost k-wise independent random variable over
{0, 1}n with the appropriate parameters is w-subsequence-
unique with high probability. We make this statement rigorous
in the following lemma. We note that the technique in the
lemma below has already been used in [47] to obtain strings
satisfying related properties, such as substring-uniqueness,
with high probability.

Lemma 36: Let g : {0, 1}t ! {0, 1}m be the function
guaranteed by Lemma 9 with k = 3w and ✏ = 2�10w for
w = 100 logm (hence t = O(logm)). Fix some x 2 {0, 1}m
and define the random variable Y = x + g(Ut). Then, with
probability at least 1 � 1/poly(m) it holds that Y is w-
subsequence-unique.

Proof: First, note that Y is ✏-almost k-wise independent.
This proof follows along the same lines as the proof that a
random string is w-subsequence-unique with high probability
found in [2, Lemma 2.6] with a few simple modifications.

Without loss of generality, fix a and b such that a < b,
and fix distinct indices i1, . . . , iw 2 [b, . . . , b + 1.1w). For
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convenience, let S = {i1, . . . , iw}, S 0 = [b, b+1.1w)\S , and
u = min(a+ w, b). Then,

Pr[YS = Y [a, a+ w)]

=
X

y,y0

Pr[YS = Y [a, a+ w), Y [a, u) = y, YS0 = y
0]. (11)

We now show that Y [a, u) and YS0 completely determine YS
under the constraint YS = Y [a, a + w). This can be seen by
induction. First, we must have Yi1 = Ya, and Ya is determined
by Y [a, u) since a < u. Now, suppose that Yi1 , . . . , Yij are
determined by Y [a, u) and YS0 . It must be the case that
Yij+1 = Ya+j . If a + j < u or a + j 2 S 0, then Yij+1

is determined by Y [a, u) or YS0 , respectively. On the other
hand, if a+ j � u and a+ j 62 S 0, then Ya+j = Yid for some
d < j + 1. By the induction hypothesis, Yid is determined by
Y [a, u) and YS0 , and hence Yij+1 is, too.

As a result, we conclude that there exists a string y =
(y1, . . . , yw) completely determined by y and y

0 such that

Pr[YS = Y [a, a+ w), Y [a, u) = y, YS0 = y
0]

= Pr[YS = y, Y [a, u) = y, YS0 = y
0]. (12)

Since Y is ✏-almost 3w-wise independent and fewer than 3w
coordinates are fixed, we have

Pr[YS = y, Y [a, u) = y, YS0 = y
0]  2�1.1w�(u�a) + 23w✏

(13)
for all y and y

0. Combining (11), (12), and (13), we conclude
that

Pr[YS = Y [a, a+ w)]  2u�a · 20.1w(2�1.1w�(u�a) + 23w✏)

 2�w + 24.1w✏

 2�w+1
,

since u�a  w and ✏ = 2�10w. Since there are
�1.1w

w

�
choices

for S for each pair (a, b) and fewer than m
2 possible pairs

(a, b), the probability that Y is not w-subsequence-unique is
at most

m
2

✓
1.1w

w

◆
2�w+1 = n

2

✓
1.1w

w

◆
2�w+1

 m
2(11e)0.1w2�w+1

 2m2(1.415)�w

 m
�45

,

as desired.
Lemma 36 naturally leads to a simple, efficient candidate
construction of the encoder Enc: Given x 2 {0, 1}n, we first
iterate over all z 2 {0, 1}t until we find z such that x+g(z) is
w-subsequence-unique. Most strings z satisfy this, according
to Lemma 36. Moreover, since t = O(log n), we can iterate
over all such z in time poly(n), and verify whether x+g(z) is
w-subsequence-unique for each z in poly(n) time. The latter
can be accomplished simply by exhaustive search over all
valid pairs of substrings [a, a + w) and [b, b + 1.1w), since
w = O(log n). To recover x from x+g(z) we need to provide
z to the receiver. Therefore, the encoder Enc for C maps a
message x 2 {0, 1}n to the codeword

Enc(x) = zk[x+ g(z)] 2 {0, 1}n+t
, (14)

where z is the first string (in lexicographic order) such that x+
g(z) is w-subsequence-unique. Observe that the redundancy of
C is exactly t = O(log n).

1) The trace reconstruction algorithm: We describe next
an efficient trace reconstruction algorithm for C that works
whenever the deletion probability is a small enough constant,
thus proving Theorem 6. This algorithm works very similarly
to the one introduced in [2] and described in Section II-D2.
As before, we shall set w = 100 log n, v = w/d = O(log n)
and j = (v � 0.1w)(1 � 3d) = O(log n). Given a codeword
c = Enc(x) = zk[x+ g(z)], we proceed as follows: First, we
apply the algorithm from Lemma 15 to recover z and the first
2v + w = O(log n) bits of y = x+ g(z) with poly(n) traces
(repeating the process O(n) times if necessary) and success
probability 1� exp(�⌦(n)).

Now, suppose that we know y1, . . . , yi�1 for i�1 � 2v+w.
We show how to find yi with probability 1�exp(�⌦(n)) from
poly(n) traces, which concludes the proof of Theorem 6.

Let T denote a trace of c. As in Section II-D2, we will
look for a matching of y[i� v�w, i� v) within T . However,
we shall discard matchings that occur too early in T . More
precisely, suppose that y[i � v � w, i � v) is matched with
T [u � w, u). We call such a matching good if u � w > |z|.
If T does not contain a good matching of y[i� v�w, i� v),
we discard it. Otherwise, if the first good matching occurs at
T [u�w, u), we let V = T [u, ·] and discard the remaining bits
of T . Our observations so far are summarized in the following
lemmas.

Lemma 37: For d small enough, the probability that a good
matching occurs in T is at least 2�(w+1).

Proof: First, observe that the probability that no bit in
y[i�v�w, i�v) is deleted is exactly (1�d)w � 2�w. Given
this, suppose that y[i � v � w, i � v) shows up in positions
T [P � w,P ), for some random variable P 2 [n]. Then, the
probability that the given matching is good equals Pr[P >

|z|+w], and |z|+w  Cw for a fixed constant C > 0, since
|z| = O(log n). Note that we may assume i�v�w � v = w/d

since we have already learned the first 2v + w bits of y. We
may also choose d < 1/10 small enough such that v > Cw.
Then, we have

Pr[P  |z|+ w]  Pr[Bin(2Cw, 1� d)  Cw] < 1/2,

where the last inequality follows from an application of the
Chernoff bound. Concluding, the trace T contains a good
matching with probability at least 1/2 · 2�w = 2�(w+1).

Lemma 38: The probability that the last bit of a good
matching in T does not come from y[i � v, i � v + 0.1w)
is at most nd�w/100  2�100w if d is small enough.

Proof: The probability that the event in question happens
is at most the probability that more than 0.1w bits are deleted
from some substring y[b, b+1.1w). To see this, first note that
the bits in a good matching must come from y. If at most 0.1w
bits are deleted from every substring y[b, b+ 1.1w), then the
w bits of the good matching in T for y[i� v�w, i� v) must
be a subsequence of y[b, b+ 1.1w) for some b, which means
y[i�v�w, i�v) appears as a subsequence of y[b, b+1.1w).
Since y is w-subsequence-unique, for this to happen we must
have b  i � v � w and b + 1.1w � i � v. Now suppose
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that the last bit of the good matching in T does not come
from y[i � v, i � v + 0.1w). Then, it must be the case that
y[i� v � w, i� v) is a subsequence of y[b, i� v � 1). Since
i� v� 1 < i� v, this violates the w-subsequence-uniqueness
propery of y.

For a fixed b, the probability that more than 0.1w bits are
deleted from y[b, b + 1.1w) is at most d

�w/100 for d small
enough. The result then follows by a union bound, since there
are fewer than n choices for b.

Let Egood denote the event that a good matching occurs
in T . From Lemma 37 and the fact that we can efficiently
check whether Egood occurred for T , it follows that we can
efficiently estimate

Pr[Vj = 1|Egood]

to within an error of, say, 2�100w from poly(n) traces,
with probability at least 1 � exp(�⌦(n)). Then, we proceed
similarly to Section II-D2. Let R be the random variable
denoting the coordinate in y of the last bit appearing in the
good matching within T . We may then write

Pr[Vj = 1|Egood]

=
nX

r=1

Pr[R = r|Egood] Pr[Vj = 1|R = r, Egood]

= ✏i(c) +
i�v+0.1wX

r=i�v

Pr[R = r|Egood] Pr[Vj = 1|R = r]

for 0  ✏i(c)  2�100w, by Lemma 38. The second equality
follows because, once R = r is fixed, V does not depend on
whether Egood occurs or not, but only depends on the traces
of z and y[1, r]. Therefore, as in (2) and (3) we have

yi = 0 =) Pr[Vj = 1|Egood] 

✏i(c) +
i�v+0.1wX

r=i�v

Pr[R = r|Egood]
i�1X

`=r+1

P (`� r, j)s`

+
1

2

i�v+0.1wX

r=i�v

Pr[R = r|Egood]P (i� r, j) (15)

and

yi = 1 =) Pr[Vj = 1|Egood] �

✏i(c) +
i�v+0.1wX

r=i�v

Pr[R = r|Egood]
i�1X

`=r+1

P (`� r, j)s`

+
i�v+0.1wX

r=i�v

Pr[R = r|Egood]P (i� r, j). (16)

Similarly to what was done in Section II-D2, since i� r  v

and v = w/d, the second part of Lemma 14 implies that
P (i � r, j) � 2�9w. Combining this result with Lemma 38
shows that the gap between the right hand sides of (15)
and (16) is at least 2�(9w+1). Each term Pr[R = r|Egood] can
be approximated to within an error of 2�90w with probability
at least 1�exp(�⌦(n)) in time poly(n). This is accomplished
by first using z and the values y1, . . . , yi�1 that we have
already recovered to estimate Pr[R = r|Egood, R < i] to

within a small enough error and with high probability. Then,
the fact that Pr[R < i|Egood] � 1 � 2�100w and Lemma 38
imply that

|Pr[R = r|Egood]� Pr[R = r|Egood, R < i]|  2 · 2�100w
,

which in turn implies a good enough approximation for
Pr[R = r|Egood].

Since we know y1, . . . , yi�1, the discussion above suggests
that we can approximate the right hand side of (15) and (16)
to within an error of

2�100w + n
2 · 2�90w  2�80w

with high probability. As already mentioned, we can estimate
Pr[Vj = 1|Egood] to within error 2�100w from poly(n) traces
in time poly(n) with probability at least 1 � exp(�⌦(n)).
Consequently, with probability 1 � exp(�⌦(n)) we can re-
cover yi correctly from poly(n) traces, where the degree of
this polynomial is independent of i. The success probability
can be made at least 1�exp(�Cn) for any fixed constant C of
our choice by repeating the process O(n) times and taking the
majority vote. Overall, we must recover fewer than n positions
of y, and each position requires poly(n) traces, where the
degree of this polynomial is independent of the position of
the bit. As a result, the total number of traces required is
poly(n) and the overall success probability is 1� 1/poly(n).
This proves Theorem 6.

B. Using the code within a marker-based construction
Next, we combine the constructions from Sections III-A

and IV-A with some additional modifications in order to prove
Theorem 7, which we restate here.

Theorem 39 (Theorem 7, restated): For small enough dele-
tion probability, there exists an efficiently encodable code C
with encoder Enc : {0, 1}n ! {0, 1}n+r and redundancy
r = O

⇣
n

logn

⌘
that can be efficiently reconstructed from

poly(log n) traces with probability 1� 1/poly(n).
The basic idea is that we would like to use the code designed

in Section IV-A as the instantiation of the inner code C0 in the
construction of C in Section III-A (see Figure 1). Then, we
could combine the high-level trace reconstruction procedure
illustrated in Figure 2 with the trace reconstruction algorithm
from Section IV-A1 on each sub-trace and mitigate the use
of worst-case trace reconstruction algorithms. This idea does
not work as is, but some modifications to the code from
Section IV-A will allow the construction to go through.

The first issue we have to address is for the inner code C0 to
satisfy Property 18. If this property holds, then the reasoning
of Section III-A (see also Figure 2) implies that we can focus
on the trace reconstruction problem for strings of the form

1`kck0`, (17)

where c 2 C0 has length O(log2 n) and ` = O(log n),
as long as we use a sub-polynomial number of traces in
n. From here onwards we focus solely on this setting. If
we were to directly apply the trace reconstruction algorithm
from Section IV-A1, we would run into a problem. For the
aforementioned algorithm to work, we need to bootstrap it by
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recovering the first few bits of c using the procedure described
in Lemma 15. However, in this case c only appears after
a run of length ` = O(log n). Even though we know the
previous bits, we still require poly(n) traces to recover the
first bit of c in this way, which is not acceptable as we want
to use poly(log n) traces. Consequently, we need an alternative
bootstrapping method. Another issue we need to resolve is that
the reconstruction algorithm from Section IV-A1 assumed that
all but the first few bits of c lead to a subsequence-unique
string. However, this is not the case here, as we must deal
with a string of the form ck0`.

Before we proceed to describe a modified version of our
code from Section IV-A that avoids the issues raised above,
we first prove the following lemma.

Lemma 40: Let g : {0, 1}t ! {0, 1}m be the function
guaranteed by Lemma 9 with k = 3w and ✏ = 2�10w for
w = 100 logm (hence t = O(logm)). For arbitrary ` and
x 2 {0, 1}m, define the random variable Y = [x+ g(Ut)]k0`.
Then, with probability at least 1� 1/poly(m) we have that Y
satisfies the following property.

Property 41: For any a and b such that a+w  min(m+
1, b), we have that Y [a, a+w) is not a subsequence of Y [b, b+
1.1w).

Proof: Fix a pair (a, b) satisfying a+w  min(m+1, b)
and let S ✓ [b, b+1.1w) be a set of size w. Let u = min(m+
1, b+ 1.1w). Then, we have

Pr[Y [a, a+w) = YS ] =
X

y

Pr
h
Y [a,a+w)=YS ,Y [b,u)=y,
Y [m+1,b+1.1w)=(0,...,0)

i
.

Observing that YS is completely determined by Y [b, u) and
Y [m+ 1, b+ 1.1w) and that Y [m+ 1, b+ 1.1w) is fixed, we
have

Pr[Y [a, a+ w) = YS ] =
X

y

Pr
h
Y [a,a+w)=y0,

Y [b,u)=y

i

for some y
0 determined by y. Since x+g(Ut) is ✏-almost 3w-

wise independent and fewer than 3w coordinates are fixed, we
have

Pr[Y [a, a+ w) = y
0
, Y [b, u) = y]  2�w�(u�b) + 23w✏.

Therefore, it follows that

Pr[Y [a, a+ w) = YS ]  2u�b(2�w�(u�b) + 23w✏)

 2�w + 24.1w✏

 2�w+1
.

Since there are fewer than m
3 choices for pairs (a, b) and�1.1w

w

�
choices for S , from the union bound we conclude

similarly to what we did in the proof of Lemma 36 that the
probability that the desired event does not occur is at most
m

3
�1.1w

w

�
2�w+1  m

�45.
Intuitively, Lemma 40 guarantees that x + g(Ut) satisfies a
stronger form of subsequence-uniqueness with high probabil-
ity. In fact, not only is x+ g(Ut) w-subsequence-unique with
high probability based on Lemma 36, but also it is impossible
to find a substring of x + g(Ut) that is a subsequence of
[x+ g(Ut)]k0` elsewhere.

We are now ready to describe our modified inner code C0

with encoder Enc0 : {0, 1}m ! {0, 1}m+r0 . On an input
message x 2 {0, 1}m, Enc0 operates as follows:

1) Set x0 = 0`
0kx for `

0 = 10` = O(
p
m). Let m0 = |x0|

and set w = 100 logm0;
2) Iterate over all z 2 {0, 1}t for t = O(logm0) =

O(logm) until a z such that x0+g(z) is w-subsequence-
unique and simultaneously satisfies Properties 25 and 41
is found. Such a string z is guaranteed to exist because
all such properties hold for x0 + g(Ut) with probability
1 � o(1) (see Lemmas 24, 36, and 40). Moreover,
whether x

0 + g(z) satisfies all three properties can be
checked in time poly(m);

3) Obtain z
0 from z by setting z

0 = Encedit(0kz), where
Encedit is the encoder of the systematic code Cedit from
Lemma 10 robust against |z|/2 edit errors and with
redundancy O(|z|) = O(logm). Here, d is assumed to
be a small enough constant so that 5d|z0| < |z|/2, i.e.,
Cedit can correct a 5d-fraction of edit errors in z

0. This
is possible because |z0| = O(|z|);

4) Define Enc0(x) = z
0kx0 + g(z) = z

0ky0.
For a given message x 2 {0, 1}m, we can compute Enc0(x)
in time poly(m). Furthermore, recalling that m = log2 n in
the construction of Section III-A, the redundancy of C0 is

r
0 = |z0|+ `

0 = O(logm+
p
m) = O(

p
m) = O(log n).

If we use C0 as the inner code in the construction of C from
Section III-A, then according to (4) we obtain an overall
redundancy r = O

⇣
n

logn

⌘
for C, as desired. It is also easy

to see that C0 satisfies Property 18. By the choice of z, we
have w(y0[a, a+w)) � 0.4w for every a and w = 100 logm0.
Therefore, for any substring s such that |s| =

p
m we have

w(s) � 0.4|s|� |z0| � 0.39|s|

provided that m is large enough, since |z0| = O(logm).
As a result, the reasoning used in Section III-A applies to
this choice of C0. To prove Theorem 7, it remains to give
a trace reconstruction algorithm to recover strings of the
form 1`kEnc0(x)k0` from poly(m) = poly(log n) traces with
probability, say, 1� n

�10.
To address the problem, suppose we already have such an

algorithm, and call it A. Recall (7) and the definition of the
event E

(i)
indFail from Section III-A. Instantiating E

(i)
indFail with

algorithm A leads to the bound Pr[E(i)
indFail]  n

�10
, for all

i. Combining this observation with (7) allows us to conclude
that the probability that we successfully recover c 2 C from
poly(log n) i.i.d. traces of c is at least 1 � 2/n. Similarly to
Section III-A, we can boost the success probability to 1 �
1/p(n) for any fixed polynomial of our choice by repeating
the process O(log n) times and by taking a majority vote.

1) The trace reconstruction algorithm: Next, we analyze
an algorithm for recovering strings of the form 1`kEnc0(x)k0`
from poly(m) = poly(log n) traces with probability 1 �
1/poly(n). As discussed before, we proceed by adapting the
algorithm from Section IV-A1, which in turn is a modified
version of the algorithm from [2] described in Section II-D2.



CHERAGHCHI, GABRYS, MILENKOVIC, RIBEIRO: CODED TRACE RECONSTRUCTION 17

The main difference between the current and the two
previously discussed settings is that the original bootstrapping
technique cannot be applied, as Enc0(x) is enclosed by two
long runs. We start by showing that the structure of Enc0 allows
for a simple alternative bootstrapping method.

Recall that c = Enc0(x) = z
0ky0, where y

0 = x
0 + g(z)

and the first O(
p
m) bits of x0 are zero. Therefore, if we can

recover z from a few traces of 1`kck0`, then we can recover
the first O(

p
m) bits of y

0, which suffices for bootstrapping,
by simply computing g(z). The following lemma states that
we can recover z with high probability from O(log n) traces.

Lemma 42: There is an algorithm that recovers z from
O(log n) traces of 1`kck0` with probability at least 1�n

�10.
Proof: We begin by recalling that z

0 = Encedit(0kz),
and that Cedit is systematic. This means z

0
1 = 0, and so

with probability 1 � d the first 0 appearing in the trace will
correspond to z

0
1.

Given a trace T of 1`kck0`, we proceed as follows: Let
u denote the position of the first 0 in T . Then, we take
z̃ = T [u, u + (1 � d)|z0|), feed z̃ into Decedit, and let the
corresponding output be our guess for z. The probability that
this procedure fails to yield z is at most the probability that z01
was deleted, plus the probability that z̃ is too far away in edit
distance from z

0 given that z
0
1 was not deleted. We proceed

to bound both probabilities. First, the probability that z
0
1 is

deleted is exactly d. Second, we assume z
0
1 is not deleted and

let L denote the length of the trace of z
0[2, ·] within T . We

have E[L] = (1 � d)(|z0| � 1). Therefore, Chernoff’s bound
gives

Pr[L � (1� 3d)(|z0|� 1)]  exp

✓
� 2d2

1� d
(|z0|� 1)

◆
.

Since d is a constant and |z0| = ⇥(logm), we conclude that
for m large enough we have

Pr[|L� (1� d)(|z0|� 1)| � 2d(|z0|� 1)] < 1/5.

As a result, with probability at least 4/5 we have that z̃ is
within edit distance 5d|z0| < |z|/2 from z

0. If this distance
condition holds, then Decedit(z̃) = z.

In summary, the procedure fails to return z with probability
at most d + 1/5 < 1/4 if d is small enough. Repeating this
procedure O(log n) times and taking the majority vote ensures
via the Chernoff bound that we can recover z from O(log n)
traces with success probability at least 1� 1/p(n), for p any
choice of a fixed polynomial.

Once z has been recovered, the bits of 1`kck0` =
1`kz0ky0k0` are known up to and including the first `

0 =
O(

p
m) bits of y0. Our last task is to recover the remaining bits

of y0, and given that we have sufficiently many initial bits from
y
0 we may to this end use the ideas from Section IV-A1. The

differences with respect to Section IV-A1 are the following:
• Instead of y, we use y

00 = y
0k0`;

• We are only interested in recovering y
00
i for `0 < i  |y0|,

since we already know all other bits of y00;
• We change the threshold used to declare that a matching

is good: In this case, if T is a trace of 1`kck0` and y
00[i�

v�w, i�v] is matched with T [u�w, u], then the matching
is said to be good if u � w > ` + |z0|. This change

ensures that the bits in a good matching always come
from y

00 = y
0k0`.

Two key lemmas now follow from the previous discussion.
Their statements and proofs are similar to the ones of Lem-
mas 37 and 38 from Section IV-A1, respectively, and we hence
only discuss relevant differences. Henceforth, we use T to
denote a trace of 1`kck0`.

Lemma 43: The probability that a good matching occurs in
T is at least 2�(w+1).

Lemma 44: For `
0
< i  |y0|, the probability that the last

bit of a good matching in T does not come from y
00[i� v, i�

v+0.1w] is at most nd�w/100  2�100w if d is small enough.
Proof: Similarly to the proof of Lemma 38, the probabil-

ity of the event in the statement of the lemma is upper bounded
by the probability that more than 0.1w bits are deleted from
some substring y

00[b, b + 1.1w). We explain next why this is
true. First, note that the bits in a good matching must come
from y

00. Suppose that at most 0.1w bits are deleted from every
substring y

00[b, b+1.1w). Then, y00[i�v�w, i�v) must be a
subsequence of y00[b, b+1.1w) for some 1  b  |y00|�1.1w.
We distinguish two cases:

• b+ 1.1w > |y0|:
Recalling that v = w/d, we have i � v  |y0| � w/d 
|y0|� 1.1w  min(|y0|+ 1, b), and so Property 41 holds
for y00[i� v � w, i� v). Therefore, y00[i� v � w, i� v)
cannot be a subsequence of y00[b, b+1.1w) for any b such
that b+ 1.1w > |y0|+ 1. Consequently, we only need to
consider values of b such that b+ 1.1w  |y0|;

• b+ 1.1w  |y0|:
Since y

0 is w-subsequence-unique, we must have b 
i� v�w and b+1.1w � i� v. This implies the desired
result as in the proof of Lemma 38;

The remainder of the proof follows along the lines of the proof
of Lemma 38.

Lemmas 43 and 44 imply that we can recover y00i with proba-
bility 1� 1/poly(n) via the same reasoning of Section IV-A1
with the small differences described above. The number of
traces required to recover y

00
i is polynomial in the length of

1`kck0`, which equals

2`+ |z0|+ |y0| = O(
p
m+ logm+m) = O(m).

Since m = log2 n, it follows that we can recover y00i with prob-
ability 1�1/poly(n) from poly(log n) traces. In particular, the
success probability can be assumed to be at least 1� 1/p(n)
for a fixed polynomial of our choice since we can repeat
the process O(log n) times and take the majority vote while
still requiring poly(log n) traces. Since Lemma 42 asserts that
O(log n) traces suffice to recover z with high probability,
and we need to recover m = log2 n bits of y

00, we overall
require poly(log n) traces to recover 1`kck0` with probability
1� 1/poly(n). This concludes the proof of Theorem 7.

V. OPEN PROBLEMS

The newly introduced topic of coded trace reconstruction
can be extended in many different directions, in which the
following problems are of interest:



18 IT-19-0229

• Coded trace reconstruction based on a more general
set of edit errors. Our constructions only work against
i.i.d. deletions. However, errors imposed by the nanopore
sequencing process in DNA-based storage also include
insertions and substitutions, and the errors may be symbol
and context-dependent;

• Narrowing the gap between upper and lower bounds
on the number of traces used in reconstruction. The
current gap between lower and upper bounds for trace
reconstruction is almost exponential in the string length,
and there is no study of lower bounds on coded trace
reconstruction as a function of the redundancy of the
code. We suspect that our current construction of efficient
codes are suboptimal;

• The main contributors to the redundancy in all but one of
our constructions are the markers placed between blocks.
It is of interest to find other constructions that either do
not use markers, or that use shorter markers that can still
be integrated into the trace reconstruction process;

• The parameters of our codes have hidden constants which
depend on some results we invoke (namely, Lemmas 9
and 10), and we have made no effort to optimize constants
in this work. It would be interesting to study coded trace
reconstruction in the non-asymptotic regime.

• As discussed in Section I, given the portable DNA-
based storage system presented in [14], it would be
interesting to design codes which simultaneously have
good clustering and trace reconstruction properties.

• As discussed in Remark 1, it would be interesting to
further investigate the tradeoff between code rate, the
number of traces required for coded trace reconstruction,
and the reconstruction error probability allowed.

APPENDIX A
TRADEOFF BETWEEN REDUNDANCY AND RELATIVE

HAMMING DISTANCE FOR EFFICIENTLY
ENCODABLE/DECODABLE BINARY CODES

We establish next the existence of efficiently encodable
and decodable codes Cout ✓ {0, 1}n with encoder Encout :
{0, 1}n0 ! {0, 1}n, relative Hamming distance at least
30/ log2 n0, and redundancy n � n0 = O

⇣
n0

log logn0

logn0

⌘
. We

make use of the Zyablov bound [51, Section 10.2], which
states that an efficiently encodable and decodable binary code
with rate R and relative Hamming distance � exists for R and
� satisfying

R � max
0<r<1�h(�+✏)

r

✓
1� �

h�1(1� r)� ✏

◆
,

where ✏ > 0 is arbitrary. This bound is achieved by concate-
nating a Reed-Solomon outer code with an inner linear code
lying on the Gilbert-Varshamov bound. The relevant generator
matrices can be constructed in time polynomial in the block
length of the concatenated code, and one can efficiently correct
substitution errors up to half of its designed distance via
generalized minimum distance decoding [51, Section 11.3].

We set � = 30/ log2 n0 and ✏ = 1/ log2 n0. Then,

h(� + ✏) = h
�
31/ log2 n0

�
 62 · log log n0

log2 n0

for n0 large enough. The inequality follows from the fact that
h(p)  �2p log p for p small enough. We set r = 1� log logn0

logn0

and observe that r < 1 � h(� + ✏) for n0 large enough.
Moreover, we have

h
�1(1� r) = h

�1

✓
log log n0

log n0

◆
� 1

2 log n0
.

As a result,

1� �

h�1(1� r)� ✏
� 1� �

1/2 log n0 � 1/ log2 n0

= 1� 10/ log2 n0

1/2 log n0 � 1/ log2 n0

� 1� 40

log n0
. (18)

Combining (18) with the previously described choice for r, it
follows that

R � r

✓
1� 40

log n0

◆
> 1� 2 log log n0

log n0
,

and hence the corresponding redundancy is O

⇣
n0

log logn0

logn0

⌘
,

as desired.
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