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Abstract

This paper presents a windowed Green function (WGF) method for the numerical solution of problems of elastic scattering
by “locally-rough surfaces” (i.e., local perturbations of a half space), under either Dirichlet or Neumann boundary conditions,
and in both two and three spatial dimensions. The proposed WGF method relies on an integral-equation formulation based on
the free-space Green function, together with smooth operator windowing (based on a “slow-rise” windowing function) and
efficient high-order singular-integration methods. The approach avoids the evaluation of the expensive layer Green function for
elastic problems on a half-space, and it yields uniformly fast convergence for all incident angles. Numerical experiments for
both two and three dimensional problems are presented, demonstrating the accuracy and super-algebraically fast convergence
of the proposed method as the window-size grows.
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

In view of their great importance in diverse areas of applications, the problems of scattering by unbounded rough-
surfaces, including scattering of acoustic, electromagnetic, and elastic waves, have attracted the interest of physicists,
engineers, and mathematicians for many years [1]. Specifically, simulations concerning elastic half-space problems
(in which material interfaces are everywhere planar, except for bounded regions which may contain arbitrarily
complex structures) play essential roles in the investigation of earthquakes, non-destructive testing of materials, and
energy production from natural gas and geothermal sources [2—4]. This paper introduces an efficient high-order
integral solver for problems of this type. More precisely, this paper presents an efficient and accurate methodology,
based on surface integral equations over the material interfaces, for the problem of elastic wave scattering over
a half-space [5—11]. In particular, the method is applicable to configurations in which the scattering boundary is
a combination of an unbounded flat surface and local (bounded) non-planar surface perturbations and/or bounded
elastic scatterers. Unlike the volumetric discretization methods for these problems, the boundary integral equation
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(BIE) approach [12,13] only requires discretization of regions of lower dimensionality, and it automatically enforces
the radiation condition at infinity. In conjunction with adequate acceleration techniques (see e.g. [14—16]) for the
associated matrix—vector products and Krylov-subspace linear algebra solver such as GMRES, the BIE method can
provide fast, high-order solvers even for problems of high frequency.

Two main integral equation approaches have been used for scattering problems on a half-space. One is based on
the layer Green function (LGF) [5,17-19]—which automatically enforces the relevant boundary conditions on the
unbounded flat surfaces and thus reduces the scattering problems to integral equations on the defects. It should be
pointed out that the Dirichlet and Neumann cases, for which the layer Green function is trivially calculated in the
acoustic case, require Fourier-transform based layer Green function in the elastic case. A second approach relies
on integral equations imposed on the complete unbounded surface [20-23]. The potential benefits of the second
approach arise from its use of the free-space Green-function kernel, whose evaluation cost is much lower, by orders
of magnitude, than the LGF evaluation cost—since evaluation of a single value of the LGF requires computation
of challenging Fourier integrals containing highly-oscillatory integrands over infinite integration intervals; see e.g.
[5, Eq. (2.27)] and [17, Eq. (26)].

The integral equations based on the free-space Green function, on the other hand, are posed on the complete
unbounded interface, and they therefore require, for computational purposes, use of a domain-truncation strategy of
some sort—which raises questions with regard to selection of suitable truncation radii and the potentially large
number of required unknowns [24,25]. For the elastic scattering problems in a half-space, a direct-truncation
approach is discussed in [15,25,26] (in which, significantly, only normal-incidence problems are considered). The
examples considered in these papers suggest that a truncation radius equal to three to five times the radius of the
surface irregularity yields acceptable accuracy for normal-incidence problems. However, as illustrated in Section 3.1
for a related approach, this truncation strategy requires, for a given accuracy, use of larger and larger truncated
domains as the incidence angles depart from normal, with required inclusion of planar sections that grow beyond
all finite bounds as the incidence angle approaches grazing.

The present paper proposes a novel truncation approach, called the windowed Green function (WGF) method,
for the problem of elastic scattering on a half-space. The WGF method has previously been found effective in
the contexts of acoustic and electromagnetic scattering by periodic structures [27-29], multiply-layered media
[20,23,30], waveguide structures [31] and long-range volumetric propagation [32]. On the basis of certain “slow-
rise” windowing functions w,, the WGF method we propose here truncates the original integral equations over
unbounded surfaces to integration domains that include the surface defects and appropriate portions of the flat
interfaces. As for the direct-truncation method, however, straightforward windowing of the scattering integral
operators requires use of windowed regions that grow without bound, to meet a fixed error tolerance, as the
incidence angle approaches grazing (see Section 3.1). To overcome this difficulty, the proposed method introduces
a correction that smoothly merges the unknown density values in the original integral equations with values of the
corresponding solutions of scattering by a perfectly flat surface. This modification allows the WGF method to yield
super-algebraically accurate approximations of the exact infinite-domain solutions throughout the region wherein
the window function equals one. As demonstrated via a variety of numerical examples in Sections 3.2 and 5 , the
corrected WGF method provides uniformly fast convergence, over all incident angles, as the support of windowing
function grows.

It is relevant to recall that the classical integral operators of elasticity theory, which are presented in Section 2.2,
are strongly singular operators defined in terms of Cauchy principal-value integrals. But the strong singularity of
these operators stems from differentiation of certain weakly singular kernels and thus, as shown in [33,34] using
an integration-by-parts argument, the operators can be re-expressed as compositions of weakly-singular integral
operators (with kernels expressed in terms of the free-space elastic Green function E and its normal derivatives, at
least for smooth boundaries), as well as certain tangential “Giinter derivatives” weakly-singular free-space elastic
Green function (which result in strongly-singular kernels). In detail, focusing on problems of scattering by bounded
obstacles, those references utilize an integration-by-parts procedure to recast the action of a strongly-singular
operator on a given density in terms of the action of an associated weakly-singular operator applied to certain
derivatives of the density. In the present context, the strongly singular operators (Egs. (4.1) and (4.2)) are posed on
a surface with boundary (the boundary of the computational integration domain), but, as indicated in Section 4.1,
no boundary contributions result in the integration-by-parts process in this case either, since the window function
we use, which is part of the operator integrand, vanishes at the boundary of the integration domain.
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Fig. 1. Problem of scattering by a locally perturbed elastic half-space 2 C R? (d =2 or d = 3).

The overall proposed procedure thus reduces the operator evaluation problem to evaluation of weakly singular
operators and tangential differentiation of surface densities. The weakly-singular integration problem is tackled
in this paper by means of the Chebyshev-based rectangular-polar discretization methodology introduced recently
[35,36]—which can be readily applied in conjunction with geometry descriptions given by a set of non-overlapping
logically-quadrilateral patches, and which, therefore, makes the algorithm particularly well suited for treatment
of complex geometries. The needed tangential differentiations, in turn, can easily be produced by means of
differentiation of corresponding truncated Chebyshev expansions, with evaluation either via FFT or, for sufficiently
small expansions, via direct summation.

This paper is organized as follows. Section 2 describes the half-space elastic scattering problems under
consideration, and it presents corresponding BIEs based on the free-space Green function. Section 3 then presents
the proposed 3D WGF methodology, including a description of the windowed integral operators and a preliminary
windowed integral formulation (Section 3.1), as well as a “corrected” windowed integral formulation which is
uniformly accurate for all incident angles, up to grazing (Section 3.2). Section 4 introduces the proposed high
order operator discretization methods we use in our 2D implementation; the 3D operator discretization methods
we use are described in [35,36]. A variety of numerical examples in 2D and 3D, finally, are presented in
Section 5—demonstrating the accuracy and efficiency of the overall proposed approach.

2. Preliminaries

2.1. Elastic scattering problems

Let 2 € R?,d = 2,3 denote an unbounded connected open set as illustrated in Fig. 1 which, in particular,
satisfies

Uf#C;QCUfﬁ, Ufi :={x=(x1,...,xd)€Rd:xd>fi}
for certain constants f~ < f,. Let I' := 9{2 denote the unbounded rough surface which, in addition to the
unbounded flat surface, encompasses either a local defect on the flat surface IT = {x € RY : x;, = 0} or a

bounded obstacle in Uy, or a combination thereof. Assume that the unbounded domain {2 is occupied by a linear
isotropic and homogeneous elastic medium characterized by the Lamé constants A, u (u > 0, dA + 2u > 0) and
the mass density p > 0. Denote by w the frequency and by

ks =/, kp,=awyp/(h+21)

the shear and compressional wave numbers, respectively. For definiteness, throughout this paper consider cases in
which the incident field u'"¢ equals a plane pressure wave, but other types of boundary conditions, including plane
share waves, can be treated similarly. A plane pressure wave is given by the expression

. P . ginc
e — dmcelkpxd , (21)
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where
: sin "¢ i sin 617
d"e = ( m) in 2D and d'"* = 0 in 3D
—cosd inc
—cosd

represents the incident versor direction and 6% denotes the incident angle satisfying |#7"¢| < 7 /2. Suppressing the
time-harmonic dependence e™'*’, the scattered displacement field > can be modeled by time-harmonic Navier
equation

A 4 p?u®™ =0 in £, (2.2)
with either Dirichlet boundary conditions
uscal — _uinc on I

or Neumann boundary conditions
T@, Vu* = —T(@,v)u" on I.

and with an upward propagating radiation condition at infinity (UPRC) [9,22,37]. Here A* and T'(d, v) denote the
Lamé operator

A* = pdivgrad + (A + p) grad div,
and the traction operator

T@@,vVu :=2udu+rvdivu + pv x curlu, (2.3)
respectively, where v and 9, := v - V denote the outward unit normal to I" and the normal derivative, respectively.
Remark 2.1. In the case I' = II, for which no local defect or obstacles exist, the exact solution in 2D (with a

similar result in 3D) under an incident plane wave (2.1) is given by

: inc . .
uscal —A sin 6 o eik],(xl sin '€ +x5 cos H'11€) + Av - FOS 9& eik,,(xl sin O5+x7 cos bs)
f P | cos @in¢ sin 6

where k; sinf; = k, sin 0in¢,16,| < /2. The boundary conditions on IT tell us that the factors A » and A can be
obtained from the linear systems

sin@"  —cos8,|[A,]  [—sin6
cos 0" siné, A, | T | cos@i"c |’

[ —2ipk, sin 0" cos 07" 2ipk, cos? O — iuks] |:Ap:| _ |:—2i,uk,, sin 8¢ cos 9””1|

and

—2ipk, cos® 0" — ixk, —2iuk,sinf;cosb; || Ay 2ipk, cos? 07" + ik,

for the Dirichlet and Neumann problems, respectively.
2.2. Boundary integral equation based on the free-space Green function

As is known [22], the scattered field u** admits the representation
u(x) = S[Tu*)(x) — Du**)(x), x € 12, (2.4)

where, letting
LHY (klx =y, d =2,
Gk(-xv )’) = Jiklr—y )
T d=3
and
1 1 .
E(x,y) = ;Gks(x, I+ mVxVx [Gr, (x, y) = Gi, (x, y)]
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denote the free-space Green functions for the Helmholtz equation (with wavenumber k) and the Navier equation
(with wave numbers k; and k), respectively, S and D denote the single- and double-layer potentials

S[p10r) = / E(x. v)o()ds,, x € 0, 2.5)
I

Dlpl(x) = /(T(ay» vE@, ) ¢(y)dsy, x € L. (2.6)
r
For |0'"¢| < /2 the incident field u'* satisfies
0 = S[Tu"](x) — D™ (x), x € . @.7)

Taking the limit as x — I using well-known jump relations [12], and applying the boundary conditions, we obtain
the BIE

1 )
— 30+ K@l=—Tu" on I ¢=Tu" (2.8)
for the Dirichlet problem, and the BIE
1 inc tot
51/f+K[1//]=u”“ on I', ¢ =u"", (2.9)
for the Neumann problem, where u'*" := u** + /" denotes the total field, and where
K[pl(x) = /(T(ay» vy)E(x, )’))Tfi’(y)dsy, xel, (2.10)
r
KWI) = [ 7@ mEEW0Ms, xel. @11
r

denote the double-layer and transpose double-layer integral operators (which are only defined in the sense of Cauchy
principle value).

2.3. Boundary integral equation based on the layer Green function

In addition to the “free-space Green function” BIEs presented in the previous section we also mention, for
reference, the corresponding “bounded-surface” BIEs based on the layer Green function. The LGF E(-, y) satisfies
AEC, ) + po’EC.y) = =8,() in U,

as well as homogeneous Dirichlet or Neumann boundary condition on the flat surface /I and the UPRC at infinity.
As is known [5,17-19], E can be expressed explicitly in terms of Fourier integrals.

Integral equations posed on bounded surfaces can be obtained, on the basis of the LGF, for the problem of
scattering by the unbounded surface I'. Indeed, letting u® := u>* — uj?a‘, it follows that u* = 0 and Tu®* = 0 on
I'N T for Dirichlet and Neumann problems, respectively. In view of the homogeneous boundary condition satisfied
by the LGF on I, it follows from Green’s formula that the solution u*® can be expressed in the form

W (x) = S[Tu'l(x) — Dlu’l(x), xe€ 2, (2.12)

where the single-layer potential S and double-layer potential D are given by
Siglex) = / E(x, y)g(y)dsy, x e,
I\1
Dlglx) = /P \H<T<ay,vy)E(x,y»%(y)dsy, x e
Letting x approach to the inhomogeneity I'\ /I, the BIEs on I'\I]
S[Tu’] = —%u + K],

1 ~ ~
ETMS + K'[Tu’] = N[u’],
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result, where, for x € I'\Il we have set

S[610r) = / Ete, voOds,,  Rlglx) = / (T @y, ) ECx, y)Td()ds,
i1 \I1

Nig10r) = / T, v )T @y, v)Ex, ) d(dsy,  KIIIx) = / (0, v E(x, Y)Y (5)ds,
IRV \I1

It is important to note that the boundary integrals operators arising from use of the LGF are posed on the bounded
surface '\l (the local defect), and, in particular, their numerical implementation does not require truncation of
an infinite physical domain. However, the evaluation of the elastic layer Green function is much more expensive
than the evaluation of the elastic free space Green function [18,25]—which motivated our search for accurate and
efficient truncation strategies.

3. Windowed Green function method (WGF)

This section proposes the WGF method for truncation of the integral equations (2.8) and (2.9). The WGF
method ensures superalgebraically fast convergence as the window size is increased, and uniform accuracy at fixed
computational cost for arbitrary angles of incidence.

3.1. Slow-rise windowing function and preliminary considerations

In order to achieve effective domain truncation, a smooth “slow-rise” windowing function

wa(?) = n(t/A; ¢, 1),

where
1, ] < fo,
n(t; o, 1) = e%, o <t <t,u= 'f.'ffg’
0, lt] = 1.

was introduced in [20,23] in the context of acoustic layered-media scattering. The function vanishes outside an
interval of length 2A, it equals one in a region around the origin which grows linearly with A, and it has a slow
rise: all of its derivatives tends to zero uniformly as A — oo. The width 2A > 0 of the support of the windowed
function w, should be selected so as to ensure that 1 — w4(x;) vanishes on the local defect I'\ I, and should be
additionally be large enough to meet a given error tolerance.

Utilizing the windowing function

wa(x1), in 2D,

a0 = waxDwa(xz), in 3D,

we obtain the preliminary windowed version
1 - :
- §¢* + K'[Wa¢™] = —Tu'" on Iy (3.1)

of Eq. (2.8), where I'y denotes the part of the surface I" that w4(x) # 0. Unfortunately, however, this formulation
is not uniformly accurate with respect to the angle of incidence.

To demonstrate the difficulty we consider the Dirichlet problem of scattering of an incident wave u"® by a
semi-circular bump of radius r = 1 in 2D with 4 = 1, p = 1 and w = 20. The integral equation (3.1) was
discretized on the basis of the high-order discretization approach introduced in Section 4 with refinement exponent
p = 4 (Section 4.2). Fig. 2 displays the relative errors obtained in the total field

U (x) = u(x) + S[Wad*1(x),

on the line segment {x € R?: —1 < x; < 1,x, = 2} for two values of A and under various incidence angles.
The errors displayed in Fig. 2 were evaluated by comparison with a highly-resolved numerical solution for a large
value of A. The results show that the direct windowing approach embodied in (3.1) requires, for a given accuracy,

6
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024 :
—6—1=2,"°=0

—— 2=2,0"=r/4
—*— \=2,0"°=637/128
—8— )\=-0.99,6"°=0
10t -

—*— \=-0.99,0"°=r7/4
—*— 1=-0.99,0"°=637/128

Relative error

10—3 L

1 2 4 8 16 32
(A1),

Fig. 2. Relative errors €5, (Eq. (5.1)) in the total field resulting from the preliminary WGF method for the Dirichlet problem of scattering by
a semi-circular bump. Clearly, the preliminary WGF approach is not uniformly accurate as grazing incidence is approached. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

increasingly large truncated domains as grazing incidence is approached. Indeed, we see that at normal incidence
(blue curves) convergence to several digits is achieved by using windows for which the length (A — 1) of each of the
two included flat windowed regions around the bump is of the order of 8\, to 321,—a computational requirement
which, as shown in Section 3.2, can be greatly reduced. For 7" = 7 /4 (green curves) significantly worse accuracies
are obtained for each value of 97", As " approaches m/2 (red curves) the accuracy deteriorates much further.

As noted in [20], this difficulty can be explained by consideration of certain arguments concerning bouncing
geometrical optics rays and the method of stationary phase. As shown in the following section, the convergence
as A grows can be significantly improved for all incidence angles. And, in fact, fast uniform convergence for all
incident angles, however close to grazing, can be achieved.

3.2. Uniformly accurate “corrected” formulation for all incidence angles

Utilizing the windowing function w4, Eq. (2.8) may be re-expressed in the form
1 ~ - , ~
— §¢ + K'[Wap]l = —Tu"" — K'[(1 —wa)p] on I. (3.2)

An argument based on integration-by-parts and stationary-phase presented in [20] shows that for any positive integer
m there exists a constant C,, independent of A, such that both the right-hand side term K'[(1 — w,)¢] and the
windowing approximation error |¢ — ¢*| (which results as that right-hand side term is neglected, as in (3.1)) are
smaller than C,,A™™ as A — oo, uniformly throughout the center region {w4 = 1} of the surface I'y. However
these errors are not uniform with respect to the incidence angle: larger and larger window sizes A are required to
correctly account for all fields reflected and refracted by the planar surface as the incidence angles are closer and
closer to grazing (i.e., as #""° approaches £ /2).

As proposed in [20,23] for acoustic layer scattering problems, here we substitute the previously neglected right-
hand side term in (3.2) by the expression that results as the density ¢ is corrected, that is, it is replaced by the
corresponding “flat-layer” density ¢;; = (Tu’;’ N = (Tusfcat)l 17 + (Tu'™)| 7 that is obtained for the problems of
scattering by the flat surface /7. We thus obtain the equation

1 )
- Eqbw + K’[@Adﬂ“] = —Tu'" — K/[(l — wA)(Tut;t)h]] on FA. (33)

for the new approximate solution ¢". A superalgebraically small portion of the field reflected by the windowed
region reflects back into the windowed region upon reflection from the plane outside the windowed region. As a
result, the substitution results in superalgebraically small errors |¢ — ¢™| throughout the region {w, = 1}.

7
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In order to evaluate the right-hand term K'[(1 —w A)(Tu"” )| 7], which is given by an integral over an unbounded
domain, we note that (1 — w A)(Tu’”’ )|z vanishes at all pomts at which I'4 deviates from the flat surface II. It
follows that

K'I[(1 = @A) Tu'fO ] = Kpp[(1 — Wa)(Tu'{)|g] on I,

where, letting now v, denote the normal to /I, the operator K; is defined by

Ky [¢l(x) = / T (0x, v E(x, y)p(y)dsy. (3.4)

But clearly, K/ [wA(Tu“”)| 7] can be evaluated by means of numerical integration over the bounded region
= {x € H u)A(x) # 0}, and, using Green’s theorem [22], a closed form expression for K/ [(Tu’”’)|n]
results,

uine 41 Tu"” on I'NII,
K [(Tu'{Oln] = Tu%““ on (IM\IH)NRL,
—Tu'" on (I\II)NRY,

—and, therefore, the integral in (3.4) can be easily be produced as a difference between these two quantities.
For the evaluation of the near-field, we follow [20] and substitute ¢ in the representation

() = /F E(x, )é()ds,

by wae” + (1 — wA)(Tu’;”m) which yields

w5 (x) :f E(x,y)wA(y)qﬁ")(y)dsy—/ E(x, yywa()Tu'f" (y)ds,
I'a i

. d
4 {uif"“ in 2NRY, (35)

—u" in 2NRY.
The character of the overall approach is demonstrated in Fig. 3, which presents the relative errors in the total
field u’”" on the line segment {x € R?: —1 < x; < 1,x, = 2} (which were evaluated by comparison with

a WGF solution with (A — 1)/A; = 32). In this work, the window size A is always chosen proportionally to
the shear wavelength A, by noting that 27 /w/p/p = Ay < A, = 2w/w/(A+2u)/p. Comparison with the
results of the preliminary WGF method demonstrated in Fig. 2 demonstrates the improvements provided by the
present uniformly-accurate algorithm: much faster convergence which, as desired, is uniform for all incident angles;
additional numerical illustrations of the character of the algorithm are presented in Section 5.

Remark 3.1. A version of the windowed formulation of the integral equation (2.9) suitable for treatment of the
Neumann problem can similarly be obtained. The resulting integral equation reads

1 - inc ~

Ellfw + K[Way"]1=u" + Kpl(@a — D@zl on Iy, (3.6)
where the operator K7 is defined by

Kilylx) = fH(T(ay, V)E(x, y) ¥ (y)dsy.

The term K j7[w4(u'")| 7] can be evaluated by means of numerical integration over the bounded region 114 and the
expression K H[(u )| 7] can be computed in closed form:

uine — 1 tjﬁ” on I'NIl,
KH[(MMZ)ll'[] = fui" u’;” on (I'\II)NRY,
uine on (I\II)NR?.

Furthermore, substituting ¥ = way"” + (1 —w A)u’;”| 17 in the scattered field representation

W () = _/ (T @y, v )E(x, ) Wav(y)ds,
r
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107 | :

P —6—)=2,0"°=0
102§ —— )\=2,0"=r/4

k —*— \=2,0""°=637/128
(163 ]

Relative error

—8— 1\=-0.99,0"°=0
1078 H —— 1=-0.99,6"=7/4
—*— \=-0.99,0"°=637/128

L
L e

1 2 4 8 16
(A-1)IA

Fig. 3. Relative errors €4, in the total field resulting from the uniformly-accurate corrected WGF method for the Dirichlet problem of
scattering by a semi-circular bump.

for the Neumann problem yields
w(x) = —/(T(3y,vy)E(x,y))T@Alﬁw(y)dsy +/ (T 3y, v)E(x, y) T Dau'f" (y)ds,
r n

WA in 2 NR4
+177 + 3.7
{—u”"' in NNRY, 3.7)

for the evaluation of near-field.

Remark 3.2. The expressions (3.5) and (3.7) generally do not provide accurate approximations of either far-fields
or near fields outside bounded subsets of [—cA, cA] x R¢~!. This difficulty can be tackled [20] via an application
of the Green theorem on a curve § contained in [—cA, cA] x {x; > 0} and surrounding the defect, together with the
layer Green function-based method discussed in Section 2.3—which, for such near- and far-field cases, for which
the source and observation points are at a large or even infinite distances from each other, the layer Green function
can be obtained rapidly.

4. Numerical implementation

The iterative solvers for solution of the discrete versions of (3.3) and (3.6) rely on the numerical evaluation
of integral operators and the iterative linear algebra solver GMRES. This section presents the 2D algorithms for
the numerical evaluation, for a given density v, of the quantities K[Way/], K'[Wayr], K[Way] and K [Way]
associated with the WGF method for the solution of the Dirichlet and Neumann problems. For the numerical
implementation in 3D, in turn, we utilize the methods presented in [35,36].

4.1. Reformulation in terms of composite differential/weakly-singular operators

As discussed in Section 1, the methods [34] can be used to express the quantities

K[waylx) = [ (T@y, vy)E(x, ) DAY (y)dsy, x € s, 4.1)
I's

K[a91(x) = / Ty, v)EGe, )T ()dsy.  x € Ta, 4.2)
I'a

in the forms

K[Way](x) = K [Wa¥](x) + Ko [To(@a )] (x), (4.3)
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K'@a9100) = K{[@a9100) + ToK5 [Ba9] (), (4.4)
where the operators K, K», K, K, are given by
a 3 3
mwmwi/Hmemww1me=J%§2qummw—mﬂym;
I's y
K2[¢](X) = Hz(x, y)(b(y)dsy, Hz(x, y) = [ZME(X, y) - ka(xv y)I] (? _01> ’
I'g
a 3 9
Ki[¢lx) = | Hi(x, »)o(y)ds,, mmw=—%§lb—wWhmmw—mumn
I's X
@WM0=L1MQJM@M%,fMLw=(?_3>mﬂU»0—muJﬂL
and where
To=vt-V

denotes the tangential derivative. The quantities K7[W4v] and K ;[W4y] can be re-expressed in a similar manner.
In view of these reformulations, the integral operators introduced in Section 3.2 can be evaluated numerically as a
sum of compositions involving the numerical differentiation operator Tj as well as integral operators of the form

H[W](X)ZAH(x,y)w(y)dsy, To=1Tx or Iy, (4.5)
0

in which the kernel H(x, y) is only weakly singular. The remainder of this section presents the algorithms we
propose for numerical evaluation of operators of these two types, including a two dimensional version of the
rectangular-polar Chebyshev-based quadrature method [35] for weakly singular operators of the form (4.5) and
Chebyshev-based differentiation algorithms.

4.2. Surface decomposition and discretization

The proposed algorithm evaluates weakly singular integrals of the form (4.5) by first partitioning I into a finite
number M of parametrized patches I,, g =1,..., M:

M
Iy = UF . T, =% [-1,1] — R?).
q=1

(It is assumed that each corner point x € I, if any such point exists, is located at parametrization endpoints # = 1
or —1 of the patches I, that contain x.) Clearly, then, the integral (4.5) can be expressed as a sum of integrals over
each of the patches:

M
Hm=2mm,mm=ﬁwamm.
g=1 4

Using the parametrization x = x4(¢) for the patch I, we obtain

1
H,(x) = / H(x, )d(t)J9(t)dt, (4.6)
-1

where ﬁ(x, t) = H(x, x4(1)), a(t) = ¢(x9(¢t) and J9(¢t) = |dx9(t)/dt]) # O denotes the surface Jacobian.

To treat the singular character of integral-equation densities at corners in a general and robust manner, we
introduce a change of variables [35] on the parametrization variables ¢, a number of whose derivatives vanish
at the corners. In detail, defining the function

[vp(D)]”

wp(l') =2 [U,,(T)]p n [Up(27T — ‘L’)]p s
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where

. 1 1 T—T1 3 1 /t—7 1
“f'“)—(;‘z)( z )*5( z )*z’

(whose derivatives vanish up to order p — 1 at the endpoints 7 = 0 and v = 2m), we define the smoothing
change-of-variables ¢ = n/ (t) for the patch I'; according to the expressions

T, No corner at either I'; endpoint,
f = i) = -1+ %wp(n(t + 1)), Corners at both I, endpoints, . @7
1+ zw,(@(r + 1)/2), Corner at the t = —1I; endpoint only,
-3+ %w,,(n + m(tr + 1)/2), Corner at the t = 117, endpoint only.
Incorporating the change of variables (4.7), we obtain
n ( )
Hy(x) = / Hex, nf (o) () onf () =7 —d. 48)

Considering the distance
dist = min {|x —x?w)|t,
ery = min{lx =2t}

99 ¢

between the point x and the patch I';, a number of “singular”, “near-singular” and “regular” integration problems
arise as described in Section 4.3. For accuracy and efficiency our algorithm evaluates these integrals are produced
by means of Fejér’s first quadrature rule, which effectively exploits the discrete orthogonality property satisfied
by the Chebyshev polynomials in the Chebyshev meshes. Denoting by u; € [-1,1] (j =0,..., N — 1) the N
Chebyshev points

2j+1
p = , j=0,...,N—1,
uj cos< N n) J

we utilize discretization points in each patch I, according to x| = x9(n{(u;)), i =0,..., N — 1. Then, a given
density ¢ with values ¢ = @(x]) is approximated by means of the Chebyshev expansion

N-1

)~ Y glaw), xel,
i=0
where the quantities

= I, n=0
ai(u) = ZanT(wT(u) an={27 " 20

satisfy the dlscrete-orthogonahty relations

1 =1
ai(un)=:’ n=n

0, otherwise.
4.3. Non-adjacent and adjacent integration
Let x be one of the discretization points on I'4. In the “non-adjacent” integration case, in which the point x is

far from the integration patch (i.e., dist, r, > © for some tolerance t > 0), the integrand H,(x) is smooth, and the
integral over I, can be accurately evaluated by means of Fejér’s first quadrature rule

N-1
dnf (1)
M)~ Y w, Hx, nf )l 9 Grf n>>< | ) : (4.9)
n=0 =tn
where w;, j =0,..., N — 1 are the quadrature weights

) N/2]
w_,-zﬁ<l—22mcos(luj)), ]ZO,,N—l
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In the “adjacent” integration case, in which the point x either lies within the integration patch or is “close” to
it (i.e., disty, r, < 7), the problem of evaluation of H,(x) presents a challenge in view of the singularity or nearly-
singularity of its kernel. To tackle this difficulty we apply a change of variables whose derivatives vanish at the
singularity or, for nearly singular problems, at the point in the integration patch that is closest to the singularity—in
either case, the coordinates u? € [—1, 1] of the point around which refinements are performed are given by

! = argmin {|x — x4(n{ ()|} .
ue[—1,1]
The quantities %9 can be found by means of an appropriate minimization algorithm such as the golden section
search algorithm. Making use of the mapping w, defined in Section 4.2 we construct the change of variables

@t sgnj(Tz)fa

&) = o = Lo, (7 151), a=1,

2
l—a l1+1] _
a+7wp(nT), oa=-—1,

where sgn(x) equals 1, —1 or 0 according to whether x > 0, x < 0 or x = 0, respectively. Applying the Chebyshev
expansion of the density ¢, the above change of variables and the Fejér’s first quadrature rule, we obtain

wy(rlt]),  a #=*l,

N-1  NB-1 ~ dnf ()
Hy )~ Y 08 D x5 T (58)eha @ m>< . )) (4.10)

dt
n=0 m=0

where

m =1 (Euq (um))

and where the quadrature nodes and weights are given by

2j+1
- P B _
“J_COS<2N5 n), j=0,...,N 1,

and
2 LNA /2]
W=7 |1 zl; st ], j=0,. N1,

respectively. Using sufficiently large numbers N# of discretization points to accurately resolve the challenging
integrands, all singular and nearly singular problems can be treated with high accuracy under discretizations that
are not excessively fine.

4.4. Evaluation of tangential derivatives

Finally, we describe the implementation we use for the evaluation of the tangential derivative operator 7. On
each patch I, applying the surface parametrization for a given density ¢ we have
p(x) = ¢(x?(nf (1)) = p(x?(n{ (cos 6))), 6 € [0, x].
It follows the tangential derivative of ¢ on I}, is given by
1 de(x9(nj (cos 0)))
q
Ja(nl(cos 6)) sin 6 ("”f © ) do
T=cos 6

dt
(Note that the tangential derivative operator is evaluated at the Chebyshev points 6; = 7w ==~ 21 t ,j=0,1, -1,

at which J9(n{ (cos @ ;1)) sinf; <d”’ 2 ) # 0.) Given the values of density ¢(x9(n/(cos 6))) at the Chebyshev

(Top)(x) = —

dt

T=cos0;
points 6; = m =5~ 2’ +1 ,j=0,1,..., N — 1, the necessary derivative with respect to 6 can be evaluated by extending
the densuy as an even fU.IlCthIl in [—m, w] and using FFT.

12
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(a) einc =0 (b) einc — % (C) einc — ?377;

Fig. 4. Absolute values of the total field resulting from the WGF method for the Dirichlet problem of scattering of a plane pressure wave
by a semi-circular bump where w =20, L =2, A =1+ 16A;.

5 5 4
4 4

3 3 2

2 2

1 1 0

0 0

" 0 2 S 0 2 2 0 2

(a) disc within half-space (b) kite within half-space (¢) local boundary perturbation

Fig. 5. Various 2D half-space considered in this paper.

5. Numerical results

The two-dimensional numerical results presented in Section 3, and, particularly, Figs. 3 and 4, demonstrate the
advantages inherent in the uniformly-accurate fixed-windowed integral formulation (3.3), namely, fast convergence
uniformly over all incidence angles. The present section, in turn, presents a variety of additional numerical examples
in both 2D and 3D, which demonstrate the efficiency and accuracy of the proposed WGF method. Solutions for the
integral equations were produced by means of the fully complex version of the iterative solver GMRES. All of the
numerical tests were obtained by means of Fortran numerical implementations, parallelized using OpenMP, on a
single node (twenty-four computing cores) of a dual socket Dell R420 with two Intel Xenon E5-2670 v3 2.3 GHz,
128 GB of RAM. In all cases, unless otherwise stated, the values A =2, u =1, p =1, p =8, ¢ = 0.7 were used
and the relative errors reported were calculated in accordance with the expression

| maxees ™M) — u' ()

max,es |ul®f(x)|

(5.1

€00

where u'®f is produced by means of numerical solution with a sufficiently fine discretization and a sufficiently large
value of A, and where S is a suitably selected line segment (2D) or square plane (3D) above the defect, and at a
distance from it no larger than 2. The parameters M, N, N# were selected in such a way that the errors arising
from the numerical integration are negligible in comparison with the smooth-windowing errors. Throughout this
section aEn denotes a x 10”".

5.1. 2D examples

In our first example we consider problems of elastic scattering by the two-dimensional locally-rough surfaces
depicted in Fig. 5. These include problems of scattering of bounded scatterers under both Dirichlet and Neumann

13
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(C) einc _ 637

(a) 6" =0 (b) gne = 128

INE

Fig. 6. Absolute values of the total field resulting from the WGF method for the Dirichlet problem of scattering by a disc-shaped obstacle
where w = 20, A = 32A;.

(b) ginc — % (C) ginc — 631

Fig. 7. Absolute values of the total field resulting from the WGF method for the Neumann problem of scattering by a kite-shaped obstacle
where w =20, A = 32A,.

2
(b) ginc — _%

Fig. 8. Absolute values of the total field resulting from the WGF method for the Dirichlet problem of scattering by a locally perturbed
surface where w = 4w, A =1+ 16A;; €50 = 1E-5.

boundary conditions over a half-plane (disc-shaped and kite-shaped see Fig. 5(a,b)), as well as the local corrugation
depicted in Fig. 5(c). In all three cases the impenetrable (Dirichlet or Neumann) infinite boundary is shown as a
thin black line. Tables 1 and 2 display the relative errors in the total field that result from use of the proposed WGF
method for the Dirichlet and Neumann problems, respectively, clearly demonstrating the uniform fast convergence
of the proposed approach over wide angular variations, going from normal incidence to grazing. The near fields for
the problem of scattering by the Dirichlet disc-shaped obstacle and the Neumann kite-shaped obstacle are presented
in Figs. 6 and 7, respectively.

We consider next the problem of scattering by a locally-rough surface containing multiple corners, see Fig. 5(c).
In this example we assumed w = 47, and we utilized a total of twelve integration patches over the local perturbation,
with refinement exponent p = 4 at corners, and with window radius A = 1 4 164, = 9. Fig. 8 displays the total

14
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Table 1
Relative errors €4, in the total field resulting from the WGF method for the Dirichlet problems of
scattering by a disc-shaped and a kite-shaped obstacle within a half space.

10} A/ Disc-shaped Kite-shaped

ginc — ginc — % ginc — ClﬂTTé ginc — () ginc — % ginc — 613T7§
2 1.54E-2 2.61E-2 1.18E—-2 3.79E-2 5.13E-2 8.76E-3
4 1.62E—3 8.10E-3 3.92E-3 3.29E-3 1.46E—2 8.92E-3
4 8 1.49E—4 5.20E—4 2.73E—4 1.48E—4 3.60E—4 5.58E—4
16 2.12E—6 2.49E—6 1.14E—6 1.85E—6 1.30E—6 4.43E—6
32 2.99E—8 4.29E—8 1.98E—8 3.27E-8 2.06E—8 1.11E-7
2 1.98E0 1.35E0 2.71E—1 8.34E—1 1.65E0 1.06E0
4 4.92E-2 2.81E-2 2.25E-2 5.30E—1 1.54E0 1.33E0
20 8 4.72E-3 1.09E—2 2.85E-3 7.80E—3 1.24E—-2 1.63E—3
16 3.22E-5 1.45E—4 6.90E—5 7.17E-5 2.13E—4 2.93E—4
32 9.55E—7 1.46E—6 1.81E—6 9.30E—7 2.12E—6 1.53E—6
Table 2

Relative errors €, in the total field resulting from the WGF method for the Neumann problems
of scattering by a disc-shaped and a kite-shaped obstacle within a half space.

10} A/ Disc-shaped Kite-shaped

0”11, - 0 elVlL — % 6”’!6 — 613775 91}1(. - 0 9”1( - % 01}11, - 613778[
2 431E-2 2.95E-2 1.78E—2 5.85E—-2 547E-2 4.05E—2
4 4.48E—3 7.24E-3 5.87E-3 7.75E-3 1.60E—2 8.51E-3
4 8 3.87E—4 3.36E—4 2.60E—4 2.67TE—4 6.06E—4 6.67TE—4
16 8.16E—6 3.65E—6 2.83E—6 6.48E—6 7.84E—6 8.37E—6
32 1.31E-7 5.07E—8 1.51E-7 5.97E—8 1.04E—7 1.30E—7
2 2.02E0 2.24E0 2.95E—1 7.31E—1 1.50E0 1.39E0
4 1.66E—1 2.88E—1 1.91E—1 4.27E—1 1.55E0 1.41E0
20 8 5.37E-3 2.15E—2 3.37E-3 6.40E—3 1.16E—2 4.98E—3
16 7.64E—5 1.67E—4 8.09E—5 9.05E—5 1.96E—4 5.73E—4
32 2.21E—6 3.18E—6 2.37E—6 1.01E-6 3.52E—6 2.38E—6
Table 3

Relative errors €4, in the total field resulting from the WGF method for Dirichlet and Neumann
problems of scattering by a spherical obstacle within a half space.

A/kg Dirichlet problem Neumann problem

ginc — ginc — % ginc — 61377; ginc —( ginc — % ginc — 61377[;
2 1.61E—1 7.76E—2 8.10E—2 5.40E—-2 4.44E—1 5.03E—-2
3 3.03E-2 2.37E-2 3.44E-2 1.49E—-2 8.24E—2 2.03E-2
4 5.15E—-3 4.03E-3 7.60E—3 3.66E—3 5.28E—3 1.36E—2
5 1.24E-3 9.93E—4 1.98E—3 1.75E-3 1.90E—-3 4.07E-3
6 2.27E—4 1.75E—4 3.51E—4 6.19E—4 6.38E—4 1.94E—3

fields for the Dirichlet problem with incident angles 67" = /4 and #""¢ = —m /4, respectively. In both cases the
relative error is smaller than 1E—5.

5.2. 3D examples

We consider two 3D inclusion types, namely, a sphere and a kite-shaped obstacle, in both cases over a half
space. The total-field relative errors presented in Table 3 demonstrate the high accuracy and fast convergence of
the proposed 3D WGF method, which is observed, once again, uniformly for all incidence angles. Table 4 displays
the corresponding computing costs required by the solver; for definiteness we only present results for the Neumann
case, but the statistics for the corresponding Dirichlet case are entirely analogous.
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Table 4

Computing costs required by the WGF method for the Neumann problem of scattering by a

spherical obstacle, with GMRES tolerance equal to 1E—4, and with N = 24 and NP = 100.

ginc A/ M Npor Time (prec.) Time (1 iter.) Niter
2 22 3 x 12672 3292 s 5.12 s 29
0 4 70 3 x 40320 2.79 min 1.12 min 32
6 150 3 x 86400 8.60 min 5.05 min 34
2 22 3 x 12672 3323 s 5.07 s 40
z 4 70 3 x 40320 2.84 min 1.12 min 42
6 150 3 x 86400 8.55 min 5.00 min 45
2 22 3 x 12672 33.02 s 511s 33
?37’; 4 70 3 x 40320 2.87 min 1.13 min 33
6 150 3 x 86400 8.57 min 5.04 min 34

08
08 06
i 0.4
0.4
0.2 i
5 5
(b) A =5, [us]
25
4. .
4 N 25 — 2
e N —
S, lz 24 ——
. A 4 | el Y 15
il 15 Py
0 1
e
(2) o - et 2 0 B 0 5 0.5
0 2, 0 = 5 5
(c) A=2, |us| (d) A=5, |us]

Fig. 9. Absolute values of the second (a,b) and third (c,d) components of the total field resulting from the WGF method for the Neumann
problem of scattering by a spherical obstacle. The section of the planar interface shown in each case coincides with the windowed region
in the plane where the corresponding windowing function @, does not vanish. 67%¢ = 0.

12 ”
1 6,
\ s

08 4
06 2 2
04

0 i
02 5

(b) fuz]

(a) |uil

Fig. 10. Absolute values of the three components of the total field resulting from the WGF method for the Neumann problem of scattering
by a spherical obstacle. The section of the planar interface shown in each case coincides with the windowed region in the plane where the
corresponding windowing function 4 does not vanish. 6% = 5 /4.

Fig. 9 and Fig. 10 display the computed values of the total field for the Neumann problem with A = u =3 and
® =537 /2. These results are consistent with the LGF-based results presented in [25], which include a treatment
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2
25 1.5
4
2 -
/1
0.5
15>
-1 0
(a) Bean-shaped obstacle
1
0.5
0

() Juzl (d) fus|

Fig. 11. Absolute values of the three components of the total field resulting from the WGF method for the Dirichlet problem of scattering
by a Bean-shaped obstacle. The section of the planar interface shown in each case coincides with the windowed region in the plane where
the corresponding windowing function @4 equals to 1. 67¢ = —x /3.

of this problem but only under 6% = 0 incidence. The LGF evaluation that is required in the treatment [17], on
the other hand, is much more expensive, on a per-point basis than the free-space Green function we use. A direct
truncation of the infinite planar surface to the square |[x| < A was proposed in [15,25] for an equation similar
to (3.1); as discussed in Sections 1 and 2 and suggested by the WGF results in Fig. 2, however, such approaches
lead to significant difficulties as the incidence angles sufficiently depart from normal incidence.

Finally, the total field produced by the WGF method for the Dirichlet problem of scattering by the bean-shaped
obstacle over a half space displayed in Fig. 11(a), for a problem with @ = 27, "¢ = —7/3 and A = 5A,, which was
treated using the algorithmic parameter selections M = 106, N = 24 and N# = 100, is presented in Figs. 11(b,c,d).
The relative solution error €, is smaller than 1E-3 and the absolute computing time (including precomputation as
well as GMRES iteration and field evaluation) is 1.94 h with GMRES tolerance equal to 1E-4. Of course, all of the
computing times can be greatly reduced by means of suitable acceleration method such as those presented in [14,17]
and references therein. Fig. 12 displays the computed total field on a local perturbed surface for the Neumann
problem with @ = 2m, where the local perturbation is characterized by x3 = O.25(cos(xfrr) + 1)(cos(x§n) + 1),
X1, X2 € [—1, 1]

6. Conclusions

This paper introduced novel WGF methods for the solution of half-space elastic scattering problems with
Dirichlet or Neumann boundary conditions. Relying on (1) The free-space Green function, together with (2) A novel
windowed version of the classical elasticity integral equations, (3) A novel integral formulation that is uniformly
accurate for all incidence angles, and (4) Efficient high-order singular-integration methods, the proposed approach
avoids the expensive evaluation of the elastic layer Green function and, as demonstrated by a variety of numerical
tests, can achieve uniform fast convergence for all incident angles. Extensions of the WGF approach to other types
of half-space scattering problems, including e.g. fluid-solid interaction problems with multiple layers [38], Rayleigh
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2 | ——

| —
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A m—

\ | —
2 2 '2-2_-##2

(a) fus] (b) Jus|

Fig. 12. Absolute values of the third component of the total field resulting from the WGF method for the Neumann problem of scattering
by a local perturbed surface. ginc = (. The view points in (a,b) are (—1, —1, 1) and (0, O, 1), respectively.

wave scattering problems [24], and scattering problems with tapered incidence [39], etc., which can be treated by
similar methods, are left for future work.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by NSF and AFOSR under contracts DMS-1714169 and FA9550-15-1-0043, and by
the NSSEFF Vannevar Bush Fellowship under ONR contract N00014-16-1-2808.

References

[1] J.W.C. Sherwood, Elastic wave propagation in a semi-infinite solid medium, Proc. Phys. Soc. 71 (1958) 207-219.

[2] J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland Publishing Company, Amsterdam, 1973.

[3] K. Aki, P.G. Richards, Quantitative Seismology, second ed., University Science Books, Mill Valley, California, 2002.

[4] PM. Shearer, Introduction To Seismology, second ed., Cambridge University Press, New York, 2009.

[5S] T. Arens, The Scattering of Elastic Waves By Rough Surfaces, (Ph.D. thesis), Brunel University, 2000.

[6] T. Arens, Uniqueness for elastic wave scattering by rough surfaces, SIAM J. Math. Anal. 33 (2001) 461-476.

[7]1 T. Arens, Existence of solution in elastic wave scattering by unbounded rough surfaces, Math. Methods Appl. Sci. 25 (2002) 507-528.

[8] G. Bao, T. Yin, Recent progress on the study of direct and inverse elastic scattering problems (in Chinese), Sci. Sin. Math. 47 (10)
(2017) 1103-1118.

[9] J. Elschner, G. Hu, Elastic scattering by unbounded rough surface, SIAM J. Math. Anal. 44 (6) (2012) 4101-4127.

[10] J. Elschner, G. Hu, Elastic scattering by unbounded rough surfaces: Solvability in weighted Sobolev spaces, Appl. Anal. 94 (2015)
251-278.

[11] G. Hu, X. Liu, F. Qu, B. Zhang, Variational approach to rough surface scattering problems with Neumann and generalized impedance
boundary conditions, Commun. Math. Sci. 13 (2015) 511-537.

[12] G.C. Hsiao, W.L. Wendland, Boundary Integral Equations, in: Applied Mathematical Sciences, vol. 164, Springer-verlag, 2008.

[13] J.C. Nédélec, Acoustic and electromagnetic equations: Integral representations for harmonic problems, Springer-Verlag, New York,
2001.

[14] O.P. Bruno, L.A. Kunyansky, A. fast, High-order algorithm for the solution of surface scattering problems: basic implementation, tests,
and applications, J. Comput. Phys. 169 (1) (2001) 80-110.

[15] S. Chaillat, M. Bonnet, J.F. Semblat, A multi-level fast multipole BEM for 3-D elastodynamics in the frequency domain, Comput.
Methods Appl. Mech. Engrg. 197 (2008) 4233-4249.

[16] Y. Liu, Fast Multipole Boundary Element Method, Cambridge University Press, New York, 2009.

[17] S. Chaillat, M. Bonnet, A new fast multipole formulation for the elastodynamic half-space Green’s tensor, J. Comput. Phys. 258 (2014)
787-808.

[18] M. Duran, E. Godoy, J.C. Nédélec, Theoretical aspects and numerical computation of the time-harmonic Green’s function for an
isotropic elastic halfplane with an impedance boundary condition, ESAIM Math. Modelling Numer. Anal. 44 (4) (2010) 671-692.

[19] M. Duréan, I. Muga, J.C. Nédélec, The outgoing time-harmonic elastic wave in a half-plane with free boundary, SIAM J. Appl. Math.
71 (2) (2011) 443-464.

18


http://refhub.elsevier.com/S0045-7825(20)30836-7/sb1
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb2
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb3
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb4
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb5
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb6
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb7
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb8
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb8
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb8
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb9
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb10
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb10
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb10
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb11
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb11
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb11
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb12
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb13
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb13
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb13
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb14
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb14
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb14
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb15
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb15
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb15
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb16
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb17
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb17
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb17
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb18
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb18
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb18
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb19
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb19
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb19

O.P. Bruno and T. Yin Computer Methods in Applied Mechanics and Engineering 376 (2021) 113651

[20]
[21]
[22]
[23]
[24]
[25]
[26]
(271
(28]
(291
(30]
(311
(32]
(33]
(34]
(351
(36]

(371
[38]

[39]

O.P. Bruno, M. Lyon, C. Pérez-Arancibia, C. Turc, Windowed green function method for layered-media scattering, SIAM J. Appl.
Math. 76 (5) (2016) 1871-1898.

J. DeSanto, P.A. Martin, On the derivation of boundary integral equations for scattering by an infinite one-dimensional rough surface,
J. Acoust. Soc. Am. 102 (1) (1997) 67.

A. Charalambopoulos, D. Gintides, K. Kiriaki, Radiation conditions for rough surfaces in linear elasticity, Q. J. Mech. Appl. Math.
55 (3) (2002) 421-441.

C. Pérez-Arancibia, Windowed Integral Equation Methods for Problems of Scattering By Defects and Obstacles in Layered Media (Ph.D.
thesis), California Institute of Technology, 2016.

I. Arias, J.D. Achenbach, Rayleigh wave correction for the BEM analysis of elastic layer scattering problems two-dimensional
elastodynamic problems in a half-space, Internat. J. Numer. Methods Engrg. 60 (2004) 2131-2146.

S. Chaillat, M. Bonnet, Recent advances on the fast multipole accelerated boundary element method for 3D time-harmonic
elastodynamics, Wave Motion 50 (2013) 1090-1104.

E. Grasso, S. Chaillat, M. Bonnet, J.F. Semblat, Application of the multi-level time-harmonic fast multipole BEM to 3-D
visco-elastodynamics, Eng. Anal. Bound. Elem. 36 (2012) 744-758.

O.P. Bruno, B. Delourme, Rapidly convergent two-dimensional quasi-periodic Green function throughout the spectrum-including wood
anomalies, J. Comput. Phys. 262 (2014) 262-290.

O.P. Bruno, S.P. Shipman, C. Turc, S. Venakides, Superalgebraically convergent smoothly windowed lattice sums for doubly periodic
green functions in three-dimensional space, Proc. R. Soc. A 472 (2016) 2191.

J.A. Monro, A Super-Algebraically Convergent, Windowing-Based Approach to the Evaluation of Scattering from Periodic Rough
Surfaces (Ph.D. thesis), California Institute of Technology, 2007.

O.P. Bruno, C. Pérez-Arancibia, Windowed Green function method for the Helmholtz equation in presence of multiply layered media,
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 473 (2202) (2017) 20170161.

O.P. Bruno, E. Garza, C. Pérez-Arancibia, Windowed Green function method for nonuniform open-waveguide problems, IEEE Trans.
Antennas and Propagation 65 (2017) 4684—4692.

J. Chaubell, O.P. Bruno, C.O. Ao, Evaluation of em-wave propagation in fully three dimensional atmospheric refractive index
distributions, Radio Sci. 44 (1) (2009) RS1012.

G. Bao, L. Xu, T. Yin, Boundary integral equation methods for the elastic and thermoelastic waves in three dimensions, Comput.
Methods Appl. Methanics Eng. 354 (2019) 464-486.

T. Yin, G.C. Hsiao, L. Xu, Boundary integral equation methods for the two dimensional fluid-solid interaction problem, SIAM J.
Numer. Anal. 55 (5) (2017) 2361-2393.

O.P. Bruno, E. Garza, A Chebyshev-based rectangular-polar integral solver for scattering by general geometries described by
non-overlapping patches, J. Comput. Phys. 421 (2020) 109740.

O.P. Bruno, T. Yin, Regularized integral equation methods for elastic scattering problems in three dimensions, J. Comput. Phys. 410
(2020) 109350.

T. Arens, T. Hohage, On radiation conditions for rough surface scattering problems, IMA J. Appl. Math. 70 (2005) 839-847.

D.-G. Peng, Normal Mode Acoustic Scattering Considering Elastic Layers over a Half Space (Master thesis), Massachusetts Institute
of Technology, 1997.

E.I Thorsos, The validity of the kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum, J. Acoust.
Soc. Am. 83 (1988) 78-92.

19


http://refhub.elsevier.com/S0045-7825(20)30836-7/sb20
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb20
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb20
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb21
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb21
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb21
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb22
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb22
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb22
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb23
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb23
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb23
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb24
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb24
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb24
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb25
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb25
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb25
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb26
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb26
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb26
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb27
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb27
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb27
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb28
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb28
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb28
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb29
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb29
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb29
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb30
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb30
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb30
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb31
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb31
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb31
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb32
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb32
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb32
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb33
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb33
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb33
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb34
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb34
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb34
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb35
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb35
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb35
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb36
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb36
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb36
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb37
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb38
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb38
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb38
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb39
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb39
http://refhub.elsevier.com/S0045-7825(20)30836-7/sb39

	A windowed Green function method for elastic scattering problems on a half-space
	Introduction
	Preliminaries
	Elastic scattering problems
	Boundary integral equation based on the free-space Green function
	Boundary integral equation based on the layer Green function

	Windowed Green function method (WGF)
	Slow-rise windowing function and preliminary considerations
	Uniformly accurate ``corrected'' formulation for all incidence angles

	Numerical implementation
	Reformulation in terms of composite differential/weakly-singular operators
	Surface decomposition and discretization
	Non-adjacent and adjacent integration
	Evaluation of tangential derivatives

	Numerical results
	2D examples
	3D examples

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


