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Leveraging autocatalytic reactions for chemical-
domain image classification†
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hay Tanna, Christopher Rosea, Eunsuk Kimb, Sherief Redaa, Brenda M. Rubensteinb,
and Jacob K. Rosenstein∗a

Autocatalysis is fundamental to many biological processes, and kinetic models of autocatalytic re-
actions have mathematical forms similar to activation functions used in artificial neural networks.
Inspired by these similarities, we use an autocatalytic reaction, the copper-catalyzed azide-alkyne
cycloaddition, to perform digital image recognition tasks. Images are encoded in the concentra-
tion of a catalyst across an array of liquid samples, and the classification is performed with a
sequence of automated fluid transfers. The outputs of the operations are monitored using UV-Vis
spectroscopy. The growing interest in molecular information storage suggests that methods for
computing in chemistry will become increasingly important for querying and manipulating molec-
ular memory.

Introduction
An autocatalytic reaction is one which is catalyzed by its own
products. Such reactions can exhibit interesting behaviors such as
self-sustaining growth and oscillation, and play important roles
in living systems1. Autocatalysis occurs in elements of cellu-
lar metabolism including glycolysis2, mitosis3, apoptosis4, and
DNA replication5. Some have even posited that the origin of life
may have had connections to the emergence of autocatalytic net-
works6,7.

The dynamics of autocatalytic reactions share some features
with modern machine learning algorithms, in which cascades of
nonlinear operators are used to efficiently realize functions of ar-
bitrary complexity8. In theory, a network of autocatalytic reac-
tions can be made analogous to an artificial neural network9.
Moreover, autocatalytic reactions have the beneficial property
that their inputs and outputs can be represented by the same
chemical species, potentially offering experimental scalability for
deep feedforward networks.

The idea of chemical computing has a long history, inspired
in part by the power, complexity, and energy efficiency of liv-
ing systems10,11. Recent advances in molecular information stor-
age12–17 have brought these unconventional systems closer to re-
ality and have renewed interest in chemical computing. Much
of the research on molecular computing has focused on in vitro
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gene expression circuits18,19 and DNA strand-displacement reac-
tions20–22. While genomic networks have important experimen-
tal advantages, such as well-established catalytic enzymes, they
represent a narrow slice of chemical space, and hybridization-
based computation often suffers from slow reaction rates and
temperature sensitivity. Outside of DNA, chemical computation
has been demonstrated using oscillating reactions23,24, metabo-
lites25, and phenols26, and has been the subject of many theoret-
ical studies. In silico chemical reaction networks27 have been de-
signed to not only implement feedforward neural networks28,29,
but to both train and execute learned functions in simple percep-
trons30,31.

We previously demonstrated a chemical perceptron which per-
forms parallel computations on several datasets encoded in the
co-existing concentrations of different chemical species26. Us-
ing this system, we classified several handwritten digits from the
MNIST database32. However, this classifier was based on volu-
metric transfers of unreactive species, which amount to linear op-
erations in the chemical domain. As a result, the final threshold
operation had to be performed in silico.

Here, we combine automated fluid handling with an autocat-
alytic reaction to realize nonlinear operations in chemico. We
encode digital images into catalyst concentrations, apply linear
multiply-accumulate operations using volumetric liquid transfers,
and perform winner-take-all (WTA) image classification with au-
tocatalytic reactions. These demonstrations are a promising step
in the nascent development of synthetic chemical computing sys-
tems.
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Results and discussion
Kinetics of Autocatalysis
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Fig. 1 Kinetics of Autocatalysis. a Reagent and autocatalytic product
evolution over time for Xo = 100 mM, Yo = 1 µM, and k= 0.1 (Eq. 4). b Rate
of product concentration change over time for the reaction simulated in a,
showing the accelerated production typical of an autocatalytic process.
c The time to transition as the input catalyst concentration (Yo) is varied
about a constant: Yo = Yi +Ys with Yi = 1 µM, Xo = 100 mM, and k = 0.1.

A reaction in which one of the products speeds up further prod-
uct formation is called autocatalytic. Consider the simplest auto-
catalytic reaction, which is given by33:

X+Y k−→ 2Y (1)

and has the following first order rate law:

d[Y ]
dt

= k[X ][Y ] (2)

Since mass must be conserved, and the volume of dilute reaction
solutions is approximately constant, the sum of the initial con-
centrations (Xo and Yo) must equal the sum of the concentrations
at any time: Xo +Yo = [X ] + [Y ]. Applying this conservation law
reduces the differential equation to a single variable:

d[Y ]
dt

= k
(
(Xo +Yo)[Y ]− [Y ]2

)
(3)

which can be solved via integration to obtain an expression for
the product evolution as a function of time:

[Y ] =
(Xo +Yo)

1+ Xo
Yo

e−(Xo+Yo)kt
(4)

Plotting Eq. 4, we can see that the catalytic product evolution
follows a sigmoidal trajectory (Fig. 1). Initially, there is a slow ac-
cumulation of the catalytic species Y . When enough catalyst has
formed, product formation accelerates until the limiting reagent
(X) is consumed, and the output concentration settles to a con-
stant final value.

Relationship to Artificial Neural Networks
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Fig. 2 An artificial neuron implemented in the chemical domain through
the programmable mixing and reacting of compounds from an autocat-
alytic process.

An artificial neuron is a basic learning unit, inspired by bio-
logical neurons, which multiplies its inputs by a set of weights
and transforms their sum through a nonlinear operator (the ‘acti-
vation function’)34. Interconnected sets of artificial neurons can
perform classification tasks, among many other applications. In
theory, the nonlinear kinetics of autocatalytic reactions could sug-
gest chemical equivalents to electronic artificial neurons (Fig. 2).

For instance, the product evolution curve from Eq. 4 is anal-
ogous to the popular logistic activation function35. However,
controlling this type of reaction through timing would be exper-
imentally challenging. Previous theoretical work9 instead added
a feedback path with a reverse reaction (Y back to X) with differ-
ent kinetics. In this arrangement, the final product concentration
([Y ]t→∞) was either a constant or zero, depending on whether the
forward or reverse reactions were dominant. This network effec-
tively produced a rectifying activation function36. While simula-
tions show this design could be robust against large concentra-
tion variations, it would be quite challenging to implement since
it requires many complementary autocatalytic reactions with pro-
grammable reaction rates and limited cross-reactivity.

Taking into account experimental constraints, here we struc-
ture chemical computations around the time it takes for the prod-
uct to evolve, using a single autocatalytic reaction as a nonlinear
programmable time delay generator. In this model, the initial
conditions are the input variable and the time to transition is the
output (Fig. 1c). By using one reaction under varying initial con-
ditions, data from a simple dilution ladder can provide sufficient
calibration to design a computational network.

Time to Transition
We define the time to transition, t1/2, as the time at which the
product concentration, [Y ], is halfway between its initial and final
values:

[Y ]t=t1/2 =
[Y ]t=0 +[Y ]t→∞

2
(5)

For the reaction described by Eq. 4, the time to transition is given
by:

t1/2 =
ln
(

Xo
Yo

+2
)

(Xo +Yo)k
(6)

Fig. 1c shows how this transition time varies with initial cata-
lyst concentration. The transition times are bounded by two ex-
tremes: the slow regime (left) where the amount of added cata-
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lyst is too little to speed up the reaction and the fast regime (right)
where the catalyst accumulation is no longer the limiting step of
the reaction.

For this reaction, the rate of increase in catalyst (d[Y ]/dt) is
greatest at tp = ln(Xo

Yo
)/((Xo +Yo)k), which, assuming the initial

concentration ratio is large ( Xo
Yo
� 2), occurs roughly at the time to

transition (tp ≈ t1/2). Using either of these time points as the out-
put parameter, instead of the final concentration ([Y ]t→∞), makes
for more consistent computations since the final concentration
tends to be more variable than the timing of catalysis (see Fig. 8c).

Copper–Catalyzed Azide–Alkyne Cycloaddition

tripropargylamine 2-azidoethanol

Cu(II)SO4

H2O/MeOH

tris(triazolylmethyl)amine

Autocatalysis
by promoting

Cu(II) reduction
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+

Fig. 3 An overview of the copper catalyzed azide-alkyne cycloaddition
reaction, showing the buildup of triazole branches on the amine back-
bone of (A) after each azide (B) incorporation. The three-branched prod-
uct (D) catalyzes its own generation by promoting the reduction of Cu(II).

The copper-catalyzed reaction of an azide and an alkyne to
form a 5-membered ring containing heteroatoms, known as a tri-
azole, is one of the most well studied click reactions37. These
reactions have fast kinetics, are irreversible, use readily available
starting material, occur under mild conditions, are high yield, and
do not require purification38. One such copper-catalyzed azide-
alkyne cycloaddition (CuAAC) reaction was recently shown to ex-
hibit particularly strong, autocatalytic rate enhancement39. Car-
ried out in a water-methanol solution containing a dissolved cop-
per (II) salt, the reaction occurs through 1,3-cycloaddition and
uses one equivalent of an alkyne, tripropargylamine, and three
equivalents of an azide, 2-azidoethanol, to form a final product,
tris(triazolylmethyl)amine, composed of three triazoles (Fig. 3).

Rate enhancement was originally thought to be due to the for-
mation of an intermediate which promotes the reduction of cop-
per (II) to copper (I), a common catalyst40. However, it has now
been shown that the final product in complex with copper (I) is a
more reactive catalyst for cycloaddition than copper (I) alone41.
The formation of tris(triazolylmethyl)amine increases copper (I)
production and activity, thereby increasing its own formation and
resulting in autocatalysis.

Monitoring Reaction Progress
Since the CuAAC reaction involves multiple copper-ligand com-
plexes which absorb visible light, we can quantitatively monitor
reaction progress using UV-Vis spectroscopy. Fig. 4a plots the re-
action progression, with the broad absorption at 650 nm corre-
sponding to the copper (II) complexes of triazolylmethylamine39.

To initially validate the reaction, we carried out CuAAC re-
actions in cuvettes, allowing 290 mM 2-azidoethanol, 102 mM
tripropargylamine, and 40 mM copper (II) sulfate to react
while product formation was monitored using a UV-Vis spec-
trophotometer (Varian Cary 50). The initial solution is trans-
parent and colorless while the final solution containing the
tris(triazolylmethyl)amine product has a blue tint (Fig. 4b).

For subsequent high-throughput experiments, we adapted the
reaction to 384-well plates, using a UV-Vis microplate reader
(BioTek Synergy HTX) to track product formation.
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Fig. 4 Monitoring Reaction Progress via UV-Vis Absorbance. a Ab-
sorbance spectra over the course of the CuAAC reaction (sampled every
5 min for 145 min). b Images of the reaction solution over time, showing
the color transition as product is formed. c Absorbance time series for
650 nm light. The product is known to absorb at this wavelength. The re-
action was run with 102 mM tripropargylamine, 290 mM 2-azidoethanol,
and 40 mM CuSO4 in 94% deionized water and 6% methanol. The UV-
Vis measurements were taken with the Varian Cary 50 Spectrophotome-
ter using a Schlenk quartz cell with a pathlength of 2 mm.

Reaction Parametrization
The CuAAC reaction time can be programmed by seeding the re-
action with a small amount of tris(triazoloylmethyl)amine. The
time to half completion (t1/2) is a function of the initial reagent
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concentrations ([A]t=0, [B]t=0, [C]t=0) and seed catalyst concen-
tration ([D]t=0). By holding the starting reagent concentrations
constant ([A]t=0 = 320.6 mM, [B]t=0 = 908.8 mM, and [C]t=0 =

126.5 mM), the catalyst concentration is made the only free vari-
able.

For the purposes of capturing the completion rate dependence
on catalyst concentration, rather than developing a new system of
differential equations to specifically model the CuAAC reaction,
we can use Eq. 6 as an intuitive template. By setting Xo = α and
Yo = β +[D]t=0, we arrive at a parametric equation for the time to
transition when only the catalyst concentration is varying:

t1/2 ([D]t=0) =
ln
(

2+ α

[D]t=0+β

)
(α +[D]t=0 +β )k

(7)

To obtain the catalyst ([D]t=0) for seeding the reaction, we pre-
react a concentrated mixture ([A]t=0 = 1.308 M, [B]t=0 = 3.708 M,
and [C]t=0 = 0.516 M) of reagents for 48 hours. For simplicity,
we assume the reaction runs to completion, yielding a product
concentration of 1.236 M, which is one third the concentration of
the limiting reagent, the azide.

Transition Time Calibration
To model the constrained CuAAC, we performed a series of re-
actions with varying seed catalyst concentrations. Starting with
concentrated pre-reacted solution (containing about 1.2 M of
catalyst), we performed serial dilutions in 94% water and 6%
methanol. Samples of 1 µL from each diluted catalyst solution
were then transferred to a 384-well plate. In each well, 50 µL of
starting reagent solution was added to initiate the reaction. Once
the transfers were completed, the plate was placed in a UV-Vis
plate reader to obtain the absorbance traces shown in Fig. 5a.

From the UV-Vis traces, we extracted the time to transitions
as the time points at which product absorbances were halfway
between their initial and final values (Fig. 5b). Based on these
curves, we fit a model of the transition time, which was in turn
used for simulations and experiment planning (Fig. 5c).

Winner-Take-All Network
One algorithm suitable for reaction-based time delays is a winner-
take-all (WTA) neural network42. Such a network can be thought
of as a race between potential classes, where the first class to
reach a target state is deemed the winner. A diagram of a rep-
resentative WTA network is shown in Fig. 8b, where each of the
pooled outputs, yk, are associated with a different class. A com-
parison between the pools is used to determine the class of the
input data (~x). Despite their relative simplicity, these networks
can be designed to efficiently approximate any continuous func-
tion43. Here, we set out to implement a chemical WTA network
for image classification. An overview of the proposed computing
framework is shown in Fig. 6.

Encoding Data in Catalyst Concentration
Digital images are represented chemically by the initial concen-
tration of catalyst. Each pixel in a binary input image (~x) is as-
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Fig. 5 Time to Transition Calibration. a Absorbance (650 nm) traces
used to monitor reaction progress as seed catalyst concentration was
varied. The reactions were performed in triplicate to ensure the results
were consistent. b A single trace from a ([D]t=0 = 18.93 µM), showing
the mid-point line used to find the transition time. c Measured time to
transitions for each tested catalyst concentration (averaged over the trip-
licates). A fit to Eq. 7 is also shown. The model parameters were found,
using nonlinear least-squares, to be: α = 2.81 mM, β = 14.2 µM, and
k = 970 M−1hr−1.

signed a position on a well plate, and an initial volume of solvent
(Vs) is added to each of these wells. Then, for each white pixel
(xn = 1), a small volume of pre-reacted solution (Vd), with a cat-
alyst concentration Do, is added to its well. No catalyst is added
to wells corresponding to black pixels (xn = 0). Thus the final
catalyst concentration in data well n will be:

dn = Do ·
xnVd

xnVd +Vs
=

{
0, xn = 0

c, xn = 1
(8)

where c = Do ·Vd/(Vd +Vs) is the nonzero concentration of cata-
lyst associated with white pixels. While more bits could be rep-
resented per well by allowing intermediate concentration levels
(e.g. c/2, c/4, c/8), for these demonstrations we elected to use a
dataset of binary images.

In-Solution Multiply And Accumulate
The network inputs are mapped to class-specific pools through
volumetric multiply-accumulate (MAC) operations26. A small
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Fig. 6 Experimental setup for evaluating a chemical WTA network. A
binary image data plate is made using seed catalyst. The wells of this
plate are volumetrically weighted and summed together into pools asso-
ciated with each considered class (e.g. panda, chair, anchor, or rooster).
Reagents for the CuAAC reaction are added to these pools, which are
placed on a UV-Vis plate reader to monitor the progression of the reac-
tions. The class whose reaction reaches half completion first is declared
the winner and assigned to the input data.

volume, vkn, is sampled from each of the n data wells and trans-
ferred to pool k. The amount taken from each well is set as
vkn = wkn ·Vu, where Vu is the maximum volume allowed to be
transferred from a well and wkn ∈ [0,1] is a tuning factor. By scal-
ing the transfer volumes with weights trained on class k (~wk), the
summed output pool (yk) can be made to represent a single MAC
operation on the catalyst-encoded input data (~d). The resulting
catalyst concentration in class k’s pool is given by:

pk =
∑

N
n=1 vkndn

Vk
=

∑
N
n=1 wkndn

∑
N
n=1 wkn

(9)

where the final volume in the pool is given by: Vk = ∑
N
n=1 vkn. This

operation is repeated for each class, producing K output pools. At
least Vs/Vu such pools could be made from a single data plate.

Autocatalytic Activation and Classification
Each of the MAC pools are composed solely of solvent and diluted
catalyst, and as such only represent a linear combination of the
inputs. To obtain the nonlinear response desired for classifica-
tion, the autocatalytic reaction has to be initiated. To do so, a
small volume, Vp, is transferred from each of the pools wells to
their corresponding reaction wells, which were prefilled with Vr

of starting reagent solution. At first, the seed catalyst concentra-
tion in reaction well k will be given by:

rk = pk ·
Vp

Vp +Vr
(10)

but the catalyst concentration will increase as the reaction pro-
ceeds. If we use the same conditions as the calibration experiment
(Fig. 5), namely the same reagent concentrations and a volume
ratio Vp:Vr roughly equal to 1:50, then the time at which the cata-
lyst concentration in well k reaches half its steady state value will
be:

τk = t1/2 (rk) (11)

where t1/2 is the time to transition model from Eq. 7 and Fig. 5c.
If the pooling weights are tuned such that the first reaction well
to run to half completion represents the class most similar to the
input data (see Methods), then we can assign class i to the input

when:
τi < τ j ∀i 6= j (12)

where the transition times can be found by monitoring the reac-
tion wells with a UV-Vis plate reader.

Experimental Demonstration
Using the proposed approach, we built an autocatalytic WTA net-
work for classifying binary images from the CalTech 101 16×16
Silhouettes dataset44 (Fig. S1 and S2†). The network was specif-
ically designed to identify five (K = 5) of the more recognizable
image classes: ‘starfish’, ‘kangaroo’, ‘llama’, ‘dragonfly’, and ‘ibis’
(68-86 images per class, shown in Fig. S3-S7†).

Network weights were iteratively trained over 700 epochs, us-
ing a 70%-30% train-test split (Fig. S8†). The training algorithm
is described in the Methods, and the resulting weights are shown
graphically in Fig. 7, alongside an example image from each class.
Using these weights and the time to transition model from Fig. 5,
we simulated the outputs of the network for one input image
(Fig. 7c and d). Extending these simulations to the full train and
test sets (398 images in total), the network was found to have a
classification accuracy of 81.16% (Fig. S9†).

A 256-pixel binary image of a starfish, shown in Fig. 7.c, was
written to a 384-well plate using catalyst presence/absence en-
coding. The data plate preparation began by first dispensing
Vs = 9.5 µL of solvent (6% methanol in water) to all wells. Wells
corresponding to white pixels (xn = 1) received an additional
Vd = 200 nL of 2×-diluted pre-reacted solution, nominally con-
taining Do = 618 mM of catalyst. Wells corresponding to black
pixels (xn = 0) had no catalyst added. An image of the resulting
data plate is shown in Fig. 8a., where a faint blue color can be
seen in the wells that contain catalyst (c = 12.742 mM).

The weights for each considered class were applied to the
starfish image, resulting in 5 separate pools. A small volume
(Vp = 1 µL) from each output pool was transferred, in triplicate,
to wells on a new 384-well plate. To begin the CuAAC reactions,
Vr = 50 µL of starting reagent solution was added to each well.
The plate was promptly loaded into a UV-Vis reader to track the
progression of the reactions.

Absorbance measurements were taken every 60 seconds over
the course of 8 hours. The measured signals are shown in Fig. 8c
and compared in Fig. 8d. Consistent with the simulation, the
‘starfish’ pool was the first reaction to complete. The runner up,
kangaroo, was 6.5 minutes behind. On average, measured transi-
tion times deviated from simulations by 2% (Fig. 8e).

Perspectives for Chemical Computing
DNA has often been the chemistry of choice for many develop-
ments in chemical computing10,21,22,45–50, and it will continue to
provide a powerful foundation for molecular-scale computation.
DNA reaction networks benefit from the sequence-specificity of
hybridization reactions and the availability of numerous catalytic
enzymes. Strand displacement reactions, for instance, have been
used to perform winner-take-all classification of 10× 10 pixel bi-
nary images22. However, because the operations rely on specific
DNA sequences, a relatively large number of reagents must be de-
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Fig. 7 Network Training and In Silico Simulation. a Example images from each of the considered classes. b Trained weights for each class. c The
input, one of the starfish images from the test set, prior to being reshaped as a feature vector. d Simulation results obtained using the weights shown
in b, the image from c, and the time to transition model from Fig. 5c.

signed and synthesized a priori. In contrast, the CuAAC reaction
requires only three inputs, allowing for rapid re-configuration.
Furthermore, DNA is often constrained to biologically relevant
conditions (e.g. pH, temperature, salinity). Opportunities to
utilize a broader range of catalytic reactions, which use fewer
reagents or operate outside of physiological conditions, may open
up new avenues for chemical computing.

Autocatalytic processes, with their nonlinear response and
input-output self-similarity, represent an attractive substrate for
chemical based computing. In this work, we have shown, with a
simple single-layer WTA network, how the kinetics of an autocat-
alytic reaction could be exploited for in chemico image classifica-
tion. In the future, autocatalytic computation could be extended
to more complicated architectures, such as a multi-layered WTA
network that uses multiple rounds of volumetric pooling. Be-
cause the CuAAC reaction progress can be monitored through
visible color changes there is no need for additional reporter
molecules. Additionally, since the CuAAC reaction involves a reac-
tive copper species (Cu(I)), it could be coupled to other reactions
which would influence triazole production, potentially allowing
for more complex and dynamic operations.

Conclusions
In summary, we designed and implemented a simple neural net-
work using an array of autocatalytic reactions. This research ex-
tends previous chemical computing efforts which utilized non-
reactive mixtures and were limited to linear mathematical oper-

ations26. Here, we adapted the autocatalytic CuAAC reaction to
serve as the nonlinear activation function needed for WTA classi-
fication. This work represents unique experimental progress to-
wards a fully liquid-phase chemical classifier, in a non-biological
chemistry. We anticipate that autocatalytic reaction networks
will play a critical role in the future development of advanced
chemical-domain computing systems.

Methods
Materials and Reagents
All solutions were prepared using in-house deionized water (Mil-
lipore Milli-Q), having a resistivity of 18.2 MΩ · cm at 25◦C, and
HPLC-grade methanol (>99%, Fisher Scientific, Waltham, MA).
The CuAAC reaction was done, in a solvent comprised of 6%
methanol and 94% water, using 2-azidoethanol (98%, Santa Cruz
Biotechnology Inc, Dallas, TX) as the azide, tripropargylamine
(98%, Sigma Aldrich, Natick, MA) as the alkyne, and copper (II)
sulfate (>99%, Sigma Aldrich, Natick, MA) as the source of cop-
per ions. The reactions were conducted at room temperature,
in sealed well plates and cuvettes to prevent evaporation. Low
dead volume 384-well microplates made of cyclic olefin copoly-
mer (LP-0200, Labcyte Echo) and 384-well microplates made of
polypropylene were used for high throughput experiments (PP-
0200, Labcyte Echo).
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Fig. 8 Experimental Demonstration of Chemical Image Classification. a Image of the data plate, containing a binary image of a starfish represented in
the presence (blue, 200 nL added) or absence (transparent, 0 nL added) of pre-reacted catalyst (nominally 618 mM) in solvent filled wells (9.5 µL of 94%
deionized water and 6% methanol). High pixels (xn = 1) contain a presumed catalyst concentration of 12.742 mM, while low pixels (xn = 0) have 0 mM of
catalyst. b Diagram of the winner-take-all classification network implemented in liquid-phase autocatalytic chemistry. c Pooled well absorbance traces
(each repeated in triplicate) for the 5-class WTA network. d Overlay of the absorbance traces for each class’ first pool, showing the winner to correctly
be the “Starfish.” e The mean measured and simulated times to transition for each of the pooled wells. Simulated data was offset by -12.162 minutes,
which was the amount of time it took between introducing the reagent solution and the start of plate monitoring.

Instrumentation and Analysis
An Echo 550 (Labcyte) acoustic fluid handler was used to per-
form the volume transfers for the high throughput experiments.
Custom Python scripts were used to generate fluid handling in-
structions. Individual UV-Vis measurements were taken with the
Cary 50 (Varian), while the Synergy HTX (BioTek) platereader
was used for arrayed measurements. Custom MATLAB scripts
were used for network design, data analysis, and visualization.

Network Training
The objective of training is to produce a matrix of weights which
maximize the accuracy of the WTA network. In order to cor-
rectly identify an image, the pool for its associated class should
transition before that of any other class. Because volumetric
multiply-accumulate operations correspond to positive weights26

and since there is an imposed upper limit (Vu) on the transfer vol-
ume, weight values can be specified relative to the transfer limit,
such that they fall between 0 and 1.

To accommodate these constraints, the network is trained sim-
ilarly to a self-organizing map51, where weights are iteratively
tuned to be more similar to input data. A benefit of training the
weights on the inputs, rather than on the outputs of the activation
function, is that the weights are independent of specific chemical
conditions and only require the time to transition to be monotonic
in initial catalyst concentration.

If a weight vector (~wi) is trained to identify class i, it should
look more like the data (~x) from class i than a weight vector from
any other class:

‖~wi−~x‖2 <
∥∥~w j−~x

∥∥2 ∀ j 6= i (13)
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where similarity is measured by the L2-norm: ‖~q‖ =
√

∑n q2
n.

This inequality can be summed across the remaining K−1 classes
to yield:

(K−1) · ‖~wi−~x‖2 < ∑
j 6=i

∥∥~w j−~x
∥∥2 (14)

which can be rearranged to form the following loss function:

L(~x, i,W ) = ‖~wi−~x‖2− 1
K−1

·∑
j 6=i

∥∥~w j−~x
∥∥2 (15)

where W is the K×N matrix of all class weight vectors and ~x is
data from class i. Averaging the losses over the training data, we
arrive at the following objective:

F(X ,W ) =
1
M

M

∑
m=1

L(~xm, im,W ) (16)

where X is the M×N matrix of training data and im is the class of
the mth training example (~xm).

We want to find the weight matrix (W) that minimizes this ob-
jective (F). Taking the partial derivative of the objective, for fea-
ture n and class k, yields:

∂F(X ,W )

∂wkn
=

1
M

M

∑
m=1

∂L(~xm, im,W )

∂wkn
(17)

where

∂L(~x, i,W )

∂wkn
=

{
2 · (wkn− xn), for k = i
−2

K−1 · (wkn− xn), for k = j 6= i

}
(18)

Using these derivatives, the optimal weights for each class are
learned through gradient descent52. After each descent step, the
weights are constrained to the range of wkn ∈ [0,1] by clipping
negative values to 0 and normalizing the remaining values by the
class maximum. Since the weights are implemented as volume
transfers, carried out on a fluid handler with a resolution of Vδ =

2.5 nL and a chosen transfer volume limit of 200 nL (Vu), their
experimental precision is approximately 6 bits (Vδ /Vu = 80 levels).

A MATLAB implementation of the training routine is pro-
vided in the ESI (Listing S1†) and is also available on Github:
github.com/Chris3Arcadia/AutocatalyticWTA. In addition to the
experimentally tested network, one hundred 5-class WTA net-
works (see Fig. S10 and Table S1†) and one 9-class WTA network
(see Fig. S11 and S12†) were trained and evaluated in silico to
test the proposed classification scheme.
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