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Abstract—The increasing volume of encrypted traffic from
emerging applications has made conventional traffic classifica-
tion approaches ineffective and called for novel methods for
identifying network flows. Recent machine learning and deep
learning based approaches have been proposed yet many of
them are severely limited by their feature selection and inherent
neural network architecture. As network data by nature are of
non-Euclidean distance space and carry abundant chronological
relationship, we are inspired to utilize geometric deep learn-
ing that simultaneously takes into account packet raw bytes,
metadata and packet relations for classifying encrypted network
traffic. We validate our proposed graph neural network (GNN)
models against the reference methods including convolutional
neural networks (CNN) and recurrent neural networks (RNN)
quantitatively and demonstrate that the proposed graph neural
networks outperform the state of art.

Index Terms—encrypted network traffic analysis, network
traffic classification, graph neural networks, deep learning

I. INTRODUCTION

Network traffic classification has played a crucial role in

network management, traffic engineering and network security

[1]. Yet, as the computer network traffic proliferates, differen-

tiating network flows has been a challenge due to the variety

and dynamics of emerging network applications. Furthermore,

the increasing volume of encrypted network traffic has made

many conventional approaches such as deep packet inspection

(DPI) ineffective. Classifying encrypted network flows without

decrypting the traffic is of particular importance for privacy

reasons.

The usage of machine learning and deep learning models

for network traffic classification has been on the rise [2]–

[5]. Traditional machine learning methods, such as support

vector machine (SVM) and random forest (RF), make use of

hand-crafted features that are extracted from raw data. Since

the feature dimension is high in network packets and flows,

identifying a highly effective set of features is not always

a trivial task. Nowadays, data-driven neural methods have

achieved a great success in many fields. For instance, recent

advances in deep learning, particularly convolution neural

networks (CNN) exploit local information by taking all the

adjacent points of the center point under the receptive field into

account in imaging processing, and long short-term memory

(LSTM), one of recurrent neural networks (RNN) members

reasons in classification tasks in time series.

Incorporating neural network with the advantage of using

raw data [6] has been proved successful to a significant extent.

The nature of neural networks is to seek features from the

input data by comparing their predictions with the data true

labels. In the context of network traffic data, the models will

use raw bytes from the packet headers and attempt to learn

hidden features from a large amount of network packets with

application labels. The commonly used models such as CNN

and RNN require uniformly identical data width on every

samples due to their network architecture. Therefore, such

neural network models cannot inherently differentiate data

sample dimensions in training and inferences even though

the packet headers differ in length and can carry important

application-specific information.

Recently, geometric deep learning has drawn a lot of

attention as it aims to generalize neural network models to

non-Euclidean domains such as graphs and manifolds. As

an example, a graph neural network (GNN) that is able to

indicate relationship between nodes in a graph has started to

gain its popularity among researchers [7], [8]. We observe that

a geometric learning model has the opportunity to represent

the hidden features of network data which are naturally in

a non-Euclidean domain. We believe that GNN has several

salient characteristics that highlight the advantages of graphs

for network traffic analysis. Firstly, the arbitrarily structured

graphs contribute to the generality of graph network that it

could solve problems in non-Euclidean domain. Following

from that is the flexibility of network input shape: the shape of

each subject can be different during training and validation for

GNN, while the consistent input shape is a requisite for both

CNN and LSTM. Moreover, another outstanding advantage

of graph network architecture is that it can incorporate global

attributes, which are shared by all the nodes, assigned for each

input graph. In this work, we are motivated to answer the open

question: Is a graph neural network able to effectively classify

encrypted network traffic flows?

The network traffic analysis at a flow level has been proved

to be more accurate and meaningful because there is time

series information in flows [9]. In our work, we utilize an

open source library [8] to implement a flow-based GNN model

with an encoder and decoder structure for modeling encrypted978-3-903176-32-4 © 2021 IFIP



network traffic classification. Our GNN models are examined

on two scenarios. One is that the GNN is trained and validated

using a VPN traffic dataset, and the other is using a non-VPN

traffic dataset. For each scenario, we also compare our GNN

against two reference methods.

The main contributions of our work can be summarized as

follows:

• To the best of our knowledge, we are the first to imple-

ment a graph neural network architecture on network traf-

fic classification. According to our results, GNN shows its

potential to solve problems in differentiating applications

in encrypted traffic.

• We present a new notion to translate network traffic flows

into graph representations as network inputs that include

raw bytes, metadata, as well as chronological relationship

altogether.

• We demonstrate the proof-of-concept of the graph neu-

ral network for encrypted network traffic classification,

and show the feasibility and generality of the proposed

approach by conducting experimental studies using both

VPN and non-VPN datasets.

The rest of this paper is organized as follows. In Section II,

we survey the related works. In Section III, we explain the mo-

tivation and rationale behind our research. In Section IV, we

describe the datasets as well as the graph network architecture

including training procedures. In Section V, we present and

discuss the experiment results, and compare the performance

of graph network architecture with two reference methods: a

CNN model and an LSTM model. Last, in Section VI, we

summarize this work and discuss its strengths, limitations and

future work.

II. RELATED WORK

Much effort has been devoted to network traffic classifica-

tion to date for solving all kinds of tasks, such as detecting

intrusion and malware from normal network traffic, classifying

different applications, and distinguishing network protocols

that is applied to specific network packet or flow [10], [11]. As

the pervasion of applying techniques such as port forwarding,

random ports assignment, network address translation (NAT)

and encryption, and the evolution of the awareness of user

privacy, conventional network traffic classification methods

such as port-based approach and deep packet inspection are

considered not to be sufficient to cope with network analysis

problems nowadays [12]. Consequently, machine learning-

based methods which are reliant on a predefined set of input

features have been proposed and widely investigated in net-

work traffic analysis domain. In terms of the machine learning

model, several statistical techniques such as Gaussian mixture

model (GMM) or support vector machine (SVM) have been

applied to solve network traffic classification problems [13].

Also, there are studies which use random forest (RF), C4.5, or

k-nearest neighbor (KNN) as algorithms to build the classifiers

[14], [15]. However, the main drawback of these feature-based

methods is that they rely heavily on expert knowledge for

feature engineering.

Recently, models based on deep learning methods, such

as CNNs and LSTMs, have achieved a great success in

the network traffic classification [16]. Several works have

utilized the ISCXVPN2016 dataset [17] to tackle the problem

of classifying applications of encrypted network traffic [3],

[18]. CNN-based networks are known for the weight-sharing

scheme, which uses a window of shared weights, sliding

across the input and extracting local information. In [3],

Wang et al. proposed an end-to-end encrypted network traffic

classification method with 1D-CNN. They took raw bytes of

flows as network inputs and showed deep learning methods

has its potential on the domain of network traffic analysis.

LSTM-based networks are used to process time series data.

In [18], Yao et al. implemented an LSTM-based model and

took the first ten packets of each flow as network inputs. They

also applied attention mechanism to observe the contribution

of each packet through the trainable attention vector. Their

results show the network tends to focus on the first four

packet of a flow since the first few packets carry more

protocol-related information. Among similar deep learning-

based studies, their proposed networks are mostly trained

using only raw data as network inputs for solving the task of

network traffic classification. In our work, we view our data

as non-Euclidean datasets and develop a geometric learning

model, which takes a combination of raw bytes, metadata, and

chronological relationship into account, for encrypted network

traffic classification.

III. MOTIVATION

Geometric learning has drawn tremendous attention nowa-

days, as there are numerous existing non-Euclidean datasets in

nature such as social networks, transportation networks, and

brain networks. Consequently, as examples of geometric learn-

ing, graph neural networks that are able to indicate relationship

between nodes in a graph have started to gain their popularity

among researchers [7], [8]. There are several characteristics

that highlight the advantages of graph networks. Firstly, the

arbitrarily structured graphs contribute to the generality of

graph networks to solve problems in non-Euclidean space.

Secondly, it provides the flexibility of network input shape.
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Fig. 1. (a) 1D-CNN: kernel sizes to determine the blue grid’s neighbors. (b)
GNN: edges to define neighbors for the blue node.



The shape of each sample can be different during training or

validation process for GNNs, while the consistent input shape

is a requisite for general CNNs and LSTMs. Moreover, another

outstanding advantage of graph network architecture is that it

can incorporate global attributes, which are shared by all the

nodes and assigned for each input graph.

In contrast, it is widely known that CNNs are very pro-

ductive when solving problems in images which are naturally

Euclidean and own the property of translational invariance

[19]. As shown in Fig.1, CNNs rely on kernels that determine

neighbors for the center grid by their shapes, while GNNs

allow researchers to define edges for determining neighbors

for each node. In many network traffic studies, researchers

map network traffic data into Euclidean domain and then use

the Euclidean-based data to train a CNN model [3], [5], [20].

In terms of the network inputs for flow-based network traffic

classification, the main drawback of CNN models is that all

inputs are limited to a fixed shape once their architectures

are determined. For instance, when mapping traffic flows into

Euclidean space, the CNN is restricted to take a fixed number

of packets for each flow. In the event that a flow has fewer

packets, zero padding will be required, which might harm the

network performance; when a flow has more packets than the

predefined fixed number of packets, the flow will have to be

truncated in order to be consistent with the predefined packet

number limit, resulting in losing the fidelity of data.

Intuitively, there are several reasons why classifying net-

work traffic data can benefit from GNN models:

(1) Given the fact that GNNs can accept flow data with

arbitrary numbers of packets as inputs, we can obviate the

needs of the data truncation and zero padding. In other words,

each traffic flow can be translated to a graph representation

completely without losing important or adding redundant

information, which maintains the data fidelity.

(2) With the capability of defining relations between packets

in GNNs, network traffic flows can be easily converted into

a space which is non-Euclidean and researchers can preserve

more original looks and characteristics of flows without Eu-

clidean distance constraints.

(3) Since the graph network architecture allows us to assign

global attributes, which are at graph level and are shared by

all the nodes, for each input graph, we can easily incorporate

additional universal information, such as packet length mean

values, and duration of a flow.

These intuitions motivate us to extend network traffic clas-

sification task to a geometric deep learning model with graph

inputs. The proposed model consists of nodes (raw bytes),

global attributes (metadata), as well as edges (chronological

relation) altogether. We plan to compare it directly with

references deep learning models such as CNNs and RNNs.

IV. METHODS

A. Data Description and Preprocessing

We use the UNB ISCX Network Traffic VPN-nonVPN

(ISCXVPN2016) dataset [17], which is an encrypted network

traffic dataset and contains several types of network traffic

and applications. A regular session and a session over VPN

are captured using Wireshark and tcpdump, and the encrypted

traffic has a total amount of 25 GB of data. In this study,

we utilize two subsets of the ISCXVPN2016 dataset for our

experimental studies, and it will be denoted as NonVPN-
dataset and VPN-dataset in the remainder of this paper.

Under NonVPN-dataset, there are six different types of net-

work traffic across sixteen different applications. As for VPN-

dataset, there are six different types of network traffic across

fourteen different applications.

In the following, we describe three major steps for data

preprocessing, which are data segmentation, masking out

biased fields of packets, and adjusting input data sizes and

formats according to the graph-structured representations.

1) Data segmentation: SplitCap, an open source tool to

split PCAP files based on different criteria, is used to extract

traffic flows as the first step. Studies show that using bi-

TABLE I
NONVPN-DATASET

Label Application No. of flows Total

Chat Aimchat 383 2,058
Facebook 471

Gmail 391
Hangouts 409

ICQ 404
Email Email 5,703 5,703
File FTP 508 1,191

SCP 157
SFTP 181
Skype 345

Streaming Netflix 270 1,278
Spotify 144
Vimeo 310

Youtube 554
P2P Torrent 667 667
VoIP Facebook 535 3,975

Hangouts 1,869
Skype 456

Voipbuster 1,115

TABLE II
VPN-DATASET

Label Application No. of flows Total

Chat Aimchat 30 3,987
Facebook 1,153
Hangouts 2,731

ICQ 29
Skype 44

Email Email 286 286
File FTPS 42 773

SFTP 19
Skype 712

Streaming Netflix 142 525
Spotify 107
Vimeo 117

Youtube 159
P2P Torrent 262 262
VoIP Facebook 1,325 6,990

Hangouts 3,160
Skype 896

Voipbuster 1,609



…

(a)                                                    (b)

Node attributes

Node

…

Global attributes

Fig. 2. (a) Shape of a traffic flow, where each row represents a single packet.
(b) The graph-structured representation of a flow.

directional flows, also known as sessions, can achieve better

performance comparing to unidirectional flows [3]. As a result,

for data segmentation, we employ bi-directional flows in our

experiments.

The SplitCap application takes a single PCAP file as input

and output extracted PCAP files based on 5-tuple. After the

extraction, the NonVPN-dataset and VPN-dataset has 14, 872
and 12, 823 bi-directional flows in total, respectively. The

extracted flows are split into two parts that 60 percent is

for the training dataset and the remaining is for validation.

An extracted PCAP file stores a single flow, and each flow

consists of packets where their source and destination IP

address, source and destination port number, and the protocol

in use are the same. Every packet contains a byte stream up to

maximum transmission unit (MTU) size of 1, 500 bytes. Table

I shows the distribution of flows for each class and application

in NonVPN-dataset, and Table II shows the distribution of

flows for each class and application in VPN-dataset.

2) Mask out biased fields: For each packet of the extracted

flows, the data link layer information is removed, and the

source and destination IP addresses are masked. As the original

dataset is captured artificially, the source to capture the net-

work traffic is limited to a few hosts or servers. Consequently,

the source and destination IP addresses in the IP datagram

header are masked with zeros, and the Ethernet header which

includes Media Access Control (MAC) addresses information

is removed entirely. In this way, the network can refrain from

getting biased information as inputs, which may mislead the

network during the training process.

3) Network input: The network takes in a flow as an input.

As shown in Fig. 2-a, the structure of a flow consists of

packets, denoted as p1..k, where k is the total number of

packets in a flow, and L is our desired lengths of packet bytes.

The normalization is performed so that the values for each byte

are scale to the range of [0, 1]. We evaluate different values of

L in different setup of experimental studies listed in Table III.

The detailed description of the experiments will be provided

in Section IV-B.

In our work, each flow is translated into a graph represen-

tation. A graph consists of a set of nodes and edges, and it

is also capable of carrying global attributes along with the

graph. One key advantage of graph network architecture in

terms of network inputs is the flexibility of its input shape.

During training and validation, the shape of each subject

can be various for GNNs, while the same input shape is a

requisite for both CNNs and LSTMs. As shown in Fig. 2-b,

the figure shows an example of a graph input. Each packet in

the flow is seen as a node, which are denoted as n1..k, and

each node carries L bytes from the packet. In addition to this,

we can assign edges to indicate the relation between nodes.

The directed edge from nk−1 to nk, is used to express the

chronological relationship of packets among the flow.

Moreover, it is also an advantage of graph network archi-

tecture that it can have global attributes assigned for each

input graph. In part of our experimental studies, we also

include system-level properties of flow that are represented

by global attributes, which is denoted as u. In our case, the

global attributes comprise seven of the common metadata

features extracted from each flow for every network input

sample. These flow attributes include source and destination

port numbers, payload and packet length mean, standard

deviation of payload and packet length, and the duration of

flow. Each global attribute is normalized into the range of

[0, 1]. Consequently, the graph network is able to have a

combination of inputs with raw data and metadata training

together.

B. Experimental Details

The nature of deep learning methods is to seek hidden

features from the given input data by itself. Deep learning

methods are not only able to take hand-crafted features as

inputs, but also very successful in working with raw data

[6]. Hence, we design experiments to assess the impacts of

network inputs on GNN, specifically metadata, raw bytes, and

chronological relationship. In the following, we describe four

studies with different combination of inputs as well as two

reference methods to be compared against. The experimental

studies are summarized in Table III. In our work, we conduct

the experimental studies twice with two datasets, NonVPN-

dataset and VPN-dataset, independently, in order to show how

the proposed approach generalizes on different datasets.

TABLE III
EXPERIMENTAL STUDIES AND INPUT DATA.

(For the input types, “Global” represents “metadata”, “Node” represents
“raw bytes”, and “Edge” represents ”chronological relationship”.)

Study index Input types No. of raw bytes (L)

1 Global + Node + Edge 1, 500
2 Node + Edge 1, 500
3 Global -
4 Global + Node + Edge 100

1) Study 1 and Study 4: In Study 1 and 4, both raw bytes

and metadata features are included for network inputs. The

raw bytes are mapped into a graph representation with node

attributes and edges, that every packet in a flow is a node

and each node carries its raw data, and the edges indicate the

chronological relationship of packets in a flow. In addition, the

metadata features are mapped to the field of global attributes

along the network training process. The difference between

these two studies is that Study 4 only covers the header



information that the size of packet length was set to 100 bytes.

Via Study 1, we would like to examine whether the network

can take advantage from the combination of network inputs

that the metadata is provided as additional information by

making a comparison with Study 2. Moreover, we would like

to compare Study 1 with Study 4, in terms of the effectiveness

of having payload information included or not for network

inputs.

2) Study 2 and Study 3: As for Study 2 and Study 3, both

experiments take only either raw data or metadata as network

inputs. In Study 2, we train GNN using raw data with a packet

length of 1, 500 bytes; while in Study 3, the GNN takes only

global attributes into account. We would like to observe and

make comparison of the performance of GNN having raw data

and metadata as inputs respectively.

3) Reference methods: We choose two commonly used

deep learning models, CNN and LSTM, as our reference

architectures, which take raw bytes as inputs. Due to the

constraint that the number of packets is required to be fixed

in order to train CNN and LSTM models, hence, each flow

has a shape of 10 × 1, 500 as in [18], where 10 is the first

ten packets of each flow, and 1, 500 is the packet length. Zero

padding is applied if a flow has fewer than 10 packets.

C. Network Architecture

The fundamental of our geometric learning model is a

graph neural network (GNN) that supports various graph-

structured representations. By taking one of the key advantages

of its design principle that a graph neural network can be

composed of multi-block architectures, we adopt an encode-

process-decode architecture for our GNN model. As shown

in Fig. 3, our end-to-end graph neural network comprises

three functional blocks: a GNenc block, a GNcore block,

and a GNdec block. For each block, there are three update

functions for nodes, edges and global, which are set to 5-

layers multilayer perceptron (MLP), where each layer has a

total number of 128 neurons, following by a rectified linear

unit (ReLU) and a batch norm layer. The aggregation functions

used for all the update functions are summation.

To be specific, the GNenc is an encoder that maps the input

graph, denoted as x, to a latent domain. The GNcore takes the

latent space representation, denoted as h, as input to generate

the output, denoted as ĥ, that the GNcore is formed by N
GN blocks sequentially where N = 3. The GNdec then maps

the latent space representation, ĥ, back to generate the final

output, which is denoted as ŷ.

1) Regularization: Regularization is an important pillar to

prevent the network from overfitting. Two common approaches

are used in this work, penalized weights and dropouts.

The inverse category frequency (ICF) weighting scheme is

adopted in our work that a penalized weight is assigned to

each class. Since the number of samples of all classes within

each batch may be different, the frequencies and weights

are being calculated and applied within each batch during

network training process. To such a degree, the network will

consider the number of samples of all classes to be balanced

Encoder 
Block

Decoder 
Block

Core
Block

GNenc GNcore GNdec

x 

Fig. 3. The graph neural network (GNN) architecture.

and contribute equally. Moreover, an important advantage of

applying penalized weight according to the class distribution

within each batch is that the network would tend to have better

adaptability over different class distributions of validation set.

Dropout regularization has been considered an efficient

regularization method for neural networks [21] that partial of

the neurons will be switched off randomly during each training

iteration. Both non-recurrent and recurrent dropout techniques

are applied to our GNN. Non-recurrent dropout is used in the

encoder and decoder blocks, while recurrent dropout is used

in the core block.

2) Loss function: The network is trained using cross-

entropy as the loss function, which is expressed as:

loss(ŷ, y) = α[y]

(
−ŷ[y] + log

(∑
i

exp (ŷ[i])

))
(1)

where ŷ and y are vector prediction results and class true

labels respectively, and α is the vector of penalized weights

computed from the ICF weighting scheme.

D. Network Training

The graph network is implemented on Tensorflow platform

using Graph Nets library created by DeepMind [8] with an

NVIDIA V100 graphics card. The graph network takes a

graph, consisting of metadata as global attributes, raw bytes as

node attributes, and packet relations as edges, as an input and

yields a graph with a prediction stored in global. The cross-

entropy loss is computed by comparing the prediction with

the ground truth. The parameters of the graph network are

updated by minimizing the loss using Adam optimizer with

the learning rate 0.0003. The batch size is set to 128. With

these hyper-parameters, we train our graph network for 500
epochs.

E. Evaluation Metrics

In this work, overall accuracy is not considered a suitable

metric because real datasets like network traffic flows, in gen-

eral, are exceedingly imbalanced, and a high overall accuracy

can be easily achieved when a network is trained to favor

major categories with a huge number of samples. Therefore,

instead of using overall accuracy, the evaluation metrics used

to validate our graph neural network are sensitivity and F1

score, which are more emphasizing each category’s perfor-

mance.
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1.8% 0.9% 92.8% 2.9% 3.8% 1.2%
29 1 285 6 4 33

0.2% 0.0% 2.6% 94.2% 0.0% 0.2%
3 0 8 195 0 6

0.1% 0.0% 0.0% 1.0% 93.3% 0.4%
1 0 0 2 97 10

1.1% 0.0% 2.3% 0.5% 0.0% 97.1%
17 0 7 1 0 2714

94.1% 8.8% 6.5% 0.5% 2.9% 16.5%
1499 10 20 1 3 460

0.4% 83.3% 1.0% 1.0% 0.0% 0.1%
6 95 3 2 0 4

1.1% 1.8% 78.8% 2.9% 2.9% 0.5%
18 2 242 6 3 15

0.2% 1.8% 4.6% 87.9% 0.0% 0.9%
3 2 14 182 0 26

0.0% 0.0% 0.7% 0.5% 83.7% 0.2%
0 0 2 1 87 5

4.2% 4.4% 8.5% 7.2% 10.6% 81.8%
67 5 26 15 11 2285

96.8% 7.9% 4.6% 1.0% 1.9% 0.8%
1542 9 14 2 2 21

0.6% 87.7% 1.0% 0.0% 3.8% 0.2%
9 100 3 0 4 6

1.0% 2.6% 89.6% 0.0% 2.9% 0.8%
16 3 275 0 3 21

0.3% 0.0% 2.3% 93.2% 0.0% 0.1%
4 0 7 193 0 4

0.0% 0.0% 0.0% 0.0% 91.3% 0.0%
0 0 0 0 95 0

1.4% 1.8% 2.6% 5.8% 0.0% 98.1%
22 2 8 12 0 2743

96.5% 6.1% 2.9% 0.5% 1.9% 0.4%
1537 7 9 1 2 10

0.5% 91.2% 0.0% 0.5% 0.0% 0.1%
8 104 0 1 0 2

1.1% 0.9% 85.7% 3.4% 1.0% 1.0%
18 1 263 7 1 27

0.6% 0.0% 3.6% 92.8% 1.9% 0.6%
10 0 11 192 2 18

0.1% 0.0% 0.3% 0.0% 92.3% 0.1%
1 0 1 0 96 4

1.2% 1.8% 7.5% 2.9% 2.9% 97.8%
19 2 23 6 3 2734

96.3% 6.1% 4.2% 1.4% 2.9% 1.0%
1534 7 13 3 3 29

0.6% 90.4% 0.0% 0.0% 0.0% 0.1%
9 103 0 0 0 3

1.0% 1.8% 84.7% 3.4% 2.9% 0.9%
16 2 260 7 3 25

0.3% 0.0% 2.6% 92.8% 0.0% 0.3%
4 0 8 192 0 8

0.0% 0.0% 0.0% 0.5% 92.3% 0.1%
0 0 0 1 96 2

1.9% 1.8% 8.5% 1.9% 1.9% 97.6%
30 2 26 4 2 2728
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Fig. 4. The confusion matrices across different experimental studies and reference methods with two datasets. Part A presents the result from NonVPN-dataset,
and part B presents the result from VPN-dataset. For each square box in a confusion matrix, the lower value is the instance count of correct predictions to
ground truth, and the upper value is the normalized number of it. The normalized values have a sum of 1 across columns within a confusion matrix. (a) Study
1 that trained with raw bytes and metadata. (b) Study 2 that trained with raw bytes only. (c) Study 3 that trained with metadata features only. (d) Study 4
that trained with raw bytes and metadata. The raw bytes only covers the header fields. (e) A CNN model that trained with raw bytes. (f) An LSTM model
that trained with raw bytes.

1) Sensitivity: The sensitivity is also called recall. It mea-

sures, within samples which have the same label, the ratio of

number of the correctly predicted samples to the total number

of the samples and is defined as:

Sensitivityi =
TPi

TPi + FNi
, (2)

where TP is the number of true positive samples, FN is the

number of false negative samples, and i indicates the class

index.

2) Precision: The precision measures, within samples

which are classified as the same label, the proportion of

number of the correctly predicted samples to the total number

of the samples and is defined as:

Precisioni =
TPi

TPi + FPi
, (3)

where FP is the number of false positive samples.

3) F1 score: The F1 score, which computes the harmonic

mean of the sensitivity and the precision, is a widely used

metric for models trained with an imbalanced dataset and is

defined as:

F1i = 2× Sensitivityi × Precisioni

Sensitivityi + Precisioni
. (4)

V. RESULTS

A. NonVPN-dataset

Fig. 4A showcases the confusion matrices where we can see

how much a network predicts correctly for each class across

our experimental studies and reference methods for NonVPN-

dataset. The confusion matrix of Study 1 is shown in Fig.

4A-a, that the network is trained with a combination of full

raw data and metadata as inputs. By comparing to the green

boxes in Study 2 (Fig. 4A-b) and Study 3 (Fig. 4A-c), the

yellow boxes from Study 1 shows the sensitivities of File and

P2P are boosted by about 5 percent. A key observation here

is that when the global attributes are incorporated with the

node attributes and the edges along the training process, it

helps achieve better performance of the multi-class classifier.

It implies that the graph network takes advantages of using the

additional input of metadata, which requires extra knowledge

to acquire and networks cannot easily decode and learn

properly from raw data during training.

The graph networks of Study 2 and Study 3 are trained with

full raw bytes only and metadata only, respectively. According

to the corresponding confusion matrices, Fig. 4A-b and Fig.

4A-c, it is obvious that the graph neural network trained with

raw data outperforms that trained with metadata in terms of

the overall performance. The result is consistent with the prior

research [6] that neural network models are more suitable to

be trained with raw data, and have been proved successful to

a significant extent.

The confusion matrix of Study 4 is shown in Fig. 4A-d,

that the network is trained with inputs consisting of raw bytes

and metadata, similar to Study 1, yet covering only the header

information rather than the full-length bytes. By comparing the

blue boxes in Study 4 (Fig. 4A-d) with the yellow boxes in

Study 1 (Fig. 4A-a), there is a decrease of 8.7 and 6.4 percent

in sensitivities of File and P2P respectively. According to the

observation, it implies that apart from the header information,

the payload field may also contain important information so



TABLE IV
NONVPN-DATASET: PERFORMANCE COMPARISON

NonVPN-dataset Network input Metric Chat Email File Streaming P2P VoIP

Raw + Metadata Sensitivity 0.936 0.972 0.730 0.925 0.830 0.893
Study 1 (L = 1, 500) Precision 0.926 0.974 0.786 0.862 0.877 0.889

F1 score 0.931 0.973 0.757 0.893 0.853 0.891
Raw only Sensitivity 0.922 0.976 0.680 0.939 0.785 0.894

Study 2 (L = 1, 500) Precision 0.919 0.967 0.834 0.860 0.829 0.876
F1 score 0.920 0.971 0.749 0.897 0.806 0.885

Sensitivity 0.261 0.982 0.482 0.803 0.665 0.832
Study 3 Metadata only Precision 0.802 0.762 0.671 0.785 0.871 0.791

F1 score 0.394 0.858 0.561 0.794 0.754 0.811
Raw + Metadata Sensitivity 0.911 0.969 0.644 0.880 0.766 0.853

Study 4 (L = 100) Precision 0.896 0.958 0.726 0.839 0.778 0.857
F1 score 0.903 0.963 0.683 0.859 0.772 0.855

Raw only Sensitivity 0.923 0.979 0.642 0.880 0.759 0.852
CNN (L = 1, 500) Precision 0.913 0.964 0.688 0.899 0.779 0.848

F1 score 0.918 0.971 0.664 0.890 0.769 0.850
Raw only Sensitivity 0.935 0.979 0.652 0.864 0.755 0.848

LSTM (L = 1, 500) Precision 0.912 0.963 0.741 0.866 0.755 0.848
F1 score 0.923 0.971 0.694 0.865 0.755 0.848

TABLE V
VPN-DATASET: PERFORMANCE COMPARISON

VPN-dataset Network input Metric Chat Email File Streaming P2P VoIP

Raw + Metadata Sensitivity 0.971 0.956 0.921 0.980 0.942 0.985
Study 1 (L = 1, 500) Precision 0.979 0.931 0.862 0.944 0.989 0.989

F1 score 0.975 0.943 0.891 0.962 0.965 0.987
Raw only Sensitivity 0.964 0.903 0.928 0.942 0.932 0.971

Study 2 (L = 1, 500) Precision 0.966 0.927 0.796 0.919 0.881 0.990
F1 score 0.965 0.915 0.857 0.930 0.906 0.980

Sensitivity 0.941 0.833 0.788 0.879 0.836 0.817
Study 3 Metadata only Precision 0.752 0.863 0.846 0.801 0.915 0.948

F1 score 0.836 0.848 0.816 0.838 0.874 0.878
Raw + Metadata Sensitivity 0.968 0.877 0.895 0.932 0.913 0.981

Study 4 (L = 100) Precision 0.969 0.819 0.864 0.927 1.000 0.984
F1 score 0.968 0.847 0.880 0.930 0.954 0.982

Raw only Sensitivity 0.964 0.912 0.856 0.927 0.923 0.978
CNN (L = 1, 500) Precision 0.981 0.904 0.829 0.824 0.941 0.981

F1 score 0.973 0.908 0.842 0.872 0.932 0.979
Raw only Sensitivity 0.963 0.903 0.846 0.927 0.923 0.976

LSTM (L = 1, 500) Precision 0.965 0.895 0.830 0.905 0.969 0.977
F1 score 0.964 0.899 0.838 0.916 0.945 0.976

that the model’s performance can be more accurate and reliable

when taking full raw data as network inputs.

Fig. 4A-b, Fig. 4A-e and Fig. 4A-f are confusion matrices

for Study 2, CNN, and LSTM models, where raw data is

served as network inputs. According to the quantitative results,

we confirm that the graph neural network is comparable to,

and even slightly better than CNN and LSTM. It is likely that

because the graph network can obtain extra information pro-

vided by the edges that are used to indicate the chronological

relationship between packets within a flow.

The performance metrics used for evaluating our experi-

mental studies and reference methods for NonVPN-dataset are

tabulated in Table IV. The table indicates training with full

raw data and metadata together as network inputs performs

better than other experimental studies as well as the reference

methods, CNN and LSTM models. In terms of the sensitivity,

half of the classes (Chat, File and P2P) in Study 1 achieve

the highest values among all the experimental studies and

the two reference methods, and in particular, Study 1 model’s

performance on File and P2P even exceeds all other methods

by a wide margin. As for the precision, four out of six classes

in Study 1 achieve the highest values among all the other

experiments listed. Since F1 score computes the harmonic

mean of the sensitivity and the precision, as expected, Study

1 has the highest F1 values in most of the categories.

B. VPN-dataset
In our work, we went through the above mentioned ex-

perimental setup once again with our second dataset, VPN-

dataset. Fig. 4B showcases the confusion matrices across our

experimental studies and the reference methods for VPN-

dataset, and the performance metrics used for validating our

work are tabulated in Table V. Consistent with the result

obtained from NonVPN-dataset, the GNN model performs the

best when metadata is incorporated with raw data along the

training process. As shown in 4B-a, all the categories, except

for File in Study 1, have the highest sensitivities, comparing

with Study 2 (Fig. 4B-b) and Study 3 (Fig. 4B-c). Also, in

terms of F1 score, all categories of Study 1 achieve the highest

values among all the other experiments listed. According

to the result, we conclude that GNN can take advantage



from the additional input of metadata, which requires extra

knowledge to acquire and networks cannot easily decode and

learn properly from raw data during training.

Similar trend occurs that some of the categories’ accuracies

will drop by a wide margin when the network input only

covers header information. By comparing with Study 1 (Fig.

4B-a), the orange boxes from Study 4 (Fig. 4B-d) shows the

accuracies of Email and Streaming have a decrease of 7.9
and 4.9 percent respectively, and the accuracies of rest of

the classes are also lower than Study 1. Hence, through the

observation, we conclude that the model’s performance could

be more accurate and reliable when taking full raw data as

network inputs, rather than only providing the header fields.

Fig. 4B-b, Fig. 4B-e, and Fig. 4B-f are confusion matrices

of Study 2, CNN, and LSTM, respectively, which all take

raw bytes as inputs. Likewise, since GNN can obtain extra

information provided by the edges that are used to indicate the

chronological relationship between packets, our GNN model is

comparable to, and even slightly better than our two reference

methods according to the quantitative results. In particular, the

sensitivity of File category as indicated in the red box from

Study 2 (Fig. 4B-b) substantially exceeds the sensitivities of

two reference methods, in the purple boxes on Fig. 4B-e and

Fig. 4B-f, by approximately 8 percent.

Quantitatively, according to the showcased confusion ma-

trices in Fig. 4B and the performance metrics in Table V

that are used for evaluating and validating our experimental

studies and reference methods for VPN-dataset, we conclude

that GNN trained with full raw data and metadata together as

inputs outperforms the remaining experimental studies as well

as the reference CNN and LSTM models.

VI. CONCLUSION

In this work, we implement a flow-based geometric learning

model that simultaneously takes raw bytes, metadata and

chronological relationship into account for classifying en-

crypted network traffic. We compare our models against the

reference methods and demonstrate that: for File and P2P

in NonVPN-dataset and for File in VPN-dataset, both of the

Study 2 models have achieved a great performance comparable

to the CNN model’s and the LSTM model’s, and the Study 1
models substantially outperform Study 2. These results show

that incorporating both raw bytes and metadata into a model is

advantageous. In the future work, as a strategy to validate our

model’s more robust performance, we plan to acquire more

encrypted network traffic data with more category labels to

increase our training size.
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