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Abstract—The increasing volume of encrypted traffic from
emerging applications has made conventional traffic classifica-
tion approaches ineffective and called for novel methods for
identifying network flows. Recent machine learning and deep
learning based approaches have been proposed yet many of
them are severely limited by their feature selection and inherent
neural network architecture. As network data by nature are of
non-Euclidean distance space and carry abundant chronological
relationship, we are inspired to utilize geometric deep learn-
ing that simultaneously takes into account packet raw bytes,
metadata and packet relations for classifying encrypted network
traffic. We validate our proposed graph neural network (GNN)
models against the reference methods including convolutional
neural networks (CNN) and recurrent neural networks (RNN)
quantitatively and demonstrate that the proposed graph neural
networks outperform the state of art.

Index Terms—encrypted network traffic analysis, network
traffic classification, graph neural networks, deep learning

I. INTRODUCTION

Network traffic classification has played a crucial role in
network management, traffic engineering and network security
[1]. Yet, as the computer network traffic proliferates, differen-
tiating network flows has been a challenge due to the variety
and dynamics of emerging network applications. Furthermore,
the increasing volume of encrypted network traffic has made
many conventional approaches such as deep packet inspection
(DPI) ineffective. Classifying encrypted network flows without
decrypting the traffic is of particular importance for privacy
reasons.

The usage of machine learning and deep learning models
for network traffic classification has been on the rise [2]-
[5]. Traditional machine learning methods, such as support
vector machine (SVM) and random forest (RF), make use of
hand-crafted features that are extracted from raw data. Since
the feature dimension is high in network packets and flows,
identifying a highly effective set of features is not always
a trivial task. Nowadays, data-driven neural methods have
achieved a great success in many fields. For instance, recent
advances in deep learning, particularly convolution neural
networks (CNN) exploit local information by taking all the
adjacent points of the center point under the receptive field into
account in imaging processing, and long short-term memory
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(LSTM), one of recurrent neural networks (RNN) members
reasons in classification tasks in time series.

Incorporating neural network with the advantage of using
raw data [6] has been proved successful to a significant extent.
The nature of neural networks is to seek features from the
input data by comparing their predictions with the data true
labels. In the context of network traffic data, the models will
use raw bytes from the packet headers and attempt to learn
hidden features from a large amount of network packets with
application labels. The commonly used models such as CNN
and RNN require uniformly identical data width on every
samples due to their network architecture. Therefore, such
neural network models cannot inherently differentiate data
sample dimensions in training and inferences even though
the packet headers differ in length and can carry important
application-specific information.

Recently, geometric deep learning has drawn a lot of
attention as it aims to generalize neural network models to
non-Euclidean domains such as graphs and manifolds. As
an example, a graph neural network (GNN) that is able to
indicate relationship between nodes in a graph has started to
gain its popularity among researchers [7], [8]. We observe that
a geometric learning model has the opportunity to represent
the hidden features of network data which are naturally in
a non-Euclidean domain. We believe that GNN has several
salient characteristics that highlight the advantages of graphs
for network traffic analysis. Firstly, the arbitrarily structured
graphs contribute to the generality of graph network that it
could solve problems in non-Euclidean domain. Following
from that is the flexibility of network input shape: the shape of
each subject can be different during training and validation for
GNN, while the consistent input shape is a requisite for both
CNN and LSTM. Moreover, another outstanding advantage
of graph network architecture is that it can incorporate global
attributes, which are shared by all the nodes, assigned for each
input graph. In this work, we are motivated to answer the open
question: Is a graph neural network able to effectively classify
encrypted network traffic flows?

The network traffic analysis at a flow level has been proved
to be more accurate and meaningful because there is time
series information in flows [9]. In our work, we utilize an
open source library [8] to implement a flow-based GNN model
with an encoder and decoder structure for modeling encrypted



network traffic classification. Our GNN models are examined
on two scenarios. One is that the GNN is trained and validated
using a VPN traffic dataset, and the other is using a non-VPN
traffic dataset. For each scenario, we also compare our GNN
against two reference methods.

The main contributions of our work can be summarized as
follows:

o To the best of our knowledge, we are the first to imple-
ment a graph neural network architecture on network traf-
fic classification. According to our results, GNN shows its
potential to solve problems in differentiating applications
in encrypted traffic.

o We present a new notion to translate network traffic flows
into graph representations as network inputs that include
raw bytes, metadata, as well as chronological relationship
altogether.

o We demonstrate the proof-of-concept of the graph neu-
ral network for encrypted network traffic classification,
and show the feasibility and generality of the proposed
approach by conducting experimental studies using both
VPN and non-VPN datasets.

The rest of this paper is organized as follows. In Section II,
we survey the related works. In Section III, we explain the mo-
tivation and rationale behind our research. In Section IV, we
describe the datasets as well as the graph network architecture
including training procedures. In Section V, we present and
discuss the experiment results, and compare the performance
of graph network architecture with two reference methods: a
CNN model and an LSTM model. Last, in Section VI, we
summarize this work and discuss its strengths, limitations and
future work.

II. RELATED WORK

Much effort has been devoted to network traffic classifica-
tion to date for solving all kinds of tasks, such as detecting
intrusion and malware from normal network traffic, classifying
different applications, and distinguishing network protocols
that is applied to specific network packet or flow [10], [11]. As
the pervasion of applying techniques such as port forwarding,
random ports assignment, network address translation (NAT)
and encryption, and the evolution of the awareness of user
privacy, conventional network traffic classification methods
such as port-based approach and deep packet inspection are
considered not to be sufficient to cope with network analysis
problems nowadays [12]. Consequently, machine learning-
based methods which are reliant on a predefined set of input
features have been proposed and widely investigated in net-
work traffic analysis domain. In terms of the machine learning
model, several statistical techniques such as Gaussian mixture
model (GMM) or support vector machine (SVM) have been
applied to solve network traffic classification problems [13].
Also, there are studies which use random forest (RF), C4.5, or
k-nearest neighbor (KNN) as algorithms to build the classifiers
[14], [15]. However, the main drawback of these feature-based
methods is that they rely heavily on expert knowledge for
feature engineering.

Recently, models based on deep learning methods, such
as CNNs and LSTMs, have achieved a great success in
the network traffic classification [16]. Several works have
utilized the ISCXVPN2016 dataset [17] to tackle the problem
of classifying applications of encrypted network traffic [3],
[18]. CNN-based networks are known for the weight-sharing
scheme, which uses a window of shared weights, sliding
across the input and extracting local information. In [3],
Wang et al. proposed an end-to-end encrypted network traffic
classification method with 1D-CNN. They took raw bytes of
flows as network inputs and showed deep learning methods
has its potential on the domain of network traffic analysis.
LSTM-based networks are used to process time series data.
In [18], Yao et al. implemented an LSTM-based model and
took the first ten packets of each flow as network inputs. They
also applied attention mechanism to observe the contribution
of each packet through the trainable attention vector. Their
results show the network tends to focus on the first four
packet of a flow since the first few packets carry more
protocol-related information. Among similar deep learning-
based studies, their proposed networks are mostly trained
using only raw data as network inputs for solving the task of
network traffic classification. In our work, we view our data
as non-Euclidean datasets and develop a geometric learning
model, which takes a combination of raw bytes, metadata, and
chronological relationship into account, for encrypted network
traffic classification.

III. MOTIVATION

Geometric learning has drawn tremendous attention nowa-
days, as there are numerous existing non-Euclidean datasets in
nature such as social networks, transportation networks, and
brain networks. Consequently, as examples of geometric learn-
ing, graph neural networks that are able to indicate relationship
between nodes in a graph have started to gain their popularity
among researchers [7], [8]. There are several characteristics
that highlight the advantages of graph networks. Firstly, the
arbitrarily structured graphs contribute to the generality of
graph networks to solve problems in non-Euclidean space.
Secondly, it provides the flexibility of network input shape.
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Fig. 1. (a) 1D-CNN: kernel sizes to determine the blue grid’s neighbors. (b)
GNN: edges to define neighbors for the blue node.



The shape of each sample can be different during training or
validation process for GNNs, while the consistent input shape
is a requisite for general CNNs and LSTMs. Moreover, another
outstanding advantage of graph network architecture is that it
can incorporate global attributes, which are shared by all the
nodes and assigned for each input graph.

In contrast, it is widely known that CNNs are very pro-
ductive when solving problems in images which are naturally
Euclidean and own the property of translational invariance
[19]. As shown in Fig.1, CNNs rely on kernels that determine
neighbors for the center grid by their shapes, while GNNs
allow researchers to define edges for determining neighbors
for each node. In many network traffic studies, researchers
map network traffic data into Euclidean domain and then use
the Euclidean-based data to train a CNN model [3], [5], [20].
In terms of the network inputs for flow-based network traffic
classification, the main drawback of CNN models is that all
inputs are limited to a fixed shape once their architectures
are determined. For instance, when mapping traffic flows into
Euclidean space, the CNN is restricted to take a fixed number
of packets for each flow. In the event that a flow has fewer
packets, zero padding will be required, which might harm the
network performance; when a flow has more packets than the
predefined fixed number of packets, the flow will have to be
truncated in order to be consistent with the predefined packet
number limit, resulting in losing the fidelity of data.

Intuitively, there are several reasons why classifying net-
work traffic data can benefit from GNN models:

(1) Given the fact that GNNs can accept flow data with
arbitrary numbers of packets as inputs, we can obviate the
needs of the data truncation and zero padding. In other words,
each traffic flow can be translated to a graph representation
completely without losing important or adding redundant
information, which maintains the data fidelity.

(2) With the capability of defining relations between packets
in GNNs, network traffic flows can be easily converted into
a space which is non-Euclidean and researchers can preserve
more original looks and characteristics of flows without Eu-
clidean distance constraints.

(3) Since the graph network architecture allows us to assign
global attributes, which are at graph level and are shared by
all the nodes, for each input graph, we can easily incorporate
additional universal information, such as packet length mean
values, and duration of a flow.

These intuitions motivate us to extend network traffic clas-
sification task to a geometric deep learning model with graph
inputs. The proposed model consists of nodes (raw bytes),
global attributes (metadata), as well as edges (chronological
relation) altogether. We plan to compare it directly with
references deep learning models such as CNNs and RNNs.

IV. METHODS

A. Data Description and Preprocessing

We use the UNB ISCX Network Traffic VPN-nonVPN
(ISCXVPN2016) dataset [17], which is an encrypted network
traffic dataset and contains several types of network traffic

and applications. A regular session and a session over VPN
are captured using Wireshark and tcpdump, and the encrypted
traffic has a total amount of 25 GB of data. In this study,
we utilize two subsets of the ISCXVPN2016 dataset for our
experimental studies, and it will be denoted as NonVPN-
dataset and VPN-dataset in the remainder of this paper.
Under NonVPN-dataset, there are six different types of net-
work traffic across sixteen different applications. As for VPN-
dataset, there are six different types of network traffic across
fourteen different applications.

In the following, we describe three major steps for data
preprocessing, which are data segmentation, masking out
biased fields of packets, and adjusting input data sizes and
formats according to the graph-structured representations.

1) Data segmentation: SplitCap, an open source tool to
split PCAP files based on different criteria, is used to extract
traffic flows as the first step. Studies show that using bi-

TABLE I
NONVPN-DATASET

Label [ Application [ No. of flows [  Total
Chat Aimchat 383 2,058
Facebook 471
Gmail 391
Hangouts 409
1CQ 404
Email Email 5,703 5,703
File FTP 508 1,191
SCP 157
SFTP 181
Skype 345
Streaming Netflix 270 1,278
Spotify 144
Vimeo 310
Youtube 554
P2P Torrent 667 667
VoIP Facebook 535 3,975
Hangouts 1,869
Skype 456
Voipbuster 1,115
TABLE II
VPN-DATASET
Label [ Application [ No. of flows [  Total
Chat Aimchat 30 3,987
Facebook 1,153
Hangouts 2,731
1CQ 29
Skype 44
Email Email 286 286
File FTPS 42 773
SFTP 19
Skype 712
Streaming Netflix 142 525
Spotify 107
Vimeo 117
Youtube 159
P2P Torrent 262 262
VoIP Facebook 1,325 6,990
Hangouts 3,160
Skype 896
Voipbuster 1,609
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Fig. 2. (a) Shape of a traffic flow, where each row represents a single packet.
(b) The graph-structured representation of a flow.

directional flows, also known as sessions, can achieve better
performance comparing to unidirectional flows [3]. As a result,
for data segmentation, we employ bi-directional flows in our
experiments.

The SplitCap application takes a single PCAP file as input
and output extracted PCAP files based on 5-tuple. After the
extraction, the NonVPN-dataset and VPN-dataset has 14,872
and 12,823 bi-directional flows in total, respectively. The
extracted flows are split into two parts that 60 percent is
for the training dataset and the remaining is for validation.
An extracted PCAP file stores a single flow, and each flow
consists of packets where their source and destination IP
address, source and destination port number, and the protocol
in use are the same. Every packet contains a byte stream up to
maximum transmission unit (MTU) size of 1, 500 bytes. Table
I shows the distribution of flows for each class and application
in NonVPN-dataset, and Table II shows the distribution of
flows for each class and application in VPN-dataset.

2) Mask out biased fields: For each packet of the extracted
flows, the data link layer information is removed, and the
source and destination IP addresses are masked. As the original
dataset is captured artificially, the source to capture the net-
work traffic is limited to a few hosts or servers. Consequently,
the source and destination IP addresses in the IP datagram
header are masked with zeros, and the Ethernet header which
includes Media Access Control (MAC) addresses information
is removed entirely. In this way, the network can refrain from
getting biased information as inputs, which may mislead the
network during the training process.

3) Network input: The network takes in a flow as an input.
As shown in Fig. 2-a, the structure of a flow consists of
packets, denoted as pi.j, where k is the total number of
packets in a flow, and L is our desired lengths of packet bytes.
The normalization is performed so that the values for each byte
are scale to the range of [0, 1]. We evaluate different values of
L in different setup of experimental studies listed in Table III.
The detailed description of the experiments will be provided
in Section I'V-B.

In our work, each flow is translated into a graph represen-
tation. A graph consists of a set of nodes and edges, and it
is also capable of carrying global attributes along with the
graph. One key advantage of graph network architecture in
terms of network inputs is the flexibility of its input shape.
During training and validation, the shape of each subject

can be various for GNNs, while the same input shape is a
requisite for both CNNs and LSTMs. As shown in Fig. 2-b,
the figure shows an example of a graph input. Each packet in
the flow is seen as a node, which are denoted as ny j, and
each node carries L bytes from the packet. In addition to this,
we can assign edges to indicate the relation between nodes.
The directed edge from ng_1 to ng, is used to express the
chronological relationship of packets among the flow.

Moreover, it is also an advantage of graph network archi-
tecture that it can have global attributes assigned for each
input graph. In part of our experimental studies, we also
include system-level properties of flow that are represented
by global attributes, which is denoted as w. In our case, the
global attributes comprise seven of the common metadata
features extracted from each flow for every network input
sample. These flow attributes include source and destination
port numbers, payload and packet length mean, standard
deviation of payload and packet length, and the duration of
flow. Each global attribute is normalized into the range of
[0,1]. Consequently, the graph network is able to have a
combination of inputs with raw data and metadata training
together.

B. Experimental Details

The nature of deep learning methods is to seek hidden
features from the given input data by itself. Deep learning
methods are not only able to take hand-crafted features as
inputs, but also very successful in working with raw data
[6]. Hence, we design experiments to assess the impacts of
network inputs on GNN, specifically metadata, raw bytes, and
chronological relationship. In the following, we describe four
studies with different combination of inputs as well as two
reference methods to be compared against. The experimental
studies are summarized in Table III. In our work, we conduct
the experimental studies twice with two datasets, NonVPN-
dataset and VPN-dataset, independently, in order to show how
the proposed approach generalizes on different datasets.

TABLE III
EXPERIMENTAL STUDIES AND INPUT DATA.
(For the input types, “Global” represents “metadata”, “Node” represents
“raw bytes”, and “Edge” represents “chronological relationship”.)

Study index | Input types [ No. of raw bytes (L)

1 Global + Node + Edge 1,500
2 Node + Edge 1,500
3 Global -

4 Global + Node + Edge 100

1) Study 1 and Study 4: In Study 1 and 4, both raw bytes
and metadata features are included for network inputs. The
raw bytes are mapped into a graph representation with node
attributes and edges, that every packet in a flow is a node
and each node carries its raw data, and the edges indicate the
chronological relationship of packets in a flow. In addition, the
metadata features are mapped to the field of global attributes
along the network training process. The difference between
these two studies is that Study 4 only covers the header



information that the size of packet length was set to 100 bytes.
Via Study 1, we would like to examine whether the network
can take advantage from the combination of network inputs
that the metadata is provided as additional information by
making a comparison with Study 2. Moreover, we would like
to compare Study 1 with Study 4, in terms of the effectiveness
of having payload information included or not for network
inputs.

2) Study 2 and Study 3: As for Study 2 and Study 3, both
experiments take only either raw data or metadata as network
inputs. In Study 2, we train GNN using raw data with a packet
length of 1,500 bytes; while in Study 3, the GNN takes only
global attributes into account. We would like to observe and
make comparison of the performance of GNN having raw data
and metadata as inputs respectively.

3) Reference methods: We choose two commonly used
deep learning models, CNN and LSTM, as our reference
architectures, which take raw bytes as inputs. Due to the
constraint that the number of packets is required to be fixed
in order to train CNN and LSTM models, hence, each flow
has a shape of 10 x 1,500 as in [18], where 10 is the first
ten packets of each flow, and 1,500 is the packet length. Zero
padding is applied if a flow has fewer than 10 packets.

C. Network Architecture

The fundamental of our geometric learning model is a
graph neural network (GNN) that supports various graph-
structured representations. By taking one of the key advantages
of its design principle that a graph neural network can be
composed of multi-block architectures, we adopt an encode-
process-decode architecture for our GNN model. As shown
in Fig. 3, our end-to-end graph neural network comprises
three functional blocks: a GGN.,. block, a GN_,.. block,
and a GNg.. block. For each block, there are three update
functions for nodes, edges and global, which are set to 5-
layers multilayer perceptron (MLP), where each layer has a
total number of 128 neurons, following by a rectified linear
unit (ReLU) and a batch norm layer. The aggregation functions
used for all the update functions are summation.

To be specific, the G N,y is an encoder that maps the input
graph, denoted as z, to a latent domain. The G N,,,.. takes the
latent space representation, denoted as h, as input to generate
the output, denoted as fz, that the GN ype is formed by N
GN blocks sequentially where N = 3. The G Ny, then maps
the latent space representation, h, back to generate the final
output, which is denoted as g.

1) Regularization: Regularization is an important pillar to
prevent the network from overfitting. Two common approaches
are used in this work, penalized weights and dropouts.

The inverse category frequency (ICF) weighting scheme is
adopted in our work that a penalized weight is assigned to
each class. Since the number of samples of all classes within
each batch may be different, the frequencies and weights
are being calculated and applied within each batch during
network training process. To such a degree, the network will
consider the number of samples of all classes to be balanced
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Fig. 3. The graph neural network (GNN) architecture.

and contribute equally. Moreover, an important advantage of
applying penalized weight according to the class distribution
within each batch is that the network would tend to have better
adaptability over different class distributions of validation set.

Dropout regularization has been considered an efficient
regularization method for neural networks [21] that partial of
the neurons will be switched off randomly during each training
iteration. Both non-recurrent and recurrent dropout techniques
are applied to our GNN. Non-recurrent dropout is used in the
encoder and decoder blocks, while recurrent dropout is used
in the core block.

2) Loss function: The network is trained using cross-
entropy as the loss function, which is expressed as:

loss (g, y) = aly] (—z)[y] + log <Z exp (z)[ﬂ))) (1)

where ¢ and y are vector prediction results and class true
labels respectively, and « is the vector of penalized weights
computed from the ICF weighting scheme.

D. Network Training

The graph network is implemented on Tensorflow platform
using Graph Nets library created by DeepMind [8] with an
NVIDIA V100 graphics card. The graph network takes a
graph, consisting of metadata as global attributes, raw bytes as
node attributes, and packet relations as edges, as an input and
yields a graph with a prediction stored in global. The cross-
entropy loss is computed by comparing the prediction with
the ground truth. The parameters of the graph network are
updated by minimizing the loss using Adam optimizer with
the learning rate 0.0003. The batch size is set to 128. With
these hyper-parameters, we train our graph network for 500
epochs.

E. Evaluation Metrics

In this work, overall accuracy is not considered a suitable
metric because real datasets like network traffic flows, in gen-
eral, are exceedingly imbalanced, and a high overall accuracy
can be easily achieved when a network is trained to favor
major categories with a huge number of samples. Therefore,
instead of using overall accuracy, the evaluation metrics used
to validate our graph neural network are sensitivity and F1
score, which are more emphasizing each category’s perfor-
mance.
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Fig. 4. The confusion matrices across different experimental studies and reference methods with two datasets. Part A presents the result from NonVPN-dataset,
and part B presents the result from VPN-dataset. For each square box in a confusion matrix, the lower value is the instance count of correct predictions to
ground truth, and the upper value is the normalized number of it. The normalized values have a sum of 1 across columns within a confusion matrix. (a) Study
1 that trained with raw bytes and metadata. (b) Study 2 that trained with raw bytes only. (c) Study 3 that trained with metadata features only. (d) Study 4
that trained with raw bytes and metadata. The raw bytes only covers the header fields. (¢) A CNN model that trained with raw bytes. (f) An LSTM model

that trained with raw bytes.

1) Sensitivity: The sensitivity is also called recall. It mea-
sures, within samples which have the same label, the ratio of
number of the correctly predicted samples to the total number
of the samples and is defined as:

TP,
TP;+ FN;’

where T'P is the number of true positive samples, F'N is the
number of false negative samples, and ¢ indicates the class
index.

2) Precision: The precision measures, within samples
which are classified as the same label, the proportion of
number of the correctly predicted samples to the total number
of the samples and is defined as:

2

Sensitivity; =

TP
TP, + FP;’
where F'P is the number of false positive samples.
3) FI score: The F1 score, which computes the harmonic
mean of the sensitivity and the precision, is a widely used

metric for models trained with an imbalanced dataset and is
defined as:

F1;

Precision; 3)

Sensitivity, x Precision;

“4)

Sensitivity, + Precision; '
V. RESULTS

A. NonVPN-dataset

Fig. 4A showcases the confusion matrices where we can see
how much a network predicts correctly for each class across
our experimental studies and reference methods for NonVPN-
dataset. The confusion matrix of Study 1 is shown in Fig.

4A-a, that the network is trained with a combination of full
raw data and metadata as inputs. By comparing to the green
boxes in Study 2 (Fig. 4A-b) and Study 3 (Fig. 4A-c), the
yellow boxes from Study 1 shows the sensitivities of File and
P2P are boosted by about 5 percent. A key observation here
is that when the global attributes are incorporated with the
node attributes and the edges along the training process, it
helps achieve better performance of the multi-class classifier.
It implies that the graph network takes advantages of using the
additional input of metadata, which requires extra knowledge
to acquire and networks cannot easily decode and learn
properly from raw data during training.

The graph networks of Study 2 and Study 3 are trained with
full raw bytes only and metadata only, respectively. According
to the corresponding confusion matrices, Fig. 4A-b and Fig.
4A-c, it is obvious that the graph neural network trained with
raw data outperforms that trained with metadata in terms of
the overall performance. The result is consistent with the prior
research [6] that neural network models are more suitable to
be trained with raw data, and have been proved successful to
a significant extent.

The confusion matrix of Study 4 is shown in Fig. 4A-d,
that the network is trained with inputs consisting of raw bytes
and metadata, similar to Study 1, yet covering only the header
information rather than the full-length bytes. By comparing the
blue boxes in Study 4 (Fig. 4A-d) with the yellow boxes in
Study 1 (Fig. 4A-a), there is a decrease of 8.7 and 6.4 percent
in sensitivities of File and P2P respectively. According to the
observation, it implies that apart from the header information,
the payload field may also contain important information so



TABLE IV
NONVPN-DATASET: PERFORMANCE COMPARISON

NonVPN-dataset | Network input || Metric [ Chat Email File Streaming P2P VoIP
Raw + Metadata Sensitivity 0.936 0.972 0.730 0.925 0.830 0.893
Study 1 (L =1,500) Precision 0.926 0.974 0.786 0.862 0.877 0.889
F1 score 0.931 0.973 0.757 0.893 0.853 0.891
Raw only Sensitivity 0.922 0.976 0.680 0.939 0.785 0.894
Study 2 (L = 1,500) Precision 0.919 0.967 0.834 0.860 0.829 0.876
F1 score 0.920 0.971 0.749 0.897 0.806 0.885
Sensitivity 0.261 0.982 0.482 0.803 0.665 0.832
Study 3 Metadata only Precision 0.802 0.762 0.671 0.785 0.871 0.791
F1 score 0.394 0.858 0.561 0.794 0.754 0.811
Raw + Metadata Sensitivity 0.911 0.969 0.644 0.880 0.766 0.853
Study 4 (L = 100) Precision 0.896 0.958 0.726 0.839 0.778 0.857
F1 score 0.903 0.963 0.683 0.859 0.772 0.855
Raw only Sensitivity 0.923 0.979 0.642 0.880 0.759 0.852
CNN (L =1,500) Precision 0.913 0.964 0.688 0.899 0.779 0.848
F1 score 0.918 0.971 0.664 0.890 0.769 0.850
Raw only Sensitivity 0.935 0.979 0.652 0.864 0.755 0.848
LSTM (L = 1,500) Precision 0.912 0.963 0.741 0.866 0.755 0.848
F1 score 0.923 0.971 0.694 0.865 0.755 0.848
TABLE V

VPN-DATASET: PERFORMANCE COMPARISON
VPN-dataset | Network input | Metric [ Chat Email File Streaming P2P VoIP
Raw + Metadata Sensitivity 0.971 0.956 0.921 0.980 0.942 0.985
Study 1 (L =1,500) Precision 0.979 0.931 0.862 0.944 0.989 0.989
F1 score 0.975 0.943 0.891 0.962 0.965 0.987
Raw only Sensitivity 0.964 0.903 0.928 0.942 0.932 0.971
Study 2 (L = 1,500) Precision 0.966 0.927 0.796 0.919 0.881 0.990
F1 score 0.965 0.915 0.857 0.930 0.906 0.980
Sensitivity 0.941 0.833 0.788 0.879 0.836 0.817
Study 3 Metadata only Precision 0.752 0.863 0.846 0.801 0.915 0.948
F1 score 0.836 0.848 0.816 0.838 0.874 0.878
Raw + Metadata Sensitivity 0.968 0.877 0.895 0.932 0.913 0.981
Study 4 (L = 100) Precision 0.969 0.819 0.864 0.927 1.000 0.984
F1 score 0.968 0.847 0.880 0.930 0.954 0.982
Raw only Sensitivity 0.964 0.912 0.856 0.927 0.923 0.978
CNN (L = 1,500) Precision 0.981 0.904 0.829 0.824 0.941 0.981
F1 score 0.973 0.908 0.842 0.872 0.932 0.979
Raw only Sensitivity 0.963 0.903 0.846 0.927 0.923 0.976
LSTM (L = 1,500) Precision 0.965 0.895 0.830 0.905 0.969 0.977
F1 score 0.964 0.899 0.838 0.916 0.945 0.976

that the model’s performance can be more accurate and reliable
when taking full raw data as network inputs.

Fig. 4A-b, Fig. 4A-e and Fig. 4A-f are confusion matrices
for Study 2, CNN, and LSTM models, where raw data is
served as network inputs. According to the quantitative results,
we confirm that the graph neural network is comparable to,
and even slightly better than CNN and LSTM. It is likely that
because the graph network can obtain extra information pro-
vided by the edges that are used to indicate the chronological
relationship between packets within a flow.

The performance metrics used for evaluating our experi-
mental studies and reference methods for NonVPN-dataset are
tabulated in Table IV. The table indicates training with full
raw data and metadata together as network inputs performs
better than other experimental studies as well as the reference
methods, CNN and LSTM models. In terms of the sensitivity,
half of the classes (Chat, File and P2P) in Study 1 achieve
the highest values among all the experimental studies and
the two reference methods, and in particular, Study 1 model’s
performance on File and P2P even exceeds all other methods

by a wide margin. As for the precision, four out of six classes
in Study 1 achieve the highest values among all the other
experiments listed. Since F1 score computes the harmonic
mean of the sensitivity and the precision, as expected, Study
1 has the highest F1 values in most of the categories.

B. VPN-dataset

In our work, we went through the above mentioned ex-
perimental setup once again with our second dataset, VPN-
dataset. Fig. 4B showcases the confusion matrices across our
experimental studies and the reference methods for VPN-
dataset, and the performance metrics used for validating our
work are tabulated in Table V. Consistent with the result
obtained from NonVPN-dataset, the GNN model performs the
best when metadata is incorporated with raw data along the
training process. As shown in 4B-a, all the categories, except
for File in Study 1, have the highest sensitivities, comparing
with Study 2 (Fig. 4B-b) and Study 3 (Fig. 4B-c). Also, in
terms of F1 score, all categories of Study 1 achieve the highest
values among all the other experiments listed. According
to the result, we conclude that GNN can take advantage



from the additional input of metadata, which requires extra
knowledge to acquire and networks cannot easily decode and
learn properly from raw data during training.

Similar trend occurs that some of the categories’ accuracies
will drop by a wide margin when the network input only
covers header information. By comparing with Study 1 (Fig.
4B-a), the orange boxes from Study 4 (Fig. 4B-d) shows the
accuracies of Email and Streaming have a decrease of 7.9
and 4.9 percent respectively, and the accuracies of rest of
the classes are also lower than Study 1. Hence, through the
observation, we conclude that the model’s performance could
be more accurate and reliable when taking full raw data as
network inputs, rather than only providing the header fields.

Fig. 4B-b, Fig. 4B-e, and Fig. 4B-f are confusion matrices
of Study 2, CNN, and LSTM, respectively, which all take
raw bytes as inputs. Likewise, since GNN can obtain extra
information provided by the edges that are used to indicate the
chronological relationship between packets, our GNN model is
comparable to, and even slightly better than our two reference
methods according to the quantitative results. In particular, the
sensitivity of File category as indicated in the red box from
Study 2 (Fig. 4B-b) substantially exceeds the sensitivities of
two reference methods, in the purple boxes on Fig. 4B-e and
Fig. 4B-f, by approximately 8 percent.

Quantitatively, according to the showcased confusion ma-
trices in Fig. 4B and the performance metrics in Table V
that are used for evaluating and validating our experimental
studies and reference methods for VPN-dataset, we conclude
that GNN trained with full raw data and metadata together as
inputs outperforms the remaining experimental studies as well
as the reference CNN and LSTM models.

VI. CONCLUSION

In this work, we implement a flow-based geometric learning
model that simultaneously takes raw bytes, metadata and
chronological relationship into account for classifying en-
crypted network traffic. We compare our models against the
reference methods and demonstrate that: for File and P2P
in NonVPN-dataset and for File in VPN-dataset, both of the
Study 2 models have achieved a great performance comparable
to the CNN model’s and the LSTM model’s, and the Study 1
models substantially outperform Study 2. These results show
that incorporating both raw bytes and metadata into a model is
advantageous. In the future work, as a strategy to validate our
model’s more robust performance, we plan to acquire more
encrypted network traffic data with more category labels to
increase our training size.
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