2020 7th International Conference on
Networking, Systems and Security (NSysS)

22-24 December, 2020, Dhaka, Bangladesh

Networking and Security

45

46

Machine Learning Based Malware Detection on Encrypted
Traffic: A Comprehensive Performance Study

Onur Barut Matthew Grohotolski Connor DiLeo
University of Massachusetts Lowell Elizabethtown College Elizabethtown College
Lowell, MA Elizabethtown, PA Elizabethtown, PA
Onur_Barut@uml.edu grohotolskim@etown.edu dileoc@etown.edu
Yan Luo Peilong Li Tong Zhang
University of Massachusetts Lowell Elizabethtown College Intel Corporation
Lowell, MA Elizabethtown, PA Santa Clara, CA
Yan_Luo@uml.edu lip@etown.edu tong.zhang@intel.com

ABSTRACT

The increasing volume of encrypted network traffic yields a clutter
for hackers to use encryption to spread their malicious software
on the network. We study the problem of detecting TLS-encrypted
malware on the client side using metadata and TLS protocol re-
lated flow features. We conduct a comprehensive study on a set of
widely used machine learning and deep learning algorithms to de-
tect encrypted malware on two malware flows datasets. In addition
to reporting the classification accuracy of the approaches under
study, we conduct comprehensive experiments to quantify their
run-time performance in terms of throughput and system resource
utilization such as the CPU and RAM utilization. Moreover, we
further boost the speed of the detection systems using acceleration
libraries such as DAAL and OpenVINO. Through the quantitative
analysis, we provide a comparison on the effectiveness and run-
time performance of the machine learning models, and evaluate
techniques to accelerate real-world deployment.

CCS CONCEPTS

+ Networks — Network monitoring; « Security and privacy
— Intrusion detection systems; - Computing methodologies
— Machine learning algorithms.

KEYWORDS

malware detection, machine learning, deep learning, encrypted
traffic analysis

ACM Reference Format:

Onur Barut, Matthew Grohotolski, Connor DiLeo, Yan Luo, Peilong Li,
and Tong Zhang. 2020. Machine Learning Based Malware Detection on
Encrypted Traffic: A Comprehensive Performance Study. In 7th International
Conference on Networking, Systems and Security (7th NSysS 2020), December
22-24, 2020, Dhaka, Bangladesh. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3428363.3428365

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

7th NSysS 2020, December 22-24, 2020, Dhaka, Bangladesh

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8905-1/20/12...$15.00
https://doi.org/10.1145/3428363.3428365

47

1 INTRODUCTION

Malicious network traffic affects adversely a large amount of valu-
able Internet assets, e.g., violating user privacy, stealing sensitive
data for ransom, and flooding network devices [23]. With the pro-
liferation of connected devices on the Internet, such malicious
network activities generate a tremendous amount of data and call
for security and privacy analysis in near real time. As a result,
recent studies in Network Traffic Analysis (NTA) start to render
security intelligence by mining big network traffic data [9, 20, 30].
NTA, especially from a cybersecurity perspective, has become vital
for malware detection, quality of service control, data protection
and so on. The growing number of connected devices, increasing
network speed and increasingly complex malicious software are
just a few factors that exacerbate this situation.

NTA has evolved from port-based approaches to machine learn-
ing based techniques over time. Port-based approaches have become
unreliable since the modern applications switch to dynamic port
allocation. Later, payload analysis, i.e. deep packet inspection (DPI),
has become ineffective as the volume of encrypted traffic increases.
It is reported that around 95% of Google’s traffic is encrypted by
June 2020, which was only around 55% six years ago [10]. Moreover,
DPI is inefficient for real-time network traffic analysis as inspecting
packet payloads cannot keep up with the network speed. There-
fore, a lightweight, faster and more accurate malware detection
mechanism is in pressing need.

In this paper, we aim to evaluate the candidate machine-learning
based designs to resort to an accurate and nearly real-time NTA
system for identifying malware in TLS-encrypted traffic. It remains
an open question on how machine learning and deep learning
models can reliably and efficiently identify malware from encrypted
traffic. Flow features are critical for the effectiveness of conventional
machine learning models. They are also the inputs to deep learning
models due to the randomness of encryption computation, even
though a plethora of deep neural network models use raw data (e.g.
images) to perform classification in other application domains. In
addition, the run-time system performance of these designs must
meet stringent throughput requirements for practical deployment.

Our contribution in this paper is three-fold: (1) dataset: We are
motivated to create a comprehensive encrypted network traffic
dataset with more than 100 flow features for benchmarking and
future research comparison. Specifically, we obtain the raw traffic

https://doi.org/10.1145/3428363.3428365
https://doi.org/10.1145/3428363.3428365
https://doi.org/10.1145/3428363.3428365

7th NSysS 2020, December 22-24, 2020, Dhaka, Bangladesh

captures from Stratosphere IPS data repository [26] with almost
120k encrypted network flow samples belonging to 20 different
types of malware and benign classes. We also enrich the dataset for
malware detection with network traces obtained from CICIDS2017
dataset [25]. We generate around 75k flow samples for 7 different
malware types and a benign class; (2) feature engineering: We
apply network domain knowledge to extract various flow features
from the aforementioned dataset, preprocess the features and select
the top features to be applied to the analyzing step; (3) a com-
prehensive performance study: We compare a thorough list of
machine learning classifiers and deep learning models with the
goal of finding the optimal classification accuracy. Distinct from
prior work, we also evaluate their model training time, flow predic-
tion time and run-time resource utilization such as CPU utilization
and memory consumption. Furthermore, we leverage acceleration
libraries to speed up the run-time performance of the systems.

Our experiment results show that complex classification meth-
ods such as deep learning algorithms require a substantial amount
of system resources, which may not necessarily yield better perfor-
mance than simpler models. In fact, in the presence of extracted
flow features, deep learning models perform less accurate than
light-weighted machine learning methods such as logistic regres-
sion and random forest. The results also show that the acceleration
libraries can significantly speed up the system throughput by up
to 68.6 times. These observations provide important insights to
real-world deployment.

The rest of the paper is organized as follows. Section §2 intro-
duces the prior arts. Section §3 depicts the way of data collection
and §4 the overall design of the proposed NTA system. We evaluate
the performance of the system in Section §5. Finally, we conclude
the paper in Section §6.

2 RELATED WORK

Random Forest classifier [34] and Support Vector Machine (SVM)
with Radial Basis Function (RBF) kernel [1] are two effective and
popular methods for network intrusion detection. However, it is
difficult to compare one method to another if the researchers use
their private data with their own features for traffic classification.
For example, Prasse et al. [23] collect their own data to develop a
malware detection system based on HTTPS traffic using skip-gram
neural language model with LSTM. They compare their method
with a random forest classifier using engineered features [4] as
input and report that LSTM with neural language model achieves a
higher accuracy. Similarly, Anderson et al. [3] use flow metadata,
sequence of packet length and times, byte distribution and non-
encrypted TLS header information for malware detection in TLS
encrypted traffic.

KDD-Cup 99 [16] and NSL-KDD datasets [27] are commonly
used network intrusion detection datasets. Several studies have
been conducted on those datasets to investigate the ensemble model
accuracies such as C4.5 algorithm, decision tree, random forest,
SVM and AdaBoost [8, 13, 29]. Similar to ensemble classifiers, dif-
ferent two-level classification algorithms with naive Bayesian as
the primary classifier in the first stage, and nominal-binary filtering
and cross-validation in the second stage are proposed by Panda et
al. [22]. Viyankumar et al. [24] compare various shallow and deep

48

Onur Barut et al.

networks to evaluate their effectiveness on intrusion detection us-
ing KDD-Cup 99 and NSL-KDD datasets in binary detection and
multi-class classification situations, and they find out that deep
networks are more accurate than shallow networks.

However, KDD-Cup 99 and NSL-KDD datasets are outdated and
do not represent recently emerged attacks. CICIDS2017 dataset
[25] is relatively up-to-date and more suitable for detecting current
attacks. Authors introduce CICIDS2017 dataset with their results
obtained using CICFlowMeter [11] features by comparing several
machine learning techniques including k-nearest neighbor (kNN),
random forest and ID3 and report best F1 score 0.98 for ID3 algo-
rithm and 0.97 for random forest whose executing time is one-third
of ID3.

Gao et al. [9] compare several machine learning and deep learn-
ing techniques including Random Forest, SVM and Deep Neural
Networks on both NSL-KDD and CICIDS2017 datasets. They per-
form both binary malware detection and multi-class classification
and find out that RF model achieves impressive malware detec-
tion accuracy and comparable classification accuracy to other deep
learning models in multi-class classification task. Similarly, Haider
et al. [12] focuses on DDoS attack detection on software defined
networks using CICIDS2017 dataset. They use CICFlowMeter to ex-
tract flow features and implement random forest regressor to select
important features. Then, they benchmark over different ensemble
models and provide 99.45% accuracy using ensemble CNN model.

Marin et al. [21] implement a hybrid model composed of LSTM
layer on top of CNN layers to detect malware in the network data
obtained from Stratosphere IPS. They conduct packet-level and
flow-level analysis and compare the accuracy obtained from raw
flow data fed to the proposed model to random forest classifier with
around 200 flow features and report that flow-level approach is
more accurate and the proposed model achieves 98.6% accuracy
while random forest outputs around 97%. Likewise, Yeo et al. [32]
use public data from Stratosphere IPS to classify 5 different malware
types and a benign class. They compare several machine learning
algorithms along with a CNN model on top of 35 flow features
extracted using Netmate [2] and conclude that CNN model with
random forest classifier achieves superior classification accuracy.

Researches mentioned above have one limitation in common:
they only focus on the classification accuracy but ignore the compu-
tational burden of the proposed methods. However, there are also
other researches that consider and discuss about the computational
costs of the proposed classification methods and attempt to speed
up the performance. Motivated by the characteristics of machine
learning based classification approaches, Luo et al. propose a classi-
fication tree search method called explicit range search to accelerate
traffic classification on FPGA devices [19]. Kim et al. [17] imple-
ment a LSTM based model which achieves 96.93% accuracy on the
KDD Cup 1999 dataset, using an Intel i7 as CPU and GTX Titan X
as GPU for acceleration. Similarly, Yin et al. [33] construct an RNN
based model for both binary detection and multi-class classification,
achieving 83.28% accuracy on NSL-KDD dataset in 5,516 seconds.
On the other side, Liu et al. [18] propose a CNN based model for
NIDS and obtain 97.7% accuracy on KDD Cup 1999 dataset with
GPU acceleration GTX 1080, 32GB RAM with OS Ubuntu 14.04 in
experimental setup.

Machine Learning Based Malware Detection on Encrypted Traffic: A Comprehensive Performance Study

To the best of our knowledge including the above mentioned
literature work, we observe that deep learning methods are widely
proposed to achieve state-of-the-art results; however, most of the
prior researchers either focus on a narrow spectrum of malware
type classification or do not consider the time to train those models
and time to execute for a single instance detection. In real-world
deployment where the network appliance may have very limited
computing and memory resources, it is crucial that the malware de-
tection system is fast, accurate and has a small footprint of resource
utilization. In this regard, we compare several machine learning
and deep learning approaches in this study in terms of accuracy,
time to train the model, time to classify a single flow instance, and
utilization of CPU and memory using two different network intru-
sion detection datasets. At the end, we propose a fast and accurate
malware detection model using accelerated tools.

3 DATA COLLECTION

3.1 Dataset Preperation for TLS-encrypted
Malware Detection

Stratosphere IPS [26] and Canadian Institute for Cybersecurity
(CIC) [5] are two publicly available sources for network capture data.
Both CIC and Stratosphere IPS provide several different types of
raw network packet captures for Intrusion Detection Systems (IDS)
in ¢.pcap’ format. However, pcap files are not readily leverageable
by most data analytics libraries and the provided malware traces
are too scattered across different files.

Therefore, we firstly create a new set of network trace dataset
from Stratosphere IPS by extracting 20 different types of malware
classes such as Adload, PUA, TrickBot, Ramnit, and Ransom etc.
along with benign traffic data from different pcap files mostly cap-
tured in 2017 and name it as “dataset1”. Since we only focus on
binary malware detection in this study, all of the different types of
malware traces are labelled as “malware” and all normal traces are
labelled as “benign”.

Then we use CICIDS2017 [25] dataset from the CIC repository to
generate our “dataset2”. In CICIDS2017, raw capture data contains
the whole trace record throughout the day. However, during the
data collection process, malware attacks are performed only in
a specific time slot of the day. Therefore, we have to filter those
network traffic of our interest according to the time stamp [6], then
label the extracted data into either “malware” or “benign”. Similar
to “dataset1”, we also use binary labels for CICIDS2017 regardless
of their malware types.

3.2 Preprocessing and Feature Extraction

After obtaining “dataset1” and “dataset2”, the captured raw data are
fed to our modified version of feature extractor derived from Cisco
Joy [7] to extract more than 200 flow features. We aim to render a
comprehensive list of feature representations including metadata,
TLS, DNS and HT TP features. The detailed data preprocessing, fea-
ture extraction and labelling methods are described in the following
subsections and depicted in Figure 1. We also anonymize the data
by masking the source and destination IP addresses. This also elim-
inates the bias introduced by the data collection setup due to the
static IP addresses of the computers used to capture the network
flows.

49

7th NSysS 2020, December 22-24, 2020, Dhaka, Bangladesh

‘ 1 - Network Capture Files (PCAF)T "~ File name 74‘ 7 - Add Labels from File Name

i ¥

‘ 8 - Chi-square Feature Selection

‘ 2 - Flow Feature Extraction Tool

{ ¢ Top 50 features
‘ 3 - Filter TLS-encrypted Flows ‘ ‘ 9 - Write Dataset to .CSV File ‘
‘ y3 RN
‘ 4 - Remove Unidirectional Flows :
‘ 5.a - Read TLS Features ‘ ‘ 5.b - Read Metadata Features : :
; Results
: —

‘ 6.a - TLS Feature Processing H 6.b - Construct Data Matrix }»

10-fold cross validation

Figure 1: Proposed approach and preprocessing steps for en-
crypted malware detection

3.3 Data Preprocessing

When pcap files come in, the flow feature extractor first assembles
long network flows from both inbound and outbound directions
into data records (rows) with length capped at 200 packets. Flows
less than 200 in length are kept intact. Extracted features are stored
in JSON format. Metadata features such as number of packets,
time duration of the flow, source port, destination port etc. can be
extracted for every flow instance because these features do not rely
on any protocol. However, protocol-specific features such as TLS,
DNS and HTTP can only be extracted if the flow instance contains
packets utilizing the given protocols. Therefore, only a small portion
of the flows contain protocol-specific features while all of the flows
contain metadata features. After extracting metadata, TLS, DNS,
and HTTP features, we de-identify the data by masking out the
source and destination IP addresses. Doing so eliminates the bias
introduced by the static IP addresses of the hosts used to capture
the network flows. Later, we remove time_start and time_end and
substitute in time_length as a new feature which is obtained by
subtracting time_start from time_end. This step also helps remove
the time stamp our models could leverage to make biased prediction.
After that, “id” and “label” for each flow are added to output the
feature files in JSON format. Finally, we filter the TLS encrypted
flows by checking if there is any TLS-encrypted feature available
in the flow. This step ensures both our datasets are TLS-encrypted.
We observe that there are many flows who have zero inbound
packet features. In other words, the flows are unidirectional, or
unacknowledged. Since our proposed NTA system is going to be
deployed on the client side of the network, it makes sense to discard
the all the unacknowledged queries. Therefore, we filter out uni-
directional flows and keep around 114, 000 and 75, 000 encrypted
bidirectional flows in “dataset1” and “dataset2”, respectively.

3.4 TLS feature processing

Machine learning models are often trained with a two dimensional
matrix dataset whose rows represent flow instances and columns
the feature values. Metadata features consist of statistics and nu-
merical representations for flow properties that can be computed
for any flow. For example, source port, destination port, number of
inbound packets, number of outbound packets and time duration of
the flow are some of the metadata features that can be extracted for
every flow. Meanwhile, TLS features not only contain numerical
features such as number of ciphersuites offered by client and server,

7th NSysS 2020, December 22-24, 2020, Dhaka, Bangladesh

number of TLS encrypted packets in the flow, etc., but also variable-
sized non-numerical feature arrays such as the ciphersuites offered
by the client, supported TLS extensions of the client, etc. Therefore,
these variable-sized non-numerical features must be converted into
fixed length numerical features in order to use the TLS information
along with the metadata features in the input data matrix.

First of all, TLS features need to be loaded into the data ma-
trix along with metadata features. Tls_cnt, tls_cs_cnt, tls_ext_cnt,
tl_key_exchange_len, tls_svr_cnt, tls_svr_cs_cnt, tls_svr_ext_cnt
and tls_svr_key_exchange_len features can be easily loaded into
data matrix since each of them is represented by a single integer
value. Therefore, each of these features will occupy a single column
in the data matrix.

Tls_cs and tls_ext_types features have variable sizes for each
flow. For instance, the tls_cs feature for a single flow instance may
contain ‘0039, ‘c009’ and other ciphersuites as an array of strings.
Tls_ext_types is also similar to tls_cs. Hence, those ciphersuites
and extension types need to be analyzed and top-N most common
features, say N=10 for each class in the dataset must be obtained.
Usually, the number of common features is larger than 10 for a
multi-class classification dataset, for example, 13, since different
classes may contain different top common ciphersuites. Therefore,
we allocate separate 13 columns in the data matrix for these cipher-
suites and if the flow instance contains any of those ciphersuites in
its tls_cs feature, then 1 is assigned for the corresponding column.
If not, 0 value is assigned. At the end of the columns, we add an-
other column as the 14" column which represents the ciphersuites
that are not among top commons. For example, if a flow instance
contains 4 other ciphersuites that are not among top commons,
then 4 is assigned to the 14" column of tls_cs feature in the data
matrix for that flow instance. The same approach applies for the
tls_ext_types feature.

Tls_svr_cs feature is a single-valued string type feature with a
ciphersuite selected among the advertised ciphersuites in tls_cs.
Therefore, we have a binary value for this feature. If the selected
ciphersuite is among the common-N ciphersuites in tls_svr_cs,
then 1 is assigned to tls_svr_cs, otherwise 0 is assigned to the
corresponding column in the data matrix.

Tls_svr_ext_types has the same property with the tls_cs and
tls_ext_types. So, the same procedure also applies to this feature as
well.

Tls_len and tls_svr_len features are variable length integer arrays
with payload sizes. For instance, assuming tls_len has [213, 44, 64,
32] and tls_svr_len has [76, 35, 114] as feature values, we allocate 4
columns for each to represent this information in the data matrix:
(1) length of the array, (2) minimum value in array, (3), maximum
value in array, (4) mean value of array.

3.5 Feature Selection with Chi-square
Algorithm

Selecting important but smaller number of features plays a cru-
cial role while training a machine learning classifier. A good set
of selected features not only reduces dimensionality of the dataset
and hence decreasing the computational cost but also boosts the
accuracy of the classifier by reducing overfitting. Chi-square test is
also widely used as feature selection method in many prior studies

50

Onur Barut et al.

and also implemented in network traffic analysis [31] and intrusion
detection systems [28]. Chi-square is a numerical test which de-
termines the dependency of each feature to target variable, which
is the label of the flow instance. If the target variable has a weak
dependency to the selected feature, then it can considered as irrel-
evant. Hence, the features can be sorted by their relevance to the
target variable and highly relevant subsets of the whole features
can be selected for the proposed classification model.

4 SYSTEM DESIGN

4.1 Classifiers Under Study

In this study, TLS-encrypted malware flows are detected from the
network traffic captures using a modified version of Joy to extract
the proposed features in Section §3. Firstly, chi-square test is ap-
plied to the dataset and the first 50 important features are selected
and stored in a separate csv file. Then, the data are standardized,
i.e. mean is subtracted and each feature is divided by the standard
deviation. Finally, several machine learning models and deep learn-
ing models are evaluated and compared in terms of performance
and resource utilization on CPU and GPU, respectively.

Table 1 shows the list of top-50 features selected by chi-square for
both datasets used in this study. Some histogram-like features such
as pld_ccnt are represented by a fixed size of arrays. Feature selec-
tion algorithm may only select a few indices for that feature and the
numbers inside brackets stand for the index values that are selected
by the chi-square algorithm. The superscript * indicates that the
selected feature or index of the histogram-like feature is exclusive
for “dataset1”. Similarly, superscript * indicates exclusiveness for
“dataset2”. Other features that do not have a superscript are shared
between both datasets.

4.1.1 Logistic Regression. Logistic regression model is a supervised
classification model and can be described as a parametric estimator
that is computed by taking the sigmoid of the linear combination of
the input variables. It outputs the probability of the given sample
belonging to the specified label. Neither standard library nor the
accelerated library has a parameter to train a logistic regression
model.

4.1.2 Random Forest. Random forest classifier is another example
for a supervised classification methods. It consists of several de-
cision trees and outputs an ensembled prediction by voting. The
number of estimators are set to be 100 and maximum depth of a
decision tree is set to be 10 in this study.

4.1.3 Support Vector Machines. The purpose of SVM is to set a
hyper-plane which separates the two support vectors where support
vectors are the closest sample point of a class to decision boundary
as far as possible. Design parameters for SVM classifier which are
regularization parameter C and the kernel function used are set to
be 1.0 and linear kernel, respectively.

4.1.4 k-Nearest Neighborhood. kNN classifies a new instance by
comparing its distance to the k closest instances and assigns the
label of those instances that are majority. In this study, k is set to
be 5 and Minkowski distance whose formula is given in equation
(1) is used to compute the distance.

Machine Learning Based Malware Detection on Encrypted Traffic: A Comprehensive Performance Study

Table 1: Description of extracted flow features

Feature & Description

Metadata Features
src_port: source port
dst_port: destination port
bytes_out: total bytes out
num_pkts_out™: total packets out
bytes_in: total bytes in
num_pkts_in: total packets in
time_length: time duration of the flow
intervals_ccnt[]: compact hist. of pkt arriving intervals [0%,1%,2]
ack_psh_rst_syn_fin_cnt[]: histogram of tcp flag counting [0*,1%,2%]
hdr_bin_40: # of pkts with header lengths between 28 and 40
hdr_cent[]: compact histogram of header lengths [1,3%,4,6%,77,8"]
hdr_mean*: mean value of header lengths
pld_cent[]: compact histogram of payload lengths [0%,1*,3*]
pld_max: max value of payload length
pld_mean™: mean value of payload length
pld_median: medium value of payload length
rev_...: flow features of the reverse flow
rev_ack_psh_rst_syn_fin_cnt[]: [0,1]
rev_hdr_cent[]: [1,2%,4%,6%]
rev_intervals_cent[]: [0,1%,2]
rev_hdr_pld_128":
rev_pld_cent[]: [0*,1*,3%,15]
rev_pld_distinct™: # of distinct values of payload length of rev. flow
rev_pld_max:
rev_pld_mean:
rev_pld_var:

TLS Features
tls_cnt®: # of tls packets
tls_cs_cnt*: # of ciphersuites
tls_len[]: array of tls payload length [len*, min, max, mean]
tls_cs[]: array of ciphersuites value [0039*,c009*,c02f*,cca9™,other*]
tls_ext_cnt: # of tls extensions
tls_ext_types|[]: array of tls extensions [0010,0017%,ff01*,f03]
tls_key_exchange_len: length of tls key exchange
tls_svr_...: tls features advertised by the server
tls_svr_cnt": # of ciphersuites advertised by the server
tls_svr_ext_cnt: # of extensions advertised by the server
tls_ext_types[]*: array of tls extensions [0010]
tls_svr_len[]: array of tls payload length [len*, min, max, mean]

¥, «

: “dataset1” exclusive features
*: “dataset2” exclusive features

N

1

Minkowski_Distance = (Z [x; — yilk)z
i=1

)

where N is the number of flow instances in the training set and k
stands for the number of closest instances whose distances will be
measured to classify a new instance.

4.1.5 Multi-Layer Perceptron. The simplest MLP classifier contains
an input layer, a hidden layer, and output layer. In this study, MLP
classifier is created with a single hidden layer. In the hidden layer,
128 perceptron units are implemented. L2 regularization factor
alpha is set to be 0.0001 and the model is trained using adam as the
optimizer.

51

7th NSysS 2020, December 22-24, 2020, Dhaka, Bangladesh

4.1.6 Convolutional Neural Networks. Since CNN produces state-
of-the-art results for image classification and text classification,
both 1-D CNN and 2-D CNN models are implemented for binary
malware detection problem where the extracted flow features are
fed to CNN as input data. For the two dimensional CNN model,
the input data is reshaped from 50x1 to 10x5. For both of the CNN
models, kernel size is chosen to be 3 with stride 1. 128 filters are used
for each convolutional layer and 128 hidden units are implemented
for fully connected layers. Two CNN layers and two fully connected
layers are used to construct CNN models. The dropout ratio is set
to 0.5 to prevent overfitting. The model architecture for both CNN
models are given on the top of Figure 2.

4.1.7 Long Short-Term Memory Neural Network. LSTM layers en-
code a representation of the given sequential data by exploiting
the temporal information. Therefore, an LSTM layer requires a two
dimensional input data X = [x1P, x50, ..., x,P] whose dimensions
are nxD where n is set to be 10 and D is 5. Two LSTM layers fol-
lowed by the output softmax layer are used to construct a Recurrent
Neural Network (RNN) with number of hidden units set to be 128.
Similar to CNN models, dropout ratio is chosen to be 0.5 The model
architecture is given on the bottom left of Figure 2.

4.1.8 CNN+LSTM Hybrid Neural Network. Several hybrid classi-
fiers are proposed and proven to be successful for network intrusion
detection systems [21]. These classifiers use CNN layers in the ear-
lier stages of the model to exploit spatial information and LSTM
layers in the later stages to learn temporal information from the
dataset. Therefore, the CNN+LSTM hybrid model proposed in [21]
is also implemented for our experiments with the modified design
parameters for our datasets. For instance, kernel size is set to 4 with
stride 1. 32 filters are used for each convolutional layer and 200
hidden units are implemented for LSTM layer and fully connected
layers. Two CNN layers followed by an LSTM layer and two fully
connected layers are used to construct hybrid model. Similar to
previous deep models, the dropout ratio is set to 0.5. The hybrid
CNN+LSTM model architecture is given on the bottom right of
Figure 2.

For all of the deep learning models, hyperparameters are op-
timized by a manual search around default values. For example,
learning rate is set to 0.001, decay rate of learning rate to 0.00001,
batch size to 100, and regularization parameter for the output layer
to 0.0001 to prevent overfitting. All models are trained for 100
epochs using Adam optimizer.

4.2 Model Implementation and Acceleration

To evaluate the proposed approaches, we prepare two versions of
machine learning/deep learning models for comparison: 1) the plain
version and 2) the accelerated version. The same model parameters
are used for both versions to guarantee a fair comparison across
the entire collection.

In the plain version, we utilize Scikit-learn library for traditional
machine learning classifier on CPU and Keras library with Tensor-
flow backend for deep learning models on GPU. In the accelerated
version, we aim to accelerate model training and inference on CPUs.
The Intel Data Analytics Acceleration Library (DAAL) [14] provides
optimized machine learning routines and algorithms targeted for

7th NSysS 2020, December 22-24, 2020, Dhaka, Bangladesh Onur Barut et al.

‘Output
- Benign
- Matware
FC Layerl FC Layerz

MaxPool1D (2x1) o

Output
- Benign
|npm Data ~ Malware
50x1 L
CcuwlD 4x1)
128@ 4 1"-

Baranarm Dropout(0.5) 128@25x1 MaxPoollD(2x1) % FC Layerl Fc Layerz Input Data MaxPool2D (22)
Dropout(0.5) BalchNorm Dropout(0.5) Flatten 128x1 10x5 g{z’;m’g%‘?"?) f"""zn (%) Dropout(0.5) F‘a“E" Dmﬂuur(d 5) Dmpourm 5
Dropout(0.5) 1864x1 Dropout(0.5) Drﬂoout(0.5) Conv2D (4x4) BatchNorm
128@10x5 Dropout(0.5)
BatchNorm
Dropout(0.5)
Output
- Benign
—,
- Malware

LSTM (Last State)

200x
o Dropout(0.5)
m !i | e | Output
Input Data = Bonign
Input Data LSTM (Last State) 55«1 ConviD (4x1) ConviD (4x1) - Malware
10x5 32@50x1 32@50x1 MaxPooliD (2x2)
LSTM 128x1 Dropout(0.5)

Dropout(0.5) Dropout{0.5)
10x128 Dropout(0.5) Batchhorm :gﬂ::"" ;gg ﬁw?
Dropout(0.5) Dropaut(0.5) Dropout(0.5)

Figure 2: Proposed deep learning model architectures. Top: CNN models (1D and 2D), Bottom Left: LSTM model, Bottom Right:
CNN+LSTM hybrid model

Table 2: Experiment Platform Specification

e - TP+ TN o
Item Specifications TP+TN +FP+FN
Op. Sys. Ubuntu 16.04.6 LTS TPR = L, FAR = L 3)
CPU 2x Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz TP+FN TN +FP
GPU 2x GV100GL NVIDIA Tesla V100 16 GB pR= (4)
RAM 64 GB DDR4 @ 2666 MHz ts
Intel DAAL version 2020.1 where TP, TN, FP, FN, t_a, and t_s stand for true positive, true
Intel OpenVINO version 2020.3 negative, false positive, false negative, throughput of accelerated

model, and throughput of standard model, respectively.
Run-time Performance and Resource Utilization: In order to
measure the time to train and time to perform prediction, time
module of python is used. Time intervals measured for training and
inference stages represents for only the time taken to complete the
specified stage. In other words, those times do not contain the time
to read the data or preprocess the data; they purely represent the
computation time. Using the measured computation time, we then
report the throughput in units of flows per second.

Intel processors. DAAL functions maximize processing speed by
leveraging the instruction set, vector width, core counts, and mem-
ory architecture for each processor they run on. Similar to the
popular Scikit-learn library, DAAL offers support for many of the
popular machine learning algorithms. For our purposes, we pro-
vide DAAL accelerated logistic regression, random forest, support
vector machines, and k-nearest neighbors to compare with their
plain counterparts. The deep learning models are also accelerated -) o= SRR)
by using Intel’s OpenVINO library [15]. OpenVINO consists of two Ig a'ddltlon to those metrics, CPU utlhzatlgn is obtained frf)m
main components, its Model Optimizer and Inference Engine. The psutil library of python and memory con§umpt10n 18 gbserved using
Model Optimizer is responsible for taking pre-trained models from memory_profiler module. For the GPU implementation, we report
our plain neural network models such as ANN, CNN, LSTM and the GPU memory utilization. All results obtained from these metrics
CNN+LSTM hybrid models; it then transforms these models into a are averaged using 10-fold cross-validation.

Intermediate Representation which OpenVINO can utilize to dras-

tically increase 5’16 inference rate. Aftlc:r the model is transformed, 5 RESULTS ON ENCRYPTED MALWARE
we utilize OpenVINO’s Inference Engine to yield the final infer- DETECTION

ence. We implemented the proposed models on a machine with the 5.1 Performance results with plain ML

hardware and software specifications given in Table 2. « N
P & Several machine learning classifiers are trained on “dataset1” and

the performance measurements for this dataset on different models

4.3 Evaluation Metrics are provided in Table 3. Although validation accuracy (ACC) is also

Classification Effectiveness: To compute the performance of the provided, true positive rate (TPR) and false alarm rate (FAR) are
proposed binary malware detection systems, accuracy in the vali- more important metrics, especially when the dataset is imbalanced.
dation split (ACC), detection rate as true positive rate (TPR), and Therefore, in terms of correct classification ability, random forest
false alarm rate (FAR) are obtained using the equations (2) to (3). classifier achieves the highest detection rate 99.996% and lowest
Dividing the throughput value of the accelerated model to the stan- false alarm rate 0.0297%.

dard counterpart gives the performance ratio (PR) as presented in Throughput of the classifier in terms of flow per second for
equation (4). training and prediction stages are given in t_tr and t_pr columns,

52

Machine Learning Based Malware Detection on Encrypted Traffic: A Comprehensive Performance Study

respectively. They are calculated by dividing the number of flow
from the given dataset split to the time interval of the stage. From
the system resource utilization perspective, we observe from Table
3 that logistic regression classifier is the fastest on prediction stage
and it has the lowest cost of average CPU utilization 167% and 489
MB memory for the training stage. However, logistic regression
yields the higher false alarm rate, which is undesirable for a network
traffic analysis system.

Table 3 also indicates how the different models are implemented
in the selected standard library. For example, average CPU utiliza-
tion for kNN classifier is 100%, which means that this algorithm
uses a single core throughout the training stage. However, SVM,
whose detection rate is second best after RF, utilizes 109% of CPU
that indicates the model is rarely requiring a second core to com-
plete the training for the given throughput rate. Similarly, the most
accurate model which is random forest classifier requires more
than 10 cores to achieve such training and classification throughput
while MLP classifier is the most CPU greedy one requiring more
than 20 cores.

Different machine learning models require various CPU and
memory utilization and outputs similar accuracy while training
and classification speeds vary a lot due to the nature and the imple-
mentation of the algorithm. For a network traffic analysis system,
correctly identifying malware traffic and producing less false alarm
are the most critical security indicators. Moreover, detection speed
is also an important factor especially when deployed on a resource
limited edge network. In this scenario, CPU and memory utilization
are limited. E.g., Table 3 shows that random forest model is highly
accurate and relatively faster in the prediction stage if the host
device is capable of providing 10 or more cores. However, for a
dual-core or quad-core edge device, radom forest may not yield the
desiring accuracy and speed. In conclusion, tradeoff has to be made
when deciding on a classification model for encrypted malware
traffic detection.

5.2 Performance results with plain DL

Different deep learning models are implemented for our encrypted
malware detection system. Similar to the results obtained from
machine learning classifiers, Table 4 demonstrates the compari-
son between various DL models on “dataset1”. Throughput values
are calculated as explained for machine learning models. Training
throughput values are obtained while training the models on GPU
while prediction throughput is obtained on CPU. Additionally, GPU
memory utilization is also provided since the proposed deep learn-
ing models are implemented on GPU. From this table, we observe
that MLP model is the most accurate deep learning model with
TPR 99.995 and FAR 0.1305. Furthermore, MLP requires the lowest
memory as 860 MB from RAM and it is the fastest model both in
training and prediction stages with 710.6 and 92252 flow per second,
respectively. The hybrid CNN+LSTM model has the highest false
alarm rate with 2.6824% which is significantly worse than MLP
model with 0.1305% false alarm rate. A common observation for
all DL models is that all of the proposed DL models require 7 to
9 cores on average for training process and 1.3 to 1.7 GB mem-
ory from RAM even though most of the computation is handled
by GPU. An exception to that is for MLP model whose CPU core

53

7th NSysS 2020, December 22-24, 2020, Dhaka, Bangladesh

utilization is 1.77 on average with 860 MB memory requirement
from RAM. We also observe the memory allocated from GPU using
NVIDIA’s System Management Interface (nvidia-smi) and provided
as the right-most column of Table 4. The utility shows that 305 MB
memory per GPU is allocated to training stage for all of the DL
models.

Interestingly, we notice that the best performing DL model
(LSTM based RNN) is less accurate than RF model, which yields the
best accuracy for “dataset1” among all ML classifiers. For example,
detection rate for LSTM model is 99.964% which is smaller than
RF model whose detection rate is 99.996%. Similarly, LSTM model
produces a higher false alarm with 0.5518% while RF model has
0.0297% false alarm rate. Therefore, it can be concluded that an
accurate encrypted malware detection system could be achieved by
engineering flow features and carefully selecting the most impor-
tant 50 of them and implementing a random forest classification
model. Another reason why DL models are highly accurate but can-
not achieve state-of-the-art for this problem is that the dimensions
of the input data which are 50x1 for 1D CNN and 10x5 for 2D CNN
and LSTM models, are relatively small for a DL model so that a
simpler traditional machine learning models such as random forest
can achieve a higher accuracy.

5.3 Performance results with
DAAL-accelerated ML

B Plain SSAccelerated ——Accuracy

1Esog 99674 99987 99.999 99993 99977 99.662 99.705 99.958 99952

1E+07

g 16406 -
S 16405 02 &
a
< 1E+04 § Q 99 §
3 1E+03 % % e b
F 16402 N N 8¢
1E+01 % s 2:‘:
N N o

1E+00

%
£

Y

S

Figure 3: Performance comparison of accelerated classifiers
on “dataset1”

The machine learning classifiers implemented using standard
library are also implemented using an accelerated library. Table 5
depicts the results obtained using an accelerated library and Figure
3 gives the throughput comparison of plain and accelerated classi-
fiers on the prediction stage along with their accuracy. Since the
implementation of a classifier on standard sklearn library and ac-
celerated library (DAAL) might differ, we observe slightly different
accuracy, detection rate and false alarm rate values. For example,
logistic regression with sklearn utilizes 1.67 cores on average while
the accelerated counterpart utilizes 6.87 core on average. Addition-
ally, accelerated logistic regression model is less accurate; however,
it consumes less amount of memory and 5.6 times faster in the
prediction stage and 1.33 times faster in the training stage. On the
other hand, for kNN classifier, accelerated library achieves higher
accuracy with significant acceleration in both training and pre-
diction stages and requires less amount of memory. Unlike the

7th NSysS 2020, December 22-24, 2020, Dhaka, Bangladesh

Onur Barut et al.

Table 3: Performance output of ML classifiers with standard library (sklearn) on “dataset1”

ACC (%) TPR (%) FAR (%)

t_tr (flow/s)

t_pr (flow/s) CPU (%) MEM (MB)

Model
Logistic Regression 99.949
kNN (k=5) 99.958
RF (n=100,m=10) 99.992
SVM (C=1,kernel="lin’) 99.977

99.989
99.973
99.996
99.995

0.2374
0.1305
0.0297
0.1246

23474 2092050 167 489
9615 2193 100 767
11764705 109890 1022 717
44119 166749 109 547

Table 4: Performance output of DL classifiers with standard library (keras-tensorflow) on “dataset1”

Model ACC (%) TPR (%) FAR (%) t_tr (flow/s) t_pr (flow/s) CPU (%) MEM (MB) GPU MEM (MB)
MLP 99.977 99.995 0.1305 710.6 92252 177.7 860 2x 305
1D CNN 99.662 99.901 1.7209 391 13784 886 1447 2x 305
2D CNN 99.705 99.883 1.3233 424 15216 678 1700 2x 305
LSTM 99.958 99.984 0.1899 44.11 7557 767 1331 2x 305
CNN+LSTM 99.952 99.882 0.2196 299 5081 789 1722 2x 305

Table 5: Performance output of ML classifiers with accelerated library (daal4py) on “dataset1”

ACC (%) TPR (%) FAR (%) t_tr (flow/s) t_pr (flow/s) CPU (%) MEM (MB)

Model
Logistic Regression 99.674
KNN (k=5) 99.987
RF (n=100,m=10) 99.999
SVM (C=1,kernel="lin") 99.993

99.820
99.991
99.997
99.997

1.2106
0.0712
0.0238
0.1365

31418 11723891 687 413
801752 9593 773 554
362780 2234878 1073 509
0.1165 1428268 118 581

Table 6: Performance output of DL classifiers with acceler-
ated library (openvino) on “dataset1”

Model ACC (%) t_pr(f/s)y CPU(% MEM (MB)
MLP 99.977 165304 37.5 909
1D CNN 99.662 31359 73.6 1676
2D CNN 99.705 56635 67.4 1687
LSTM 99.958 28477 46.5 1267
CNN+LSTM 99.952 14495 88.2 1427

standard kNN where a single core is utilized, accelerated kNN is
able to allocate the process onto 7.73 cores on average for parallel
processing which contributes to the acceleration. Moreover, we
observe that accelerated random forest classifier achieves the best
accuracy, detection rate, and false alarm rate with more than 20
times acceleration in the prediction stage. Similar to standard coun-
terpart, accelerated RF classifier uses 10.7 cores on average and
requires around 30% less memory. Likewise, accelerated SVM model
achieves a higher accuracy and detection rate with a lower false
alarm rate when compared to the standard library SVM classifier.
Even though the training stage for the accelerated tool is much
slower than standard SVM, it can classify up to 8.7 times more
flows in prediction stage. Since the training stage is executed once
to obtain the model, the prediction stage speed is more important
throughout the lifetime of the detection system.

54

5.4 Performance results with
OpenVINO-accelerated DL

The deep learning models trained using tensorflow in the previous
section are saved as pre-trained models and converted to interme-
diate representations for OpenVINO to accelerate the prediction
stage. Table 6 presents the results obtained using OpenVino toolkit
for acceleration. Since MLP model is not supported by DAAL, we
first trained MLP model using keras-tensorflow, similar to other DL
models, and saved the trained model for OpenVino inference.

One major advantage of accelerated DL models is that although
similar amount of memory is utilized, they require a single core for
the prediction stage and less amount of memory. For example, MLP
model requires 0.37 cores on average, while the most complicated
model which is hybrid CNN+LSTM is utilized by 0.88 cores on
average during prediction. Moreover, the performance of the DL
models on the prediction stage are significantly accelerated. To this
end, LSTM model is accelerated the most by 3.77 times and MLP
model is accelerated the least by 1.47 times.

Finally, we compare the proposed models with their acceler-
ated counterparts for “dataset2”. Figure 4 provides the comparison
results. The most accurate model is SVM model with the highest
acceleration ratio. Logistic regression has the highest throughput in
the prediction stage; however, it is the second least accurate model
right before 1D CNN model. Moreover, the accuracy obtained from
CNN+LSTM and LSTM models are slightly lower than SVM yet
their throughput in the prediction stage significantly lower than
SVM. Comparing these results to dataset1 shows that there is not a
single model that achieves the highest accuracy.

Machine Learning Based Malware Detection on Encrypted Traffic: A Comprehensive Performance Study

mmPlain

SNAccelerated ——Accuracy

©
o
Accuracy (%)

Figure 4: Performance comparison of accelerated classifiers
on “dataset2”

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented a comprehensive performance
study on machine learning and deep learning based methods to
detect encrypted malware. Our results show that SVM, RF and MLP
models are the most accurate classifiers. However, there is a trade-
off in the model selection. For example, SVM model for CICIDS2017
dataset is the most accurate but RF model achieves very similar
accurate yet a higher throughput in the prediction. Similarly, for
dataset1, RF model has the highest detection rate with the lowest
false alarm rate while SVM model has comparable detection rate
with worse false alarm rate. However, SVM is almost 1.5 times faster
in prediction speed. Moreover, we observe that with the flow feature
extraction tool and careful feature selection, traditional machine
learning models may achieve higher accuracy than deep learning
models. In the future, we plan to use raw-bytes of header fields in
the encrypted flows to train deep learning model to evaluate the
effect of flow features. We also plan to study the resource utilization
of other stages of malware detection including feature extraction.

ACKNOWLEDGMENTS

This work was supported in part by a grant from Intel Corporation,
and a grant from Summer Scholarship, Creative Arts and Research
Projects (SCARP) Program of Elizabethtown College.

REFERENCES

[1] I Ahmad, M. Basheri, M. J. Igbal, and A. Rahim. 2018. Performance Comparison
of Support Vector Machine, Random Forest, and Extreme Learning Machine for
Intrusion Detection. IEEE Access 6 (2018), 33789-33795. https://doi.org/10.1109/
ACCESS.2018.2841987

R. Alshammari and A. N. Zincir-Heywood. 2008. Investigating Two Different
Approaches for Encrypted Traffic Classification. In 2008 Sixth Annual Conference
on Privacy, Security and Trust. 156-166.

Blake Anderson, Subharthi Paul, and David McGrew. 2016. Deciphering Mal-
ware’s use of TLS (without Decryption). Journal of Computer Virology and
Hacking Techniques (07 2016). https://doi.org/10.1007/s11416-017-0306-6

Karel Bartos and Michal Sofka. 2015. Robust Representation for Domain Adap-
tation in Network Security. In Machine Learning and Knowledge Discovery in
Databases, Albert Bifet, Michael May, Bianca Zadrozny, Ricard Gavalda, Dino Pe-
dreschi, Francesco Bonchi, Jaime Cardoso, and Myra Spiliopoulou (Eds.). Springer
International Publishing, Cham, 116-132.

Canadian Institute for Cybersecurity. 2004. ISCX Datasets. https://www.unb.ca/
cic/datasets/index.html [Online; accessed 23-July-2020].

CICIDS2017 General Information. 2020. https://www.unb.ca/cic/datasets/ids-
2017.html [Online; accessed 22-July-2020].

Blake Anderson David McGrew et al. 2017. Joy. https://github.com/cisco/joy
Dewan Farid, Harbi Nouria, and Mohammad Zahidur Rahman. 2010. Combining
Naive Bayes and Decision Tree for Adaptive Intrusion Detection. International
Journal of Network Security & Its Applications 2 (04 2010). https://doi.org/10.
5121/ijnsa.2010.2202

55

—_

9]

[10

[11

[12

[14

[15

[16

(17]

[20]

[21]

[22]

~
=

[24

[25

[26

[27

[28

[29]

(30]

(31]

(32]

[33

(34]

7th NSysS 2020, December 22-24, 2020, Dhaka, Bangladesh

Minghui Gao, Li Ma, Heng Liu, Zhijun Zhang, Zhiyan Ning, and Jian Xu. 2020.
Malicious Network Traffic Detection Based on Deep Neural Networks and Asso-
ciation Analysis. Sensors 20 (03 2020), 1452. https://doi.org/10.3390/s20051452
Google. 2020. Encrypted traffic across Google. https://transparencyreport.
google.com/https/overview?hl=en [Online; accessed 20-June-2020].

Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Mamun, and Ali Ghorbani.
2017. Characterization of Tor Traffic using Time based Features. 253-262. https:
//doi.org/10.5220/0006105602530262

S. Haider, A. Akhunzada, I. Mustafa, T. B. Patel, A. Fernandez, K. R. Choo, and
J. Igbal. 2020. A Deep CNN Ensemble Framework for Efficient DDoS Attack
Detection in Software Defined Networks. [EEE Access 8 (2020), 53972-53983.
W. Hu, W. Hu, and S. Maybank. 2008. AdaBoost-Based Algorithm for Network
Intrusion Detection. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 38, 2 (April 2008), 577-583.

Intel Corporation. 2019. Intel® Data Analytics Acceleration Library (Intel®
DAAL). https://software.intel.com/en-us/intel-daal

Intel Corporation. 2019. OpenVINO Toolkit: Develop Multiplatform Computer
Vision Solutions. Explore the Intel® Distribution of OpenVINO™ toolkit. https:
//software.intel.com/en-us/openvino- toolkit

KDD Cup 1999 Data. 1999. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html [Online; accessed 14-March-2020].

J. Kim, J. Kim, H. L. Thi Thu, and H. Kim. 2016. Long Short Term Memory
Recurrent Neural Network Classifier for Intrusion Detection. In 2016 International
Conference on Platform Technology and Service (PlatCon). 1-5.

Y. Liu, S. Liu, and X. Zhao. 2018. Intrusion Detection Algorithm Based on Convo-
lutional Neural Network. DEStech Transactions on Engineering and Technology
Research (03 2018). https://doi.org/10.12783/dtetr/iceta2017/19916

Y. Luo, K. Xiang, and S. Li. 2008. Acceleration of Decision Tree Searching for IP
Traffic Classification. In Proceedings of the 4th ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems (ANCS "08). New York, NY,
USA, 40-49. https://doi.org/10.1145/1477942.1477949

D. Manning, P. Li, X. Wu, Y. Luo, T. Zhang, and W. Li. 2020. ACETA: Accelerating
Encrypted Traffic Analytics on Network Edge. In IEEE ICC 2020. 1-6. https:
//doi.org/10.1109/ICC40277.2020.9148798

G. Marin, P. Casas, and G. Capdehourat. 2019. Deep in the Dark - Deep Learning-
Based Malware Traffic Detection Without Expert Knowledge. In 2019 IEEE Secu-
rity and Privacy Workshops (SPW). 36-42.

M. Panda, A. Abraham, and M. R. Patra. 2010. Discriminative multinomial Naive
Bayes for network intrusion detection. In 2010 Sixth International Conference on
Information Assurance and Security. 5-10. https://doi.org/10.1109/ISIAS.2010.
5604193

P. Prasse, L. Machlica, T. Pevny, J. Havelka, and T. Scheffer. 2017. Malware
Detection by Analysing Network Traffic with Neural Networks. In 2017 IEEE
Security and Privacy Workshops (SPW). 205-210.

Vinayakumar R, Soman Kp, and Prabaharan Poornachandran. 2017. Evaluating
effectiveness of shallow and deep networks to intrusion detection system. 1282—
1289. https://doi.org/10.1109/ICACCIL.2017.8126018

Iman Sharafaldin, Arash Habibi Lashkari, and Ali Ghorbani. 2018. Toward Gener-
ating a New Intrusion Detection Dataset and Intrusion Traffic Characterization.
108-116. https://doi.org/10.5220/0006639801080116

Stratosphere. 2015. Stratosphere Laboratory Datasets. https://www.
stratosphereips.org/datasets-overview [Online; accessed 12-March-2020].

M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani. [n.d.]. A detailed analysis of the
KDD CUP 99 data set. IEEE Symposium. Computational Intelligence for Security
and Defense Applications ([n.d.]). https://doi.org/10.1109/CISDA.2009.5356528
Sumaiya Thaseen and Aswani Kumar Cherukuri. 2016. Intrusion Detection Model
Using Chi Square Feature Selection and Modified Naive Bayes Classifier. Vol. 49.
81-91. https://doi.org/10.1007/978-3-319-30348-2_7

J. Wang, Q. Yang, and D. Ren. 2009. An Intrusion Detection Algorithm Based
on Decision Tree Technology. In 2009 Asia-Pacific Conference on Information
Processing, Vol. 2. 333-335. https://doi.org/10.1109/APCIP.2009.218

P. Wang, F. Ye, X. Chen, and Y. Qian. 2018. Datanet: Deep Learning Based
Encrypted Network Traffic Classification in SDN Home Gateway. IEEE Access 6
(2018), 55380-55391. https://doi.org/10.1109/ACCESS.2018.2872430

B. Yamansavascilar, M. A. Guvensan, A. G. Yavuz, and M. E. Karsligil. 2017.
Application identification via network traffic classification. In 2017 International
Conference on Computing, Networking and Communications (ICNC). 843-848.
https://doi.org/10.1109/ICCNC.2017.7876241

M. Yeo, Y. Koo, Y. Yoon, T. Hwang, J. Ryu, J. Song, and C. Park. 2018. Flow-based
malware detection using convolutional neural network. In 2018 International
Conference on Information Networking (ICOIN). 910-913.

C.Yin, Y. Zhu, J. Fei, and X. He. 2017. A Deep Learning Approach for Intrusion
Detection Using Recurrent Neural Networks. IEEE Access 5 (2017), 21954-21961.
J. Zhang, M. Zulkernine, and A. Haque. 2008. Random-Forests-Based Network
Intrusion Detection Systems. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 38, 5 (Sep. 2008), 649-659. https://doi.org/10.
1109/TSMCC.2008.923876

https://doi.org/10.1109/ACCESS.2018.2841987
https://doi.org/10.1109/ACCESS.2018.2841987
https://doi.org/10.1007/s11416-017-0306-6
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://github.com/cisco/joy
https://doi.org/10.5121/ijnsa.2010.2202
https://doi.org/10.5121/ijnsa.2010.2202
https://doi.org/10.3390/s20051452
https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en
https://doi.org/10.5220/0006105602530262
https://doi.org/10.5220/0006105602530262
https://software.intel.com/en-us/intel-daal
https://software.intel.com/en-us/openvino-toolkit
https://software.intel.com/en-us/openvino-toolkit
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://doi.org/10.12783/dtetr/iceta2017/19916
https://doi.org/10.1145/1477942.1477949
https://doi.org/10.1109/ICC40277.2020.9148798
https://doi.org/10.1109/ICC40277.2020.9148798
https://doi.org/10.1109/ISIAS.2010.5604193
https://doi.org/10.1109/ISIAS.2010.5604193
https://doi.org/10.1109/ICACCI.2017.8126018
https://doi.org/10.5220/0006639801080116
https://www.stratosphereips.org/datasets-overview
https://www.stratosphereips.org/datasets-overview
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1007/978-3-319-30348-2_7
https://doi.org/10.1109/APCIP.2009.218
https://doi.org/10.1109/ACCESS.2018.2872430
https://doi.org/10.1109/ICCNC.2017.7876241
https://doi.org/10.1109/TSMCC.2008.923876
https://doi.org/10.1109/TSMCC.2008.923876

	Abstract
	1 Introduction
	2 Related Work
	3 Data Collection
	3.1 Dataset Preperation for TLS-encrypted Malware Detection
	3.2 Preprocessing and Feature Extraction
	3.3 Data Preprocessing
	3.4 TLS feature processing
	3.5 Feature Selection with Chi-square Algorithm

	4 System Design
	4.1 Classifiers Under Study
	4.2 Model Implementation and Acceleration
	4.3 Evaluation Metrics

	5 Results on Encrypted Malware Detection
	5.1 Performance results with plain ML
	5.2 Performance results with plain DL
	5.3 Performance results with DAAL-accelerated ML
	5.4 Performance results with OpenVINO-accelerated DL

	6 Conclusion and Future Work
	Acknowledgments
	References

