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Abstract

There is an urgent need to synthesize the state of our knowledge on plant responses to
climate. The availability of open-access data provide opportunities to examine
quantitative generalizations regarding which biomes and species are most responsive to
climate drivers. Here, we synthesize time series of structured population models from
162 populations from 62 plants, mostly herbaceous species from temperate biomes, to
link plant population growth rates (A) to precipitation and temperature drivers. We
expect: (1) more pronounced demographic responses to precipitation than temperature,
especially in arid biomes; and (2) a higher climate sensitivity in short-lived rather than
long-lived species. We find that precipitation anomalies have a nearly three-fold larger
effect on A than temperature. Species with shorter generation time have much stronger
absolute responses to climate anomalies. We conclude that key species-level traits can
predict plant population responses to climate, and discuss the relevance of this

generalization for conservation planning.
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Introduction

Climate change is altering the mean as well as the variance in temperature and
precipitation worldwide'. These changes in climate are widely recognized as a prime
global threat to biodiversity2 because temperature and precipitation ultimately drive the
demographic processes that determine the size and long-term viability of natural
populations®. Hence, it is critical to evaluate which species are most responsive to
climatic drivers, and in which biomes®. The urgency to understand the response of
species to climate is particularly high for species that cannot buffer against the effects of
climate change by migrating, such as sessile species. Among sessile species,
numerous plants have short-distance dispersal, and cannot therefore shift their ranges
fast enough to keep up with the current pace of climate change5’6.

Assuming plant productivity is a proxy of population performance, we expect that
precipitation, or its interaction with temperature, predict plant population growth better
than temperature alone. Most plant physiological processes, such as seed germination,
tissue growth, floral induction, and seed set, are affected by water availability7.
Accordingly, precipitation is a key driver of vegetation productivity worldwide®.
Temperature can also influence these processes, but typically by modulating water
availability®, as plant growth occurs across a wide range of temperatures (namely

between 5° to 40° Celsius’'°)

. The effect of temporal fluctuations on the growth rate of
a population should be proportional to precipitation or temperature anomalies, where
anomalies are deviations from mean values.

Precipitation and temperature anomalies are expected to have more pronounced
effects in arid and cold biomes than in wet and temperate ones. While species should
be adapted to their respective environment, extreme environments impose hard

physiological limitations. In arid environments plants experience water limitation more

4
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frequently’'. Similarly, in cold biomes plants should more frequently experience
temperatures that are too low to allow tissue growth'®'2. Accordingly, as water
availability decreases, precipitation becomes the main factor limiting plant physiological
processes13'14. On the other hand, in cold biomes temperature anomalies can be
disproportionately important. For example, temperature has a positive effect on tree
growth that increases in explanatory power with altitude™'®. Similarly, in the tundra
temperature anomalies can dramatically change the length of the growing season'’.
However, because plant functional composition is filtered by biome'®, it is important to
consider whether differences in the responses of plants across biomes might be due to
the different composition of plant functional types (graminoids, herbs, ferns, woody
species, and succulents) that occur in those biomes.

Life-history theory also provides expectations for how natural plant populations
may respond to climate drivers. The key life history trait defining plant life-history
strategy is generation time, which describes how fast individuals in a population are
substituted, and is correlated with life expectancy19. The population growth of long-lived
species should respond weakly to climatic anomalies compared to short-lived species.
We expect this because the long-run population growth rate of long lived species
responds less strongly to increases in the temporal variation of survival, growth, and
reproduction?®. Here, we capitalize on the recent availability of large volumes of
demographic data to quantitatively test how plant population growth rate, A, responds to
temperature and precipitation anomalies. We expect (Hi) A to be more strongly
associated with precipitation than temperature anomalies, because we expect water
availability to have stronger physiological effects than temperature; (H2) A of plants in
water-limited biomes to be more responsive to precipitation anomalies; (Hs3) A of plants

in cold biomes to be more responsive to temperature anomalies; (Hs) species with

5
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greater generation time to respond more weakly to temperature and precipitation
anomalies. We show that the effect of precipitation is three times larger than that of
temperature (H¢). Moreover, larger generation times are associated with weaker
responses to climate (H4). Both of these findings will inform ecological forecasts, and
the result on generation time emphasizes the importance of this life history trait to

conservation assessments.

Results

Our model selection provided little evidence for nonlinear responses to climate, and little
evidence of interactions between climatic and non-climatic factors. A nonlinear model
was selected in eight of the 38 populations for which we tested nonlinear relationships
(Supplementary Figure 3-5). We therefore considered a linear relationship for the
remaining 154 populations; we present these linear relationships in the online repository
that also contains the data and code related to this study?'. Only two populations
showed a substantial effect of the interaction between climate anomalies and
covariates: our only population of Astragalus cremnophylax var. cremnophylax, and one
of Dicerandra frutescens (Supplementary Data 1). These interactions increased the
estimates of the climatic effect by 40 times (from 0.001 to 0.052) and decreased it by

16% (from -0.189 to -0.158), respectively.

The overall effect of climate on plant population growth rate
As predicted (H4), the overall effect of precipitation anomalies on log(A) was
strong (B = 0.031, 95% C.l. [0.007,0.054]) relative to that of temperature (n = -0.013,

95% C.l. [-0.036,0.009]) and their interaction (6 = -0.008, 95% C.I. [-0.029, 0.011]),



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

which were centered around zero. On average, a year with precipitation one standard

deviation above the mean changed A by +3.3%.

The effect of biome on the response of plants to climate

The meta-regressions testing the response of plant populations to precipitation
(H2) and temperature (H3z) anomalies were both non-significant (Fig. 1). When testing
the correlation between WAI and the response of plant populations to precipitation
anomalies, only 90.5% of our bootstrap samples had slopes below zero (Bmeta = -3.83 x
10°, 95% C.I. [-9.47 x 10, 1.99 x 10”°)). Similarly, we did not find evidence that the
mean annual temperature (H3) of the site predicted the response of plant populations to

temperature anomalies (Fig. 1B; Bmeta = -1.42 x 107, 95% C.I. [-6.62 x 103, 1.00 x 107?)).

The effect of generation time on the response of plants to climate

We found strong support for the effect of generation time (Hs) on the absolute
response of plant populations to climate. As expected, the response of species to
climate correlated negatively with generation time (Fig. 2). In these meta-regressions,
100% of simulated Bneta Values referring to the effect of precipitation (Bmeta = -0.54, 95%
C.l. [-0.63, -0.44]), and temperature (Bmeta = -0.40, 95% C.1. [-0.50, -0.30]) were below

Zero.

The effect of plant types on estimates of climate effects
The effect of precipitation (P < 0.01), but not temperature (P=0.97), changed
based on organism type according to the ANOVA tests. Tukey's honestly significant

difference test showed a significant difference in the effect of precipitation between
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herbaceous and graminoid species (Supplementary Table 2-3, Supplementary Figure
6). We therefore re-run separate tests of H,, and H4 excluding the precipitation effect
sizes of graminoid species. We excluded graminoid species only, because herbaceous
species comprised 127 of our 162 populations, so that excluding them would not
provide meaningful inferences. In these additional tests discarding graminoid data, Hz
was not supported, and Hs was upheld. In Hz, the percentage of simulated Bmeta Values
lower than zero was 72%, well below the 90.4% of the full dataset (Supplementary
Methods, Supplementary Figure 7). On the other hand, Hs was upheld, with 100% of

Bmeta below zero (Supplementary Methods, Supplementary Figure 8).

Discussion
While quantifying population responses to climate drivers has a long history in plant
ecology?, there is an urgent need to synthesize our knowledge due to on-going climate
change*®. The availability of open-access data ?*, a solid understanding of
physiological ecology®®, and a mature evolutionary theory of life histories® provide
opportunities to produce quantitative generalizations regarding plant population
responses to climate. In our global synthesis, we found that (H1) precipitation has a
stronger effect on population growth rates than temperature, and that (H4) plant species
with shorter generation time respond more strongly to climate. These generalizations,
especially the one on generation time, are relevant to conservation planning and
evolutionary theory. However, because the available data is biased towards herbaceous
perennials of temperate regions, our results might not be universal.

The large, positive effect of precipitation on log(A), and the negative, smaller

effects of temperature and its interaction with precipitation are consistent with the

importance of water availability on plant population performance25 and productivitys. The
8
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importance of precipitation as a driver of plant population growth implies highly
uncertain ecological forecasts. Climate change projections involving precipitation are
much more uncertain than those involving temperature23. Moreover, prediction
uncertainty in climate projection is not expected to improve much in the coming
decades?’. As a result, accounting for this uncertainty will be a fundamental step when
crafting ecological forecasts of plant populations (e.g. model uncertainty?®).

To our knowledge, our results are the first to show that generation time is linked
to population responses to climatic drivers across a large number of species. To our
knowledge, the only other study to test for this hypothesis found a similar pattern for
three amphibian species®®. We formulated our hypothesis linking generation time to
population responses to climate because in a sample of long-lived plants and animals,
Morris et al.?° found that the long-run population growth rate responds little to increases
in the variation of survival and reproduction. Our results are complementary to this
seminal study, in that the low sensitivity to climate drivers we found in long-lived species
should minimize the variation in yearly population growth rates. Such minimized
variation in yearly population growth rates is linked to higher long-run population growth
rates®* 2. Hence, we demonstrated that it is possible to use plant traits to predict which
species will be most sensitive to climate change®. Interestingly, generation time is a
fundamental quantity in identifying extinction probability®*=*. It is therefore good news
that this trait can also predict the climatic sensitivity of herbaceous plants.

The fact that responses to climate do not change based on biome suggests that
plant populations are demographically adapted to cope with climate variation regardless

of the average climate. In extreme environments, the stronger effect of climate on the

14,35 15,16

variation of ecosystem processes such as productivity or biomass accumulation

is not reflected in demographic patterns. It is therefore plausible that adaptations such

9
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I*® or dormancy® are sufficient to de-couple physiological

as investment in surviva
processes from demographic patterns. Such de-coupling is crucial, because if climate
drove larger variance in population growth rates, this would decrease the chances of
population persistence. However, because plants appear adapted to local climatic
variation, these results do not mean that all biomes will be equally vulnerable to climatic
change. Rather, vulnerability to climate change will likely depend on how changes in
climate compare to pre-existing climatic variability*®.

The geographic and taxonomic bias of our dataset might amplify the relevance of
precipitation anomalies, and it therefore may affect the generality of our findings. First,
geographic bias potentially underemphasizes the role of temperature, because our
dataset under-samples extremely cold and hot biomes. For example, in cold biomes
such as montane or boreal forests, the influence of temperature on growth is larger as
mean annual temperature decreases'®'®. On the other hand, the interaction between
precipitation and temperature may be larger in hot than in colder biomes®. Therefore,
we might expect a strong interaction between precipitation and temperature anomalies
where mean precipitation is low and mean temperature high. These conditions should
occur, for example, in subtropical desert or tropical savannas, but only a handful of our
studies occur in these biomes (Supplementary Figure 1). Similarly, the taxonomic bias
in our data could also amplify the importance of precipitation anomalies. For example,
our dataset contained only two trees and five shrubs. However, woody species have
surprisingly effective adaptations to cope with water shortages®, and they could
therefore be susceptible only to extreme precipitation anomalies. Nevertheless, we note
that inferences dominated by herbaceous perennials have high significance globally. At

least 40% of terrestrial habitats are dominated by grasslands*’, herbaceous species
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comprise most of the biodiversity in temperate forests*', and they have a critical role in
the carbon cycle*’.

Our data on graminoids exemplify that the covariation between taxonomies and
biomes complicates the interpretation of global comparative studies. In our results, the
response of graminoids to precipitation anomalies is larger than other plant types, and
this response drives the positive correlation between WAI and the effect of precipitation
(Fig. 1A). Moderately arid climates favor grasses*’, which might have an inherent
advantage in exploiting precipitation, or at least precipitation pulses that increase the
moisture of shallow soil horizons''. As a result, we cannot establish whether sensitivity
to precipitation anomalies is characteristic of graminoids, or, as we originally expected
(H2), of arid biomes. In future studies, disentangling the role of biomes and taxonomic
bias on plant climate sensitivity will require study designs that stratify plant types across
biomes.

The predictive ability of our results, which use as predictor annual climatic
anomalies calculated from gridded climatic data, could be improved in the future by
mechanistic models that use increasingly more available micro-climatic information**.
Gridded climatic data are adequate to estimating climatic means registered by weather
stations over long time periods, such as years*®. However, the temperature experienced
by plant tissues can sometimes be substantially different from the air temperature
registered by weather stations*®*’. We note, however, that this fact does not invalidate
the use of gridded climatic data, because annual anomalies observed at the micro-
climatic and weather station level should be similar. For example, a previous study
shows a tight linear relationship between air temperature and the micro-climate at the
leaf surface in alpine vegetation‘”. Nevertheless, micro-climatic data will be required to

test mechanistic models of climatic effects, such as those linked to thresholds.
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Examples of these thresholds are growing degree days*® (Mcmaster 1997) or frost
damage®. Similarly, micro-climatic anomalies could help understand why different
populations of the same species respond differently to similar climatic anomalies®’.

Our findings on the link between short generation times and climatic sensitivity
do not automatically translate into climate vulnerability. The observational nature of our
data imposes to interpret our findings in light of two caveats. First, our data did not
address several of the concurrent factors that contribute to the effects of climate on
populations. These include factors such as density-dependences, trophic interactions®',
and anthropogenic drivers®®. Second, our results are more relevant to changes in
climatic variability than changes in climatic means. When predicting the effects of large
changes in climatic means, our nonlinear results (Supplementary Figure 3-5) show that
extrapolation might not be warranted. Besides these two caveats, the conservation
literature links short generation times to lower, rather than higher climate vulnerability as
indicated by our results®***. These studies reflect conservation assessments which
posit that short generation time should be linked to lower extinction probability33. Short-
generation time should also increase the probability of evolutionary rescue®. However,
the advantages provided by short generation time might be overridden by the rapid
rates of climate change expected. Thus, weighing the positive and negative effects of
generation time will leverage our findings to improve the quality of climate change

vulnerability assessments.

Methods
Demographic data
To address our hypotheses, we used matrix population models (MPMs) or

Integral projection models (IPMs) from the COMPADRE Plant Matrix Database (v.
12
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5.0.1%) and the PADRINO IPM Database®, which we amended with a systematic
literature search. First, we selected density-independent models from COMPADRE and
PADRINO which described the transition of a population from one year to the next.
Among these, we selected studies with at least six annual transition matrices, to
balance the needs of adequate yearly temporal replicates and sufficient sample size of
data for quantitative synthesis. This yielded data from 48 species and 144 populations.

We then performed a systematic literature search for studies linking climate
drivers to structured population models in the form of either MPMs or IPMs. We
performed this search on ISI Web of Science for studies published between 1997 and
2017. We used a Boolean expression containing key words related to plant form,
structured demographic models, and environmental drivers (Supplementary Methods).
We only considered studies linking macro-climatic drivers to natural populations (e.g.
transplant experiments and studies focused on local climatic factors such as soil
moisture, light due to tree fall gaps, etc. were excluded). Finally, we used the same
criteria used to filter studies in COMPARE and PARDINO, by selecting studies with at
least six, density-independent, annual projection models. This search brought two
additional species, belonging to three additional populations, which we entered in the
COMPADRE database.

One of the studies we excluded from the literature search because it contained
density-dependent IPMs, also provided raw data with high temporal replication (14 to 32
years of sampling) for 12 species from 15 populations®®. Therefore, we re-analyzed
these freely available data to produce density-independent MPMs that were directly
comparable to the other studies in our dataset (Supplementary Methods).

The resulting dataset consisted of 46 studies, 62 species, 162 populations, and a

total of 3,761 MPMs and 52 IPMs (Supplementary Data 1). The analyzed plant
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populations were tracked for a mean of 16 (median of 12) annual transitions. To our
knowledge, this is the largest open-access dataset of long-term structured population
projection models. However, this dataset is taxonomically and geographically biased.
Specifically, among our 62 species, this dataset contains 54 herbaceous perennials (11
of which graminoids), and eight woody species: five shrubs, two trees, and one woody
succulent (Opuntia imbricata). Moreover, almost all of these studies were conducted in
North America and Europe (Supplementary Figure 1), in temperate biomes that are
cold, dry, or both cold and dry (Supplementary Figure 1, insert). Our geographic and
taxonomic bias reflects the rarity of long-term plant demographic data in general. This
dearth of long-term demographic data is particularly evident in the tropics. The
ForestGEO network® is an exception to this rule, but to date, no matrix population
models or integral projection models using these data have been published.

We used the MPMs and IPMs in this dataset to calculate the response variable of
our analyses: the yearly asymptotic population growth rate (A). This measure is one of
the most widely used summary statistics in population ecology®®, as it integrates the
response of multiple interacting vital rates. Specifically, A reflects the population growth
rate that a population would attain if its vital rates remained constant through time®'.
This metric therefore distills the effect of underlying vital rates on population dynamics,
free of other confounding factors (e.g. transient dynamics arising from population
structure®?). We calculated A of each MPM or IPM with standard methods®"*. Because
our MPMs and IPMs described the demography of a population transitioning from one
year to the next, our A values were comparable in time units. Finally, we identified and
categorized any non-climatic driver associated with these MPMs and IPMs. Data
associated with 21 of our 62 species explicitly quantified a non-climatic driver (e.g.,

grazing, neighbor competition), for a total of 60 of our 162 populations. Of the datasets
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associated with these species, 19 included discrete drivers, and only three included a

continuous driver.

Climatic data

To test the effect of temporal climatic variation on demography, we gathered
global climatic data. We downloaded 1 km? gridded monthly values for maximum
temperature, minimum temperature, and total precipitation between 1901 and 2016
from CHELSAcruts®, which combines the CRU TS 4.01%, and CHELSA®® datasets.
Gridded climatic data are especially suited to estimate annual climatic means*. These
datasets include values from 1901 to 2016, which is necessary to cover the temporal
extent of all 162 plant populations considered in our analysis. For our temperature
analyses, we calculated mean monthly temperature as the mean of the minimum and
maximum monthly temperatures. We used monthly values to calculate time series of
mean annual temperature, and total annual precipitation at each site. We then used this
dataset to calculate our annual anomalies for each census year, defined as the 12
months preceding a population census. Our annual anomalies are standardized z-
scores. For example, if X is a vector of 40 yearly precipitation or temperature values, E()
calculates the mean, and o() calculates the standard deviation, we compute annual
anomalies as A = [X - E(X))/o(X). Therefore, an anomaly of one refers to a year where
precipitation or temperature was one standard deviation above the 40-year mean. In
other words, anomalies represent how infrequent annual climatic conditions are at a
site. Specifically, if we assume that A values are normally distributed, values exceeding
one and two should occur every six and 44 years, respectively. We used 40-year means

because the minimum number of years suggested to calculate climate averages is 30%.
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Z-scores are commonly used in global studies on vegetation responses to

climate®®®

, and they reflect the null hypothesis that species are adapted to the climatic
variation at their respective sites. Across our populations, the standard deviations of
annual precipitation and temperature anomalies change by 300% and 60%, respectively
(Supplementary Figure 2). Thus, a z-score of one refers to a precipitation anomaly of 50
or 160mm and to a temperature anomaly of 0.5 or 0.8° Celsius. Our null hypothesis
posits that species are adapted to these conditions, regardless of the absolute
magnitude of the standard deviation in annual climatic anomalies. If this were true, each
species would respond similarly to z-scores. However, we found our temperature and
precipitation z-scores were highly skewed (skewness above 1) only in respectively two
(for temperature) and three (for precipitation) of our 162 populations. We concluded that
this degree of skewness should not bias our z-scores substantially.

To test how the response of plant populations to climate changes based on
biome we used two proxies of water and temperature limitation. For each study
population, we computed a proxy for water limitation, water availability index (WAI), and
temperature limitation using mean annual temperature. To compute these metrics, we
downloaded data at 1 km? resolution for mean annual potential evapotranspiration,
mean annual precipitation, and mean annual temperature referred to the 1970-2000

period. We obtained potential evapotranspiration data from the CGIAR-CSI consortium

(http://www.cqiar-csi.org/). This dataset calculates potential evapotranspiration using the

Hargreaves method®®. We obtained mean annual precipitation and mean annual
temperature from Worldclim™. Here, we used WorldClim rather than CHELSA climatic
data because the CGIAR-CSI potential evapotranspiration data was computed from the
former. We calculated the WAI values at each of our sites by subtracting mean annual

potential evapotranspiration from the mean annual precipitation. Such proxy is a coarse
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measure of plant water availability that ignores information such as soil characteristics
and plant rooting depth. However, WAI is useful to compare water availability among
disparate environments, so that it is often employed in global analyses68'71. As our proxy
of temperature limitation, we use mean annual temperature. While growing degree days
would be a more mechanistic measure of temperature limitation*®, this requires daily
weather data. However, we could not find a global, downscaled, daily gridded weather

dataset to calculate this metric.

The overall effect of climate on plant population growth rate
To test Hy, we estimated the overall effect sizes of responses to anomalies in

temperature, precipitation, and their interaction with a linear mixed effect model.

log(A)) =a+ BP +nT + OPxT + ¢ Eq. (1)

where log(A) is the log of the asymptotic population growth rate of plant population P is
precipitation, T is temperature. We included random population effects on the intercept
and the slopes to account for the non-independence of measurements within
populations. We then compared the mean absolute effect size of precipitation,
temperature, and their interaction. This final model did not include a quadratic term of
temperature and precipitation because these additional terms led to convergence
issues. This likely occurred because single data sets did not include enough years of

data.
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Population-level effect of climate on plant population growth rates

To test our remaining three hypotheses, we carried out meta-regressions where
the response variable was the slope (henceforth “effect size”) of climatic anomalies on
population growth rate for each of our populations. Before carrying out our meta-
regressions, we first estimated the effect size of our two climatic anomalies on the
population growth rate of each population separately. We initially fit population-level and
meta-regressions simultaneously, in a hierarchical Bayesian framework. However,
these Bayesian models shrunk the uncertainty of the noisiest population-level
relationships, resulting in unrealistically strong meta-regressions. We therefore chose to
fit population models separately, resulting in more conservative results.

For each population, we fit multiple regressions with an autoregressive error
term, and we evaluated the potential for nonlinear effects in the datasets longer than 14
years. We fit multiple regressions because temperature and precipitation anomalies
were negatively correlated, so that fitting separate models for temperature and
precipitation would yield biased results’®. We fit an autoregressive error term, because
density dependence and autocorrelated climate anomalies can produce autocorrelated

plant population growth rates. The form of our baseline model was:

log(A)y, = a+ B,P, + BT, + ¢, Eq. (2)

&y = pEy_q + 1, Eq. (3)

The model in equation 2 is a linear regression relating each log(A) data point
observed in year y, to the corresponding precipitation (P) and temperature (T)
anomalies observed in year y, via the intercept a, the effect sizes, 8, and an error term,

&y, which depends on white noise, n,, and on the correlation with the error term of the
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previous year, p. When multiple spatial replicates per each population were available
each year, we estimated the p autocorrelation value separately for each replicate. This
happened in the few cases when a study contained contiguous populations, with no
ecologically meaningful (e.g. habitat) differences.

We compared the baseline model in Eq. 2-3 to models including a quadratic
climatic effect and non-climatic covariates. We estimated quadratic climatic effects only
for time series longer than 14 years. We choose this threshold because when using a
model selection approach to select a quadratic or linear regression model, the
recommended minimum sample size is between eight and 25 data points73. We fit
models including a quadratic effect of temperature, precipitation, or both
(Supplementary Table 1).

Finally, we also tested whether non-climatic covariates could bias the effects of
climate on log(A) estimated in our analysis. Such bias, either upwards or downwards,
could result in the case non-climatic co-variates interacted with climate. For example,
harvest can have multiplicative, rather than additive effects on the climate responses of
forest understory herbs’. We tested for an interaction between a covariate and climate
anomaly in 17 of the 21 studies that included a non-climatic covariate. In the remaining
three studies, discrete covariates corresponded with the single populations. Because
Eq. 2-3 is fit on separate populations, it implicitly accounted for these covariates. For the
17 studies above, we fit a linear effect of the non-climatic covariate, and its interaction
with one of the two linear climatic anomalies. Thus, including the linear model in Eq. 2-
3, the nonlinear models, and the covariate interaction models, we tested up to six
alternative models for each one of our populations (Supplementary Table 1). We

selected the best model according to the Akaike Information Criterion corrected for
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small sample sizes (AlCc, Hurvich & Tsai 1989). We carried out these and subsequent
analyses in R version 3.6.1"°.

In the populations for which AlCc selected one of the model alternatives to the
baseline in Eq. 2-3, we calculated the effect size of climate by adding the effect of the
new terms to the linear climatic terms. For example, when a quadratic precipitation
model was selected, we calculated the effect size of precipitation as g = g, + f,,. For
models including an interaction between temperature and a non-climatic covariate, we
evaluated the effect of the interaction at the mean value of the covariate. Therefore, we
calculated the effect size as f = S, + ,E(C;) for continuous covariates. For categorical
variables, we calculated the effect size as g, + f,0.5: that is, we calculated the mean

effect size between the two categories. We quantified the standard error of the resulting

effect sizes by adding the standard errors of the two terms.

The effect of biome on the response of plants to climate

We used a simulation procedure to run two meta-regressions to test for the
correlation between the effect size of climate drivers on A, and our measures of water or
temperature limitation. This meta-regression accounted for the uncertainty, measured
as the standard error, in the effect sizes of climate drivers. We represented the effect of
biome using a proxy of water (WAI) and temperature (mean annual temperature)
limitation. For each of our 162 populations, the response data of this analysis were the
effect sizes (B, or B: values) estimated by Eq. 2-3, or their modifications in case a
quadratic or non-climatic covariate model were selected. In these meta-regressions the
weight of each effect size was inversely proportional to its standard error. To test H, and
Hs; on how water and temperature limitation should affect the response of populations to

climate, we used linear meta-regressions. These two hypotheses tested both the sign

20



492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

and magnitude of the effect of climate. Therefore, we used the effect sizes as a
response variable which could take negative or positive values. As predictors, we used
population-specific WAI (Hz, only for effect sizes quantifying the effect of precipitation),
and mean annual temperature (Hs, only for effect sizes quantifying the effect of
temperature). The null hypothesis of these meta-regressions is that plant species are
adapted to the climatic variation at their respective sites. Such an adaptation implies
that a precipitation z-score of one should produce effects on log(A) of similar magnitude
and sign across different climates. This should happen across average climatic values
that are connected to substantially different absolute climatic anomalies (Supplementary
Figure 2). On the other hand, our hypotheses posit that at low WAI and MAT values,
species are more responsive to z-scores than expected under the null hypothesis.

We performed these two meta-regressions by exploiting the standard error of
each effect size. We simulated 1,000 separate datasets where each effect size was
independently drawn from a normal distribution whose mean was the estimated ( value,
and the standard deviation was the standard error of this 8. These simulated datasets
accounted for the uncertainty in the B8 values. We fit 1,000 linear models, extracting for
each its slope, Bmneta- Each one of these slopes had in turn its uncertainty, quantified by
its standard error, Ometa. FOr each Bneta, Wwe then drew 1000 values from a normal
distribution with mean B2 and standard deviation 0nmeta. We used the resulting 1 x 108
values to estimate the confidence intervals of Bmeta. This procedure assumes that the
distribution of Bneta values is normally distributed. We performed one-tailed hypothesis
tests, considering meta-regression slopes significant when over 95% of simulated

values were below zero.
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The effect of generation time on the response of plants to climate

To test Hs on how the generation time of a species should mediate its responses
to climate, we used a gamma meta-regression. We fitted gamma meta-regressions
because our response variables were the absolute effect sizes of precipitation and
temperature anomalies, |G|, which are bounded between 0 and infinity. To test Hy, we
therefore fit gamma meta-regressions with a log link, using |B| values as response
variable and generation time (T) as predictor. We calculated T directly from the MPMs
and IPMs (Supplementary Methods). We log-transformed T to improve model fit. We
carried out these meta-regressions using the same simulation procedure described for
testing H, and Hs;. We also carried out one-tailed hypothesis tests, by verifying whether

95% of Bmeta Values were below zero.

The effect of plant types on estimates of climate effects

We verified whether certain plant types could bias our results by subdividing our
species as graminoids, herbaceous perennials, ferns, woody species (shrubs and
trees), and succulents. We ran ANOVA tests to verify whether the effect sizes of
precipitation and temperature anomalies differed between plant types. We then tested
for significant differences in pairwise contrasts between plants types by running Tukey's
honestly significant difference tests. We carried out these tests on the average effects of
climate, without accounting for differences in parameter uncertainty. If Tukey's test
identified significant differences among plant types, we ran additional tests of H, Hs,

and H,4 excluding the plant type, or plant types, whose response to climate differed.

Data availability: Most of the demographic data used in this manuscript are open-
access and available in the COMPADRE Plant Matrix Database (v. 5.0.1;
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https://compadre-db.org/Data/Compadre). Additional data come from the PADRINO

Database (beta version; https://github.com/levisc8/rpadrino). A list of the studies and

species used here is available in Supplementary Data 1. The CHELSAcruts dataset is

available at_http://dx.doi.org/10.16904/envidat.159. The formatted dataset, and

associated metadata, to reproduce the analyses of this study are archived on Github at

doi http://doi.org/10.5281/zenodo.4516446.

Code availability: The code to reproduce the results of this study is stored on Github at

doi http://doi.org/10.5281/zenodo.4516446.
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FIGURE LEGENDS

Figure 1. Effect of precipitation (A) and temperature (B) anomalies on the logged
asymptotic population growth rate (A) as a function of water availability index (A) and
mean annual temperature (B). The y-axis represents the effect sizes of yearly
anomalies in precipitation and temperature. The uncertainty of these effect sizes is
shown by the size of circles, which are inversely proportional to the standard error (SE)
of effect sizes (1/SE). The thick black lines show the mean prediction of the meta-
regressions; these lines are dashed because these relationships are non-significant.
The shaded areas represent the 95% confidence interval of 1000 bootstrapped linear

regressions. The color of individual data points shows five separate plant types.

Figure 2: The absolute effect of precipitation and temperature as a function of logged
generation time (T). We show the effect sizes of precipitation and temperature as a
function of log(T) (panels A and B, respectively). The uncertainty of these effect sizes is
shown by the size of circles, which are inversely proportional to the standard error (SE)
of effect sizes (1/SE). The thick black lines show the mean prediction of the meta-
regressions. The shaded areas represent the 95% confidence interval of 1000
bootstrapped gamma regressions. The color of individual data points shows five

separate plant types
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