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Abstract 59 
There is an urgent need to synthesize the state of our knowledge on plant responses to 60 
climate. The availability of open-access data provide opportunities to examine 61 
quantitative generalizations regarding which biomes and species are most responsive to 62 
climate drivers. Here, we synthesize time series of structured population models from 63 
162 populations from 62 plants, mostly herbaceous species from temperate biomes, to 64 
link plant population growth rates (λ) to precipitation and temperature drivers. We 65 
expect: (1) more pronounced demographic responses to precipitation than temperature, 66 
especially in arid biomes; and (2) a higher climate sensitivity in short-lived rather than 67 
long-lived species. We find that precipitation anomalies have a nearly three-fold larger 68 
effect on λ than temperature. Species with shorter generation time have much stronger 69 
absolute responses to climate anomalies. We conclude that key species-level traits can 70 
predict plant population responses to climate, and discuss the relevance of this 71 
generalization for conservation planning. 72 
  73 
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Introduction 74 
Climate change is altering the mean as well as the variance in temperature and 75 

precipitation worldwide1. These changes in climate are widely recognized as a prime 76 
global threat to biodiversity2 because temperature and precipitation ultimately drive the 77 
demographic processes that determine the size and long-term viability of natural 78 
populations3. Hence, it is critical to evaluate which species are most responsive to 79 
climatic drivers, and in which biomes4. The urgency to understand the response of 80 
species to climate is particularly high for species that cannot buffer against the effects of 81 
climate change by migrating, such as sessile species. Among sessile species, 82 
numerous plants have short-distance dispersal, and cannot therefore shift their ranges 83 
fast enough to keep up with the current pace of climate change5,6. 84 

Assuming plant productivity is a proxy of population performance, we expect that 85 
precipitation, or its interaction with temperature, predict plant population growth better 86 
than temperature alone. Most plant physiological processes, such as seed germination, 87 
tissue growth, floral induction, and seed set, are affected by water availability7. 88 
Accordingly, precipitation is a key driver of vegetation productivity worldwide8. 89 
Temperature can also influence these processes, but typically by modulating water 90 
availability9, as plant growth occurs across a wide range of temperatures (namely 91 
between 5° to 40° Celsius7,10). The effect of temporal fluctuations on the growth rate of 92 
a population should be proportional to precipitation or temperature anomalies, where 93 
anomalies are deviations from mean values. 94 

Precipitation and temperature anomalies are expected to have more pronounced 95 
effects in arid and cold biomes than in wet and temperate ones. While species should 96 
be adapted to their respective environment, extreme environments impose hard 97 
physiological limitations. In arid environments plants experience water limitation more 98 
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frequently11. Similarly, in cold biomes plants should more frequently experience 99 
temperatures that are too low to allow tissue growth10,12. Accordingly, as water 100 
availability decreases, precipitation becomes the main factor limiting plant physiological 101 
processes13,14. On the other hand, in cold biomes temperature anomalies can be 102 
disproportionately important. For example, temperature has a positive effect on tree 103 
growth that increases in explanatory power with altitude15,16. Similarly, in the tundra 104 
temperature anomalies can dramatically change the length of the growing season17. 105 
However, because plant functional composition is filtered by biome18, it is important to 106 
consider whether differences in the responses of plants across biomes might be due to 107 
the different composition of plant functional types (graminoids, herbs, ferns, woody 108 
species, and succulents) that occur in those biomes. 109 

Life-history theory also provides expectations for how natural plant populations 110 
may respond to climate drivers. The key life history trait defining plant life-history 111 
strategy is generation time, which describes how fast individuals in a population are 112 
substituted, and is correlated with life expectancy19. The population growth of long-lived 113 
species should respond weakly to climatic anomalies compared to short-lived species. 114 
We expect this because the long-run population growth rate of long lived species 115 
responds less strongly to increases in the temporal variation of survival, growth, and 116 
reproduction20. Here, we capitalize on the recent availability of large volumes of 117 
demographic data to quantitatively test how plant population growth rate, λ, responds to 118 
temperature and precipitation anomalies. We expect (H1) λ to be more strongly 119 
associated with precipitation than temperature anomalies, because we expect water 120 
availability to have stronger physiological effects than temperature; (H2) λ of plants in 121 
water-limited biomes to be more responsive to precipitation anomalies; (H3) λ of plants 122 
in cold biomes to be more responsive to temperature anomalies; (H4) species with 123 
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greater generation time to respond more weakly to temperature and precipitation 124 
anomalies. We show that the effect of precipitation is three times larger than that of 125 
temperature (H1). Moreover, larger generation times are associated with weaker 126 
responses to climate (H4). Both of these findings will inform ecological forecasts, and 127 
the result on generation time emphasizes the importance of this life history trait to 128 
conservation assessments. 129 
 130 
Results 131 
Our model selection provided little evidence for nonlinear responses to climate, and little 132 
evidence of interactions between climatic and non-climatic factors. A nonlinear model 133 
was selected in eight of the 38 populations for which we tested nonlinear relationships 134 
(Supplementary Figure 3-5). We therefore considered a linear relationship for the 135 
remaining 154 populations; we present these linear relationships in the online repository 136 
that also contains the data and code related to this study21. Only two populations 137 
showed a substantial effect of the interaction between climate anomalies and 138 
covariates: our only population of Astragalus cremnophylax var. cremnophylax, and one 139 
of Dicerandra frutescens (Supplementary Data 1). These interactions increased the 140 
estimates of the climatic effect by 40 times (from 0.001 to 0.052) and decreased it by 141 
16% (from -0.189 to -0.158), respectively. 142 
 143 
The overall effect of climate on plant population growth rate 144 

As predicted (H1), the overall effect of precipitation anomalies on log(λ) was 145 
strong (β = 0.031, 95% C.I. [0.007,0.054]) relative to that of temperature (η = -0.013, 146 
95% C.I. [-0.036,0.009]) and their interaction (θ = -0.008, 95% C.I. [-0.029, 0.011]), 147 
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which were centered around zero. On average, a year with precipitation one standard 148 
deviation above the mean changed λ by +3.3%. 149 
 150 
The effect of biome on the response of plants to climate 151 

The meta-regressions testing the response of plant populations to precipitation 152 
(H2) and temperature (H3) anomalies were both non-significant (Fig. 1). When testing 153 
the correlation between WAI and the response of plant populations to precipitation 154 
anomalies, only 90.5% of our bootstrap samples had slopes below zero (βmeta = -3.83 x 155 
10-5, 95% C.I. [-9.47 x 10-5, 1.99 x 10-5]). Similarly, we did not find evidence that the 156 
mean annual temperature (H3) of the site predicted the response of plant populations to 157 
temperature anomalies (Fig. 1B; βmeta = -1.42 x 10-3, 95% C.I. [-6.62 x 10-3, 1.00 x 10-2]). 158 
 159 
The effect of generation time on the response of plants to climate 160 

We found strong support for the effect of generation time (H4) on the absolute 161 
response of plant populations to climate. As expected, the response of species to 162 
climate correlated negatively with generation time (Fig. 2). In these meta-regressions, 163 
100% of simulated βmeta values referring to the effect of precipitation (βmeta = -0.54, 95% 164 
C.I. [-0.63, -0.44]), and temperature (βmeta = -0.40, 95% C.I. [-0.50, -0.30]) were below 165 
zero.  166 
 167 
The effect of plant types on estimates of climate effects 168 

The effect of precipitation (P < 0.01), but not temperature (P=0.97), changed 169 
based on organism type according to the ANOVA tests. Tukey's honestly significant 170 
difference test showed a significant difference in the effect of precipitation between 171 
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herbaceous and graminoid species (Supplementary Table 2-3, Supplementary Figure 172 
6). We therefore re-run separate tests of H2, and H4 excluding the precipitation effect 173 
sizes of graminoid species. We excluded graminoid species only, because herbaceous 174 
species comprised 127 of our 162 populations, so that excluding them would not 175 
provide meaningful inferences. In these additional tests discarding graminoid data, H2 176 
was not supported, and H4 was upheld. In H2, the percentage of simulated βmeta values 177 
lower than zero was 72%, well below the 90.4% of the full dataset (Supplementary 178 
Methods, Supplementary Figure 7). On the other hand, H4 was upheld, with 100% of 179 
βmeta below zero (Supplementary Methods, Supplementary Figure 8). 180 
 181 
Discussion 182 
While quantifying population responses to climate drivers has a long history in plant 183 
ecology22, there is an urgent need to synthesize our knowledge due to on-going climate 184 
change4,23. The availability of open-access data 24, a solid understanding of 185 
physiological ecology25, and a mature evolutionary theory of life histories26 provide 186 
opportunities to produce quantitative generalizations regarding plant population 187 
responses to climate. In our global synthesis, we found that (H1) precipitation has a 188 
stronger effect on population growth rates than temperature, and that (H4) plant species 189 
with shorter generation time respond more strongly to climate. These generalizations, 190 
especially the one on generation time, are relevant to conservation planning and 191 
evolutionary theory. However, because the available data is biased towards herbaceous 192 
perennials of temperate regions, our results might not be universal. 193 

The large, positive effect of precipitation on log(λ), and the negative, smaller 194 
effects of temperature and its interaction with precipitation are consistent with the 195 
importance of water availability on plant population performance25 and productivity8. The 196 
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importance of precipitation as a driver of plant population growth implies highly 197 
uncertain ecological forecasts. Climate change projections involving precipitation are 198 
much more uncertain than those involving temperature23. Moreover, prediction 199 
uncertainty in climate projection is not expected to improve much in the coming 200 
decades27. As a result, accounting for this uncertainty will be a fundamental step when 201 
crafting ecological forecasts of plant populations (e.g. model uncertainty28). 202 

To our knowledge, our results are the first to show that generation time is linked 203 
to population responses to climatic drivers across a large number of species. To our 204 
knowledge, the only other study to test for this hypothesis found a similar pattern for 205 
three amphibian species29. We formulated our hypothesis linking generation time to 206 
population responses to climate because in a sample of long-lived plants and animals, 207 
Morris et al.20 found that the long-run population growth rate responds little to increases 208 
in the variation of survival and reproduction. Our results are complementary to this 209 
seminal study, in that the low sensitivity to climate drivers we found in long-lived species 210 
should minimize the variation in yearly population growth rates. Such minimized 211 
variation in yearly population growth rates is linked to higher long-run population growth 212 
rates30–32. Hence, we demonstrated that it is possible to use plant traits to predict which 213 
species will be most sensitive to climate change4. Interestingly, generation time is a 214 
fundamental quantity in identifying extinction probability33,34. It is therefore good news 215 
that this trait can also predict the climatic sensitivity of herbaceous plants. 216 

The fact that responses to climate do not change based on biome suggests that 217 
plant populations are demographically adapted to cope with climate variation regardless 218 
of the average climate. In extreme environments, the stronger effect of climate on the 219 
variation of ecosystem processes such as productivity14,35 or biomass accumulation15,16 220 
is not reflected in demographic patterns. It is therefore plausible that adaptations such 221 
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as investment in survival36 or dormancy37 are sufficient to de-couple physiological 222 
processes from demographic patterns. Such de-coupling is crucial, because if climate 223 
drove larger variance in population growth rates, this would decrease the chances of 224 
population persistence. However, because plants appear adapted to local climatic 225 
variation, these results do not mean that all biomes will be equally vulnerable to climatic 226 
change. Rather, vulnerability to climate change will likely depend on how changes in 227 
climate compare to pre-existing climatic variability38. 228 

The geographic and taxonomic bias of our dataset might amplify the relevance of 229 
precipitation anomalies, and it therefore may affect the generality of our findings. First, 230 
geographic bias potentially underemphasizes the role of temperature, because our 231 
dataset under-samples extremely cold and hot biomes. For example, in cold biomes 232 
such as montane or boreal forests, the influence of temperature on growth is larger as 233 
mean annual temperature decreases15,16. On the other hand, the interaction between 234 
precipitation and temperature may be larger in hot than in colder biomes9. Therefore, 235 
we might expect a strong interaction between precipitation and temperature anomalies 236 
where mean precipitation is low and mean temperature high. These conditions should 237 
occur, for example, in subtropical desert or tropical savannas, but only a handful of our 238 
studies occur in these biomes (Supplementary Figure 1). Similarly, the taxonomic bias 239 
in our data could also amplify the importance of precipitation anomalies. For example, 240 
our dataset contained only two trees and five shrubs. However, woody species have 241 
surprisingly effective adaptations to cope with water shortages39, and they could 242 
therefore be susceptible only to extreme precipitation anomalies. Nevertheless, we note 243 
that inferences dominated by herbaceous perennials have high significance globally. At 244 
least 40% of terrestrial habitats are dominated by grasslands40, herbaceous species 245 
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comprise most of the biodiversity in temperate forests41, and they have a critical role in 246 
the carbon cycle42. 247 

Our data on graminoids exemplify that the covariation between taxonomies and 248 
biomes complicates the interpretation of global comparative studies. In our results, the 249 
response of graminoids to precipitation anomalies is larger than other plant types, and 250 
this response drives the positive correlation between WAI and the effect of precipitation 251 
(Fig. 1A). Moderately arid climates favor grasses43, which might have an inherent 252 
advantage in exploiting precipitation, or at least precipitation pulses that increase the 253 
moisture of shallow soil horizons11. As a result, we cannot establish whether sensitivity 254 
to precipitation anomalies is characteristic of graminoids, or, as we originally expected 255 
(H2), of arid biomes. In future studies, disentangling the role of biomes and taxonomic 256 
bias on plant climate sensitivity will require study designs that stratify plant types across 257 
biomes. 258 

The predictive ability of our results, which use as predictor annual climatic 259 
anomalies calculated from gridded climatic data, could be improved in the future by 260 
mechanistic models that use increasingly more available micro-climatic information44. 261 
Gridded climatic data are adequate to estimating climatic means registered by weather 262 
stations over long time periods, such as years45. However, the temperature experienced 263 
by plant tissues can sometimes be substantially different from the air temperature 264 
registered by weather stations46,47. We note, however, that this fact does not invalidate 265 
the use of gridded climatic data, because annual anomalies observed at the micro-266 
climatic and weather station level should be similar. For example, a previous study 267 
shows a tight linear relationship between air temperature and the micro-climate at the 268 
leaf surface in alpine vegetation47. Nevertheless, micro-climatic data will be required to 269 
test mechanistic models of climatic effects, such as those linked to thresholds. 270 
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Examples of these thresholds are growing degree days48 (Mcmaster 1997) or frost 271 
damage49. Similarly, micro-climatic anomalies could help understand why different 272 
populations of the same species respond differently to similar climatic anomalies50. 273 

Our findings on the link between short generation times and climatic sensitivity 274 
do not automatically translate into climate vulnerability. The observational nature of our 275 
data imposes to interpret our findings in light of two caveats. First, our data did not 276 
address several of the concurrent factors that contribute to the effects of climate on 277 
populations. These include factors such as density-dependence3, trophic interactions51, 278 
and anthropogenic drivers52. Second, our results are more relevant to changes in 279 
climatic variability than changes in climatic means. When predicting the effects of large 280 
changes in climatic means, our nonlinear results (Supplementary Figure 3-5) show that 281 
extrapolation might not be warranted. Besides these two caveats, the conservation 282 
literature links short generation times to lower, rather than higher climate vulnerability as 283 
indicated by our results53,54. These studies reflect conservation assessments which 284 
posit that short generation time should be linked to lower extinction probability33. Short-285 
generation time should also increase the probability of evolutionary rescue55. However, 286 
the advantages provided by short generation time might be overridden by the rapid 287 
rates of climate change expected. Thus, weighing the positive and negative effects of 288 
generation time will leverage our findings to improve the quality of climate change 289 
vulnerability assessments. 290  291 
Methods 292 
Demographic data 293 

To address our hypotheses, we used matrix population models (MPMs) or 294 
Integral projection models (IPMs) from the COMPADRE Plant Matrix Database (v. 295 
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5.0.156) and the PADRINO IPM Database57, which we amended with a systematic 296 
literature search. First, we selected density-independent models from COMPADRE and 297 
PADRINO which described the transition of a population from one year to the next. 298 
Among these, we selected studies with at least six annual transition matrices, to 299 
balance the needs of adequate yearly temporal replicates and sufficient sample size of 300 
data for quantitative synthesis. This yielded data from 48 species and 144 populations. 301 

We then performed a systematic literature search for studies linking climate 302 
drivers to structured population models in the form of either MPMs or IPMs. We 303 
performed this search on ISI Web of Science for studies published between 1997 and 304 
2017. We used a Boolean expression containing key words related to plant form, 305 
structured demographic models, and environmental drivers (Supplementary Methods). 306 
We only considered studies linking macro-climatic drivers to natural populations (e.g. 307 
transplant experiments and studies focused on local climatic factors such as soil 308 
moisture, light due to tree fall gaps, etc. were excluded). Finally, we used the same 309 
criteria used to filter studies in COMPARE and PARDINO, by selecting studies with at 310 
least six, density-independent, annual projection models. This search brought two 311 
additional species, belonging to three additional populations, which we entered in the 312 
COMPADRE database. 313 

One of the studies we excluded from the literature search because it contained 314 
density-dependent IPMs, also provided raw data with high temporal replication (14 to 32 315 
years of sampling) for 12 species from 15 populations58. Therefore, we re-analyzed 316 
these freely available data to produce density-independent MPMs that were directly 317 
comparable to the other studies in our dataset (Supplementary Methods). 318 

The resulting dataset consisted of 46 studies, 62 species, 162 populations, and a 319 
total of 3,761 MPMs and 52 IPMs (Supplementary Data 1). The analyzed plant 320 
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populations were tracked for a mean of 16 (median of 12) annual transitions. To our 321 
knowledge, this is the largest open-access dataset of long-term structured population 322 
projection models. However, this dataset is taxonomically and geographically biased. 323 
Specifically, among our 62 species, this dataset contains 54 herbaceous perennials (11 324 
of which graminoids), and eight woody species: five shrubs, two trees, and one woody 325 
succulent (Opuntia imbricata). Moreover, almost all of these studies were conducted in 326 
North America and Europe (Supplementary Figure 1), in temperate biomes that are 327 
cold, dry, or both cold and dry (Supplementary Figure 1, insert). Our geographic and 328 
taxonomic bias reflects the rarity of long-term plant demographic data in general. This 329 
dearth of long-term demographic data is particularly evident in the tropics. The 330 
ForestGEO network59 is an exception to this rule, but to date, no matrix population 331 
models or integral projection models using these data have been published.  332 

We used the MPMs and IPMs in this dataset to calculate the response variable of 333 
our analyses: the yearly asymptotic population growth rate (λ). This measure is one of 334 
the most widely used summary statistics in population ecology60, as it integrates the 335 
response of multiple interacting vital rates. Specifically, λ reflects the population growth 336 
rate that a population would attain if its vital rates remained constant through time61. 337 
This metric therefore distills the effect of underlying vital rates on population dynamics, 338 
free of other confounding factors (e.g. transient dynamics arising from population 339 
structure62). We calculated λ of each MPM or IPM with standard methods61,63. Because 340 
our MPMs and IPMs described the demography of a population transitioning from one 341 
year to the next, our λ values were comparable in time units. Finally, we identified and 342 
categorized any non-climatic driver associated with these MPMs and IPMs. Data 343 
associated with 21 of our 62 species explicitly quantified a non-climatic driver (e.g., 344 
grazing, neighbor competition), for a total of 60 of our 162 populations. Of the datasets 345 
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associated with these species, 19 included discrete drivers, and only three included a 346 
continuous driver.  347 
 348 
Climatic data 349 

To test the effect of temporal climatic variation on demography, we gathered 350 
global climatic data. We downloaded 1 km2 gridded monthly values for maximum 351 
temperature, minimum temperature, and total precipitation between 1901 and 2016 352 
from CHELSAcruts64, which combines the CRU TS 4.0165, and CHELSA66 datasets. 353 
Gridded climatic data are especially suited to estimate annual climatic means45. These 354 
datasets include values from 1901 to 2016, which is necessary to cover the temporal 355 
extent of all 162 plant populations considered in our analysis. For our temperature 356 
analyses, we calculated mean monthly temperature as the mean of the minimum and 357 
maximum monthly temperatures. We used monthly values to calculate time series of 358 
mean annual temperature, and total annual precipitation at each site. We then used this 359 
dataset to calculate our annual anomalies for each census year, defined as the 12 360 
months preceding a population census. Our annual anomalies are standardized z-361 
scores. For example, if X is a vector of 40 yearly precipitation or temperature values, E() 362 
calculates the mean, and σ() calculates the standard deviation, we compute annual 363 
anomalies as A = [X - E(X)]/σ(X). Therefore, an anomaly of one refers to a year where 364 
precipitation or temperature was one standard deviation above the 40-year mean. In 365 
other words, anomalies represent how infrequent annual climatic conditions are at a 366 
site. Specifically, if we assume that A values are normally distributed, values exceeding 367 
one and two should occur every six and 44 years, respectively. We used 40-year means 368 
because the minimum number of years suggested to calculate climate averages is 3067. 369 
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Z-scores are commonly used in global studies on vegetation responses to 370 
climate8,68, and they reflect the null hypothesis that species are adapted to the climatic 371 
variation at their respective sites. Across our populations, the standard deviations of 372 
annual precipitation and temperature anomalies change by 300% and 60%, respectively 373 
(Supplementary Figure 2). Thus, a z-score of one refers to a precipitation anomaly of 50 374 
or 160mm and to a temperature anomaly of 0.5 or 0.8° Celsius. Our null hypothesis 375 
posits that species are adapted to these conditions, regardless of the absolute 376 
magnitude of the standard deviation in annual climatic anomalies. If this were true, each 377 
species would respond similarly to z-scores. However, we found our temperature and 378 
precipitation z-scores were highly skewed (skewness above 1) only in respectively two 379 
(for temperature) and three (for precipitation) of our 162 populations. We concluded that 380 
this degree of skewness should not bias our z-scores substantially. 381 

To test how the response of plant populations to climate changes based on 382 
biome we used two proxies of water and temperature limitation. For each study 383 
population, we computed a proxy for water limitation, water availability index (WAI), and 384 
temperature limitation using mean annual temperature. To compute these metrics, we 385 
downloaded data at 1 km2 resolution for mean annual potential evapotranspiration, 386 
mean annual precipitation, and mean annual temperature referred to the 1970-2000 387 
period. We obtained potential evapotranspiration data from the CGIAR-CSI consortium 388 
(http://www.cgiar-csi.org/). This dataset calculates potential evapotranspiration using the 389 
Hargreaves method69. We obtained mean annual precipitation and mean annual 390 
temperature from Worldclim70. Here, we used WorldClim rather than CHELSA climatic 391 
data because the CGIAR-CSI potential evapotranspiration data was computed from the 392 
former. We calculated the WAI values at each of our sites by subtracting mean annual 393 
potential evapotranspiration from the mean annual precipitation. Such proxy is a coarse 394 
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measure of plant water availability that ignores information such as soil characteristics 395 
and plant rooting depth. However, WAI is useful to compare water availability among 396 
disparate environments, so that it is often employed in global analyses68,71. As our proxy 397 
of temperature limitation, we use mean annual temperature. While growing degree days 398 
would be a more mechanistic measure of temperature limitation48, this requires daily 399 
weather data. However, we could not find a global, downscaled, daily gridded weather 400 
dataset to calculate this metric. 401 

 402 
The overall effect of climate on plant population growth rate 403 

To test H1, we estimated the overall effect sizes of responses to anomalies in 404 
temperature, precipitation, and their interaction with a linear mixed effect model.  405 

 406 log(ߣ) = ߙ + ܲߚ + ܶߟ + xܶܲߠ +  Eq. (1) 407  ߝ
 408 

where log(λ) is the log of the asymptotic population growth rate of plant population P is 409 
precipitation, T is temperature. We included random population effects on the intercept 410 
and the slopes to account for the non-independence of measurements within 411 
populations. We then compared the mean absolute effect size of precipitation, 412 
temperature, and their interaction. This final model did not include a quadratic term of 413 
temperature and precipitation because these additional terms led to convergence 414 
issues. This likely occurred because single data sets did not include enough years of 415 
data. 416 

 417 
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Population-level effect of climate on plant population growth rates 418 
To test our remaining three hypotheses, we carried out meta-regressions where 419 

the response variable was the slope (henceforth “effect size”) of climatic anomalies on 420 
population growth rate for each of our populations. Before carrying out our meta-421 
regressions, we first estimated the effect size of our two climatic anomalies on the 422 
population growth rate of each population separately. We initially fit population-level and 423 
meta-regressions simultaneously, in a hierarchical Bayesian framework. However, 424 
these Bayesian models shrunk the uncertainty of the noisiest population-level 425 
relationships, resulting in unrealistically strong meta-regressions. We therefore chose to 426 
fit population models separately, resulting in more conservative results. 427 

For each population, we fit multiple regressions with an autoregressive error 428 
term, and we evaluated the potential for nonlinear effects in the datasets longer than 14 429 
years. We fit multiple regressions because temperature and precipitation anomalies 430 
were negatively correlated, so that fitting separate models for temperature and 431 
precipitation would yield biased results72. We fit an autoregressive error term, because 432 
density dependence and autocorrelated climate anomalies can produce autocorrelated 433 
plant population growth rates. The form of our baseline model was: 434 
௬(ߣ)݃݋݈ 435  = ߙ + ௣ߚ ௬ܲ + ௧ߚ ௬ܶ + ௬ߝ ௬,  Eq. (2) 436ߝ = ௬ିଵߝߩ +  ௬  Eq. (3) 437ߟ
 438 

The model in equation 2 is a linear regression relating each log(λ) data point 439 
observed in year y, to the corresponding precipitation (P) and temperature (T) 440 
anomalies observed in year y, via the intercept α, the effect sizes, β, and an error term, 441 
εy, which depends on white noise, ηy, and on the correlation with the error term of the 442 
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previous year, ρ. When multiple spatial replicates per each population were available 443 
each year, we estimated the ρ autocorrelation value separately for each replicate. This 444 
happened in the few cases when a study contained contiguous populations, with no 445 
ecologically meaningful (e.g. habitat) differences. 446 

We compared the baseline model in Eq. 2-3 to models including a quadratic 447 
climatic effect and non-climatic covariates. We estimated quadratic climatic effects only 448 
for time series longer than 14 years. We choose this threshold because when using a 449 
model selection approach to select a quadratic or linear regression model, the 450 
recommended minimum sample size is between eight and 25 data points73. We fit 451 
models including a quadratic effect of temperature, precipitation, or both 452 
(Supplementary Table 1). 453 

Finally, we also tested whether non-climatic covariates could bias the effects of 454 
climate on log(λ) estimated in our analysis. Such bias, either upwards or downwards, 455 
could result in the case non-climatic co-variates interacted with climate. For example, 456 
harvest can have multiplicative, rather than additive effects on the climate responses of 457 
forest understory herbs74. We tested for an interaction between a covariate and climate 458 
anomaly in 17 of the 21 studies that included a non-climatic covariate. In the remaining 459 
three studies, discrete covariates corresponded with the single populations. Because 460 
Eq. 2-3 is fit on separate populations, it implicitly accounted for these covariates. For the 461 
17 studies above, we fit a linear effect of the non-climatic covariate, and its interaction 462 
with one of the two linear climatic anomalies. Thus, including the linear model in Eq. 2-463 
3, the nonlinear models, and the covariate interaction models, we tested up to six 464 
alternative models for each one of our populations (Supplementary Table 1). We 465 
selected the best model according to the Akaike Information Criterion corrected for 466 
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small sample sizes (AICc, Hurvich & Tsai 1989). We carried out these and subsequent 467 
analyses in R version 3.6.176. 468 

In the populations for which AICc selected one of the model alternatives to the 469 
baseline in Eq. 2-3, we calculated the effect size of climate by adding the effect of the 470 
new terms to the linear climatic terms. For example, when a quadratic precipitation 471 
model was selected, we calculated the effect size of precipitation as ߚ = ௣ߚ +  ௣ଶ. For 472ߚ
models including an interaction between temperature and a non-climatic covariate, we 473 
evaluated the effect of the interaction at the mean value of the covariate. Therefore, we 474 
calculated the effect size as ߚ = ௧ߚ +  for continuous covariates. For categorical 475 (௜ܥ)ܧ௫ߚ
variables, we calculated the effect size as ߚ௣ +  ௫0.5: that is, we calculated the mean 476ߚ
effect size between the two categories. We quantified the standard error of the resulting 477 
effect sizes by adding the standard errors of the two terms. 478 
  479 
The effect of biome on the response of plants to climate 480 

We used a simulation procedure to run two meta-regressions to test for the 481 
correlation between the effect size of climate drivers on λ, and our measures of water or 482 
temperature limitation. This meta-regression accounted for the uncertainty, measured 483 
as the standard error, in the effect sizes of climate drivers. We represented the effect of 484 
biome using a proxy of water (WAI) and temperature (mean annual temperature) 485 
limitation. For each of our 162 populations, the response data of this analysis were the 486 
effect sizes (βp or βt values) estimated by Eq. 2-3, or their modifications in case a 487 
quadratic or non-climatic covariate model were selected. In these meta-regressions the 488 
weight of each effect size was inversely proportional to its standard error. To test H2 and 489 
H3 on how water and temperature limitation should affect the response of populations to 490 
climate, we used linear meta-regressions. These two hypotheses tested both the sign 491 
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and magnitude of the effect of climate. Therefore, we used the effect sizes as a 492 
response variable which could take negative or positive values. As predictors, we used 493 
population-specific WAI (H2, only for effect sizes quantifying the effect of precipitation), 494 
and mean annual temperature (H3, only for effect sizes quantifying the effect of 495 
temperature). The null hypothesis of these meta-regressions is that plant species are 496 
adapted to the climatic variation at their respective sites. Such an adaptation implies 497 
that a precipitation z-score of one should produce effects on log(λ) of similar magnitude 498 
and sign across different climates. This should happen across average climatic values 499 
that are connected to substantially different absolute climatic anomalies (Supplementary 500 
Figure 2). On the other hand, our hypotheses posit that at low WAI and MAT values, 501 
species are more responsive to z-scores than expected under the null hypothesis. 502 

We performed these two meta-regressions by exploiting the standard error of 503 
each effect size. We simulated 1,000 separate datasets where each effect size was 504 
independently drawn from a normal distribution whose mean was the estimated β value, 505 
and the standard deviation was the standard error of this β. These simulated datasets 506 
accounted for the uncertainty in the β values. We fit 1,000 linear models, extracting for 507 
each its slope, βmeta. Each one of these slopes had in turn its uncertainty, quantified by 508 
its standard error, σmeta. For each βmeta, we then drew 1000 values from a normal 509 
distribution with mean βmeta and standard deviation σmeta. We used the resulting 1 x 106 510 
values to estimate the confidence intervals of βmeta. This procedure assumes that the 511 
distribution of βmeta values is normally distributed. We performed one-tailed hypothesis 512 
tests, considering meta-regression slopes significant when over 95% of simulated 513 
values were below zero. 514 
 515 
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The effect of generation time on the response of plants to climate 516 
To test H4 on how the generation time of a species should mediate its responses 517 

to climate, we used a gamma meta-regression. We fitted gamma meta-regressions 518 
because our response variables were the absolute effect sizes of precipitation and 519 
temperature anomalies, |β|, which are bounded between 0 and infinity. To test H4, we 520 
therefore fit gamma meta-regressions with a log link, using |β| values as response 521 
variable and generation time (T) as predictor. We calculated T directly from the MPMs 522 
and IPMs (Supplementary Methods). We log-transformed T to improve model fit. We 523 
carried out these meta-regressions using the same simulation procedure described for 524 
testing H2 and H3. We also carried out one-tailed hypothesis tests, by verifying whether 525 
95% of βmeta values were below zero. 526 
 527 
The effect of plant types on estimates of climate effects 528 

We verified whether certain plant types could bias our results by subdividing our 529 
species as graminoids, herbaceous perennials, ferns, woody species (shrubs and 530 
trees), and succulents. We ran ANOVA tests to verify whether the effect sizes of 531 
precipitation and temperature anomalies differed between plant types. We then tested 532 
for significant differences in pairwise contrasts between plants types by running Tukey's 533 
honestly significant difference tests. We carried out these tests on the average effects of 534 
climate, without accounting for differences in parameter uncertainty. If Tukey's test 535 
identified significant differences among plant types, we ran additional tests of H2, H3, 536 
and H4 excluding the plant type, or plant types, whose response to climate differed. 537 
 538 
Data availability: Most of the demographic data used in this manuscript are open-539 
access and available in the COMPADRE Plant Matrix Database (v. 5.0.1; 540 
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https://compadre-db.org/Data/Compadre). Additional data come from the PADRINO 541 
Database (beta version; https://github.com/levisc8/rpadrino). A list of the studies and 542 
species used here is available in Supplementary Data 1. The CHELSAcruts dataset is 543 
available at http://dx.doi.org/10.16904/envidat.159. The formatted dataset, and 544 
associated metadata, to reproduce the analyses of this study are archived on Github at 545 
doi http://doi.org/10.5281/zenodo.4516446. 546 
 547 
Code availability: The code to reproduce the results of this study is stored on Github at 548 
doi http://doi.org/10.5281/zenodo.4516446.   549 
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FIGURE LEGENDS 742 
Figure 1. Effect of precipitation (A) and temperature (B) anomalies on the logged 743 
asymptotic population growth rate (λ) as a function of water availability index (A) and 744 
mean annual temperature (B). The y-axis represents the effect sizes of yearly 745 
anomalies in precipitation and temperature. The uncertainty of these effect sizes is 746 
shown by the size of circles, which are inversely proportional to the standard error (SE) 747 
of effect sizes (1/SE). The thick black lines show the mean prediction of the meta-748 
regressions; these lines are dashed because these relationships are non-significant. 749 
The shaded areas represent the 95% confidence interval of 1000 bootstrapped linear 750 
regressions. The color of individual data points shows five separate plant types. 751 
 752 
Figure 2: The absolute effect of precipitation and temperature as a function of logged 753 
generation time (T). We show the effect sizes of precipitation and temperature as a 754 
function of log(T) (panels A and B, respectively). The uncertainty of these effect sizes is 755 
shown by the size of circles, which are inversely proportional to the standard error (SE) 756 
of effect sizes (1/SE). The thick black lines show the mean prediction of the meta-757 
regressions. The shaded areas represent the 95% confidence interval of 1000 758 
bootstrapped gamma regressions. The color of individual data points shows five 759 
separate plant types 760 
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