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1. INTRODUCTION

Considerable attention has been given in recent years to small area estimation (SAE) due to an
increasing demand in applications in various federal and local governments. Statistical models
are used to borrow strength from related areas or sources in order to overcome insufficiency of
sample size and provide reliable estimates. See, for example, Pfeffermann (2013), and Rao &
Molina (2015), for reviews of important recent developments in SAE.

One of the best-known models in SAE is the nested-error regression (NER) model, first intro-
duced by Battese, Harter, & Fuller (1988). Assume that the data Yij , i = 1, . . . ,m, j = 1, . . . , ni
are clustered such that there is independence between clusters, that is, Yi = (Yij)1≤j≤ni

, i =
1, . . . ,m, are independent, but correlated within clusters. Specifically, the NER model can be
expressed as

Yij = X ′ijβ + bi + dijεij , i = 1, . . . ,m, j = 1, . . . , ni, (1)

where Xij is a p-vector of known covariates, β is a p-vector of unknown fixed effects, ni is the
numbers of sampled units from the ith area, and dij is a known scalar. Furthermore, bi is an
area-specific random effects and εij are sampling errors. It is assumed that the random effects bi
are i.i.d. with mean zero and variance σ2

b > 0, that the errors εij are i.i.d. with mean zero and
variance σ2

ε > 0, and that the random effects and errors are mutually independent.
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In the literature, there are some different assumptions for the sampling variance Var(εij)
in model (1). In the simplest case, dij = 1 for all i, j, and this model is called a nested error
linear model with equal error variances. Battese, Harter, & Fuller (1988) used this model to
predict the areas of corn and soybeans for 12 counties in North Central Iowa. In fact, dij always
depends on the covariate Xij . By choosing dij to be the square root of some covariate, Rao &
Choudhry (1995) studied the population of unincorporated tax filers from the province of Nova
Scotia, Canada. The sampling variance Var(εij) is assumed to be a function of some unknown
parameters as in Sugasawa & Kubokawa (2017). In this paper, we study the case with known dij .

Under model (1), the best linear unbiased predictor (BLUP) of the small area mean, θi =
X̄ ′i.β + bi, where X̄ ′i. is the population mean of the covariates Xij for area i, can be expressed as

θ̃i = X̄ ′i.β̃ +
σ2
b

σ2
b1′ni

D−1i 1ni
+ σ2

ε

1′ni
D−1i (Yi −Xiβ̃), (2)

whereXi = (X ′i1, . . . , X
′
ini

)′,Di = diag(d2
i1, . . . , d

2
ini

), β̃ is the weighted least square estimator
defined in Equation (4) below, and where 1ni denotes the ni-vector with a value of 1 for each
element. Once some consistent estimators, σ̂2

b and σ̂2
ε , are obtained, the corresponding empirical

BLUP (EBLUP) or two-stage predictor is given by

θ̂i = X̄ ′i.β̂ +
σ̂2
b

σ̂2
b1′ni

D−1i 1ni
+ σ̂2

ε

1′ni
D−1i (Yi −Xiβ̂), (3)

where β̂ is β̃ with σ2
b and σ2

ε replaced by σ̂2
b and σ̂2

ε , respectively.
For the EBLUP defined above, it is not necessary to assume normality of the data. However,

normality is often needed to derive an estimator of the mean-squared prediction error (MSPE)
of θ̂i, which is widely used as a measure of uncertainty (e.g., Rao & Molina, 2015). Under the
normality assumption, Kackar & Harville (1984) and Harville & Jeske (1992) studied various
approximations to the MSPE. Prasad & Rao (1990) studied accuracy of a second-order approx-
imation by the Taylor series approximation, or linearization, using the method of moments to
estimate the variance components. Datta & Lahiri (2000) studied the Prasad-Rao approach using
maximum likelihood, or restricted maximum likelihood, estimators of the variance components.
However, they did not give a rigorous proof of the results, which was later given by Das, Jiang,
& Rao (2004). In the context of resampling methods, Booth & Hobert (1998) proposed a para-
metric bootstrap method to estimate the MSPE under generalized linear mixed models (GLMM;
e.g., Jiang, 2007). Butar & Lahiri (2003) studied parametric bootstrap under linear mixed models
(LMM). Jiang, Lahiri, & Wan (2002) proposed a jackknife estimator of the MSPE under LMM
and GLMM. Hall & Maiti (2006a) proposed parametric bootstrap methods under very general
settings.

In practice, however, specific parametric distributional assumptions often do not hold. There
have been some results in MSPE estimation without parametric distributional assumptions. Un-
der only moment conditions, Lahiri & Rao (1995) demonstrated robustness of the Prasad-Rao
estimator of the MSPE under the Fay-Herriot model (e.g., Fay & Herriot, 1979). Hall & Maiti
(2006b) studied model (1) and noted that, essentially, only the second and fourth moments of
the random effects and errors influence the bias of the MSPE estimator; they further proposed a
moment-matching, double-bootstrap procedure to estimate the MSPE.

The main purpose of this paper is to study estimation of the MSPE without specific assump-
tions about the distribution of the data. Firstly we derive a naive analytical estimator, which has a
different term compared to that under the normality assumption. We then correct the bias of the
naive estimator to o(m−1). Secondly, following Hall & Maiti (2006b), we propose a moment-
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matching jackknife estimator. More specifically, we first apply the moment-matching bootstrap
method to obtain a naive MSPE estimator whose bias is O(m−1). Since estimation of the third
and fourth moments are notorious for their large standard errors in the case of small samples,
we use a jackknife algorithm, instead of double bootstrap, to correct the bias of the bootstrap
estimator, once again to o(m−1).

The rest of the paper is organized as follows. We consider estimation of the model parameters
in Section 2. In Section 3 we apply the bias-correction methods to estimate the MSPE. Section 4
reports results of simulation studies, and Section 5 is data analysis. Proofs of theoretical results
are given in Appendix.

2. ESTIMATION OF MODEL PARAMETERS

Write Y = (Y ′1 , . . . , Y
′
m)′, X = (X ′1, . . . , X

′
m)′, Z = diag(1n1

, . . . , 1nm
), and D =

diag(D1, . . . , Dm). Then, model (1) can be written in matrix form as

Y = Xβ + Zb+D1/2ε,

where b = (b1, . . . , bm)′, and ε = (ε′1, . . . , ε
′
m)′. It follows that

Cov(Y) = diag(V1, . . . ,Vm) ≡: V

with Vi = σ2
b1ni

1′ni
+ σ2

εDi. Now the weighted least squares estimator of β in Equation (2) can
be expressed as

β̃ = (X ′V −1X)−1X ′V −1Y. (4)

In the remaining part of this section we show how to obtain σ̂2
b and σ̂2

ε , and how to estimate
the fourth moments of the random effects and errors; the latter will be used to approximate
the MSPE. There are various non-parametric methods of estimating variance components and
high moments in the literature. See, for example, Harville (1974), Stukel & Rao (1997), Wu &
Zhu (2010), Wu, Stute, & Zhu (2012), and Hall & Yao (2003). Below we propose a new set of
estimators of the variance components and of higher moments.

2.1. Estimation of variance components
The (ordinary) least-squares estimation of β is given by β̂lse = (X ′X)−1X ′Y . It is easy to derive
the following:

E{(Y −Xβ̂lse)(Y −Xβ̂lse)
′} = PX⊥E{(Y −Xβ)(Y −Xβ)′}PX⊥

= σ2
bPX⊥ZZ

′PX⊥ + σ2
εPX⊥DPX⊥ ,

where PX⊥ = IN −X(X ′X)−1X ′ is an orthogonal projection matrix with N =
∑m
i=1 ni.

Thus, an unbiased estimator of ψ = (σ2
b , σ

2
ε)′ is obtained as follows

ψ̃ = (W ′W )
−1
W ′(PX⊥Y ⊗ PX⊥Y ) (5)

=

(
tr{(Z′PX⊥Z)2} tr(Z′PX⊥DPX⊥Z)

tr(Z′PX⊥DPX⊥Z) tr{(PX⊥D)2}

)−1(
Y ′PX⊥ZZ

′PX⊥Y

Y ′PX⊥DPX⊥Y

)
,

where W = (vec(PX⊥ZZ′PX⊥), vec(PX⊥DPX⊥)) with vec being the operator stacking
columns of a matrix one underneath the other that results in a column vector, and where ⊗
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denotes the Kronecker product. Component-wise, from Equation (5), unbiased estimators of σ2
ε

and σ2
b are given, respectively, by

σ̃2
ε =

Y ′PX⊥
[
tr
{

(Z′PX⊥Z)2
}

D− tr(Z′PX⊥DPX⊥Z)ZZ′
]
PX⊥Y

tr{(Z′PX⊥Z)2}tr{(PX⊥D)2} − tr2(Z′PX⊥DPX⊥Z)
,

σ̃2
b =

Y ′PX⊥
[
tr{(PX⊥D)2}ZZ′ − tr(Z′PX⊥DPX⊥Z)D

]
PX⊥Y

tr{(Z′PX⊥Z)2}tr{(PX⊥D)2} − tr2(Z′PX⊥DPX⊥Z)
.

Then a simple positive of ψ is given by ψ̂ = (σ̂2
b , σ̂

2
ε) with σ̂2

b = max{σ̃2
b , 0} and σ̂2

ε =
max{σ̃2

ε , 0}.

2.2. Estimation of the fourth moments µb4 and µε4
Denote the fourth moments of the random effects bi and errors εij by µb4 and µε4, respectively.
Following Hall & Maiti (2006b), we first obtain a consistent estimator of µε4. Let eij = Yij −
X ′ijβ for all i. Then, we have

E(eij − eik)4 = E(dijεij − dikεik)4 = µε4(d4
ij + d4

ik) + 6(σ2
ε)2d2

ijd
2
ik,

It follows that µε4 can be estimated consistently by

µ̂ε4 =

∑m
i=1

∑ni−1
j=1

∑ni

k=j+1(êij − êik)4 − 6(σ̂2
ε)2
∑m
i=1

∑ni−1
j=1

∑ni

k=j+1 d
2
ijd

2
ik∑m

i=1(ni − 1)
∑ni

j=1 d
4
ij

,

where êij is the empirical approximation of eij by replacing β with β̂lse.
Now consider estimation of the fourth moment of the random effects bi. We first apply a

transformation to model (1) as follows:

d−1ij Yij = d−1ij Xiβ + d−1ij bi + εij , i = 1, . . . ,m, j = 1, . . . , ni.

Write ěij = d−1ij bi + εij . After some tedious calculations, we obtain

ni∑
j=1

E(ě4ij) = µb4

ni∑
j=1

d−4ij + 6σ2
bσ

2
ε

ni∑
j=1

d−2ij + niµε4

and

E

 ni∑
j=1

ě3ij

ni∑
j=1

ěij

 = µb4

ni∑
j=1

d−3ij

ni∑
j=1

d−1ij + 6σ2
bσ

2
ε

 ni∑
j=1

d−2ij +

ni∑
j=1

ni∑
k=j+1

d−1ij d
−1
ik


+niµε4.

The above two moment equations lead to an estimate of µb4 as follows:

µ̂b4 =

∑m
i=1

∑ni

j=1
ˆ̌e3ij
∑ni

j=1
ˆ̌eij −

∑m
i=1

∑ni

j=1
ˆ̌e4ij∑m

i=1

∑ni

j 6=k d
−3
ij d

−1
ik

−
3σ̂2

ε σ̂
2
b

∑m
i=1

∑
j 6=k d

−1
ij d

−1
ik∑m

i=1

∑ni

j 6=k d
−3
ij d

−1
ik

,
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where ˆ̌eij is the empirical approximation of ěij by replacing β with β̂lse.

2.3. Asymptotic properties
In this section, we state asymptotic properties of the estimators suggested above as m tends to
infinity. We need the following conditions.

(C1) There exist positive integers such that 2 < nl ≤ ni ≤ nu for all i.
(C2) There exist positive constants g1 and g2 such that

g1 ≤ λmin(
1

N
X ′X) and ‖ Xij ‖≤ g2 for all i and j,

where λmin(A) means the least eigenvalue of some matrix A, ‖ · ‖ denotes the Euclidean
norm, and where Xij is the transpose of the jth row of Xi.
(C3) There exist positive constants du and dl such that dl ≤ dij ≤ du for all i and j.
(C4) Assume E|b1|8+δ <∞ and E|ε11|8+δ <∞, for any 0 < δ < 1.

Condition (C1) is reasonable in small area estimation. Condition (C2) is a standard assump-
tion in linear models. Condition (C3) means that the sampling variances are bounded uniformly
in each cluster. Condition (C4) is satisfied by many continuous distributions, including uniform,
normal, gamma or lognormal with zero mean, double exponential. Please refer to Lahiri & Rao
(1995).

In Appendix A, we show that

lim
m→∞

1

m
(W ′W ) = lim

m→∞

1

m

(
tr{(Z′Z)2} tr(Z′DZ)

tr(Z′DZ) tr(D2)

)
≡: ΣW . (6)

The asymptotic properties of estimation of φ̂ are stated in the following theorems.

Theorem 1. Suppose that conditions (C1)-(C3) are satisfied. If µb4 and µε4 are finite, we
have, as m→∞,

√
m(ψ̂ − ψ)

d−→ N(0,Σ−1W ΣΣ−1W ),

where Σ = limm→∞
1
m

∑m
i=1(Σi1 + Σi2) with

Σi1 =
{
µb4 − 3(σ2

b )2
}( n4i n2i tr(Di)

n2i tr(Di) tr2(Di)

)
+
{
µε4 − 3(σ2

ε)2
}(tr(D2

i ) tr(D3
i )

tr(D3
i ) tr(D4

i )

)
, (7)

Σi2 = 2

(
{n2iσ2

b + tr(Di)σ
2
ε}2 tr{(niσ

2
bD

1/2
i + D

3/2
i σ2

ε)2}
tr{(niσ

2
bD

1/2
i + D

3/2
i σ2

ε)2} tr{(σ2
bDi + D2

i σ
2
ε)2 + (σ2

b)2{tr2(Di)− tr(D2
i )}

)
.(8)

Corollary 1. Assume that the conditions of Theorem 1 hold. Under Condition (C4), for any s
satisfying 0 < s ≤ 2 + δ′ with 0 < δ′ < 1

4δ and 0 < δ < 1,

E|σ̃2
b − σ2

b|2s = O(m−s), P (σ̃2
b < 0) = O(m−s),

E|σ̂2
b − σ2

b|2s = O(m−s), E|σ̂2
b − σ̃2

b|2s = O(m−s/2),

E|σ̃2
ε − σ2

ε |2s = O(m−s), P (σ̃2
ε < 0) = O(m−s),

E|σ̂2
ε − σ2

ε |2s = O(m−s), E|σ̂2
ε − σ̃2

ε |2s = O(m−s/2).
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We assume existence of the following limits:

lim
m→∞

1

m

m∑
i=1

(ni − 1)

ni∑
j=1

d4ij = c1, (9)

lim
m→∞

∑m
i=1

∑ni−1
j=1

∑ni

k=2 d
2
ijd

2
ik∑m

i=1(ni − 1)
∑ni

j=1 d
4
ij

= c2, (10)

lim
m→∞

1

m

m∑
i=1

ni∑
j 6=k

d−3ij d
−1
ik = c3, (11)

and lim
m→∞

∑m
i=1

∑
j6=k d−1ij d−1ik∑m

i=1

∑ni

j6=k d−3ij d−1ik

= c4. (12)

Theorem 2. Suppose that conditions (C1)-(C4) are satisfied. Then, as m→∞,

√
m(µ̂ε4 − µε4)

d−→ N(0, υε), (13)
√
m(µ̂b4 − µb4)

d−→ N(0, υb), (14)

where υε = limm→∞m−1
∑m
i=1 Eλ2i , υb = limm→∞m−1

∑m
i=1 Eχ2

i , and λi, χi are respec-
tively defined in Equations (A.4) and (A.5).

Remark 1. If the random effects and sampling errors are all normally distributed, µε4 =
3(σ2

ε)2 and µb4 = 3(σ2
b )2 hold. It follows that Σi1 in Equation (7) vanishes.

3. ESTIMATION OF MSPE

With the variance components estimated consistently, one can easily obtain the EBLUP θ̂i in
Equation (3). In Subsection 3.1 we consider estimation of the MSPE of the EBLUP.

3.1. Analytical estimation of MSPE
For the ith small area, the MSPE is defined as MSPEi = E(θ̂i − θi)2, where the expectation is
taken under model (1). Under the normality assumption, one can show that

MSPEi = E(θ̂i − θ̃i)2 + E(θ̃i − θi)2,

where the cross-term E{(θ̂i − θi)(θ̃i − θi)} = 0. However, under non-normal distributions, the
previous equation does not hold. In order to study analytical estimation of MSPEi, we use the
Taylor expansion

θ̂i = θ̃i +
∂θ̃i
∂ψ′

(ψ̂ − ψ) +
1

2
(ψ̂ − ψ)′

∂θ̃i(ψ̃)

∂ψ∂ψ′
(ψ̂ − ψ)

≡: θ̃i +Ri1 +Ri2,

where ψ̃ lies between ψ and ψ̂. Then, we have

MSPEi = E(θ̃i − θi + Ri1)2 + 2E{(θ̃i − θi + Ri1)Ri2}+ E(R2
i2) (15)
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with E(θ̃i − θi + Ri1)2 = E(θ̃i − θi)2 + 2E{Ri1(θ̃i − θi)}+ E(R2
i1). Simply, one can derive the

expression

E(θ̃i − θi)2 = fi1(ψ) + fi2(ψ), (16)

where fi1(ψ) = ρiσ
2
ε with ρi = σ2

b (Tiσ
2
b + σ2

ε)−1 and Ti = 1′ni
D−1i 1ni , and

fi2 = (X̄i· − ρiX ′iD−1i 1ni
)′(X ′V −1X)−1(X̄i· − ρiX ′iD−1i 1ni

).

Note that Equation (16) holds as long as the random effects and errors have zero mean and
bounded variances.

By Lemma 1 in Appendix B, we have

E{(θ̃i − θi)Ri1} = fi3(ψ∗) +O(m−2), (17)

where ψ∗ = (σ2
b , σ

2
ε , µb4, µε4)′ is a vector, and

fi3(ψ∗) =
1

(Tiσ2
b + σ2

ε)3
tr

(
(W′W)−1

[(
ni

tr(Di)

)
σ2
b

{
µε4 − 3(σ2

ε)2
}

−

(
n2iTi

Titr(Di)

)
σ2
ε

{
µb4 − 3(σ2

b )2
}]( σ2

ε

−σ2
b

)′)
. (18)

Under the normality assumption, it is easy to see that fi3(ψ∗) = 0; otherwise, this term is of the
order O(m−1), hence can not be neglected.

By Lemma 2 in Appendix B, we have

E(R2
i1) = fi41(ψ∗) + fi42(ψ) +O(m−2), (19)

where

fi41(ψ∗) =
Ti

(Tiσ2
b + σ2

ε)3
tr

{
(W′W)−1

m∑
i=1

Σi1(W′W)−1

(
(σ2
ε)2 −σ2

bσ
2
ε

−σ2
bσ

2
ε (σ2

b )2

)}
,

and fi42 is defined as fi41 with Σi1 substituted by Σi2. By the definitions of Σi1 and Σi2 in
Equations (7) and (8), respectively, fi41(ψ∗) vanishes under normality, but fi42(ψ) is always of
order O(m−1).

Based on Equations (15)–(19), we have

E(θ̃i − θi + Ri1)2 = fi1(ψ) + fi2(ψ) + 2fi3(ψ∗) + fi41(ψ∗) + fi42(ψ) + O(m−2). (20)

Especially, under normality, we have

E(θ̃i − θi + Ri1)2 = fi1(ψ) + fi2(ψ) + fi42(ψ) +O(m−2).

But after all, the following theorem states that MSPEi − E(θ̃i − θi + Ri1)2 = o(m−1).

Theorem 3. Assume that the kth moments of the random effects and errors are finite. Under
conditions (C1)-(C3), we have

MSPEi = E(θ̃i − θi + Ri1)2 + O(m−1−$),

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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where $ = (2δ) ∧ (k(1/2− δ)− 1) with 0 < δ < 1/2 and k(1/2− δ) > 1.

Remark 2. It is easy to see that $ ∈ (0, 1). Specifically, we have $ = 1/2 with k = 6 and
δ = 1/4.

3.2. Bias-corrected analytical MSPE estimator
By Theorem 3 and Equation (20), a naive estimator of MSPEi is given by

M̃SPEi = fi1(ψ̂) + fi2(ψ̂) + 2fi3(ψ̂∗) + fi41(ψ̂∗) + fi42(ψ̂).

However, it is well known that M̃SPEi is only first-order unbiased, because fi1(ψ̂) is not bias-
corrected to o(m−1). We now explore how to obtain a bias-corrected estimator of MSPEi.

From Lemma 4 in Appendix C, we see that fi2(ψ), fi3(ψ∗), fi41(ψ∗), and fi42(ψ) can be,
respectively, estimated by fi2(ψ̂), fi3(ψ̂∗), fi41(ψ̂∗), and fi42(ψ̂) with corresponding biases of
o(m−1). However, fi1(ψ̂) as an estimator of fi1(ψ) has bias of O(m−1). In fact, by Equation
(A.11), we have Efi1(ψ̂) = fi1(ψ)− fi41(ψ∗)− fi42(ψ) + O(m−3/2). It follows that fi1(ψ̂) +

fi41(ψ̂∗) + fi42(ψ̂) is an estimator fi1(ψ) whose bias is o(m−1). Hence a bias-correct estimator
of MSPEi is given by

M̂SPE1i = fi1(ψ̂) + fi2(ψ̂) + 2fi3(ψ̂∗) + 2fi41(ψ̂∗) + 2fi42(ψ̂). (21)

Moreover, by Lemma 4 in Appendix C again, we have

E(M̂SPE1i) = MSPEi + O(m−3/2).

3.3. Bias-corrected resampling MSPE estimation
In Hall & Maiti (2006b), fi3(ψ∗), fi41(ψ∗), and fi42(ψ) were not given in closed-form expres-
sions; thus, the above bias-corrected analytical estimation (Eq. 21) could not be obtained in this
article. In order to overcome this difficulty, the authors proposed a double bootstrap procedure
and a non-parametric estimator of MSPEi. The procedure is computationally expensive because
it must apply a second bootstrap to correct the bias; in fact, the algorithm runs at a very slow
speed. In this section, we follow Hall & Maiti (2006b) but only apply a one-step wild bootstrap
to obtain a naive MSPE estimator; we then suggest two methods to correct the bias.

Let a random variable ξ obey a distribution, say F (·) with mean and third moment being zero.
Let φ̂b = (σ̂2

b , µ̂b4)′ and φ̂ε = (σ̂2
ε , µ̂ε4)′ be the corresponding estimators suggested in Section 2.

For l = 1, . . . , k, generate samples b(l) = (b
(l)
1 , . . . , b

(l)
m )′ independently from distributionF (φ̂b).

Also,

ε(l) = (ε
(l)
11 , . . . , ε

(l)
1n1

, . . . , ε
(l)
m1, . . . , ε

(l)
mnm

)′, l = 1, . . . , k,

are sampled independently from distribution F (φ̂ε). Let

Y (l) = Xβ̂ + Zb(l) +Dε(l), l = 1, . . . , k.

Based on the lth bootstrapped data (X,Y (l)), we can compute the bootstrapped versions, β̂(l),
γ̂
2(l)
b , σ̂2(l)

ε , and θ̂(l)i , respectively; and where the bootstrapped small area mean is θ(l)i = X̄i.β̂ +
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b
(l)
i . Then, a naive estimator of MSPEi is given by

M̂SPE
∗
i (ψ̂) =

1

k

k∑
l=1

(θ̂
(l)
i − θ

(l)
i )2, (22)

which has bias of order O(m−1). In Appendix D, the proof of Theorem 4, defined below, shows
that

E(M̂SPE
∗
i (ψ̂)) = MSPEi − fi41(ψ∗)− fi42(ψ) +O(m−3/2).

Thus, we obtain the following estimator to correct the bias

M̂SPE2i = M̂SPE
∗
i (ψ̂) + fi41(ψ̂∗) + fi42(ψ̂). (23)

Alternatively, we may use the jackknife method to bias-correct M̂SPE
∗
i (ψ̂). Note that the bias

terms fi41 and fi42 are introduced by fi1. The latter is a known function of the second moments
of the random effects and errors, ψ. Let ψ̂−j be ψ̂ with the jth group dropped when computing

the estimators. Then, the bias of M̂SPE
∗
i (ψ̂) can also be estimated by

B̂ias =
m− 1

m

m∑
j=1

(fi1(ψ̂−j)− fi1(ψ̂)). (24)

In view of Equations (22) and (24), a simple bias-corrected estimator of MSPEi is given by

M̂SPE3i = M̂SPE
∗
i (ψ̂)− B̂iasi. (25)

In summary, we have the following theorem.

Theorem 4. Suppose that conditions (C1)-(C4) are satisfied. Then, we have

E(M̂SPE2i) = MSPEi + O(m−3/2), (26)

E(M̂SPE3i) = MSPEi + O(m−3/2). (27)

4. SIMULATION STUDY

In this section, we study the finite sample performance of the proposed MSPE estimators, and
compare the performance with a number of other measures of uncertainties of EBLUP in the
norm and non-normal cases.

We consider β = 1, ni = 3, m = 30, 60, 100, and dij = 1. The Xij are generated from the
uniform distribution over [0.5, 1]. The average values of relative bias (RB) and the coefficients of
variation (CV), over i, are reported, given respectively by,

RBi =
E(M̂SPEi)−MSPEi

MSPEi
, CVi =

E1/2(M̂SPEi −MSPEi)
2

MSPEi
.

All results reported are based on 4000 simulations. The moment-matching distributions needed
by the methods defined in Section 3.3 are selected to be the three-point distribution and Student’s
t-distribution suggested in Hall & Maiti (2006b). The resampling number, needed by the methods
suggested in Section 3.3, is also 4000.
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In order to compare with Hall & Maiti (2006b), the random effects bi and errors εij are
generated from eight different centralized distributions as follows:

M1: both normal distributions; M2: both χ2
5; M3: both exponential distribution; M4: χ2

5

and−χ2
5;M5: both Student’s t6;M6: both logistic distributions;M7: both

√
χ2
5;M8: both

χ2
10.

Here the variances are standardized so that the ratio σ2
b/σ

2
ε = 0.5, 1, or 2, and

max{σ2
b , σ

2
ε} = 1, and min{σ2

b , σ
2
ε} = 0.5 or 1.

For comparison, the simulating results of Hall & Maiti (2006b), Jiang Lahiri, & Wan (2002)
and Prasad & Rao (1990) are given in the rows HM, JLW, and PR, respectively. The proposed
Jackknife bias-corrected estimator in Equation (25) with the three-point distribution and Studen-
t’s t-distribution are denoted by Method11 and Method12, respectively; the bias-corrected boot-
strap MSPE estimator in Equation(23) with those two distributions are denoted by Method21
and Method22, respectively. Also let Method3 denote the bias-corrected analytical MSPE esti-
mator given in Equation (21). Finally, let Naive1 and Naive2 denote the naive MSPE estimator
in Equation (22) with the three-point distribution and Student’s t-distribution, respectively.

Table 1-Table 4 report the average RB and CV for the case of m = 60 and m = 100, re-
spectively. Note that the results for HM are copied from Table 1 in Hall & Miti (2006b), for the
three-point distribution with equalvariance only. This is because Hall & Miti (2006b) did not s-
tate the value of n in Table 2 for the unequal variance cases, that is, σ2

b/σ
2
ε = 0.5, 2; nevertheless,

they reported that both RB and CV take higher values for unequal variance components, com-
pared to the equal variance case. From these four tables, it is seen that the naive estimator and
Method3 always take negative RB and hence underestimate the MSPE; but the latter performs
better than the former. Moreover, it is seen that all of the methods except Naive1 and Naive2
perform more favorably than HM, under all models considered. In the normal-normal case with
m = 60, PR is more accurate than the other ones; as m increases to 100, JLW performs best;
however, the difference is very tiny, compared to our proposed methods. Under all of the other
models, it is easily seen that our methods outperform HM, JLW, and PR. Among the proposed
methods, it appears that Method21 performs the best, and Student’s t-distribution seems to per-
form better. Moreover, the equal variance case tends to have lower CV than the unequal variance
cases, and larger values of σ2

b/σ
2
ε tend to improve the RB.

Below, we want to explore the effect of the values of σ2
b and σ2

ε on the performance of our
methods. For σ2

ε = 1 (σ2
b = 1), σ2

b (σ2
ε ) increases from 1 to 4. The resampling distribution is

selected to be Student’s t-distribution. Table 5 shows the average RB and CV under the norm-
norm case M1. As for the non-normal case, in order to save space, only M2 is applied. The
corresponding simulating results are reported in Table 6.

From Table 5, as for RB, PR still performs best, but the difference is very tiny with our
methods. In the terms of CV , the biased-corrected analytical estimator Method3 is comparable
to PR, and they both perform a little better than others. Given σ2

ε = 1, RB and CV of JLW
increase as σ2

b increases, but for the other methods, the lager values of σ2
b tend to improve the

RB, but deteriorate the CV. On the contrary, for fixed σ2
b = 1, all methods performs better as

σ2
ε decreases. Moreover, the larger value of σ2

b/σ
2
ε tends to improve the RB and CV. Under M2,

Method3 has the smallest RB, and Method22 performs best in terms of CV. Recalling Table 1-
Table 4, Method22 and Method3 are very accurate under non-normal case. Moreover, when σ2

b

( σ2
ε ) decreases, RB and CV becomes better. This is very different with that of the normal case

reported in Table 5.
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TABLE 1: Comparison of Different Methods of MSPE Estimation: m = 60

σ2
b/σ

2
ε = 0.5 σ2

b/σ
2
ε = 1 σ2

b/σ
2
ε = 2

Model Method RB CV RB CV RB CV

M1 HM 0.091 0.290

JLW 0.012 0.147 0.003 0.114 0.002 0.118

PR 0.006 0.132 0.000 0.108 0.000 0.116

Naive1 -0.025 0.139 -0.015 0.110 -0.007 0.117

Naive2 -0.025 0.139 -0.015 0.110 -0.007 0.117

Method11 0.010 0.135 0.003 0.111 0.002 0.119

Method12 0.010 0.134 0.003 0.111 0.002 0.119

Method21 0.008 0.135 0.002 0.110 0.001 0.119

Method22 0.009 0.134 0.002 0.110 0.001 0.119

Method3 0.004 0.129 -0.002 0.111 0.003 0.116

M2 HM 0.095 0.331

JLW 0.035 0.240 0.024 0.189 0.023 0.182

PR 0.023 0.178 0.034 0.159 0.018 0.164

Naive1 -0.037 0.175 -0.021 0.150 -0.005 0.156

Naive2 -0.033 0.175 -0.019 0.150 -0.003 0.157

Method11 0.006 0.171 0.006 0.154 0.010 0.161

Method12 0.011 0.173 0.008 0.155 0.012 0.162

Method21 0.010 0.173 0.013 0.149 0.008 0.160

Method22 0.014 0.175 0.015 0.150 0.011 0.161

Method3 0.013 0.186 0.016 0.167 0.014 0.160

M3 HM 0.108 0.375

JLW 0.060 0.383 0.059 0.311 0.042 0.271

PR 0.035 0.234 0.039 0.209 0.028 0.212

Naive1 -0.057 0.217 -0.027 0.185 -0.016 0.194

Naive2 -0.046 0.219 -0.019 0.187 -0.009 0.196

Method11 0.005 0.219 0.013 0.195 0.009 0.203

Method12 0.016 0.225 0.022 0.200 0.015 0.206

Method21 -0.002 0.215 0.007 0.192 0.005 0.201

Method22 0.008 0.220 0.016 0.197 0.012 0.204

Method3 0.023 0.254 0.020 0.255 0.041 0.219

M4 HM 0.075 0.317

JLW 0.040 0.248 0.029 0.193 0.016 0.178

PR 0.027 0.180 0.020 0.158 0.010 0.161

Naive1 -0.033 0.174 -0.017 0.149 -0.013 0.156

Naive2 -0.029 0.174 -0.015 0.149 -0.011 0.156

Method11 0.015 0.174 0.010 0.154 0.003 0.160

Method12 0.018 0.176 0.013 0.156 0.005 0.160

Method21 0.011 0.172 0.008 0.153 0.001 0.159

Method22 0.014 0.174 0.010 0.154 0.003 0.160

Method3 0.016 0.159 0.009 0.161 0.014 0.163

5. DATA ANALYSIS

We consider an application of the methods developed in this paper to the Iowa crops data. See
Battese, Harter, & Fuller (1988) for a complete description. This data was obtained from the
1978 June Enumerative Survey of the U.S. Department of Agriculture (USDA). Based on this
data, some research is aimed at transforming satellite information into good estimates of crop
areas at the individual pixel and segment levels. Hanuschak et al. (1979) and Hung & Fuller
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TABLE 2: Comparison of methods ... m = 60 (Continued)

σ2
b/σ

2
ε = 0.5 σ2

b/σ
2
ε = 1 σ2

b/σ
2
ε = 2

Model Method RB CV RB CV RB CV

M5 HM 0.106 0.376

JLW 0.033 0.253 0.025 0.248 0.014 0.188

PR 0.021 0.176 0.016 0.172 0.009 0.165

Naive1 -0.038 0.171 -0.021 0.151 -0.013 0.156

Naive2 -0.033 0.171 -0.018 0.156 -0.011 0.156

Method11 0.009 0.170 0.006 0.161 0.001 0.161

Method12 0.013 0.173 0.009 0.168 0.004 0.163

Method21 0.005 0.168 0.004 0.158 0.000 0.160

Method22 0.009 0.170 0.007 0.164 0.002 0.162

Method3 0.008 0.186 0.010 0.162 0.014 0.166

M6 HM 0.075 0.317

JLW 0.020 0.184 0.015 0.134 0.007 0.144

PR 0.012 0.154 0.010 0.133 0.004 0.138

Naive1 -0.035 0.159 -0.017 0.130 -0.012 0.136

Naive2 -0.033 0.159 -0.016 0.131 -0.011 0.136

Method11 0.007 0.153 0.006 0.133 0.001 0.138

Method12 0.008 0.154 0.007 0.134 0.001 0.139

Method21 0.004 0.153 0.005 0.133 0.000 0.138

Method22 0.006 0.153 0.006 0.133 0.001 0.138

Method3 0.009 0.159 0.010 0.138 0.008 0.139

M7 HM 0.089 0.289

JLW 0.021 0.148 0.011 0.118 0.004 0.120

PR 0.006 0.133 0.003 0.111 0.000 0.117

Naive1 -0.033 0.141 -0.014 0.113 -0.008 0.116

Naive2 -0.032 0.141 -0.014 0.113 -0.008 0.116

Method11 0.009 0.135 0.005 0.113 0.001 0.119

Method12 0.010 0.134 0.006 0.113 0.001 0.119

Method21 0.006 0.134 0.004 0.113 0.000 0.119

Method22 0.007 0.134 0.004 0.113 0.000 0.119

Method3 0.003 0.132 0.000 0.111 -0.003 0.118

M8 HM 0.092 0.312

JLW 0.030 0.207 0.015 0.150 0.004 0.120

PR 0.011 0.156 0.005 0.134 0.000 0.117

Naive1 -0.029 0.161 -0.018 0.133 -0.009 0.137

Naive2 -0.027 0.161 -0.016 0.133 -0.008 0.137

Method11 0.006 0.154 0.001 0.133 0.001 0.119

Method12 0.008 0.155 0.003 0.134 0.001 0.119

Method21 0.003 0.153 -0.001 0.133 0.000 0.119

Method22 0.005 0.154 0.000 0.133 0.000 0.119

Method3 0.006 0.160 0.002 0.136 -0.003 0.118

(1987) concentrated on producing good estimation of total crop areas for both large and small
geographical units. Battese, Harter, & Fuller (1988) considered the prediction of areas under corn
and soybeans for 12 counties in north-central Iowa.

The model is

Yij = β0 + β1Xij1 + β2Xij2 + bi + εij , i = 1, . . . , 12, j = 1, . . . , ni, (28)
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TABLE 3: Comparison of Different Methods of MSPE Estimation: m = 100.

σ2
b/σ

2
ε = 0.5 σ2

b/σ
2
ε = 1 σ2

b/σ
2
ε = 2

Model Method RB CV RB CV RB CV

M1 HM 0.098 0.280

JLW 0.000 0.109 0.001 0.085 -0.000 0.092

PR -0.002 0.104 0.002 0.088 -0.001 0.092

Naive1 -0.021 0.109 -0.005 0.089 -0.005 0.094

Naive2 -0.023 0.114 -0.004 0.090 -0.005 0.094

Method11 0.000 0.106 0.002 0.088 -0.000 0.095

Method12 -0.002 0.111 0.002 0.088 -0.000 0.095

Method21 -0.001 0.106 0.002 0.088 -0.000 0.095

Method22 -0.003 0.111 0.002 0.088 -0.000 0.095

Method3 0.004 0.104 -0.003 0.085 0.000 0.089

M2 HM 0.067 0.298

JLW 0.008 0.131 0.021 0.154 0.009 0.128

PR 0.005 0.121 0.017 0.135 0.007 0.123

Naive1 -0.020 0.133 -0.017 0.118 -0.007 0.122

Naive2 -0.016 0.136 -0.014 0.121 -0.006 0.123

Method11 -0.003 0.121 0.008 0.133 0.002 0.124

Method12 -0.001 0.122 0.011 0.138 0.003 0.125

Method21 -0.004 0.120 0.006 0.132 0.001 0.124

Method22 -0.002 0.122 0.010 0.138 0.002 0.124

Method3 0.007 0.144 0.009 0.125 0.012 0.126

M3 HM 0.079 0.327

JLW 0.039 0.238 0.034 0.203 0.026 0.185

PR 0.029 0.177 0.026 0.162 0.020 0.162

Naive1 -0.032 0.164 -0.019 0.150 -0.009 0.154

Naive2 -0.026 0.165 -0.014 0.151 -0.005 0.155

Method11 0.005 0.166 0.006 0.155 0.006 0.159

Method12 0.012 0.170 0.011 0.157 0.009 0.160

Method21 0.002 0.165 0.003 0.154 0.004 0.158

Method22 0.009 0.168 0.008 0.156 0.008 0.159

Method3 0.017 0.185 0.015 0.190 0.037 0.171

M4 HM 0.064 0.312

JLW 0.017 0.162 0.010 0.129 0.008 0.128

PR 0.012 0.140 0.007 0.119 0.006 0.123

Naive1 -0.027 0.138 -0.019 0.150 -0.009 0.121

Naive2 -0.025 0.138 -0.014 0.151 -0.008 0.122

Method11 0.002 0.137 -0.001 0.119 0.000 0.124

Method12 0.004 0.138 0.000 0.119 0.001 0.124

Method21 -0.000 0.137 -0.002 0.118 -0.001 0.123

Method22 0.002 0.137 -0.001 0.119 0.000 0.124

Method3 0.012 0.125 0.018 0.123 0.016 0.129

where yij is the number of hectares of corn (or soybeans) in the jth segment of the ith county,
xij1 and xij2 are the number of pixels classified as corn and soybeans, respectively, in the jth
segment of the ith county, ni is the number of sample segments in the ith county, and ranges
from 1 to 5.
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TABLE 4: Comparison of methods ... m=100 (Continued)

σ2
b/σ

2
ε = 0.5 σ2

b/σ
2
ε = 1 σ2

b/σ
2
ε = 2

Model Method RB CV RB CV RB CV

M5 HM 0.036 0.280

JLW 0.015 0.174 0.016 0.153 0.009 0.143

PR 0.010 0.137 0.012 0.126 0.007 0.131

Naive1 -0.028 0.134 -0.012 0.120 -0.008 0.125

Naive2 -0.025 0.140 -0.010 0.122 -0.006 0.127

Method11 0.000 0.133 0.004 0.123 0.002 0.129

Method12 0.003 0.141 0.007 0.127 0.003 0.131

Method21 -0.001 0.132 0.003 0.123 0.001 0.129

Method22 0.002 0.140 0.006 0.126 0.002 0.131

Method3 0.003 0.141 0.011 0.127 0.009 0.130

M6 HM 0.097 0.288

JLW 0.007 0.130 0.008 0.110 0.004 0.109

PR 0.004 0.120 0.006 0.106 0.003 0.107

Naive1 -0.024 0.123 -0.006 0.103 -0.007 0.107

Naive2 -0.023 0.123 -0.006 0.103 -0.007 0.107

Method11 0.000 0.120 0.002 0.107 0.000 0.109

Method12 0.001 0.121 0.003 0.107 0.001 0.109

Method21 -0.001 0.120 0.002 0.106 -0.000 0.109

Method22 -0.000 0.120 0.002 0.107 0.000 0.109

Method3 0.006 0.120 0.006 0.104 0.008 0.110

M7 HM 0.076 0.312

JLW 0.011 0.110 0.010 0.090 0.005 0.092

PR 0.003 0.105 0.006 0.087 0.003 0.092

Naive1 -0.015 0.107 -0.010 0.089 -0.029 0.094

Naive2 -0.015 0.107 -0.009 0.089 -0.027 0.094

Method11 0.004 0.106 0.006 0.090 0.003 0.094

Method12 0.004 0.106 0.007 0.090 0.003 0.094

Method21 0.003 0.106 0.006 0.090 0.003 0.094

Method22 0.003 0.106 0.006 0.090 0.003 0.094

Method3 0.002 0.104 0.004 0.088 0.002 0.092

M8 HM 0.051 0.279

JLW 0.017 0.132 0.010 0.112 0.011 0.111

PR 0.008 0.121 0.005 0.105 0.008 0.108

Naive1 -0.019 0.161 -0.011 0.104 -0.004 0.109

Naive2 -0.019 0.161 -0.011 0.104 -0.004 0.109

Method11 0.003 0.120 0.001 0.106 0.006 0.110

Method12 0.004 0.121 0.002 0.106 0.006 0.110

Method21 0.002 0.120 0.000 0.106 0.005 0.110

Method22 0.003 0.121 0.001 0.106 -0.004 0.110

Method3 0.005 0.123 0.005 0.107 -0.004 0.110

5.1. Iowa crops data with homogenous sampling errors
In Battese, Harter, & Fuller (1988), the random effects bi and the errors εij are all normally
distributed. In addition, the errors are homogeneous. By applying data of corn and soybeans in
the
∑m
i=1 ni = 36 segments of these 12 counties, Battese, Harter, & Fuller (1988) estimated the

model parameters and predicted the random effects. In order to obtain the prediction of the mean
crop hectares per county defined in Equation (3), this article used the population mean numbers
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TABLE 5: RB and CV for the normal-normal case M1: m = 30. (All values are multiplied by 100.)

σ2
b = 4 σ2

b = 3 σ2
b = 2 σ2

b = 1

Method RB CV RB CV RB CV RB CV

σ2
ε = 1 PR -0.5 17.2 0.5 16.9 0.5 16.1 0.9 16.0

JLW 0.0 17.5 1.3 17.6 1.7 17.6 3.1 19.4

Method11 -0.3 17.4 0.8 17.1 1.0 16.3 1.8 16.3

Method21 -0.5 17.4 0.6 17.0 0.6 16.2 1.2 16.0

Mehtod3 -0.5 17.2 0.6 16.9 0.6 16.1 1.3 15.9

σ2
ε = 4 σ2

ε = 3 σ2
ε = 2 σ2

ε = 1

Method RB CV RB CV RB CV RB CV

σ2
b = 1 PR 4.5 29.4 1.1 23.9 0.1 18.8 0.1 15.9

JLW 2.5 59.0 2.7 44.0 3.4 28.9 2.3 20.0

Method11 -5.6 55.5 -3.2 39.9 -0.2 23.8 0.8 16.1

Method21 4.2 27.6 0.8 23.1 0.0 18.5 0.2 15.8

Mehtod3 8.6 26.0 3.5 21.4 1.2 17.6 0.4 15.6

TABLE 6: RB and CV for the χ2
5-χ2

5 case M2: m = 30. (All values are multiplied by 100.)

σ2
b = 4 σ2

b = 3 σ2
b = 2 σ2

b = 1

Method RB CV RB CV RB CV RB CV

σ2
ε = 1 PR 3.26 23.64 3.50 22.87 3.09 22.93 2.49 22.95

JLW 7.47 40.40 7.77 44.81 7.39 42.35 6.77 43.13

Method12 2.29 22.66 2.48 22.24 2.07 22.10 1.53 22.03

Method22 0.95 21.89 1.35 20.95 0.76 20.94 0.40 21.10

Mehtod3 1.08 21.67 1.23 21.18 0.68 21.22 0.24 21.26

σ2
ε = 4 σ2

ε = 3 σ2
ε = 2 σ2

ε = 1

Method RB CV RB CV RB CV RB CV

σ2
b = 1 PR 6.03 33.71 5.20 30.34 3.60 26.65 2.44 23.23

JLW 5.37 70.04 7.68 65.30 8.48 59.22 6.51 40.09

Method12 -6.51 56.44 -2.79 46.08 0.14 32.90 1.34 22.71

Method22 6.71 28.06 3.59 25.55 1.13 23.33 0.25 21.45

Mehtod3 3.86 30.34 2.18 27.54 0.68 24.41 0.12 21.66

of pixels classed as corn and soybeans per segment in the ith county to replace the sample mean
numbers

∑ni

j=1Xij1/ni and
∑ni

j=1Xij2/ni of pixels in the nith sample segments of the ith
county.

In this article, we carry out the SMA estimation for corn and soybean of the 12 smal-
l areas and the results are presented in Table 7 and Table 8 respectively. The estimated
model parameters for corn are β̂ = (51.128, 0.329,−0.135)′, σ̂2

b = 144.397, σ̂2
ε = 145.233,

µ̂b4 = 10191610.680, and µ̂ε4 = 15140.706. The estimated model parameters for soybean
are β̂ = (−16.612, 0.0301, 0.494)′, σ̂2

b = 289.680, σ̂2
ε = 169.623, µ̂b4 = 3856.356, and µ̂ε4 =
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TABLE 7: EBLUP, Measures of Uncertainty of Corn with Homogenous Sampling Errors.

Predicted hectares Standard errors

County segments BHF EBLUP BHF PR JLW Method21 Method22 Method3

Cerro Gordo 1 122.2 166.2 13.7 10.9 10.1 10.8 10.9 12.3

Hamilton 1 126.3 93.4 12.9 10.7 10.1 10.7 10.7 12.2

Worth 1 106.2 88.4 12.4 10.6 12.9 11.6 11.7 13.0

Humboldt 2 108 155.3 9.7 8.5 9.5 8.4 8.3 9.5

Franklin 3 145 153.9 7.1 7.1 7.6 6.9 6.9 7.7

Pocahontas 3 112.6 99.2 7.2 7.1 7.1 7.0 7.0 7.8

Winnebago 3 112.4 115.9 7.2 7.1 7.2 7.0 6.9 7.8

Wright 3 122.1 143.7 7.3 7.1 6.9 6.9 6.8 7.7

Webster 4 115.8 114.7 6.1 6.2 6.2 6.1 6.1 6.8

Hancock 5 124.3 110.0 5.7 5.6 5.7 5.5 5.4 6.0

Kossuth 5 106.3 113.3 5.5 5.6 6.9 5.5 5.5 6.0

Hardin 5 143.6 118.3 6.1 5.6 5.4 5.6 5.5 6.1

TABLE 8: EBLUP, Measures of Uncertainty of Soybean with Homogenous Sampling Errors.

Predicted hectares Standard errors

County segments BHF EBLUP BHF PR JLW Method21 Method22 Method3

Cerro Gordo 1 77.8 13.2 15.6 13.4 13.3 13.7 13.4 15.6

Hamilton 1 94.8 102.9 14.8 13.3 12.3 13.8 13.6 15.7

Worth 1 86.9 107.7 14.2 13.2 12.7 13.7 13.5 15.6

Humboldt 2 79.7 41.5 11.1 9.8 10.9 10.3 10.1 11.4

Franklin 3 65.2 56.5 8.1 8.0 8.9 8.1 7.9 8.8

Pocahontas 3 113.8 118.6 8.2 8.0 7.7 8.1 7.9 8.8

Winnebago 3 98.5 85.7 8.3 8.0 8.4 8.2 8.0 8.9

Wright 3 112.8 95.7 8.4 8.0 8.8 8.1 7.8 8.8

Webster 4 109.6 113.5 7.0 6.9 6.8 7.1 6.8 7.5

Hancock 5 101 116.3 6.5 6.2 6.4 6.2 6.0 6.6

Kossuth 5 119.9 114.8 6.3 6.1 7.8 6.1 5.9 6.5

Hardin 5 74.9 102.5 6.9 6.2 6.1 6.2 6.0 6.6

68161.788. Moreover, we compute the EBLUP, the corresponding M̂SPE, and their square roots
as the measures of uncertainty. As for the resampling distribution, the Student’s t-distribution is
applied.

In Table 7 and Table 8, the predicted hectares and the standard errors of the survey regression
predictor, given in the rows BHF, are borrowed from Battese, Harter, & Fuller (1988). This
article also reported another two measures of the uncertainty, but stated that the survey regression
predictor is biased and most inadequate for the entire data. As for the predicted hectares, it is
difficult to compare ours with that of Battese, Harter, & Fuller (1988) because we only apply
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TABLE 9: Iowa Crops Data: Within-Area Sample Variances.

area 1 2 3 4 5 6 7 8 9 10

corn 2212.35 2374.98 32.53 1884.08 933.10 2915.89 453.61 245.26 146.85 1354.74

soybean 3120.05 1644.51 269.77 2529.06 109.26 2707.56 553.73 296.16 439.06 717.72

TABLE 10: EBLUP, Measures of Uncertainty of Corn with Heteroscedastic Sampling Errors.

Groups 1 2 3 4 5 6 7 8 9 10

EBLUP 115.2 155.2 155.7 99.3 115.0 143.3 116.0 109.8 112.1 118.1

PR 8.0 9.5 5.4 8.1 5.4 8.0 4.7 4.1 4.1 6.4

JLW 7.3 9.8 5.9 7.6 5.4 7.4 4.5 4.0 4.9 5.9

Method21 4.3 4.9 3.6 4.3 3.6 4.4 3.4 3.3 3.3 3.8

Method22 4.7 5.2 3.9 4.6 3.9 4.7 3.6 3.5 3.5 4.1

Method3 7.6 9.2 5.1 7.6 5.1 7.6 4.1 3.4 3.4 5.1

the 36 sample segments of pixels. Note that the standard errors of all methods decrease as the
number of sample segments increase, and our method Method22 has the smallest standard errors
in all but the first three counties which have only one sample each. Based on our simulation study
in the previous section, there is a reason to believe that our proposed MSPE estimators are more
accurate than HM, JLW, and PR when applying to such data.

5.2. Iowa crops data with heteroscedastic errors
Consider the Iowa crops data again. But here we assume that the errors are heteroscedastic. To
explore the within-area variation, the first three counties, which have only 1 sampled segment
each, are combined to Iowa form the first small area. Thus there are a total of m = 10 small
areas. In Table 9, we show the within-area variances. For the corn data, Jiang & Nguyen (2012)
suggested two groups: S1 = {1, 2, 4, 6, 10} with variances above 1000 and S2 = {3, 5, 7, 8, 9}
with variances below 1000. Similarly the soybean data are also divided into two groups S1 =
{1, 2, 4, 6} with variances above 1000 and S2 = {3, 5, 7, 8, 9, 10} with variances below 1000.

Model (28) is still applied. The variances of the errors εij are assumed to be σ2
εd

2
t in the

group St. Here t = 1, 2. The d2t are assumed to be σ̂2
ε based on the homogenous model (28) in

St. For the corn data, d21 and d22 are found to be 244.17 and 105.62 respectively. For the soybean
data, they are 64.09 and 113.13 respectively.

SMA estimation is carried out for the Iowa crops data of the 10 small areas and the results
are presented in Table 10 and Table 11 respectively. The estimated model parameters for corn
are β̂ = (66.260.30− 0.15)′, σ̂2

b = 1140.63, σ̂2
ε = 0.74, µ̂b4 = 141430.77, and µ̂ε4 = 4.98. The

estimated model parameters for soybean are β̂ = (2.91− 0.030.48)′, σ̂2
b = 278.90, σ̂2

ε = 1.80,
µ̂b4 = 3856.36, and µ̂ε4 = 49.47. Moreover, we compute the EBLUP, the corresponding M̂SPE,
and their square roots as the measures of uncertainty. As for the resampling distribution, the
Student’s t-distribution is applied again.

Comparing Table 10 with Table 7, we can find the results: MSPEs of all methods become
smaller; our three methods outperforms PR and JLW; Method21 performs best. Comparing Ta-
ble 11 with Table 8, one draws similar conclusions, but Method22 performs best. Thus the NER
with heteroscedastic errors is more accurate, and our suggested methods are efficient.
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TABLE 11: EBLUP, Measures of Uncertainty of Soybean with Heteroscedastic Sampling Errors.

Groups 1 2 3 4 5 6 7 8 9 10

EBLUP 73.5 39.3 57.1 119.1 85.5 96.0 113.9 116.2 114.1 102.8

PR 6.3 7.7 8.2 6.3 8.3 6.3 7.2 6.4 6.4 6.4

JLW 6.3 8.1 8.8 6.3 8.6 7.1 7.1 6.8 8.1 6.4

Method21 5.4 5.7 5.8 5.3 5.8 5.3 5.5 5.3 5.4 5.3

Method22 5.2 5.4 5.5 5.1 5.5 5.1 5.2 5.1 5.2 5.1

Method3 6.0 7.5 7.6 6.0 7.6 6.0 6.4 5.4 5.4 5.4

6. DISCUSSION

In the context of small-area estimation, normality is often assumed in the literature. In practice,
however, this assumption may not hold. Some transformation on the response Y can be applied
to overcome this difficulty. However, if the non-normality is in the unobservable random effects,
not in the observed data, the transformative method is not practical either. In such cases, Hall
& Maiti (2006b) suggested a double moment-matching bootstrap procedure to estimate MSPE.
However, the second bootstrap to correct the bias is not very efficient. To overcome this difficulty,
we have studied the problem of accuracy measures MSPE of EBLUP in the nested error regres-
sion model under moment conditions. We first explored the analytical estimation of MSPE and
suggested a bias-corrected analytical estimator M̂SPE1i in Equation (21). Secondly we extend-
ed the double moment-matching bootstrap method suggested in Hall & Maiti(2006b). One-step
moment-matching bootstrap is applied to obtain the the naive estimation M̂SPE

∗
i (ψ̂) in Equation

(22), and then two bias-corrected methods M̂SPE2i and M̂SPE3i are defined in Equations (23)
– (24) respectively. A simulation study and data analysis above show that our proposed three
MSPE estimators perform powerfully.

Based on our simulation study and data analysis, the estimating efficiency of the fourth mo-
ments are not satisfactory, and this has a bad impact on the proposed methods. Part of our future
work is to explore new non-parametric estimation of MSPE which does not depend on these high
moments. On the other hand, the heteroscedastic parameters dij of the sampling errors are not
easy to be given. We try to study the case of the variance of the errors as a parametric function of
some covariates.
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APPENDIX
Appendix A: Proofs of Parameter Estimation

Proof of Equation (5). By matrix properties, it is not difficult to derive that

Y ′PX⊥DPX⊥Y = vec(D)′(PX⊥ ⊗ PX⊥)(Y ⊗Y),

Y ′PX⊥ZZ
′PX⊥Y = vec(ZZ′)′(PX⊥ ⊗ PX⊥)(Y ⊗Y),

vec(ZZ′)′(PX⊥ ⊗ PX⊥)vec(ZZ′) = tr
{

(Z′PX⊥Z)2
}
,

vec(D)′(PX⊥ ⊗ PX⊥)vec(D) = tr
{

(PX⊥D)2
}
,

vec(ZZ′)′(PX⊥ ⊗ PX⊥)vec(D) = tr(Z′PX⊥DPX⊥Z).

The proof is finished. �

Proof of Equation (6). It is easy to derive that

tr{PX⊥D)2} = tr(D2)− 2tr{(X′X)−1X′D2X}+ tr{(X′X)−1X′DX)2}.

By trace inequalities and conditions (C1)-(C3), we have

tr
{

(X′X)−1X′D2X
}
≤ tr

{
(X′X)−1

} m∑
i=1

tr(X′iD
2
i Xi) = O(1),

tr
[{

(X′X)−1X′DX
}2] ≤ tr

{
(X′X)−2

}{ m∑
i=1

tr(X′iDiXi)

}2

= O(1).

Then Equation (6) can be derived. �

Proof of Theorem 1. Put e = (e′1, . . . , e
′
m)′ with ei = Yi −Xiβ. By conditions (C1)−

(C2), we can obtain

PX⊥DPX⊥ −D =
1

m
O(JN ).

Here and below Jn is an n× n matrix of ones. Then it is not difficult to derive that

1√
m

[e′(PX⊥DPX⊥ −D)e− E {e′(PX⊥DPX⊥ −D)e}] p→ 0.

Similarly we have

1√
m

[e′(PX⊥ZZ
′PX⊥ − ZZ ′)e− E {e′(PX⊥ZZ′PX⊥ − ZZ′)e}] p→ 0.

On the other hand, we can obtain

e′ZZ ′e− E(e′ZZ′e) =
m∑
i=1

tr{1ni
1′ni

(eie
′
i −Vi)} ≡:

m∑
i=1

ζi1, (A.1)
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e′De− E(e′De) =
m∑
i=1

tr{Di(eie
′
i −Vi)} ≡:

m∑
i=1

ζi2. (A.2)

Let ζi = (ζi1, ζi2)′. It is easy to obtain that {ζi} is an independent random vector series with zero
mean. After some tedious calculations, we get

D(ζi1) = n4i {µb4 − 3(σ2
b )2}+ {µε4 − 3(σ2

ε)2}tr(D2
i )

+2(σ2
ε)2(tr2(Di)− tr(D2

i )) + 4n2
i σ

2
bσ

2
εtr(Di)

D(ζi2) = tr2(Di){µb4 − 3(σ2
b)2}+ {µε4 − 3(σ2

ε)2}tr(D4
i ) + 4σ2

bσ
2
εtr(D3

i )

Cov(ζi1, ζi2) = n2i tr(Di){µb4 − 3(σ2
b)2}+ {µε4 − (σ2

ε)2}tr(D3
i ) + 4niσ

2
bσ

2
εtr(D2

i ).

Then it is not difficult to derive that Cov(ζi) = Σi1 + Σi2 with Σi1 and Σi2 defined in Equations
(7) and (8) respectively.

By the multivariate central limit theorem and Slutsky’s theorem, this theorem holds by sub-
tracting ψ̂ by ψ̃. Note that

√
m(ψ̂ − ψ) =

√
m(ψ̂ − ψ̃) +

√
m(ψ̃ − ψ). We only need to derive,

as m tends to∞,

√
m(ψ̂ − ψ̃)

p→ 0. (A.3)

By the above estimation, it is not difficult to derive that E|σ̃2
b − σ2

b|4+δ = O(m−2−δ/2) and
E|σ̃2

ε − σ2
ε |4+δ = O(m−2−δ/2). Here 0 < δ < 1. Then we have

P (σ̃2
b < 0) = P (σ̃2

b − σ2
b < −σ2

b ) ≤ P (|σ̃2
b − σ2

b | ≥ σ2
b )

≤ (σ2
b )−4−δE|σ̃2

b − σ2
b|4+δ = O(m−2−δ/2).

It follows that E(σ̂2
b − σ̃2

b) = E(|σ̃2
b|1{σ̃2

b<0}) ≤ E1/2|σ̃2
b|2P1/2(σ̃2

b < 0) = O(m−1−δ/4) and
E|σ̂2

b − σ̃2
b|2 = E(|σ̃2

b|21{σ̃2
b<0}) ≤ E1/2|σ̃2

b|4P1/2(σ̃2
b < 0) = O(m−1−δ/4), by Markov’s in-

equality. Similarly we can derive that P (σ̃2
ε < 0) = O(m−2−δ/2) and then E|σ̂2

ε − σ̃2
ε |2 =

O(m−1−δ/4). Thus Equation (A.3) holds, and the proof is finished by Slutsky’s theorem again.
�

Proof of Corollary 1. The proof is derived similarly to that of Theorem 1. Here we do not
derive it in detail. �

Proof of Theorem 2. By model (1)’s definition and conditions (C1)− (C3), we have β̂lse −
β = Op(m

−1/2). Then it is not difficult to derive that

µ̂ε4 − µε4 =
1

mc1

m∑
i=1

ni−1∑
j=1

ni∑
k=2

{
(dijεij − dikεik)4 − (d4ij + d4ik)µε4 − 6d2ijd

2
ik(σ2

ε)2
}

(A.4)

−12c2σ
2
ε(σ̂2

ε − σ2
ε) + op(m

−1/2)

=
1

n

m∑
i=1

λi + op(m
−1/2),
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where c1 and c2 are defined in Equations (9) and (10) respectively, and

λi = c−11

ni−1∑
j=1

ni∑
k=2

{
(dijεij − dikεik)4 − (d4ij + d4ik)µε4 − 6d2ijd

2
ik(σ2

ε)2
}
− 12c2σ

2
εζi1

with ζi1 being defined in Equation (A.1). By conditions (C1)− (C3) and the Lindeberg-Feller
central limit theorem, Equation (13) is derived.

Similarly we have

µ̂b4 − µb4 =
1

nc3

m∑
i=1

∑
j 6=k

{
(d−1ij bi + εij)

3(d−1ij bi + εij)− d−3ij d
−1
ik µb4

−3d−1ij d
−1
ik σ

2
bσ

2
ε

}
− 3c4σ

2
b (σ̂2

ε − σ2
ε)− 3c4σ

2
ε(σ̂2

b − σ2
b ) + op(N

−1/2) (A.5)

=
1

n

m∑
i=1

χi + op(m
−1/2),

where c3 and c4 are defined in Equations (11) and (12) respectively, and χi =

c−13

∑
j 6=k

[
(d−1ij bi + εij)

3(d−1ij bi + εij)− d−3ij d
−1
ik µb4 − 3d−1ij d

−1
ik σ

2
bσ

2
ε

]
− 3c4σ

2
b ζi −

3c4σ
2
εζi2 with ζi1 and ζi2 being defined in Equations (A.1) and (A.2) respectively. By

conditions (C1)− (C3) and the Lindeberg-Feller central limit theorem, the proof of Equation
(14) is completed. �

Appendix B: Derivation of MSPEi
By Corollary 1, if σ̂2

b and σ̂2
ε are replaced by σ̃2

b and σ̃2
ε in the remaining proof below, the differ-

ence could be absorbed into the remainders, and the leading terms still hold. For simplicity, we
shall assume that this has been done, and use σ̃2

b , σ̃2
ε , and ψ̃ instead of σ̂2

b , σ̂2
ε , and ψ̂.

Lemma 1. Under the conditions (C1)− (C3), Equation (17) holds.

Proof of Lemma 1 . Define

∂θ̃i
∂σ2

b

= l′1ie and
∂θ̃i
∂σ2

ε

= l′2ie

with lji = (l′ji1, . . . , l
′
jin)′. Here l′1ii = ∂ρi/∂σ

2
b1′ni

D−1i + J ′1ii, l
′
2ii = ∂ρi/∂σ

2
ε1′ni

D−1i + J ′2ii,
and ljik = Jjik for i 6= k, where ∂ρi/∂σ2

b = σ2
ε/(Tiσ

2
b + σ2

ε)2, ∂ρi/∂σ2
ε = −σ2

b/(Tiσ
2
b + σ2

ε)2,

J ′1ik = − ∂ρi
∂σ2

b

1′ni
D−1i Xi(X

′V −1X)−1X ′kV
−1
k + (X̄ ′i. − ρi1′ni

D−1i Xi)(X
′V −1X)−1

×
{
X ′V −1ZZ ′V −1X(X ′V −1X)−1X ′kV

−1
k −X ′kV −1k 1mk

1′mk
V −1k

}
,

and J2ik is defined similarly with ∂ρi
∂σ2

ε
and Dk instead of ∂ρi

∂σ2
b

and 1mk
1′mk

respectively. By

conditions (C1)-(C3) given above, it is not difficult to derive that Jjik = O(m−1)1mk
for j =
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1, 2, k = 1, . . . ,m. Then we have

∂θ̃i
∂ψ

=
1

(Tiσ2
b + σ2

ε)2
1′ni

D−1i ei(σ
2
ε ,−σ2

b )′ +O(
1

m
12)1′Ne

≡: I1 + I2.

Put II1 = (X̄ ′i. − ρi1′ni
D−1i Xi)(β̃ − β) and II2 = ρi1

′
ni
D−1i ei − bi. It follows that θ̃i − θi =

II1 + II2. By Equation (5) and the proof of Theorem 1, we have

ψ̂ − ψ = (W ′W )−1
m∑
i=1

ζi + (W ′W )−1O(
1

m
12)tr{JN(ee′ −V)} (A.6)

≡: III1 + III2.

Firstly we deal with E((θ̃i − θi)Ri1). After some tedious calculations, we have

E(II1I′1III1) =
1

(Tiσ2
b + σ2

ε)2
Etr
{

(W′W)−1
m∑
j=1

ζj(X̄
′
i. − ρi1′ni

D−1i Xi)(β̃ − β)

×1′ni
D−1i ei(σ

2
ε ,−σ2

b )
}

=
1

(Tiσ2
b + σ2

ε)2
tr
[
(W′W)−1E

{
ζi(X̄

′
i. − ρi1′ni

D−1i Xi)(X
′V−1X)−1

×X ′iV −1i ei1
′
ni
D−1i ei

}
(σ2
ε ,−σ2

b )
]

≡: O(m−2),

E(II2I′1III1) =
1

(Tiσ2
b + σ2

ε)2
Etr

(W′W)−1
m∑
j=1

ζj(ρi1
′
ni

D−1i ei − bi)1
′
ni

D−1i ei

×(σ2
ε ,−σ2

b )
}

=
1

(Tiσ2
b + σ2

ε)2
tr
[
(W′W)−1E

{
ζi(ρi1

′
ni

D−1i ei − bi)1
′
ni

D−1i ei

}
×(σ2

ε ,−σ2
b )
]

= fi3(ψ∗),

where fi3(·) is defined in Equation (18) . Similarly we can derive E(II1(I′1III2 + I′2III1 +
I′2III2)) = o(m−2), E(II2(I′1III2 + I′2III1)) = o(m−2), and E(II2I′2III2) = o(m−2). It follows
that E((θ̃i − θi)Ri1) = fi3(ψ∗) + O(m−2). �

Lemma 2. Under the conditions (C1)− (C3), Equation (19) holds.
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Proof of Lemma 2 . Similar to the above proof, we can derive ER2
i1 = E(I′1II1)2 + O(m−2)

with

E(I′1II1)2 =
1

(Tiσ2
b + σ2

ε)4
Etr

(W′W)−1
m∑
j=1

ζjζ
′
j(W

′W)−1

×(1′ni
D−1i ei)

2

(
(σ2
ε)2 −σ2

bσ
2
ε

−σ2
bσ

2
ε (σ2

b )2

)}

=
1

(Tiσ2
b + σ2

ε)4
tr

(W′W)−1

∑
j6=i

ΣjE(1′ni
D−1i ei)

2

+E(ζi(1
′
ni

D−1i ei)
2)
}

(W ′W )−1

(
(σ2
ε)2 −σ2

bσ
2
ε

−σ2
bσ

2
ε (σ2

b )2

)]

=
Ti

(Tiσ2
b + σ2

ε)3
tr

(W′W)−1
m∑
j=1

Σj(W
′W)−1

×

(
(σ2
ε)2 −σ2

bσ
2
ε

−σ2
bσ

2
ε (σ2

b )2

)}
+O(m−2)

= fi41(ψ∗) + fi42(ψ) +O(m−2),

where the last equation holds by Σj = Σj1 + Σj2 with Σj1 and Σj2 defined in Equations (7)
and (8). �

In order to prove Theorem 3, we need the following lemma in Jiang, Lahiri, & Wan (2002).

Lemma 3. Assume ξm, ξm1, and ξm2 are random variables, and Bm is a set, such that
i) E|ξ2m|1Bc

m
≤ c1m−a1 ;

ii) E|ξ2m1|1Bc
m
≤ c2m−a2 , and Eξ2m1 ≤ c4; and

iii) ξm = ξm1 + ξm2 on Bm with |ξm2| ≤ m−a3um and Eu2
m ≤ c3, where the a’s and c’s are

positive constants. Then, for any 0 < $ < a1 ∧ a2 ∧ a3, we have

Eξ2m = Eξ2m1 + O(m$).

Proof of Theorem 3 . DefineXi = (Xi1, . . . , Xip)
′. It is easy to see that V −1i = σ−2ε D−1i −

σ−2ε ρiD
−1
i 1ni

1′ni
D−1i . By some calculations, θ̃i can be rewritten as

θ̃i − X̄ ′i.β = ρi1
′
ni
D−1i ei (A.7)

+
m∑
j=1

mj∑
k=1

(X̄i. − ρiX ′iD−1i 1ni
)′(σ2

εX
′V −1X)−1Xjkejk/d

2
jk

−
m∑
j=1

ρj(X̄i. − ρiX ′iD−1i 1ni
)′(σ2

εX
′V −1X)−1X ′jD

−1
j 1mj

1′mj
D−1j ej

≡:
K∑
j=1

λj(ψ)Wj(e).
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Note that K = n+ 1 +
∑m
i=1 ni = O(m) and the following terms are bounded for some s > 2

and t > 0:

i) max
1≤k≤K

E|Wk(e)|s, ii) max
1≤k≤K

sup
ψ
|λj(ψ)|, iii)

K∑
k=1

∣∣∣∣∂λk∂ψ

∣∣∣∣ , iv)
K∑

k=1

sup
|ψ−ψ0|≤t

∥∥∥∥ ∂2λk
∂ψ∂ψ′

∥∥∥∥ .
Here and below ψ0 denotes the true value of ψ. Define B = {|ψ̂ − ψ| < n−δ, ψ ∈ Θ}, where
0 < δ < 1/2. By the Taylor expansion, on B, we have

θ̂i = θ̃i +
∂θ̃i
∂ψ′

(ψ̂ − ψ) +
1

2
(ψ̂ − ψ)′

∂θ̃i(ψ̃)

∂ψ∂ψ′
(ψ̂ − ψ) (A.8)

≡: θ̃i +Ri1 +Ri2,

where ψ̃ lies between ψ and ψ̂, and for large m, |Ri2| ≤ ui|ψ̂ − ψ|2 ≤ n−2δui with

ui =
1

2

K∑
i=1

sup
|ψ−ψ0|<n−1/2

∥∥∥∥ ∂2λk
∂ψ∂ψ′

∥∥∥∥ |Wk(e)|.

It is easy to show that E(u2
i ) is bounded.

Let ξi =
√
m(θ̂i − θi), ξi1 =

√
m(θ̃i +Ri1 − θi), and ξi2 =

√
mRi2. By Lemma 3, we only

need to derive i) and ii).
Firstly we deal with E|ξ2i |1Bc . By Theorem 1, for any r > 0, we have |σ̂2

b − σ2
b |r =

O(m−r/2) and E|γ̂2ε − σ2
ε |r = O(m−r/2). Then it follows from Markov’s inequality that

P (Bc) = O(m−k(1/2−δ)) with k > 0. By the Cauchy-Schwarz inequality, we have

E(|ξ2i |1Bc) ≤ E1/2|ξi|4P1/2(Bc).

On the other hand, it is easy to see that

|ρi| ≤ T−1i and (X′V−1X)−1 ≤ σ2
εd2

l (X′X)−1

with dl defined in condition (C3). By Equation (A.7), we have

|θ̃i − θi|4 ≤ c1
[
b4
i + |1′ni

D−1i ei|4

+
1

m

m∑
j=1

mj∑
k=1

{
(X̄i. − ρiX ′iD−1i 1ni

)′(σ2
εn
−1X ′V −1X)−1Xjkejk

}4

+
1

m

m∑
j=1

{
((X̄i. − ρiX ′iD−1i 1ni

)′(σ2
εn
−1X ′V −1X)−1X ′jD

−1
j 1mj

1′mj
D−1j ej

}4


≤ c2

[
b4i + T−1i |1

′
ni
D−1i ei|4

+
1

m

m∑
j=1

mj∑
k=1

(|X̄i.|4 + |X ′iD−1i 1ni
|4)tr4{n(X′X)−1}|Xjk|4e4jk

+
1

m

m∑
j=1

(|X̄i.|4 + |X ′iD−1i 1ni
|4)tr4(n(X′X)−1)|X′jD−1j 1mj

|4|1′mj
D−1j ej|4

 .
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The above inequality tells us that E|θ̃i − θi|4 = O(1) and E|θ̂i − θi|4 = O(1). Hence we have
E|ξi|4 = O(m2). It follows that

E(|ξ2i |1Bc) = O(m−(k(1/2−δ)−1)). (A.9)

Now we move to deal with E|ξ2i1|1Bc . By Equations (16), (17), and (19) , we have Eξ2i1 =
O(1). By the Cauchy-Schwarz inequality again, we have

E(|ξ2i1|1Bc) ≤ E1/2|ξi1|4P1/2(Bc) = O(m−(k(1/2−δ)−1)). (A.10)

By Equations (A.8)− (A.10), and Lemma 3, the proof is finished. �

Appendix C: Derivation of M̂SPE1i

Lemma 4. Under the conditions of Theorem 3, we have

Efi1(ψ̂) = fi1(ψ)− fi41(ψ∗)− fi42(ψ) +O(m−3/2), (A.11)

Efi2(ψ̂) = fi2(ψ) +O(m−3/2), (A.12)

Efi3(ψ̂∗) = fi3(ψ∗) +O(m−3/2), (A.13)

Efi41(ψ̂∗) = fi41(ψ∗) +O(m−3/2), (A.14)

Efi42(ψ̂) = fi42(ψ) +O(m−3/2). (A.15)

Proof of Lemma 4 . Firstly we deal with (A.11). By the elementary expansion, we have

1

Tiσ̂2
b + σ̂2

ε

=
1

Tiσ2
b + σ2

ε

− Ti(σ̂
2
b − σ2

b ) + σ̂2
ε − σ2

ε

(Tiσ2
b + σ2

ε)2
(A.16)

+
{Ti(σ̂2

b − σ2
b ) + σ̂2

ε − σ2
ε}2

(Tiσ2
b + σ2

ε)3
− {Ti(σ̂

2
b − σ2

b ) + σ̂2
ε − σ2

ε}3

(Tiσ2
b + σ2

ε)3(Tiσ̂2
b + σ̂2

ε)

≡: K1 +K2 +K3 +K4.

It follows that

fi1(ψ̂) = σ̂2
b −

Ti(σ̂
2
b )2

Tiσ̂2
b + σ̂2

ε

(A.17)

= σ̂2
b − Ti(σ̂2

b )2
4∑
j=1

Kj .
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Note that

(σ̂2
b )2

3∑
j=1

Kj =
(σ2
b )2

Tiσ2
b + σ2

ε

+
2σ2

b (σ̂2
b − σ2

b )

Tiσ2
b + σ2

ε

−
(σ2
b )2
{
Ti(σ̂

2
b − σ2

b ) + σ̂2
ε − σ2

ε

}
(Tiσ2

b + σ2
ε)2

(A.18)

+
1

(Tiσ2
b + σ2

ε)3
(ψ̂ − ψ)′

(
(σ2
ε)2 −σ2

bσ
2
ε

−σ2
bσ

2
ε (σ2

b )2

)
(ψ̂ − ψ)

+

{
(σ̂2
b − σ2

b )2 + 2σ2
b (σ̂2

b − σ2
b )
}{

Ti(σ̂
2
b − σ2

b ) + σ̂2
ε − σ2

ε

}2
(Tiσ2

b + σ2
ε)3

.

By Equations (A.16), (A.18), (19), and Theorem 1,

E

σ̂2
b − Ti(σ̂

2
b)2

3∑
j=1

Kj

 = fi1(ψ)− fi41(ψ)− fi42(ψ∗) +O(m−3/2). (A.19)

On the other hand, by the Cauchy-Schwarz inequality and the Cr inequality

E|(σ̂2
b)2K4| ≤

E
{
|σ̂2

b||Ti(σ̂
2
b − σ2

b) + σ̂2
ε − σ2

ε |3
}

Ti(Tiσ2
b + σ2

ε)3
(A.20)

≤ cE1/2|σ̂2
b|2(T6

i E1/2|σ̂2
b − σ2

b|6 + E1/2|σ̂2
ε − σ2

ε |6)

= O(m−3/2)

with c is some constant. By Equations (A.17), (A.19), and (A.20), Equation (A.11) is resluted.
Now we move to prove Equation (A.12). By the elementary expansion again, we have

(X ′V̂ −1X)−1 − (X ′V −1X)−1 (A.21)

= (X ′V −1X)−1X ′V −1(V̂ − V )V̂ −1X(X ′V̂ −1X)−1

≡: G.

By the definition of fi2(·) in Equation (16) and (A.21), we have

fi2(ψ̂)− fi2(ψ) = (X̄ ′i· − ρiX ′iD−1i 1ni)
′G(X̄ ′i· − ρiX ′iD−1i 1ni)

−2(ρ̂i − ρi)1′ni
D−1i Xi(X

′V −1X)−1(X̄ ′i· − ρiX ′iD−1i 1ni)

−2(ρ̂i − ρi)1′ni
D−1i XiG(X̄ ′i· − ρiX ′iD−1i 1ni)

+(ρ̂i − ρi)21′ni
D−1i Xi(X

′V −1X)−1X ′iD
−1
i 1ni

+(ρ̂i − ρi)21′ni
D−1i XiGX

′
iD
−1
i 1ni

≡:
5∑
j=1

Lj .

Next we will derive ELj = O(m−3/2) for j = 1, 2, 3, and ELj = O(m−2) for j = 4, 5. Hence
Equation (A.12) is produced.
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Firstly we deal with L1. By the Cauchy-Schwarz inequality,

|L1| ≤ (X̄ ′i· − ρiX ′iD−1i 1ni)
′(X̄ ′i· − ρiX ′iD−1i 1ni)tr

1/2(G′G) (A.22)

≤ c1tr1/2
{

(X′V−1X)−2X′V−2X
}

tr1/2
{

(X′V̂−1X)−2
}

×tr1/2(X′V̂−2X)tr1/2
{

(V̂ −V)2
}

= c2O(m−1)(|σ̂2
b − σ2

b |+ |σ̂2
ε − σ2

ε |),

because tr
{

(X′V−1X)−2X′V−2X
}

= O(m−1), tr
{

(V̂ −V)2
}

= O(m)(|σ̂2
b − σ2

b|+ |σ̂2
ε −

σ2
ε |), tr

{
(X′V̂−1X)−2

}
= |σ̂2

ε |2O(m−2), and tr(X′V̂−2X) = |σ̂2
ε |−2O(m), where the last two

equalities are derived by

σ−2ε (D−1 − diag{D−21 /T1, . . . ,D
−2
n /Tm})

≤ V −1 = γ−2ε (D−1 − diag{ρ1D−21 , . . . , ρnD−2m }) ≤ σ−2ε D−1.

Here c1 and c2 are some constants. It follows from (A.22) that E|L1| = O(m−3/2).
Now we deal with L2. By the elementary expansion, we have

ρ̂i − ρi =
σ̂2
b − σ2

b

Tiσ2
b + σ2

ε

−
{
Ti(σ̂

2
b − σ2

b ) + σ̂2
ε − σ2

ε

}
σ̂2
b

(Tiσ2
b + σ2

ε)2(Tiσ̂2
b + σ̂2

ε)
. (A.23)

Then it is not difficult to derive that E|ρ̂i − ρi|k = O(m−k/2) for k ≥ 1. Hence E|L2| =
O(m−3/2).

Next we move to L3. By the Cauchy-Schwarz inequality,

E|L3| ≤ cE1/2|ρ̂i − ρi|2E1/2{tr(GG′)} = O(m−1/2)E1/2{tr(GG′)}, (A.24)

where c is some constant. Similar to the proof of E|L1| = O(m−3/2) in the above, one can obtain
Etr(GG′) = O(m−2). Hence E|L3| = O(m−3/2).

Similar to the above arguments, we obtain E|Lj| = O(m−2) for j = 4, 5.
Finally, Equations (A.13)− (A.15) can be derived by the similar arguments. The proof is

finished. �

Appendix D: Derivation of M̂SPE2i and M̂SPE3i

Lemma 5. Under the conditions (C1) and (C2), we have

(W ′−jW−j)
−1 = (W ′W )−1 + (W ′W )−1∆j(W

′W )−1 +O(m−3)J2, (A.25)

where ∆j =

(
∆11
j ∆12

j

∆12
j ∆22

j

)
with ∆11

j , ∆12
j and ∆22

j defined in Equations (A.26)-(A.28) below

respectively. Moreover,
∑m
j=1 ∆j = W ′W .
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Proof of Lemma 5 . Let (X−j , Z−j , Y−j) be defined as (X,Z, Y ) by dropping out the jth
group. And then W−j and PX⊥−j

are obtained. After some tedious calculations, we have

tr
{

(Z′−jPX⊥−j
Z−j)

2
}

= tr
{

(Z′PX⊥Z)2
}
− tr

{
(Z′jZj)

2
}

+ 2tr
{

(X′X)−1X′j(ZjZ
′
j)
2Xj

}
(A.26)

−tr
{

(X′X)−1X′ZZ′X(X′X)−1X′jZjZ
′
jXj

}
+ O(m−1)

≡: tr
{

(Z′PX⊥Z)2
}
−∆11

j + O(m−1)

tr(Z′−jPX⊥−j
D−jPX⊥−j

Z−j) = tr(Z′PX⊥DPX⊥Z)− tr(Z′jDjZj) (A.27)

+tr
{

(X′X)−1X′j(DjZjZ
′
j + ZjZ

′
jDj)Xj

}
−tr

{
(X′X)−1X′jDjXj(X

′X)−1X′ZZ′X
}

+ O(m−1)

≡: tr(Z′PX⊥DPX⊥Z)−∆12
j + O(m−1),

tr((PX⊥−j
D−j)

2) = tr
{

(PX⊥D)2
}
− tr(D2

j ) + 2tr
{

(X′X)−1X′jD
2
j Xj

}
(A.28)

−tr
{

(X′X)−1X′jDjXj(X
′X)−1X′DX

}
+ O(m−1)

≡: tr
{

(PX⊥D)2
}
−∆22

j + O(m−1),

noting that (X ′−jX−j)
−1 = (X ′X)−1 + (X ′X)−1X ′j(Imj −Xj(X

′X)−1X ′j)
−1X ′j(X

′X)−1.
It follows from Equations (A.26)− (A.28) that

W ′−jW−j = W ′W −∆j +O(
1

m
)J2. (A.29)

On the other hand,

(W ′−jW−j)
−1 = (W ′W )−1 + (W ′W )−1(W ′W −W ′−jW−j)(W ′W )−1 (A.30)

+[(W ′W )−1(W ′W −W ′−jW−j)]2(W ′−jW−j)
−1

= (W ′W )−1 + (W ′W )−1(W ′W −W ′−jW−j)(W ′W )−1 +O(
1

m3
)J2

by m(W ′W )−1 = O(1)J2 and m(W ′−jW−j)
−1 = O(1)J2. By Equations (A.29) and (A.30),

Equation (A.25) is derived. �

Lemma 6. Under the conditions of Theorem 1,

ψ̂−j − ψ̂ = −(W ′W )−1ζj + (W ′W )−1∆j(W
′W )−1ζ + rj1 + rj2,

where ψ̂−j is defined as ψ̂ with the jth group dropped out, ζj = (ζj1, ζj2)′ with ζj1 and ζj2
defined in Equations (A.1) and (A.2) respectively, ζ =

∑m
j=1 ζj , and rj1 and rj2 are defined in

Equation (A.33) below. Moreover

m∑
j=1

(ψ̂−j − ψ̂) = O(
1

m2
)J2ζ +O(

1

m3
)12η

with η = tr(JN(ee′ −V)).
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Proof of Lemma 6. Define η−j = η − ηj with ηj = tr(eje
′
j −Vj) +

∑
k6=j e′jek. It is easy to

derive that η =
∑m
j=1 ηj . By Equation (A.6), we have

ψ̂ − ψ = (W ′W )−1ζ +O(
1

m
)(W ′W )−112η. (A.31)

Similarly we have

ψ̂−j − ψ = (W ′−jW−j)
−1ζ − (W ′−jW−j)

−1ζj +O(
1

m
)(W ′−jW−j)

−112η−j . (A.32)

It follows from Equations (A.25), (A.31), and (A.32) that

ψ̂−j − ψ̂ = −(W ′W )−1ζj + (W ′W )−1∆j(W
′W )−1ζ (A.33)

+O(
1

n2
)J2ζj +O(

1

m3
)J2ζ +O(

1

m
)

{
−(W ′W )−1 +O(

1

m2
)

}
12η−j

+O(
1

m
)

{
(W ′W )−1∆j(W

′W )−1 +O(
1

m3
)J2

}
12η

≡: −(W ′W )−1ζj + (W ′W )−1∆j(W
′W )−1

m∑
k=1

ζk + rj1 + rj2,

where rj1 = O( 1
m2 )J2ζj +O( 1

m3 )J2ζ and rj2 equals the sum of the last terms on the right-hand
side of Equation (A.33). By Lemma 5, the proof is finished. �

Proof of Theorem 4 . Similar to the proof of Theorem 3, we have

E(M̂SPEi

∗
(ψ̂)|Y ) = fi1(ψ̂) + fi2(ψ̂) + fi3(ψ̂∗) + fi41(ψ̂∗) + fi42(ψ̂) +O(m−3/2).

By Lemma 4, Equation (23) holds, and then Equation (26) is proved.
Moving to Equation (27). Note that we just need to prove

E(B̂ias) = −fi41(ψ∗)− fi42(ψ) + O(m−3/2). (A.34)

By the Taylor expansion, we have

fi1(ψ̂−j)− fi1(ψ̂) =
∂fi1(ψ̂)

∂ψ′
(ψ̂−j − ψ̂) +

1

2
(ψ̂−j − ψ̂)′

∂2fi1(ψ̆)

∂ψ∂ψ′
(ψ̂−j − ψ̂)

=
∂fi1(ψ̂)

∂ψ′
(ψ̂−j − ψ̂) +

1

2
(ψ̂−j − ψ̂)′

∂2fi1(ψ)

∂ψ∂ψ′
(ψ̂−j − ψ̂)

+
1

2
(ψ̂−j − ψ̂)′

{
∂2fi1(ψ̆)

∂ψ∂ψ′
− ∂2fi1(ψ)

∂ψ∂ψ′

}
(ψ̂−j − ψ̂)

= Lj1 + Lj2 + Lj3,
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where ψ̆ lies between ψ̂ and ψ̂−j , and ψ̃ lies between ψ̂ and ψ. It is sufficient to prove that

E

m− 1

m

m∑
j=1

Lj1

 = O(m−3/2), (A.35)

E

m− 1

m

m∑
j=1

Lj2

 = −f41(ψ∗)− fi42(ψ) + O(m−2), (A.36)

E

m− 1

m

m∑
j=1

Lj3

 = O(m−2). (A.37)

Now we derive Equation (A.35). By Lemma 6 and the Cauchy-Schwarz inequality, we have

E
m− 1

m
|

m∑
j=1

Lj1| ≤ O(1)E1/2 ∂fi1(ψ̂)

∂ψ

∂fi1(ψ̂)

∂ψ′

×E1/2


m∑
j=1

(ψ̂−j − ψ̂)′
m∑
j=1

(ψ̂−j − ψ̂)

 .

By the definition of fi1 in Equation (16) , we have ∂fi1(ψ̂)
∂ψ = (

(σ2
ε)

2

(Tiσ2
b+σ

2
ε)

2 ,
Ti(σ

2
b )

2

(Tiσ2
b+σ

2
ε)

2 )′, and then

E(∂fi1(ψ̂)∂ψ′
∂fi1(ψ̂)
∂ψ ) = O(1). By Lemma 5.6 and the proof of Theorem 1,

E


m∑
j=1

(ψ̂−j − ψ̂)′
m∑
j=1

(ψ̂−j − ψ̂)


= E

{
(O(

1

m2
)J2ζ + O(

1

m3
)J2η)′(O(

1

m2
)J2ζ + O(

1

m3
)J2η)

}
= O(m−3)

Hence Equation (A.35) holds.
Now moving on to Equation (A.36). Define rj3 = (W ′W )−1∆j(W

′W )−1ζ. By Lemma 6,
we have

m∑
j=1

E
{

(ψ̂−j − ψ̂)(ψ̂−j − ψ̂)′
}

= (W ′W )−1
m∑
j=1

E(ζjζ
′
j)(W

′W)−1 (A.38)

+
m∑
j=1

E {(rj1 + rj2 + rj3)(rj1 + rj2 + rj3)′}

−(W ′W )−1
m∑
j=1

E {ζj(rj1 + rj2 + rj3)′}

= (W ′W )−1
m∑
j=1

Σj(W
′W )−1 +O(m−2)J2,
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noting that

(W ′W )−1
m∑
j=1

E(ζjζ
′
j)(W

′W)−1 = (W′W)−1
m∑
j=1

Σj(W
′W)−1

m∑
j=1

E {(rj1 + rj2 + rj3)(rj1 + rj2 + rj3)′} = O(m−2)J2,

(W ′W )−1
m∑
j=1

E {ζj(rj1 + rj2 + rj3)′} = O(m−2)J2.

By the definition of fi1 in Equation (16) , we have ∂2fi1(ψ̂)
∂ψ∂ψ′ = −2Ti

(Tiσ2
b+σ

2
ε)

3

(
(σ2
ε)2 −σ2

εσ
2
b

−σ2
εσ

2
b (σ2

b )2

)
.

By the definitions of fi41 and fi42 in Equation (19), and Equations (A.35) and (A.38), Equation
(A.36) is produced.

Finally let us deal with Equation (A.37). Similar to the proof of Equations (A.11) and (A.36),
Equation (A.37) can be derived. The proof is finished. �
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