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1. INTRODUCTION

Considerable attention has been given in recent years to small area estimation (SAE) due to an
increasing demand in applications in various federal and local governments. Statistical models
are used to borrow strength from related areas or sources in order to overcome insufficiency of
sample size and provide reliable estimates. See, for example, Pfeffermann (2013), and Rao &
Molina (2015), for reviews of important recent developments in SAE.

One of the best-known models in SAE is the nested-error regression (NER) model, first intro-
duced by Battese, Harter, & Fuller (1988). Assume that the data Y;;,i =1,...,m,j=1,...,n;
are clustered such that there is independence between clusters, that is, ¥; = (Yi;)i<j<n; % =
1,...,m, are independent, but correlated within clusters. Specifically, the NER model can be
expressed as

Y;J:XZ/]B—"_I)’L—’—dZJSU’ 22177m1j:177n21 (])

where X;; is a p-vector of known covariates, 3 is a p-vector of unknown fixed effects, n; is the
numbers of sampled units from the sth area, and d;; is a known scalar. Furthermore, b; is an
area-specific random effects and ¢;; are sampling errors. It is assumed that the random effects b;
are 1.1.d. with mean zero and variance ag > 0, that the errors ¢;; are i.i.d. with mean zero and
variance o2 > 0, and that the random effects and errors are mutually independent.
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In the literature, there are some different assumptions for the sampling variance Var(ej;)
in model (1). In the simplest case, d;; = 1 for all 4, j, and this model is called a nested error
linear model with equal error variances. Battese, Harter, & Fuller (1988) used this model to
predict the areas of corn and soybeans for 12 counties in North Central Iowa. In fact, d;; always
depends on the covariate X;;. By choosing d;; to be the square root of some covariate, Rao &
Choudhry (1995) studied the population of unincorporated tax filers from the province of Nova
Scotia, Canada. The sampling variance Var(e;;) is assumed to be a function of some unknown
parameters as in Sugasawa & Kubokawa (2017). In this paper, we study the case with known d;;.

Under model (1), the best linear unbiased predictor (BLUP) of the small area mean, 6; =
X/ B+ b;, where X/ is the population mean of the covariates X;; for area i, can be expressed as

0; = X[ B+

2
O'b ’ 1 =~
1 DY — X, ), 2
aglgiD;llm—ﬁ-Ug i ( f) @

where X; = (X/,,..., X/, ). D; = diag(d3,...,dZ,), (3 is the weighted least square estimator
defined in Equation (4) below, and where 1,,, denotes the n;-vector with a value of 1 for each
element. Once some consistent estimators, 65 and &f, are obtained, the corresponding empirical
BLUP (EBLUP) or two-stage predictor is given by

A2
Op

+ 1/ D7Y(Y; — XiB), 3
o7, b1, a2 P #) )

g
where 3 is 3 with o2 and o2 replaced by 62 and 62, respectively.

For the EBLUP defined above, it is not necessary to assume normality of the data. However,
normality is often needed to derive an estimator of the mean-squared prediction error (MSPE)
of 0;, which is widely used as a measure of uncertainty (e.g., Rao & Molina, 2015). Under the
normality assumption, Kackar & Harville (1984) and Harville & Jeske (1992) studied various
approximations to the MSPE. Prasad & Rao (1990) studied accuracy of a second-order approx-
imation by the Taylor series approximation, or linearization, using the method of moments to
estimate the variance components. Datta & Lahiri (2000) studied the Prasad-Rao approach using
maximum likelihood, or restricted maximum likelihood, estimators of the variance components.
However, they did not give a rigorous proof of the results, which was later given by Das, Jiang,
& Rao (2004). In the context of resampling methods, Booth & Hobert (1998) proposed a para-
metric bootstrap method to estimate the MSPE under generalized linear mixed models (GLMM;
e.g., Jiang, 2007). Butar & Lahiri (2003) studied parametric bootstrap under linear mixed models
(LMM). Jiang, Lahiri, & Wan (2002) proposed a jackknife estimator of the MSPE under LMM
and GLMM. Hall & Maiti (2006a) proposed parametric bootstrap methods under very general
settings.

In practice, however, specific parametric distributional assumptions often do not hold. There
have been some results in MSPE estimation without parametric distributional assumptions. Un-
der only moment conditions, Lahiri & Rao (1995) demonstrated robustness of the Prasad-Rao
estimator of the MSPE under the Fay-Herriot model (e.g., Fay & Herriot, 1979). Hall & Maiti
(2006b) studied model (1) and noted that, essentially, only the second and fourth moments of
the random effects and errors influence the bias of the MSPE estimator; they further proposed a
moment-matching, double-bootstrap procedure to estimate the MSPE.

The main purpose of this paper is to study estimation of the MSPE without specific assump-
tions about the distribution of the data. Firstly we derive a naive analytical estimator, which has a
different term compared to that under the normality assumption. We then correct the bias of the
naive estimator to o(m’l). Secondly, following Hall & Maiti (2006b), we propose a moment-
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matching jackknife estimator. More specifically, we first apply the moment-matching bootstrap
method to obtain a naive MSPE estimator whose bias is O(m ™). Since estimation of the third
and fourth moments are notorious for their large standard errors in the case of small samples,
we use a jackknife algorithm, instead of double bootstrap, to correct the bias of the bootstrap
estimator, once again to o(m™1!).

The rest of the paper is organized as follows. We consider estimation of the model parameters
in Section 2. In Section 3 we apply the bias-correction methods to estimate the MSPE. Section 4
reports results of simulation studies, and Section 5 is data analysis. Proofs of theoretical results
are given in Appendix.

2. ESTIMATION OF MODEL PARAMETERS

Write Y = (Y{,...,Y.), X=(X1{,...,X]), Z=dag(l,,...,1,,), and D=
diag(D, ..., Dy,). Then, model (1) can be written in matrix form as

Y = XB+ Zb+ DY,

where b = (by,...,by) ,and e = (¢,..., &))" It follows that

Cov(Y) = diag(Vy,...,Vm) =V

with V; = 021,,1!, + 02D;. Now the weighted least squares estimator of /3 in Equation (2) can

ni~n;

be expressed as
B=XVIX)IX'v-ly 4)

In the remaining part of this section we show how to obtain 67 and 62, and how to estimate
the fourth moments of the random effects and errors; the latter will be used to approximate
the MSPE. There are various non-parametric methods of estimating variance components and
high moments in the literature. See, for example, Harville (1974), Stukel & Rao (1997), Wu &
Zhu (2010), Wu, Stute, & Zhu (2012), and Hall & Yao (2003). Below we propose a new set of
estimators of the variance components and of higher moments.

2.1. Estimation of variance components

The (ordinary) least-squares estimation of 3 is given by Bise = (X'X)~1X'Y . Itis easy to derive
the following:

E{(Y — XBie)(Y — XBie)'} = PxoE{(Y — XB)(Y — X8)'}Px.
= 0}Px.Z7' Px. + 02Px.DPx.,
m

where Py. = In — X(X’X)'X’ is an orthogonal projection matrix with N =" n,.

Thus, an unbiased estimator of ¢ = (07, 02)’ is obtained as follows

b= (WW) "W (Px.Y @ Py.Y) (5)

[ w{(ZPx17)?} tr(Z'Px.DPx.7) T Y'Py 22 Py.Y
- \tr(ZPx.DPx.Z) tr{(Px.D)?} Y'Px.DPx.Y )’

where W = (vec(Px1ZZ'Px.1),vec(Px.DPx.)) with vec being the operator stacking
columns of a matrix one underneath the other that results in a column vector, and where ®
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denotes the Kronecker product. Component-wise, from Equation (5), unbiased estimators of og
and o7 are given, respectively, by
52 _ Y’ Py [tr {(Z Px.17Z) }D tr(Z'Px. DPx . 2)27/ ] Px.Y
< tr{(Z'Px.Z)2}tr{(Px. D)2} — tr*(Z’Px. DPx1Z) '

L, Y'Py. [tr{(Px.D)2}22 — tx(Z'Px. DPx. Z)D] Px.Y
7 T T {(ZPx.2)2 tr{(Px. D)2} — tr2(ZPx.DPx.Z)

2

Then a simple positive of 1 is given by ¢ = (62,62) with 62 = max{52,0} and 62 =

max{52,0}.

2.2. Estimation of the fourth moments w4 and pi-4

Denote the fourth moments of the random effects b; and errors €;; by fp4 and .4, respectively.
Following Hall & Maiti (2006b), we first obtain a consistent estimator of u.4. Let e;; = Y;; —
X{jﬂ for all 7. Then, we have

E(ejj; — en)* = B(dijes; — diein)* = pea(di + dif) + 6(02)?d3d3,
It follows that u-4 can be estimated consistently by

,[L Zl 1 Zn171 Zk_].u(ew eik) - 6( ) Zz 1 Zn171 Zk =j+1 1] zk
4 = m ’
: > (ni—1) Z] 1 d;lj

where é;; is the empirical approximation of e;; by replacing 3 with Blse.
Now consider estimation of the fourth moment of the random effects b;. We first apply a
transformation to model (1) as follows:

d;'Y; = di' XiB + d;'bi + €5, i=1,...,m, j=1,...,n,.
Write é;; = di_jlbi + &;;. After some tedious calculations, we obtain
ng Nng g
Z E(éfj) = lp4 Z de4 + 6050? Z d;jz + N fleq
j=1 j=1 j=1
and

Zié?jziéij _'U'MZdUBZdU +60’b0' Zd” +Z Z d 1dz_k:
=1 =1

j=1k=j+1

N fled.
The above two moment equations lead to an estimate of yip4 as follows:
n;
Zz 121113 Jllj Zz 12]11]
—3 -1
Zl 1 Zy;ﬁk ij dv,k

-1 5-1
30 Ul? Zz 1 Z]#k i dzk
—3 7—1 ’
21 12]7516 iJ dzk

fiva =
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where éij is the empirical approximation of &;; by replacing 5 with Blse.

2.3. Asymptotic properties

In this section, we state asymptotic properties of the estimators suggested above as m tends to
infinity. We need the following conditions.

(C1) There exist positive integers such that 2 < n; < n; < n,, for all 7.
(C2) There exist positive constants g; and g such that

1
g1 S )\min(NX/X) and || Xij ||S g2 fOI‘ all i and j,
where Apin (A) means the least eigenvalue of some matrix A,
norm, and where X; is the transpose of the jth row of X;.
(C3) There exist positive constants d,, and d; such that d; < d;; < d,, for all 7 and j.
(C4) Assume E[b; |3 < 0o and E|e1;[*1? < oo, forany 0 < § < 1.

- || denotes the Euclidean

Condition (C') is reasonable in small area estimation. Condition (C?2) is a standard assump-
tion in linear models. Condition (C'3) means that the sampling variances are bounded uniformly
in each cluster. Condition (C'4) is satisfied by many continuous distributions, including uniform,
normal, gamma or lognormal with zero mean, double exponential. Please refer to Lahiri & Rao
(1995).

In Appendix A, we show that

lim l(VV’W): lim

m—oo M m—oo m

= Yw. (6)

1 (2{(Z'Z)?} tx(2'DZ)
m \ tr(ZDZ) tr(D?)

The asymptotic properties of estimation of qg are stated in the following theorems.

Theorem 1.  Suppose that conditions (C1)-(C3) are satisfied. If ppa and fic4 are finite, we
have, as m — 00,

Vm(h = ) =5 N(0, 53! B8y,
where ¥ = lim,, 00 % S (Bin + Sio) with
i nftr(Di)

tr(D?) tr(D?
Si1 = { s — 3(03)%} <n2tr(Di) o2(D) ) + {pea — 3(02)%} (trED;; trED;D , (D)

1

n4

> 9 {nfog tr(Di)Og}z tr{(nio}%Dil/2 D?/2Og)2}
i2 =
tr{

. _amyl/2 3/2_2y2 27. 2 _2\2 21242/, 2 (8)
(miop D" + D 02)*} tr{(opDi + Dio2)* + (o3)*{tr*(Di) — tr(Df)}

Corollary 1. Assume that the conditions of Theorem 1 hold. Under Condition (Cy), for any s
satisfying 0 < s <2+ with0 < §' < 15and 0 < § < 1,

ElgZ —o2* =0
E|&} —op?* =0
E|62 - 02> =0

E|62 — 022 = O

), P67 <0)=0(m™*),
m=®), Elof - 55> = O(m~*/2),
), P(62<0)=0(m™"),
), El6Z - 52> = O(m™/?).
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We assume existence of the following limits:

n;

L DU o g

i=1

i—1
Zz 12711 ZZZQ iJ zk _

lim T = C2, (10)
m—0c0 Zz l(nz - )Ej ld?‘]
N 3
S 9 o7 o
i=1 j#k
—13-1
d:y
and  fim == Z,j’fk ”3 ke =ca (12)
m~>oo Zl 12 j#k 1_] dlk
Theorem 2. Suppose that conditions (C1)-(C4) are satisfied. Then, as m — oo,
N d
\/ﬁ(,usﬂ - ,Ue4) — N(07 UE)7 (13)
N d
Vm(fipa — pps) — N(0,vp), (14)

where v, = lim,,—yoo m™! ZZZ1 EX2, vy = limy, 0o m™1 Z:’;l Ex?, and \;, x; are respec-
tively defined in Equations (A.4) and (A.5).

Remark 1. If the random effects and sampling errors are all normally distributed, ji.4 =
3(02)? and pps = 3(0?)? hold. It follows that ;1 in Equation (7) vanishes.

3. ESTIMATION OF MSPE

With the variance components estimated consistently, one can easily obtain the EBLUP 6, in
Equation (3). In Subsection 3.1 we consider estimation of the MSPE of the EBLUP.

3.1. Analytical estimation of MSPE

For the ith small area, the MSPE is defined as MSPE,; = E(é1 — 91)2, where the expectation is
taken under model (1). Under the normality assumption, one can show that

MSPE; = E(6; — 6;)? + E(6; — 6;)?,

where the cross-term E{(f; — 6;)(6; — 6;)} = 0. However, under non-normal distributions, the
previous equation does not hold. In order to study analytical estimation of MSPE;, we use the
Taylor expansion

ho_ ] 00; o 1 T /891(121) o
br = 0+ S5 =) + 36— ) SR G- v)
=: 0; + Ry + Ria,

where 1/; lies between 1) and 1[) Then, we have
MSPE; = E(6; — 6; + Ri1)? 4 2E{(6; — 6; + Ri1)Riz} + E(R) 15)
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with E(6; — 6; + Ri1)? = E(6; — 6;)% + 2E{Ri1 (6; — 6)} + E(RZ). Simply, one can derive the
expression

E(0; — 6,)? = £i1(¢) + fi2 (¥), (16)
where f;1(¢) = p;o? with p; = 0(Tio? +02)~tand T; = 1/, D;'1,,,, and
fio = (Xi. — piX!D;11,,,)) (X'VIX) " NX, — piX[D;'1,,).

Note that Equation (16) holds as long as the random effects and errors have zero mean and
bounded variances.
By Lemma 1 in Appendix B, we have

E{(6; — 0:)Ri} = fis(¥") + O(m™2), 17)

where ¢* = (07,02, jipa, ptea)’ is a vector, and

fiS(w*) =

1
——t WW)~!
(Tio7 + 02 << )

niT, 2 22 o: /
- (Tm(DQ) o2 {wa = 3(07)*} (_05 : (18)

Under the normality assumption, it is easy to see that f;3(1*) = 0; otherwise, this term is of the
order O(m ™), hence can not be neglected.
By Lemma 2 in Appendix B, we have

ER?) = fin(¥*) + fiz(¥) + O(m™?), (19)
where
_ *\ T; / -1 S . / —1 (05)2 —U%Ug
fin(¥*) = WW {(W W) ;Ed(w W) <—Ufa§ (02)2 )

and f;40 is defined as f;47 with X;; substituted by X;5. By the definitions of ¥;; and ;5 in
Equations (7) and (8), respectively, fi41(1*) vanishes under normality, but f;42(1)) is always of
order O(m™1).

Based on Equations (15)—(19), we have

E(6; — 6; + Ri1)® = £ (v) + fia(¥) + 2£i3(¢%) + fir (V) + fi2 (¥) + O(m ™). (20)
Especially, under normality, we have
E(0; — 0; + Ri1)? = fir(¥) + fi2 () + fiaz(¥) + O(m™2).
But after all, the following theorem states that MSPE; — E(é1 —6; +Ri1)? = o(m™1).

Theorem 3.  Assume that the kth moments of the random effects and errors are finite. Under
conditions (C1)-(C3), we have

B/ISIDE1 = E(él _ 01 + Ril)2 + O(miliw)’

DOIL: The Canadian Journal of Statistics/ La revue canadienne de statistique
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where w = (20) A (k(1/2—6) — 1) with0 < § < 1/2and k(1/2 —§) > 1.

Remark 2. [t is easy to see that w € (0,1). Specifically, we have w = 1/2 with k = 6 and
§=1/4.

3.2. Bias-corrected analytical MSPE estimator
By Theorem 3 and Equation (20), a naive estimator of MSPE; is given by

Mé\ﬁi = fir(¥) + fiz (D) + 2fis(V) + fir (V") + fiaa (D).

However, it is well known that l\mi is only first-order unbiased, because f;1(1)) is not bias-
corrected to o(m ). We now explore how to obtain a bias-corrected estimator of MSPE;.

From Lemma 4 in Appendix C, we see that f;2(v), fis(¥*), fia1(¥*), and f;42(¢0) can be,
respectively, estimated by f;2(1)), fi3(¢)*), fia1 (1)*), and fiso(1h) with corresponding biases of
o(m™1). However, f;1(¢) as an estimator of f;; (1) has bias of O(m~!). In fact, by Equation
(All), we have Efll(iﬁ) = il(’l/)) — Iig1 (dJ*) — i42(¢)) + O(m’3/2). It follows that fﬂ(i[)) +
fiar (1[)*) + fi42(z/3) is an estimator f;1 (1)) whose bias is o(m ~!). Hence a bias-correct estimator
of MSPE,; is given by

MSPE,; = Fir () + fio(h) + 23 (") + 2fia1 (") + 2 fia0 (1)) (21)

Moreover, by Lemma 4 in Appendix C again, we have
E(MSPE,;) = MSPE; 4+ O(m3/2).

3.3. Bias-corrected resampling MSPE estimation

In Hall & Maiti (2006b), fi3(0*), fia1(¢*), and fi42(¢)) were not given in closed-form expres-
sions; thus, the above bias-corrected analytical estimation (Eq. 21) could not be obtained in this
article. In order to overcome this difficulty, the authors proposed a double bootstrap procedure
and a non-parametric estimator of MSPE;. The procedure is computationally expensive because
it must apply a second bootstrap to correct the bias; in fact, the algorithm runs at a very slow
speed. In this section, we follow Hall & Maiti (2006b) but only apply a one-step wild bootstrap
to obtain a naive MSPE estimator; we then suggest two methods to correct the bias.

Let a random variable £ obey a distribution, say F'(-) with mean and third moment being zero.
Let ¢?b = (62, fipa)’ and és = (62, jic4)’ be the corresponding estimators suggested in Section 2.
Forl =1,...,k, generate samples b") = (bgl)7 . ,b£,"2)’ independently from distribution F'(¢y,).
Also,

s — (g(l) (0 RO L eW Y, 1=1

115 3€Inys- >Emlr- - >Enin,,

k

IR )

are sampled independently from distribution F'(¢.). Let
YO =Xx3+ 200 + DO, 1=1,... k.

Based on the /th bootstrapped data (X, Y(l)), we can compute the bootstrapped versions, ﬁ(l),

’yf (l), &3 (l), and égl), respectively; and where the bootstrapped small area mean is 01@ =X, /3’ +
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bgl). Then, a naive estimator of MSPE; is given by

k
1 ) _ )2
MSPE, ( = Z (6" — 6! (22)

which has bias of order O(mfl). In Appendix D, the proof of Theorem 4, defined below, shows
that
E(MSPE; (1)) = MSPE; — fi1 (") — fiaz (1)) + O(m™~*/%).
Thus, we obtain the following estimator to correct the bias
MSPEqg; = MSPE, (1) + fuar (V%) + fuas (). (23)
Alternatively, we may use the jackknife method to bias-correct I\TSﬁEj (1&) Note that the bias

terms f;41 and f;40 are introduced by fil.AThe latter is a known function of the second moments
of the random effects and errors, 1. Let 1_; be 1) with the jth group dropped when computing

the estimators. Then, the bias of @: (1[)) can also be estimated by
Bias = Z fah—g) = fun (). (24)
In view of Equations (22) and (24), a simple bias-corrected estimator of MSPE; is given by
MSPEs; = MSPE, (¢) — Bias;. (25)

In summary, we have the following theorem.

Theorem 4.  Suppose that conditions (C1)-(C4) are satisfied. Then, we have

E(MSPE,;) = MSPE; + O(m~3/2), (26)
E(MSPEjy;) = MSPE; + O(m~?/2). 7)

4. SIMULATION STUDY

In this section, we study the finite sample performance of the proposed MSPE estimators, and
compare the performance with a number of other measures of uncertainties of EBLUP in the
norm and non-normal cases.

We consider 8 = 1, n; = 3, m = 30,60, 100, and d;; = 1. The X;; are generated from the
uniform distribution over [0.5, 1]. The average values of relative bias (RB) and the coefficients of
variation (CV), over ¢, are reported, given respectively by,

VISPE, ) — . 12 (NIQPh. _ \2
RB, — E(MSPE;) MSPEZ7 oV, — E!/2(MSPE; — MSPE;)
MSPE; MSPE;

All results reported are based on 4000 simulations. The moment-matching distributions needed
by the methods defined in Section 3.3 are selected to be the three-point distribution and Student’s
t-distribution suggested in Hall & Maiti (2006b). The resampling number, needed by the methods
suggested in Section 3.3, is also 4000.

DOL: The Canadian Journal of Statistics/ La revue canadienne de statistique
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In order to compare with Hall & Maiti (2006b), the random effects b; and errors ¢;; are
generated from eight different centralized distributions as follows:

M7 : both normal distributions; M>: both X%Q Ms3: both exponential distribution; My: X%

and —Xg; Ms: both Student’s tg; Mg: both logistic distributions; M~: both /x2; Mg: both
2

X10-

Here the variances are standardized so that the ratio af / O’? =0.5,1, or 2, and
max{c?,02} = 1, and min{o?,02} = 0.5 or 1.

For comparison, the simulating results of Hall & Maiti (2006b), Jiang Lahiri, & Wan (2002)
and Prasad & Rao (1990) are given in the rows HM, JLW, and PR, respectively. The proposed
Jackknife bias-corrected estimator in Equation (25) with the three-point distribution and Studen-
t’s t-distribution are denoted by Method;; and Method; 2, respectively; the bias-corrected boot-
strap MSPE estimator in Equation(23) with those two distributions are denoted by Methods;
and Methodss, respectively. Also let Methods denote the bias-corrected analytical MSPE esti-
mator given in Equation (21). Finally, let Naive; and Naivey denote the naive MSPE estimator
in Equation (22) with the three-point distribution and Student’s t-distribution, respectively.

Table 1-Table 4 report the average RB and CV for the case of m = 60 and m = 100, re-
spectively. Note that the results for HM are copied from Table 1 in Hall & Miti (2006b), for the
three-point distribution with equalvariance only. This is because Hall & Miti (2006b) did not s-
tate the value of n in Table 2 for the unequal variance cases, that is, 07 /o2 = 0.5, 2; nevertheless,
they reported that both RB and CV take higher values for unequal variance components, com-
pared to the equal variance case. From these four tables, it is seen that the naive estimator and
Method; always take negative RB and hence underestimate the MSPE; but the latter performs
better than the former. Moreover, it is seen that all of the methods except Naive; and Naiveq
perform more favorably than HM, under all models considered. In the normal-normal case with
m = 60, PR is more accurate than the other ones; as m increases to 100, JLW performs best;
however, the difference is very tiny, compared to our proposed methods. Under all of the other
models, it is easily seen that our methods outperform HM, JLW, and PR. Among the proposed
methods, it appears that Methods; performs the best, and Student’s t-distribution seems to per-
form better. Moreover, the equal variance case tends to have lower CV than the unequal variance
cases, and larger values of 07 /o tend to improve the RB.

Below, we want to explore the effect of the values of o7 and o2 on the performance of our
methods. For 02 =1 (07 = 1), 0 (¢2) increases from 1 to 4. The resampling distribution is
selected to be Student’s t-distribution. Table 5 shows the average RB and CV under the norm-
norm case M;. As for the non-normal case, in order to save space, only Ms is applied. The
corresponding simulating results are reported in Table 6.

From Table 5, as for RB, PR still performs best, but the difference is very tiny with our
methods. In the terms of C'V/, the biased-corrected analytical estimator Methods is comparable
to PR, and they both perform a little better than others. Given 02 = 1, RB and CV of JLW
increase as af increases, but for the other methods, the lager values of af tend to improve the
RB, but deteriorate the CV. On the contrary, for fixed o7 = 1, all methods performs better as
ag decreases. Moreover, the larger value of crg / Ug tends to improve the RB and CV. Under M,
Method; has the smallest RB, and Methodss performs best in terms of CV. Recalling Table 1-
Table 4, Methodss and Methods are very accurate under non-normal case. Moreover, when 0%
( 03 ) decreases, RB and CV becomes better. This is very different with that of the normal case
reported in Table 5.
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TABLE 1: Comparison of Different Methods of MSPE Estimation: m = 60

ot/o2 =05 otjo =1 ot =2
Model Method RB CvV RB CcvV RB CvV
M,y HM 0.091  0.290
JLW 0.012  0.147 0.003 0.114 0.002 0.118
PR 0.006  0.132 0.000  0.108 0.000 0.116
Naive; -0.025 0.139 -0.015 0.110 -0.007 0.117
Naives -0.025  0.139 -0.015  0.110 -0.007  0.117
Method:1 0.010 0.135 0.003 0.111 0.002  0.119
Method; 2 0.010 0.134 0.003  0.111 0.002  0.119
Methoda: 0.008  0.135 0.002 0.110 0.001  0.119
Methodaz 0.009 0.134 0.002 0.110 0.001  0.119
Methods 0.004  0.129 -0.002 0.111 0.003 0.116
M, HM 0.095 0.331
JLW 0.035 0.240 0.024  0.189 0.023  0.182
PR 0.023  0.178 0.034  0.159 0.018  0.164
Naive; -0.037 0.175 -0.021  0.150 -0.005 0.156
Naives -0.033  0.175 -0.019  0.150 -0.003  0.157
Method:1 0.006 0.171 0.006 0.154 0.010 0.161
Method;2 0.011  0.173 0.008  0.155 0.012  0.162
Methoda: 0.010 0.173 0.013  0.149 0.008  0.160
Methodza 0.014  0.175 0.015  0.150 0.011  0.161
Methods 0.013  0.186 0.016 0.167 0.014  0.160
M; HM 0.108  0.375
LW 0.060  0.383 0.059  0.311 0.042 0271
PR 0.035 0.234 0.039  0.209 0.028 0212
Naive, -0.057 0217 -0.027  0.185 -0.016  0.194
Naive, -0.046  0.219 -0.019  0.187 -0.009  0.196
Method;1 0.005 0.219 0.013  0.195 0.009  0.203
Method:2 0.016  0.225 0.022  0.200 0.015  0.206
Methoda: -0.002 0215 0.007  0.192 0.005  0.201
Methodz2 0.008  0.220 0.016  0.197 0.012  0.204
Methods 0.023  0.254 0.020 0.255 0.041 0219
My HM 0.075 0317
LW 0.040  0.248 0.029  0.193 0.016  0.178
PR 0.027  0.180 0.020  0.158 0.010  0.161
Naive, -0.033  0.174 -0.017  0.149 -0.013  0.156
Naivea -0.029  0.174 -0.015  0.149 -0.011  0.156
Method;1 0.015 0.174 0.010 0.154 0.003  0.160
Method:2 0.018  0.176 0.013  0.156 0.005  0.160
Methoda: 0.011 0.172 0.008 0.153 0.001  0.159
Methodza 0.014 0.174 0.010 0.154 0.003  0.160
Methods 0.016  0.159 0.009 0.161 0.014  0.163

5. DATA ANALYSIS

We consider an application of the methods developed in this paper to the lowa crops data. See
Battese, Harter, & Fuller (1988) for a complete description. This data was obtained from the
1978 June Enumerative Survey of the U.S. Department of Agriculture (USDA). Based on this
data, some research is aimed at transforming satellite information into good estimates of crop
areas at the individual pixel and segment levels. Hanuschak et al. (1979) and Hung & Fuller
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TABLE 2: Comparison of methods ... m = 60 (Continued)
ot)o? =05 ot)ot=1 ot =2
Model Method RB CV RB CvV RB CvV
Ms HM 0.106 0.376
JLW 0.033 0.253 0.025 0.248 0.014 0.188
PR 0.021 0.176 0.016 0.172 0.009 0.165
Naivey -0.038  0.171 -0.021 0.151 -0.013  0.156
Naivea -0.033  0.171 -0.018  0.156 -0.011 0.156
Method1 0.009 0.170 0.006 0.161 0.001 0.161
Method; 2 0.013 0.173 0.009 0.168 0.004 0.163
Methoda 0.005 0.168 0.004 0.158 0.000 0.160
Methods2 0.009 0.170 0.007 0.164 0.002 0.162
Methods 0.008 0.186 0.010 0.162 0.014 0.166
Mg HM 0.075 0.317
JLW 0.020 0.184 0.015 0.134 0.007 0.144
PR 0.012 0.154 0.010 0.133 0.004 0.138
Naive; -0.035  0.159 -0.017  0.130 -0.012  0.136
Naivey -0.033  0.159 -0.016  0.131 -0.011 0.136
Method 1 0.007 0.153 0.006 0.133 0.001 0.138
Method;2 0.008 0.154 0.007 0.134 0.001 0.139
Methoda1 0.004 0.153 0.005 0.133 0.000 0.138
Methodz2 0.006 0.153 0.006 0.133 0.001 0.138
Methods 0.009 0.159 0.010 0.138 0.008 0.139
My HM 0.089 0.289
JLW 0.021 0.148 0.011 0.118 0.004 0.120
PR 0.006 0.133 0.003 0.111 0.000 0.117
Naive, -0.033  0.141 -0.014  0.113 -0.008  0.116
Naivey -0.032  0.141 -0.014  0.113 -0.008  0.116
Method 1 0.009 0.135 0.005 0.113 0.001 0.119
Method; 2 0.010 0.134 0.006 0.113 0.001 0.119
Methodz1 0.006 0.134 0.004 0.113 0.000 0.119
Methods2 0.007 0.134 0.004 0.113 0.000 0.119
Methods 0.003 0.132 0.000 0.111 -0.003  0.118
My HM 0.092 0.312
JLW 0.030 0.207 0.015 0.150 0.004 0.120
PR 0.011 0.156 0.005 0.134 0.000 0.117
Naive; -0.029  0.161 -0.018  0.133 -0.009  0.137
Naives -0.027  0.161 -0.016  0.133 -0.008  0.137
Method 1 0.006 0.154 0.001 0.133 0.001 0.119
Method; 2 0.008 0.155 0.003 0.134 0.001 0.119
Methodz1 0.003 0.153 -0.001  0.133 0.000 0.119
Methodza 0.005 0.154 0.000 0.133 0.000 0.119
Methods 0.006 0.160 0.002 0.136 -0.003  0.118

(1987) concentrated on producing good estimation of total crop areas for both large and small
geographical units. Battese, Harter, & Fuller (1988) considered the prediction of areas under corn

and soybeans for 12 counties in north-central Iowa.

The model is

Yi;j = Bo + B1Xij1 + BaXijo + by + €4,

i=1,...,12, j=1,....n;,  (28)
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TABLE 3: Comparison of Different Methods of MSPE Estimation: m = 100.

ot)o? =05 ot)ot=1 ot =2
Model Method RB CV RB CvV RB CcvV
My HM 0.098  0.280
JLW 0.000 0.109 0.001 0.085 -0.000  0.092
PR -0.002  0.104 0.002  0.088 -0.001  0.092
Naivey -0.021  0.109 -0.005  0.089 -0.005  0.094
Naives -0.023  0.114 -0.004  0.090 -0.005  0.094
Method1 0.000 0.106 0.002 0.088 -0.000  0.095
Method 2 -0.002  0.111 0.002  0.088 -0.000  0.095
Methoda -0.001 0.106 0.002 0.088 -0.000  0.095
Methodas -0.003  0.111 0.002  0.088 -0.000  0.095
Methods 0.004 0.104 -0.003  0.085 0.000 0.089
M- HM 0.067  0.298
JLW 0.008 0.131 0.021 0.154 0.009 0.128
PR 0.005  0.121 0.017  0.135 0.007  0.123
Naive; -0.020  0.133 -0.017  0.118 -0.007  0.122
Naives -0.016  0.136 -0.014  0.121 -0.006  0.123
Method 1 -0.003  0.121 0.008 0.133 0.002 0.124
Method:2 -0.001  0.122 0.011  0.138 0.003  0.125
Methodz: -0.004  0.120 0.006  0.132 0.001  0.124
Methodzs -0.002  0.122 0.010  0.138 0.002  0.124
Methods 0.007  0.144 0.009  0.125 0.012  0.126
M; HM 0.079  0.327
LW 0.039  0.238 0.034  0.203 0.026  0.185
PR 0.029  0.177 0.026  0.162 0.020  0.162
Naive, -0.032  0.164 -0.019  0.150 -0.009  0.154
Naives -0.026  0.165 -0.014  0.151 -0.005  0.155
Method:1 0.005  0.166 0.006  0.155 0.006  0.159
Method;2 0.012  0.170 0.011  0.157 0.009  0.160
Methodz: 0.002  0.165 0.003  0.154 0.004  0.158
Methodza 0.009  0.168 0.008  0.156 0.008  0.159
Methods 0.017  0.185 0.015  0.190 0.037  0.171
My HM 0.064 0.312
JLW 0.017  0.162 0.010  0.129 0.008  0.128
PR 0.012 0.140 0.007 0.119 0.006 0.123
Naive; -0.027  0.138 -0.019  0.150 -0.009  0.121
Naives -0.025  0.138 -0.014  0.151 -0.008  0.122
Method:1 0.002  0.137 -0.001  0.119 0.000  0.124
Method;2 0.004  0.138 0.000  0.119 0.001  0.124
Methodz: -0.000  0.137 -0.002  0.118 -0.001  0.123
Methods2 0.002 0.137 -0.001 0.119 0.000 0.124
Methods 0.012  0.125 0.018  0.123 0.016  0.129

where y;; is the number of hectares of corn (or soybeans) in the jth segment of the ith county,
2351 and 2,50 are the number of pixels classified as corn and soybeans, respectively, in the jth
segment of the ith county, n; is the number of sample segments in the ith county, and ranges

from 1 to 5.
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TABLE 4: Comparison of methods ... m=100 (Continued)
ot)o? =05 ot)ot=1 ot =2
Model Method RB CV RB (&\% RB CvV
Ms HM 0.036 0.280
JLW 0.015 0.174 0.016 0.153 0.009 0.143
PR 0.010 0.137 0.012 0.126 0.007 0.131
Naive; -0.028 0.134 -0.012  0.120 -0.008  0.125
Naivea -0.025  0.140 -0.010  0.122 -0.006  0.127
Method11 0.000 0.133 0.004 0.123 0.002 0.129
Method;2 0.003 0.141 0.007 0.127 0.003 0.131
Methodsz1 -0.001 0.132 0.003 0.123 0.001 0.129
Methods2 0.002 0.140 0.006 0.126 0.002 0.131
Methods 0.003 0.141 0.011 0.127 0.009 0.130
Mg HM 0.097 0.288
JLW 0.007 0.130 0.008 0.110 0.004 0.109
PR 0.004 0.120 0.006 0.106 0.003 0.107
Naive; -0.024  0.123 -0.006  0.103 -0.007  0.107
Naivea -0.023  0.123 -0.006  0.103 -0.007  0.107
Method11 0.000 0.120 0.002 0.107 0.000 0.109
Method;2 0.001 0.121 0.003 0.107 0.001 0.109
Methoda1 -0.001  0.120 0.002 0.106 -0.000  0.109
Methodz2 -0.000  0.120 0.002 0.107 0.000 0.109
Methods 0.006 0.120 0.006 0.104 0.008 0.110
My HM 0.076 0.312
JLW 0.011 0.110 0.010 0.090 0.005 0.092
PR 0.003 0.105 0.006 0.087 0.003 0.092
Naive, -0.015  0.107 -0.010  0.089 -0.029  0.094
Naivey -0.015  0.107 -0.009  0.089 -0.027  0.094
Method 1 0.004 0.106 0.006 0.090 0.003 0.094
Method;2 0.004 0.106 0.007 0.090 0.003 0.094
Methodz1 0.003 0.106 0.006 0.090 0.003 0.094
Methods2 0.003 0.106 0.006 0.090 0.003 0.094
Methods 0.002 0.104 0.004 0.088 0.002 0.092
Mg HM 0.051 0.279
JLW 0.017 0.132 0.010 0.112 0.011 0.111
PR 0.008 0.121 0.005 0.105 0.008 0.108
Naive; -0.019  0.161 -0.011  0.104 -0.004  0.109
Naives -0.019  0.161 -0.011 0.104 -0.004  0.109
Method 1 0.003 0.120 0.001 0.106 0.006 0.110
Method; 2 0.004 0.121 0.002 0.106 0.006 0.110
Methodz1 0.002 0.120 0.000 0.106 0.005 0.110
Methodza 0.003 0.121 0.001 0.106 -0.004 0.110
Methods 0.005 0.123 0.005 0.107 -0.004  0.110

5.1. lowa crops data with homogenous sampling errors

In Battese, Harter, & Fuller (1988), the random effects b; and the errors €;; are all normally
distributed. In addition, the errors are homogeneous. By applying data of corn and soybeans in
the ZZI n; = 36 segments of these 12 counties, Battese, Harter, & Fuller (1988) estimated the
model parameters and predicted the random effects. In order to obtain the prediction of the mean
crop hectares per county defined in Equation (3), this article used the population mean numbers

The Canadian Journal of Statistics/ La revue canadienne de statistique

DOI:



2077 15

TABLE 5: RB and CV for the normal-normal case M;: m = 30. (All values are multiplied by 100.)

of =4 ot =3 of =2 of =1
Method RB CV RB CV RB CV RB CV
ol=1 PR -05 17.2 0.5 169 0.5 16.1 09 16.0
JLW 0.0 175 1.3 17.6 1.7 176 3.1 194
Method1:1 -03 174 0.8 17.1 1.0 163 1.8 163
Methoda: -05 174 0.6 17.0 0.6 16.2 1.2 16.0
Mehtods -05 17.2 0.6 169 0.6 16.1 1.3 159
o2=4 o2=3 o2 =2 ol=1
Method RB CV RB CV RB CV RB CV
o =1 PR 45 294 1.1 239 0.1 18.8 0.1 159
JLW 25 59.0 27 440 34 289 2.3 20.0
Method11 -5.6 555 -3.2 399 -0.2 23.8 0.8 16.1
Methoda: 42 276 0.8 23.1 0.0 185 0.2 15.8
Mehtods 8.6 26.0 35 214 1.2 176 04 15.6

TABLE 6: RB and CV for the x2-x2 case Ma: m = 30. (All values are multiplied by 100.)

ot =4 ot =3 oE=2 of=1
Method RB CV RB CV RB CV RB CV
ol=1 PR 326 23.64 3.50 22.87 3.09 22.93 249 2295
JLW 747 4040 7.77 44.81 7.39 42.35 6.77 43.13
Method; 2 229 22.66 248 2224 2.07 22.10 1.53 22.03
Methodzs 095 21.89 1.35 2095 0.76 20.94 0.40 21.10
Mehtods 1.08 21.67 1.23  21.18 0.68 21.22 0.24 21.26
ol=4 c2=3 cl=2 ol=1
Method RB CV RB CV RB CV RB CV
oi =1 PR 6.03 33.71 520 30.34 3.60 26.65 2.44 2323
LW 5.37 70.04 7.68 65.30 8.48 59.22 6.51 40.09
Method; 2 -6.51 56.44 -2.79 46.08 0.14 32.90 1.34 2271
Methodas 6.71 28.06 3.59 2555 1.13  23.33 0.25 21.45
Mehtods 3.86 30.34 2.18 27.54 0.68 24.41 0.12 21.66

of pixels classed as corn and soybeans per segment in the ith county to replace the sample mean
numbers Z;L;l Xij1/n; and 2?7:1 Xijo/n; of pixels in the n,;th sample segments of the ith
county.

In this article, we carry out the SMA estimation for corn and soybean of the 12 smal-
1 areas and the results are presented in Table 7 and Table 8 respectively. The estimated
model parameters for corn are § = (51.128,0.329, —0.135)', 67 = 144.397, 62 = 145.233,
ipa = 10191610.680, and ji.4 = 15140.706. The estimated model parameters for soybean
are 3 = (—16.612,0.0301,0.494)’, 67 = 289.680, 62 = 169.623, [ips = 3856.356, and ji.4 =
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TABLE 7: EBLUP, Measures of Uncertainty of Corn with Homogenous Sampling Errors.

Predicted hectares Standard errors

County segments BHF EBLUP BHF PR JLW Methods; Methodss Methods
Cerro Gordo 1 1222 166.2 13.7 109 10.1 10.8 10.9 12.3
Hamilton 1 126.3 93.4 12.9 10.7 10.1 10.7 10.7 12.2
Worth 1 106.2 88.4 124 10.6 12.9 11.6 11.7 13.0
Humboldt 2 108 155.3 9.7 85 95 8.4 8.3 9.5
Franklin 3 145 153.9 7.1 7.1 7.6 6.9 6.9 7.7
Pocahontas 3 112.6 99.2 72 7.1 7.1 7.0 7.0 7.8
Winnebago 3 1124 1159 72 71 7.2 7.0 6.9 7.8
Wright 3 122.1 143.7 73 7.1 69 6.9 6.8 7.7
Webster 4 115.8 114.7 6.1 62 62 6.1 6.1 6.8
Hancock 5 124.3 110.0 57 5.6 57 5.5 54 6.0
Kossuth 5 106.3 113.3 55 56 69 5.5 5.5 6.0
Hardin 5 143.6 1183 6.1 56 54 5.6 5.5 6.1

TABLE 8: EBLUP, Measures of Uncertainty of Soybean with Homogenous Sampling Errors.

Predicted hectares Standard errors

County segments BHF EBLUP BHF PR JLW Methods: Methodse Methods
Cerro Gordo 1 77.8 13.2 15.6 13.4 133 13.7 134 15.6
Hamilton 1 94.8 102.9 14.8 13.3 12.3 13.8 13.6 15.7
Worth 1 86.9 107.7 142 13.2 12.7 13.7 13.5 15.6
Humboldt 2 79.7 41.5 11.1 9.8 109 10.3 10.1 114
Franklin 3 65.2 56.5 81 80 89 8.1 7.9 8.8
Pocahontas 3 113.8 118.6 82 80 7.7 8.1 7.9 8.8
Winnebago 3 98.5 85.7 83 80 84 8.2 8.0 8.9
Wright 3 112.8 95.7 84 80 88 8.1 7.8 8.8
Webster 4 109.6 113.5 7.0 69 6.8 7.1 6.8 7.5
Hancock 5 101 116.3 6.5 62 64 6.2 6.0 6.6
Kossuth 5 1199 1148 63 6.1 7.8 6.1 5.9 6.5
Hardin 5 74.9 102.5 69 62 6.1 6.2 6.0 6.6

68161.788. Moreover, we compute the EBLUP, the corresponding RTSP\E, and their square roots
as the measures of uncertainty. As for the resampling distribution, the Student’s t-distribution is
applied.

In Table 7 and Table 8, the predicted hectares and the standard errors of the survey regression
predictor, given in the rows BHF, are borrowed from Battese, Harter, & Fuller (1988). This
article also reported another two measures of the uncertainty, but stated that the survey regression
predictor is biased and most inadequate for the entire data. As for the predicted hectares, it is
difficult to compare ours with that of Battese, Harter, & Fuller (1988) because we only apply
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TABLE 9: Iowa Crops Data: Within-Area Sample Variances.

area 1 2 3 4 5 6 7 8 9 10
corn 2212.35 2374.98 32.53 1884.08 933.10 2915.89 453.61 245.26 146.85 1354.74
soybean 3120.05 1644.51 269.77 2529.06 109.26 2707.56 553.73 296.16 439.06 717.72

TABLE 10: EBLUP, Measures of Uncertainty of Corn with Heteroscedastic Sampling Errors.

Groups 1 2 3 4 5 6 7 8 9 10
EBLUP 1152 1552 1557 993 1150 1433 1160 109.8 112.1 118.1
PR 8.0 9.5 5.4 8.1 5.4 8.0 4.7 4.1 4.1 6.4

JLW 7.3 9.8 59 7.6 5.4 7.4 4.5 4.0 49 5.9
Methodz; 43 49 3.6 43 3.6 44 3.4 33 33 3.8
Methodz2 4.7 52 39 4.6 39 4.7 3.6 35 3.5 4.1
Methods 7.6 9.2 5.1 7.6 5.1 7.6 4.1 3.4 34 5.1

the 36 sample segments of pixels. Note that the standard errors of all methods decrease as the
number of sample segments increase, and our method Methods, has the smallest standard errors
in all but the first three counties which have only one sample each. Based on our simulation study
in the previous section, there is a reason to believe that our proposed MSPE estimators are more
accurate than HM, JLW, and PR when applying to such data.

5.2. lowa crops data with heteroscedastic errors

Consider the Iowa crops data again. But here we assume that the errors are heteroscedastic. To
explore the within-area variation, the first three counties, which have only 1 sampled segment
each, are combined to Iowa form the first small area. Thus there are a total of m = 10 small
areas. In Table 9, we show the within-area variances. For the corn data, Jiang & Nguyen (2012)
suggested two groups: S1 = {1,2,4,6,10} with variances above 1000 and Sy = {3,5,7,8,9}
with variances below 1000. Similarly the soybean data are also divided into two groups S7 =
{1,2,4, 6} with variances above 1000 and S, = {3,5,7,8,9, 10} with variances below 1000.

Model (28) is still applied. The variances of the errors ¢;; are assumed to be o2d? in the
group S;. Here t = 1,2. The d? are assumed to be 62 based on the homogenous model (28) in
S;. For the corn data, d? and d3 are found to be 244.17 and 105.62 respectively. For the soybean
data, they are 64.09 and 113.13 respectively.

SMA estimation is carried out for the lowa crops data of the 10 small areas and the results
are presented in Table 10 and Table 11 respectively. The estimated model parameters for corn
are 3 = (66.260.30 — 0.15)’, 67 = 1140.63, 62 = 0.74, fip4 = 141430.77, and fi.4 = 4.98. The
estimated model parameters for soybean are B = (2.91 — 0.030.48)’, &g = 278.90, &g = 1.80,

fipa = 3856.36, and fi.4 = 49.47. Moreover, we compute the EBLUP, the corresponding M/Sﬁ),
and their square roots as the measures of uncertainty. As for the resampling distribution, the
Student’s t-distribution is applied again.

Comparing Table 10 with Table 7, we can find the results: MSPEs of all methods become
smaller; our three methods outperforms PR and JLW; Methods; performs best. Comparing Ta-
ble 11 with Table 8, one draws similar conclusions, but Methodss performs best. Thus the NER
with heteroscedastic errors is more accurate, and our suggested methods are efficient.
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TABLE 11: EBLUP, Measures of Uncertainty of Soybean with Heteroscedastic Sampling Errors.

Groups 1 2 3 4 5 6 7 8 9 10
EBLUP 735 393 57.1 119.1 855 96.0 1139 1162 1141 1028

PR 63 77 82 6.3 83 63 7.2 6.4 6.4 6.4

JLW 63 81 8.8 6.3 86 7.1 7.1 6.8 8.1 6.4

Methodz: 54 57 58 53 58 53 55 53 5.4 53

Methodzo 52 54 55 5.1 55 51 52 5.1 52 5.1

Methods 60 75 176 6.0 76 6.0 6.4 5.4 5.4 5.4

6. DISCUSSION

In the context of small-area estimation, normality is often assumed in the literature. In practice,
however, this assumption may not hold. Some transformation on the response Y can be applied
to overcome this difficulty. However, if the non-normality is in the unobservable random effects,
not in the observed data, the transformative method is not practical either. In such cases, Hall
& Maiti (2006b) suggested a double moment-matching bootstrap procedure to estimate MSPE.
However, the second bootstrap to correct the bias is not very efficient. To overcome this difficulty,
we have studied the problem of accuracy measures MSPE of EBLUP in the nested error regres-
sion model under moment conditions. We first explored the analytical estimation of MSPE and
suggested a bias-corrected analytical estimator M/Sﬁilli in Equation (21). Secondly we extend-
ed the double moment-matching bootstrap method suggested in Hall & Maiti(2006b). One-step
moment-matching bootstrap is applied to obtain the the naive estimation I\m: (’(/AJ) in Equation
(22), and then two bias-corrected methods 1\/[/S?E21‘ and I\TS?E;»,,» are defined in Equations (23)
— (24) respectively. A simulation study and data analysis above show that our proposed three
MSPE estimators perform powerfully.

Based on our simulation study and data analysis, the estimating efficiency of the fourth mo-
ments are not satisfactory, and this has a bad impact on the proposed methods. Part of our future
work is to explore new non-parametric estimation of MSPE which does not depend on these high
moments. On the other hand, the heteroscedastic parameters d;; of the sampling errors are not
easy to be given. We try to study the case of the variance of the errors as a parametric function of
some covariates.
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APPENDIX
Appendix A: Proofs of Parameter Estimation

Proof of Equation (5). By matrix properties, it is not difficult to derive that

Y'Px1DPx.Y = vec(D)'(Px: @ Px (Y ®Y),
Y'Px1 ZZ'Px.Y = vec(ZZ') (Px. ® Px.)(Y ®Y),
vec(ZZ') (Px+ ® Px1)vec(Z2Z') = tr {(Z'Px.Z)*},
vec(D)'(Px+ ® Px1)vec(D) = tr {(Px.D)?*},

vec(ZZ') (Px1 @ Px1)vec(D) = tr(Z'Px.DPx1Z).
The proof is finished. ]
Proof of Equation (6). 1t is easy to derive that
tr{Px.D)?} = tr(D?) — 2tr{(X’X) " !X'D?X} + tr{(X'X) " 1X'DX)?}.

By trace inequalities and conditions (C1)-(C3), we have

tr {(X'X)'X'D*’X} < tr {(X'X)""} f:tr(X{Din) = 0(1),

i=1

8

2
tr [{(X/X)—leDxﬂ < tr {(X'X)7?} {Z tr(ngiXi)} = 0(1).

i=1
Then Equation (6) can be derived. [ |

Proof of Theorem 1. Put e = (¢},...,e,,) with e; =Y; — X;(. By conditions (C1) —
(C2), we can obtain

1
Px:DPxi D= —0(Jy).

Here and below J,, is an n x n matrix of ones. Then it is not difficult to derive that

1
N [e/(Px.DPy. — D)e — E{e/(Px.DPx: — D)e}] & 0.
m
Similarly we have
1
\/7% [el(PxL ZZ/P)(L — ZZ’)@ — E{e/(PxL ZZ/le — ZZ/)G}] £> 0.

On the other hand, we can obtain

m

¢'ZZ'e —B(TZe) =Y tr{ly1} (eief — Vi)} =) G, (A1)
i=1 i=1
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¢’ De — E(e'De) Z tr{Di(ese] = Vi)} = ) Go- (A2)
i=1

Let ¢; = ({1, G2)'- Tt is easy to obtain that {(; } is an independent random vector series with zero
mean. After some tedious calculations, we get

D(Gi) = ni{ps — 3(07)*} + {ptea — 3(02)?}tx(D7)
+2(U§)2(tr2(Di) —tr(D?)) + 4n12012)02tr(D‘)
D(Gi2) = tr*(Di){ups — 3(02)?} + {ptea — 3(02)*}tx(D{) + 4doio2tr(D})
Cov(Cir, Giz) = nitr(Di){ua — 3(01)?} + {ptea — (02)*}tr(D?) + dnjoio?tr(DF).

Then it is not difficult to derive that Cov((;) = Xi1 + Xi2 with 3;; and ¥, defined in Equations
(7) and (8) respectively.
By the multivariate central limit theorem and Slutsky’s theorem, this theorem holds by sub-

tracting 1 by 1. Note that /m (1) — ) = /m(1) — ¥) + /m(¢) — ¥). We only need to derive,

as m tends to oo,

V(i — ) 5 0. (A3)

By the above estimation, it is not difficult to derive that E|6Z — o2|*"% = O(m~27%/2) and
E|62 — 02|*t% = O(m~279/2). Here 0 < 6 < 1. Then we have

P33 < 0) = P53 — 0} < —o}) < P&} — o}| > 0?)
< (07) " EI6R - 021" = O(m~202).

It follows that E(6% — 62) = E(|62|1(52<0y) < EY/2[62?P1/2(6 < 0) = O(m~'7%/*) and
E|67 — 5717 = E(|50]* 1 (52<0y) < EY2|GE|*PY/2(67 < 0) = O(m~*~%/4), by Markov’s in-
equality. Similarly we can derive that P(62 < 0) = O(m~27%/2) and then E|62 — 52|? =
O(m~'~%/4). Thus Equation (A.3) holds, and the proof is finished by Slutsky’s theorem again.
]

Proof of Corollary 1. The proof is derived similarly to that of Theorem 1. Here we do not
derive it in detail. [ ]

Proof of Theorem 2. By model (1)’s definition and conditions (C1) — (C3), we have (ise —
B = O,(m~1/2). Then it is not difficult to derive that

m n;—1 n;

/:L£4 — Me4 = micl Z Z Z{ dljglj - zkEik) (d + dzk)uﬂl - 6d } (A 4)

=1 j=1 k=2

~12¢,02(62 — 02) + 0y (m %)

1 m
- )\z —1/2
- ;:1 + op(m ),
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where ¢; and ¢, are defined in Equations (9) and (10) respectively, and

nifl ng

)\i = Cl_l Z Z {(dij&j — dik5ik) (d + dlk),u54 — 6d d ( ) } — 12020’?@1

j=1 k=2

with (;; being defined in Equation (A.1). By conditions (C1) — (C3) and the Lindeberg-Feller
central limit theorem, Equation (13) is derived.
Similarly we have

flpa — tps = TSZZ{ 1bi+8ij)3(di_j1bi+€ij) _di_j3di_klub4
i=1 j#k

~3d; Al ool } - 310 (62 — 0?) — 3es02(6F — o) + 0,(NTV/2)(AS)

m

7ZX1+OP 1/2)7

where c¢3 and ¢y are defined in Equations (11) and (12) respectively, and x; =
C;l Zj;ﬁk [(d;lbl + Eij)?’(d;jlbi + Eij) - d;j:sd;kl,ubz; 3d 1dzk O’bO' ] — 3640 G —

3c 02 with ;1 and (o being defined in Equations (A.1) and (A.2) respectively. By
conditions (C1) — (C3) and the Lindeberg-Feller central limit theorem, the proof of Equation
(14) is completed. u

Appendix B: Derivation of MSPE;

By Corollary 1, if 62 and 62 are replaced by 67 and 52 in the remaining proof below, the differ-
ence could be absorbed into the remainders, and the 1ead1ng terms still hold For simplicity, we
shall assume that this has been done, and use ab, 05, and v instead of 6 ab, 05, and z/J

Lemma 1.  Under the conditions (C1) — (C3), Equation (17) holds.

Proof of Lemma 1 . Define

8@ aé}
8#.’% = l'he and @ = I’Qie

with [j; = (I Un) Herely;; = 0p; /001!, D' + Ji,; Uy = 0pi /001, D'+ Jh...

711""’ jin

and lj; = Jji fori # k, where 0p; /002 = 02 /(T;0% + 02)2, 0p; /002 = —Ub/(ﬂaf +02)?,

T = 3”1 DX X'V T XV + (X - pill, DT X)XV TIX) !
AX'V 1 ZZVIIX(X'VIX) T XV - XV L, 1, Vi)
and Jo;p is defined similarly with 8”’2 and D, instead of ” ; and 1,,,1;, respectively. By

conditions (C1)-(C3) given above, it is not difficult to denve that Jjik = O(mil)lmk for j =

The Canadian Journal of Statistics/ La revue canadienne de statistique DOL
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1,2,k =1,...,m. Then we have

90, 1 v o 1.,
= ————>31,.D; O(—19)1
aw (T(J'b +0_2>2 n7 ( Jb) + (m 2) NE€E

=: 11 —1—12

Put IT; = (X! — pililinlXi)(B —B)and I, = piljliDjlei — b;. Tt follows that §; — 6; =
I1, 4 II5. By Equation (5) and the proof of Theorem 1, we have

P —1p = ZQ (W'W) 10(—12)tr{JN(ee ~V)} (A.6)
= I1L +111>.
Firstly we deal with E((6; — 6;)Ry1). After some tedious calculations, we have

E(ILT L) = (Tabl)Etr{(WW Z (X! — ;i1 DX (B - B)

X1, D ei(0?, ~a?) |

1 _
=~ _tr|(WW)'E{G(X! — pil’ DX (X'VEX) !
(TiCTngfT?)Q I‘|:( ) {C( i. 14 n; i )( )

xX{‘/i_leiI;“Di_lei}(U?’ —‘71%)]

1
(Tioy +02)°

x(02, —0p)}
B 1
 (Tioj +02)?

x(02, )]

= fis(¥"),

E(II,I)111,) = Etr ¢ (WW)™ > " ¢i(pil,D; ter — bi)1, D 'e
=1

tr [(W’W)*E{gi(pil;iD;lei - bi)ll’melei}

where fi3(-) is defined in Equation (18) . Similarly we can derive E(II; (I} IIIg + LI, +
I51115)) = o(m™2), E(Ily (I} Iy 4 111, ) = o(m™?2), and E(IL151113) = o(m™2). It follows
that E((91 — Hi)Ru) = 13,(’(/1*) + O(m_2). |
Lemma 2.  Under the conditions (C1) — (C3), Equation (19) holds.
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Proof of Lemma 2 . Similar to the above proof, we can derive ERZ = E(I{111;)? + O(m™2)
with

1
(Tioy +02)*

02)2 _g202
X(lz-DfleiF ( 82) 2 S 2E
! —030¢ (ab)

1
= —————tr [(WW)! SiE(1, D tey)?
(Tiop + 02)* ; e

E(I'1L)? = Etr ¢ (WW)™' 3~ G¢/(Ww) ™!
j=1

FE(G (1, D] Te)) ) (VW) ( . ‘)1

—0,0¢ (O-b)2

T; e -
:Wtr (W'W) sz(w'W)

(03)2 —0’50’? m72
" <—o§a§ <o§>2>}+0( :

= fia1 (V") + fie(¥) + O(m™2),

where the last equation holds by X; = X1 + X9 with ;1 and X5 defined in Equations (7)
and (8). ]

In order to prove Theorem 3, we need the following lemma in Jiang, Lahiri, & Wan (2002).

Lemma 3. Assume &, &1, and &0 are random variables, and B, is a set, such that

) E[& s, < cim™;

i) E[&2 1 [15: < com™®2, and E&Z,; < c¢4; and

iii) &, = Em1 + Ema on By, with [£,,2] < m™%u, and Eu2, < c3, where the a’s and c’s are
positive constants. Then, for any 0 < w < a; A as A ag, we have

E¢, = E&L, + O(m™).

Proof of Theorem 3 . Define X; = (X;1,...,X;p) . Itis easy to see that V;*l = agzD;1 -

a;QpiDi’l L, 17, D;l. By some calculations, f; can be rewritten as

0; — X/ B = pil), D;'e; (A7)
m MMy
+Y N (X = piX{D; ) (02X VLX) T X e/,
j=1k=1

mjtm;

m
=3 pi(Xi — piXID M) (2 X'V X)X D L, 1, D ey
Jj=1

K
> X @)W(e).

j=1
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Note that K =n+ 1+ >.", n; = O(m) and the following terms are bounded for some s > 2
and ¢ > 0:

K

6)\k 0* Nk

ooy’

sup
k=1 [¥— wo\<t

K
i) 1I<I%<a<XK [Wi(e)[?, ii) %aQ{KSipM [, i g

Here and below 1 denotes the true value of 1. Define B = {|¢) — 1| < n=%,4 € O}, where
0 < § < 1/2. By the Taylor expansion, on B, we have

(¥ =) (A.8)
=: 0; + Ri1 + Raa,
where ¢ lies between v and 1, and for large m, |Rya| < u;|1h — ¥|? < n~20u; with
K

02\
oYY’

(Wi (e)l.

i—1 [¥—vol<n—1/2

It is easy to show that E(u?) is bounded.

Let&; = \/>(t9z —0,),&1 = \F(Oz + R;1 — 6;),and 5 = v/mR;2. By Lemma 3, we only
need to derive i) and ii).

Firstly we deal with E|¢2|1g.. By Theorem 1, for any r > 0, we have |67 — 02| =
O(m~"/2) and E|32 — 02| = O(m~/2). Then it follows from Markov’s inequality that
P(B°) = O(m~*(1/2-9)) with k > 0. By the Cauchy-Schwarz inequality, we have

B(I€7|1se) < BV2|6[*PY2(B7).
On the other hand, it is easy to see that
lpi|l <T;7' and (X'V7IX)™! < o2dZ(X'X) !
with d; defined in condition (C3). By Equation (A.7), we have

i

|9~1 — 91|4 <c [b;l + |1;iD_1ei|4

{(Xi = piX!D;'1,,) (020 ' X'V X) 7 X e}

1 & _ B - ~ o
+%Z{((Xi_fpixwi ") (020 XV LX) XD, 1, Dy e )

i ei\4

) S AEIEN

S C2 [b? 1|]./

Hert {n(XX) T H X e

[
Il
—
o
—

1 m
= X, |* +|X!D; M,
o D (Xl +] ;

Dot ((XX) ) XD} L 417, Dy e
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The above inequality tells us that E|f; — 6;|* = O(1) and E|6; — 6;|* = O(1). Hence we have
E|§]* = O(m?). It follows that

E(|€8|1pe) = O(m~*1/2=9)=1)y, (A.9)

Now we move to deal with E|¢2]15.. By Equations (16), (17), and (19) , we have E¢3 =
O(1). By the Cauchy-Schwarz inequality again, we have

B(l&i [15e) < BY2[gn[*P/2(B°) = O(m~((/2=070), (A.10)
By Equations (A.8) — (A.10), and Lemma 3, the proof is finished. |

Appendix C: Derivation of MSPE;

Lemma 4. Under the conditions of Theorem 3, we have

Efy (¥) = fu () — finn(¥") — fiaz () + O(m™%/2), (A.11)
Efia(¢) = fi2(4) + O(m™>/3), (A.12)
Efis(¢7) = fis(¥*) + O(m™/?), (A.13)
Efig (%) = fin(¥*) + O(m=3/?), (A.14)
Efuaz(¥) = fuz(¥) + O(m™/3). (A.15)

Proof of Lemma 4 . Firstly we deal with (A.11). By the elementary expansion, we have

1 1 T ~2 2 2 _ 2
T = ma T (% ”;”;’ %e (A.16)
T;6f + 62 Tiof + 0?2 (Tio7 + 02)?

{T (07 — o) + 62 —02}” _ {Ti(65 —op) + 62 —o2}?

(oo + 02 (T2 ¥ 02 (107 4 02)
= K|+ Ky + K3+ Ky.

It follows that

(A.17)
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Note that
3 2)2 2052 2 2)2 52 2
2 - Ti(dj —
(a_l%)ZZKJ _ (O2-b) - o-b(Zb Zb) _ (Jb) { (Jb > Ub)2+ 0 — }(AIS)
= Tiop + o2 Tioy + o2 (Tiop + 02)?
L (02 —oto?)
e (Y — ) -
T vop Y (—0502 @p )Y
R 2
+{(U§_0b) +203 (67 — 03) } {Ti(65 — o) + 62 — 02} .
(Tiof +02)?
By Equations (A.16), (A.18), (19), and Theorem 1,
3
E D23 K ¢ = fa) — finn () = fua(07) + O(m™3/%). (A.19)
j=1
On the other hand, by the Cauchy-Schwarz inequality and the C,. inequality
E {|6¢]|Ti(6 52 —

Ti(Tlab + Ug)
< B 2GR (TR 2|6, — b |° + 262 — o2")
=0(m™%/?)

with ¢ is some constant. By Equations (A.17), (A.19), and (A.20), Equation (A.11) is resluted.
Now we move to prove Equation (A.12). By the elementary expansion again, we have

(XVix)"t—(x'vix)T! (A21)
= (X'VIX)TIXVHV - V)V IX(X'V X))
=:G.

By the definition of f;3(-) in Equation (16) and (A.21), we have
fio(W) = fia(W) = (X! = piX!D; 1, ) G(X]. = piX[D; 1)
—2(pi — pi) 15, D Xi(X'VTIX)THX] - pi XD L,,)
—2(ps — pi) 11, D7 XiG(X]. = piX[D; ' 1,,,)
+(pi — pi)*1, D7 Xy(X'VTIX) XD,
+(pi — p)°1,, D7 X;GX[D; My,

5
ZL7

J=1

Next we will derive EL; = O(m=%/2) for j = 1,2, 3, and EL; = O(m~2) for j = 4, 5. Hence
Equation (A.12) is produced.
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Firstly we deal with L;. By the Cauchy-Schwarz inequality,

|L1| < (X] — piX!D;71,,,) (X)L — piX\D;71,,)tr/3(G'G) (A22)

i i

< et/ {(X'VIX) XV X ) /2 {(X’v—1X)—2}
xtrl/2 (XU 2K )trl/2 {(v - V)Q}

= c20(m™)(|63 — ap| + 167 — o2]),

because tr {(X'V71X)2X'V72X} = O(m™'), tr {(\7 - V)Q} = O(m)(|62 — 02| + |62 —
o2)), tr {(X’\A/*lX)*Q} = |6220(m2), and tr(X'V~2X) = 62| ~20(m), where the last two
equalities are derived by

o-3(D7! — diag{D;?/T1,...,D;2/Tw})

€

<V =47%(D7! — diag{p:D7?, ..., puDy2}) < 02?D7L

Here ¢; and c; are some constants. It follows from (A.22) that E|L;| = O(m~3/2),
Now we deal with L,. By the elementary expansion, we have

_ 6p -0y {Ti(6} —op) +62 - 02} 5
Pi — Pi = -

- A.23
Tol+o? (Lol 1 o) (T,62 + 62) (A.23)

Then it is not difficult to derive that E|p; — pi|* = O(m~%/?) for k > 1. Hence E|Ly| =
O(m~3/2),
Next we move to Ls. By the Cauchy-Schwarz inequality,

E|Ls| < ¢BY2|p; — pi|*EY2{tr(GG')} = O(m ™) EY?{tr(GG")}, (A.24)
where c is some constant. Similar to the proof of E|L;| = O(m~3/2) in the above, one can obtain
Etr(GG’) = O(m~2). Hence E|L3| = O(m™3/2).

Similar to the above arguments, we obtain E|L;| = O(m™?) for j = 4, 5.

Finally, Equations (A.13) — (A.15) can be derived by the similar arguments. The proof is
finished. u

Appendix D: Derivation of MSPE,; and MSPEs;

Lemma 5. Under the conditions (C1) and (C2), we have

(W, Wo) ™= (WW) ™+ (WW) A, (W'W) ™+ 0(m™) T2, (A29)
Al A2
_ [ i A1L A2 22 ; -
where A; = <A12 A22> with A%, A and A3* defined in Equations (A.26)-(A.28) below
J J

respectively. Moreover, Z;n:l A, =W'W.
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Proof of Lemma 5 . Let (X_;,Z_;,Y_;) be defined as (X, Z,Y") by dropping out the jth
group. And then W_; and Py . are obtained. After some tedious calculations, we have

o {(Z Py Z3)*} = {(ZPx2)%} — tr {(Z]2)2} + 200 {(X'X) X (Z2))X(A.26)
—tr {(X'X) 7' X'ZZ'X(X'X) ' X{ZZ{X;} + O(m ™)
=:tr {(Z'Px+Z)*} — A"+ O(m ™)

tr(Z"Pxs D_jPx1 Z_j) = tr(Z'Px. DPx.Z) — tr(Z{D;Z;) (A.27)
+tr { (X'X) 7' X{(D;2;Z] + Z;ZiDy)X; }
—tr {(X'X) 7' X{D;X;(X'X) ' X'ZZ'X} + O(m ™)

: tr(Z'Px1DPx1Z) — Af? + O(m™ 1),

tr((PXfiD,j)Q) = tr {(Px+D)?*} — tr(D}) + 2tr {(X'X) ' X{D{X; } (A.28)
—tr {(X'X) ' X{D;X;(X'X) "' X'DX} + O(m ™)
=: tr {(Px.D)’} - A? + O(m™"),
noting that (X', X_;)~! = (X'X)™' + (X'X) 7' X/ (I, — X;(X'X) 71 X)) XX/ X)L
It follows from Equations (A.26) — (A.28) that

W W_; = W'W — Aj 4+ O(—=)Js. (A.29)

1
m
On the other hand,

(W W)= (WW) ™+ (WW) T (W'W — W W) (W)~ (A.30)

HWW) T W'W - W W)W W)™t
_ _ _ 1
= (W'W)'+ (WW) H(WW - W _ W_,)(WW) ' + O(—3)J2

by m(W'W)~" = O(1)J2 and m(W’ ;W_;)~' = O(1).Jo. By Equations (A.29) and (A.30),
Equation (A.25) is derived. ]

Lemma 6. Under the conditions of Theorem 1,
Vg == —(WW) TG+ (WW) A (W'W) I+ s+ 7o,

where ’(/AJ_j is defined as 1 with the jth group dropped out, ¢ = (Cj1,C42)" with (i1 and Cjo
defined in Equations (A.1) and (A.2) respectively, { = 27:1 ¢j, and rj1 and rjo are defined in
Equation (A.33) below. Moreover
U = oL oL
Z;W—j —vY) = (W)JzC + (@)1277
j:

with n = tr(Jn(ee’ — V).
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Proof of Lemma 6. Define n_; = n —n; with n; = tr(eje] — Vj) + >, ; ejex. Itis easy to

derive that ) = >_"", n;. By Equation (A.6), we have
b—p= (W’W)*1<+O(%)(W’W)*11gn. (A31)
Similarly we have
by == (W)= (W) 7 G+ O ) (WL W ) oy (A32)

It follows from Equations (A.25), (A.31), and (A.32) that

Vg =t = —(WW) G+ (WW)THA (W'W) ¢ (A33)
FO( )G+ O() oG + O >{—<W’W>-1+0<7;>}12nj

+0<1>{<W’W>1Aj<vv' ) O }m

m
m
—~(W'W)7L + (WW) LA (WW) ™Y G 4y + 1y,
k=1

where rj; = O(-25)J2(; + O(-15)J2( and 15 equals the sum of the last terms on the right-hand
side of Equation (A 33). By Lemma 5, the proof is finished. |

Proof of Theorem 4 . Similar to the proof of Theorem 3, we have

E(MSPE; (D)|Y) = fir () + fia () + fis(0") + fiar (%) + fuan (@) + O(m~=3/2).

By Lemma 4, Equation (23) holds, and then Equation (26) is proved.
Moving to Equation (27). Note that we just need to prove

E(Bias) = —fiu1 (V") — figa (¥) + O(m~/?). (A.34)
By the Taylor expansion, we have

a fll(qz[}) 7

Fa-) = Fu) = Gy =)+ 5y — 0y G Gy = )
Ofa() o o Lo o fa@) o o

Lo [ @)

+§(¢fj_1/)) { Dby " g }Wj—w)

= Lj1 + Ljo + Lj3,
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where QZ lies between 1& and 1&_ 4» and z/? lies between 1& and . It is sufficient to prove that

E mT_lZLﬂ = O(m™*/%), (A35)
j=1
1 &

E mTZsz = —f41(¢*) = fua(¥) + O(m ™), (A.36)
j=1

E mT_lZLJS =O(m™). (A37)
j=1

Now we derive Equation (A4.35). By Lemma 6 and the Cauchy-Schwarz inequality, we have

EmT_l| iLﬂ < O(1)EY/? Ofi1 (v) 0fia (¥)

~ o0 ov
XE1/2 Z(’lZ)*‘] - 1[))/ Z(Q/A}ﬂ - 'J})
j=1 j=1
By the definition of f;; in Equation (16) , we have 2 gﬁ’) =( (T“(fg?igy , (T?;(g(f;;)g )’, and then

E( 6f(‘91$f&) mgﬁ’)) = O(1). By Lemma 5.6 and the proof of Theorem 1,

Hence Equation (A.35) holds.
Now moving on to Equation (A4.36). Define rj3 = (W/'W)~tA;(W'W)~1(. By Lemma 6,
we have

]
=
——
§>
|
;_e/)
/‘\é\>
|
g)
NE

)’} — W'W) ST E(GE) (WW) ! (A.38)

<
Il
-
~
I
-

m
+ Y E{(ryn + 1o+ 1) (i1 + rj2 +153)'}
j=1

—(W'W)™ Y EA{G ey + e +133)'}
j=1
= (W'w)~! zm: S;(WW)™h 4+ 0(m™?) s,

j=1
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noting that

B ZE GEWW)™H = (WW) ™1y 5 (Ww) ™!
j=1 j=1

D> EB{(rn +ri2 +1j3) (r + 12 +138) } = O(m )y,

j=1
m
Y E{G (41 4 1j3)'} = O(m ™) s,
=1
R 02)2 —g2g2
By the definition of f;; in Equation (16) , we have a;%fﬁ) = (T_[:QQJFT;Q)S ( 52) > ;)Zb
e —0:0, \%

By the definitions of f;41 and f;42 in Equation (19), and Equations (A.35) and (A.38), Equation
(A.36) is produced.

Finally let us deal with Equation (A.37). Similar to the proof of Equations (A.11) and (A4.36),
Equation (A.37) can be derived. The proof is finished. [ |
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