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Cancer incidence and mortality are typically presented as age-standardized

rates. Inference about these rates become complicated when denominators in-

volve sampling errors. We propose a bias-corrected rate estimator as well as its

corresponding variance estimator that take into account sampling errors in the

denominators. Confidence intervals are derived based on the proposed estimators

as well. Performance of the proposed methods is evaluated empirically based

on simulation studies. More importantly, advantage of the proposed method is

demonstrated and verified in a real-life study of cancer mortality disparity. A

web-based, user-friendly computational tool is also in development at the Na-

tional Cancer Institute to implement the new bias-corrected estimators for cal-

culating ASRs of cancer mortality by immigration status. Finally, promise of

proposed estimators to account for errors introduced by differential privacy pro-

cedures to the 2020 decennial census products is discussed.
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1 Introduction: Background and motivation

Despite the importance roles that cancer incidence and mortality rates play in mon-

itoring progresses against cancer (e.g.,1,2), inferential method of age-standardized rate

(ASR) by risk factors, for which population denominators can only be estimated from



2 Jiang et al.

sample surveys, such as immigration status 3, cancer screening 4, and smoking status 5,

is lacking. The existing method, first formulated by Brillinger 6 and later extended by

Fay 7, is not applicable because sampling errors in denominators were not considered.

Failure to incorporate sampling errors leads to underestimation of the variabilities of

ASRs and, as a result, possible falsely positive differences. An intuitive approach to

mitigate the impact is to aggregate cancer cases and populations by space, time, and/or

demographics, so that sampling errors are negligible. However, it inevitably prohibits

small population studies or studies of temporal/spatial variabilities.

An existing method has been used to produce official reports of cancer incidence

and mortality rates for the past twenty years in the United States (8). It was devel-

oped under the assumptions that both numerators and denominators are collected from

legally required registrations or censuses. Although both reflect exact values, various

philosophical and conceptual reasons have led to treating them as random 6 because

they can be regarded as a sample drawn in time from all times in which substantially

the same conditions prevail 9. The natural variability in the census population is neg-

ligible in size, thus is often ignored in the inference. However, as discussed in Kish

10, a distinction between natural variability (from a “superpopulation” or “inferential

population”, e.g.,11) and survey sampling variability (from a “finite population”) needs

to be made, especially when denominators are estimated from sample surveys. The

inference then involves two nested steps. The first step infers census population totals

from the sample based on survey sampling mechanisms, and the second step infers the

inferential population from the census population totals based on natural variability

theory (e.g.,12). This paper is the first to incorporate survey sampling errors in making

inference about ASRs using such a two-step approach.
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Notably, the estimation challenge presented here is different from the classic ratio

estimation (e.g.,13). In the classic ratio estimation, numerator and denominator are

usually collected jointly in the same process, for example, by asking two questions

in the same survey questionnaire. The data are also often assumed to be available at

individual level. In contrast, numerators and denominators of the ASRs are collected

for different purposes through distinct mechanisms, and their data are often available

only in aggregated form due to confidentiality constraints. Therefore, findings from

the classic ratio estimation literature do not apply.

Our current research was primarily motivated by a recent empirical study by Pin-

heiro et al. 14. This study evaluated immigration disparities in cancer mortality rates

by comparing foreign-born Hispanics with US-born Hispanics in California and Texas.

Five-year mortality rates were computed by pooling deaths from 2008 to 2012. Pop-

ulation characteristics by immigration status for the same time period were estimated

from the American Community Survey (ACS). We later use this as a case study to

demonstrate the advantage of our new method.

In this paper, we propose a bias-corrected point estimator of ASR under the two-

step inferential framework. A variance estimator is also developed. Although we

demonstrate the development using mortality as an example, the new estimators can

be applied to calculate cancer incidence rates and corresponding variances. The re-

maining part of the paper is organized as follows. After some preliminary discussion

of the rate estimator’s variance without bias-correction (i.e., the existing method), the

bias-corrected rate estimator and the associated variance estimator are presented in

Section 2. In Section 3 we demonstrate performance of the proposed estimators via

simulation studies, and compare the new method with the existing method. Section 4 is
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a highlight of this paper, in which we demonstrate the advantage of our method using

the empirical study on immigration disparities in cancer mortality 14 as a case study.

Note that this is a case where we know the ground truth, and therefore can verify the

results; such an empirical evaluation is considered more important than showing the

advantage of the proposed method in simulation studies. Some concluding remarks are

offered in Section 5. Additional technical derivations are provided in the Appendix.

2 Bias-corrected ASR with measure of uncertainty

2.1 Preliminary

Let Xj and Nj denote the census-based death count (numerator) and person-year

total (denominator), respectively, for age group j, j = 1, . . . , J . The ASR is an age-

weighted sum of death count divided by person-year total at-risk, that is,

R̂ =
J∑
j=1

wj
Xj

Nj

, (1)

where wj is the age adjustment fraction for age group j so that and
∑J

j=1wj = 1. The

age-standardization is a feature that permits comparisons of populations with different

age distributions. The value Xj is collected from the National Vital Statistics System

(NVSS); thus, it is regarded as the census count of all deaths that have occurred in

a given area during a given time period. To reflect the stochastic process of lifetime

and disease, Xj is subject to Poisson random errors. It is further assumed that Nj is

a census count of lived population and thus a fixed quantity. However, in reality, Nj

may also be subject to natural variability (albeit small in magnitude). Assuming that

Nj is fixed (i.e., ignoring the natural variability), 1 ≤ j ≤ J , a variance estimator of
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the ASR is given by

V =
J∑
j=1

w2
j

Xj

N2
j

. (2)

Confidence interval based on modified gamma distribution was developed in 15.

However, when the denominator Nj is not available from the census, but instead

estimated from a sample survey and thus subject to sampling error, formula (2) is no

longer valid. To reflect this difference, we use N̂j to denote the sample estimator ofNj .

Using standard asymptotic techniques (e.g.,15), a variance of the ASR (1) can be ob-

tained. Some regularity conditions are required for the approximation. See Appendix

for detail. To state the result, first consider the rate estimator for a single age group,

R̂ = X/N̂ . Let P denote the finite population with size NP, and NA the subpopulation

size for age group A. Then, an estimator of var(R̂) is given by

V̂ =
R̂

N̂
+

(
R̂

N̂

)2

v̂ar(N̂ |P), (3)

where v̂ar(N̂ |P) is an estimator of var(N̂ |P). Examples are given in Appendix.

The variance estimator for a single age group can be easily extended to the variance

estimator of R̂ =
∑J

j=1wjR̂j , where R̂j = Xj/N̂j is the rate estimator for the jth age

group. Assuming that rate estimators for different age groups are independent (e.g.,6),

the variance estimator for R̂ is given by

V̂ = v̂ar(R̂) =
J∑
j=1

w2
j V̂j, (4)

where V̂j is given by the right side of (3) with N̂ , R̂ replaced by N̂j, R̂j , respectively.
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2.2 Bias-corrected ASR

The variability in the denominators not only complicates the variance estimation, it

also increases the bias of the ASR. Specifically, when the denominators are subject to

variability, the ASR (1) is not unbiased, even approximately. The bias can be reduced,

using the following bias-corrected estimator. From now on, let Rj denote the true

rate, Nj the census count of the finite population size for age group j, and N̂j the

estimated Nj, 1 ≤ j ≤ J . The ASR, R̂, will now be understood as (1) with Nj

replaced by N̂j, 1 ≤ j ≤ J . We assume that data from different age groups are

independent. Note that this assumption means that the samplings from different age

groups are independent, not that the population totals from different age groups, if

considered as random variables, are independent conditional on the total population

(the population totals from different age groups are, of course, negatively correlated

given the population total, because the age group totals add up to the population total).

Furthermore, we assume that the following hold for any 1 ≤ j ≤ J :

(i) Xj|Nj ∼ Poisson(RjNj);

(ii) E(N̂j|Nj) = Nj , var(N̂j|Nj) = Vj , which can be consistently estimated by V̂j;

(iii) conditional on Nj , Xj and N̂j are independent.

A main goal is to derive a bias-corrected rate estimator. We do this for the jth age

group separately, then combine the results. Note that, by assumptions (i)–(iii), we have

E(R̂j) = E

{
E(Xj|Nj)E

(
1

N̂j

∣∣∣∣∣Nj

)}
= E

{
RjNjE

(
1

N̂j

∣∣∣∣∣Nj

)}
. (5)

Next, by an elementary expansion of 16, we have

1

N̂j

≈ 1

E(N̂j|Nj)
− N̂j − E(N̂j|Nj)

{E(N̂j|Nj)}2
+
{N̂j − E(N̂j|Nj)}2

E(N̂j|Nj)}3
, (6)
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where ≈ is in the sense that the remaining term is of lower order than the last term. It

follows, from (6), that

E

(
1

N̂j

∣∣∣∣∣Nj

)
≈ 1

E(N̂j|Nj)
+

var(N̂j|Nj)

E(N̂j|Nj)}3
+ lower order term

=
1

Nj

+
Vj
N3
j

+ lower order term. (7)

Combining (5) with (7), we get

E(R̂j) = E

{
Rj

(
1 +

Vj
N2
j

)}
+ lower order term

= Rj + E

(
RjVj
N2
j

)
+ lower order term. (8)

If we replace the Rj , Vj , and Nj inside the expectation on the right side of (8) by their

consistent estimators, R̂j = Xj/N̂j , V̂j , and N̂j , respectively, the difference is of lower

order than the second term on the right side of (8), that is,

E

(
RjVj
N2
j

)
= E

(
R̂jV̂j

N̂2
j

)
+ lower order term. (9)

Combining (8) and (9), we get

E(R̂j) = Rj + E

(
R̂jV̂j

N̂2
j

)
+ lower order term,

or, writing in another way,

E

(
R̂j −

R̂jV̂j

N̂2
j

)
= Rj + lower order term. (10)

The bias correction can now be seen by comparing (8) and (10). Namely, define

R̂bc,j = R̂j −
R̂jV̂j

N̂2
j

= R̂j

(
1− V̂j

N̂2
j

)
. (11)
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Then, it is seen from (8) and (10) that

bias(R̂j) = E(R̂j)−Rj = E

(
RjVj
N2
j

)
+ lower order term, (12)

bias(R̂bc,j) = E(R̂bc,j)−Rj = lower order term, (13)

where the lower-order terms are of lower order than the first term on the right side of

(12). Therefore, R̂bc,j has a lower-order bias than R̂j . It follows that

R̂bc =
J∑
j=1

wjR̂bc,j (14)

has a lower-order bias than R̂.

The bias-correction performance of R̂bc, in comparison with that of R̂, will be

evaluated in Sections 3 and 4.

2.3 Variance estimator

We now consider variance estimation for R̂bc. Again, first consider a single age

group. Define bj = Vj/N
2
j , and b̂j = V̂j/N̂

2
j . Note that bj is the square of the coeffi-

cient of variation (c.v.) of N̂j . Then, we have

var(R̂bc,j) = E{var(R̂bc,j|Nj)}+ var{E(R̂bc,j|Nj)}. (15)

We first argue that the second term on the right side of (15) is, typically, of lower order

than the first term. This is because, under regularity conditions, we have

E(R̂bc,j|Nj) = Rj +O(n−1), var(R̂bc,j|Nj) = O(n−1),

where n is the sample size. Thus, under regularity conditions, the first term on the

right side of (15) is E{O(n−1)} = O(n−1); the second term on the right side of (15) is
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var{Rj +O(n−1)} = var{O(n−1)} = O(n−2). It follows that

var(R̂bc,j) = E{var(R̂bc,j|Nj)}+ lot, (16)

where, hereafter, lot stands for “lower-order term”.

Next, we have, by (11) and the definition of bj, b̂j [see above (15)],

R̂bc,j = R̂j(1− b̂j) = R̂j(1− bj)− R̂(b̂j − bj) = R̂j(1− bj) + R̂jo(bj).

Note that o(bj) is of lower order than bj . It follows that

var(R̂bc,j|Nj) = var{R̂j(1− bj)|Nj}+ lot = (1− bj)2var(R̂j|Nj) + lot. (17)

Combining (16), (17), we have

var(R̂bc,j) = E{(1− bj)2var(R̂j|Nj)}+ lot. (18)

Furthermore, by (7), we have

E(R̂j|Nj) = E(Xj|Nj)E

(
1

N̂j

∣∣∣∣∣Nj

)

= RjNj

(
1 + bj
Nj

+ lot

)
= Rj(1 + bj) + lot. (19)

Also, we have

E(R̂2
j |Nj) = E(X2

j |Nj)E

(
1

N̂2
j

∣∣∣∣∣Nj

)
= RjNj(RjNj + 1)E

(
1

N̂2
j

∣∣∣∣∣Nj

)
. (20)

Finally, by (6), it can be derived that

1

N̂2
j

≈ 1

N2
j

− 2
N̂j −Nj

N3
j

+ 3
(N̂j −Nj)

2

N4
j

− 2
(N̂j −Nj)

3

N5
j

+
(N̂j −Nj)

4

N6
j

.

It follows that

E

(
1

N̂2
j

∣∣∣∣∣Nj

)
=

1

N2
j

+ 3
Vj
N4
j

+ lot =
1 + 3bj
N2
j

+ lot. (21)
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Combining (20), (21), we have

E(R̂2
j |Nj) = Rj(Rj +N−1j )(1 + 3bj) + lot. (22)

Combing (19), (22), we have

var(R̂j|Nj) = E(R̂2
j |Nj)− {E(R̂j|Nj)}2

= Rj(Rj +N−1j )(1 + 3bj) + Lot− {Rj(1 + bj) + lot}2

= Rj(Rj +N−1j )(1 + 3bj)−R2
j (1 + bj)

2 + lot

= Rj(Rjbj +N−1j + 3N−1j bj −Rjb
2
j) + lot. (23)

Combining (18) and (23), we obtain

var(R̂bc,j)

= E{Rj(1− bj)2(Rjbj +N−1j + 3N−1j bj −Rjb
2
j)}+ lot

= E{R̂bc,j(1− b̂j)2(R̂bc,j b̂j + N̂−1j + 3N̂−1j b̂j − R̂bc,j b̂
2
j)}+ lot. (24)

(24) shows that an approximately unbiased estimator of var(R̂bc,j) is

v̂ar(R̂bc,j) = R̂bc,j(1− b̂j)2(R̂bc,j b̂j + N̂−1j + 3N̂−1j b̂j − R̂bc,j b̂
2
j). (25)

Now combining different age groups, it follows that an approximately unbiased

estimator of var(R̂bc), where R̂bc is given by (14), is

V̂bc = v̂ar(R̂bc) =
J∑
j=1

w2
j v̂ar(R̂bc,j), (26)

where v̂ar(R̂bc,j) is given by (25).

A large-sample confidence interval for R =
∑J

j=1wjRj (e.g.,17), based on the

bias-corrected estimator, is given by[
R̂bc − zα/2

√
V̂bc, R̂bc + zα/2

√
V̂bc

]
.
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In the next section, we evaluate performance of the bias-corrected rate estimator

and its variance estimator via simulation studies.

3 Simulation studies

We carry out a series of real-data motivated simulation study based on information

collected from ACS with J = 19 age groups, with the weights wj, 1 ≤ j ≤ J given

in (18). The purpose of the simulation is to observe the effect of the bias correction as

well as the accuracy of the variance estimation when the denominator, N̂j , is subject

to various error sizes, different sizes of populations, and different range of cancer rates

from more common to rare types of cancer deaths.

Let Np denote the population size. Three different population sizes are considered:

Np = 10, 000, 50, 000 and 100, 000, covering a variety of practical situations ranging

from smaller geographic regions such as county or district, to larger populations.

In addition to the varying population sizes, we also consider different ranges of true

cancer rate, ranging from r = 0.00005 to r = 0.001. The range of r covers practical

situations from rare cancer death with the ASR of 5 per 100,000 person years, such as

Non-Hodgkin Lymphoma or liver cancer, to all cancer death with the ASR of 100 per

100,000 person years.

Let Nj = [Npwj], 1 ≤ j ≤ J − 1, where [x] denotes the integer part of x, and

NJ = Np −
∑J−1

j=1 Nj . We then fixed these N1, . . . , NJ . Let Page = {a1, . . . , aNp},

where ai = 1, 1 ≤ i ≤ N1, ai = 2, N1 + 1 ≤ i ≤ N1 + N2, . . . , ai = J,N1 · · · +

NJ−1 +1 ≤ i ≤ N1 + · · ·+NJ = Np (in other words, the first N1 elements of Page are

1, the nextN2 are 2, and so on, and the lastNJ elements are J). For each j = 1, . . . , J ,
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generate Xj from Poisson(rNj) distribution (so that Rj = r).

To control the size of errors in N̂j, 1 ≤ j ≤ J , we simulate N̂j from a distribution

centered at Nj but with increasing variation in terms of coefficient of variation (CV).

Specifically, let σj = ρNj , where ρ = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3. Then, generate

N̂j as a random variable whose values are integers between Lj = Nj − 3σj and Uj =

Nj + 3σj such that P(N̂j = Lj) = P(ξj ≤ Lj + 0.5), P(N̂j = k) = P(k− 0.5 ≤ ξj ≤

k + 0.5), Lj + 1 ≤ k ≤ Uj − 1, and P(N̂j = Uj) = P(ξj > Uj − 0.5), where ξj ∼

N(Nj, σ
2
j ). It follows that P(N̂j = Lj) = Φ

(
0.5−3σj
σj

)
, and, for Lj + 1 ≤ k ≤ Uj − 1,

P(N̂j = k) = Φ

(
k + 0.5−Nj

σj

)
− Φ

(
k − 0.5−Nj

σj

)
,

and P(N̂j = Uj) = 1 − Φ
(

3σj−0.5
σj

)
, where Φ(·) is the cdf of N(0, 1). As for the V̂j

involved in (11), it can be shown that

Vj = var(N̂j|Nj) =

Uj∑
k=Lj

k2P(N̂j = k)−


Uj∑

k=Lj

kP(N̂k = k)


2

, (27)

where P(N̂j = k) is given above for Lj ≤ k ≤ Uj . Thus, V̂j is given by (27) with Nj

replaced by N̂j and σj by ρN̂j .

We repeat the simulationK = 10, 000 times, and compute E(R̂) = K−1
∑K

k=1 R̂[k]

and E(R̂bc) = K−1
∑K

k=1 R̂bc,[k], where R̂[k] and R̂bc,[k] are R̂ and R̂bc from the kth

replication, respectively, 1 ≤ k ≤ K. The performance measure is percentage relative

bias (%RB), where %RB of R̂ = 100 × [{E(R̂) − r}/r], and that of R̂bc is defined

similarly. Note that, because Rj = r, 1 ≤ j ≤ J , the true R =
∑J

j=1wjr = r.

The results are presented in Tables 1–3. Specifically, the left halves of Table 1 and

Table 2 report the %RB of R̂ and R̂bc for the cases of r = 0.001 and r = 0.0002, re-

spectively, and varying population sizes; the left half of Table 3 reports the correspond-
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ing results for r = 0.0001 and r = 0.00005 under the population size Np = 100, 000.

It is seen that the %RB of R̂bc is almost always smaller, and in most cases much smaller

(in absolute value) than that of R̂, indicating significant effect of bias reduction by R̂bc

over R̂. The performance of both R̂ and R̂bc gets worse as ρ increases; on the other

hand, the performance does not seem to be affected by the change of population size.

Overall, the %RB of R̂bc stays in low single-digit in all cases considered.

Next we consider variance estimation for the bias-corrected ASR. Continuing with

the above simulation setting, we study performance of the variance estimator given by

(25), (26). The results are presented in the right halves of Tables 1–3, where %RB and

CV for the variance estimation are defined, respectively, as

%RB = 100×

[
E{v̂ar(R̂bc)} − var(R̂bc)

var(R̂bc)

]
, CV =

√
var{v̂ar(R̂bc)}

E{v̂ar(R̂bc)}

with E{v̂ar(R̂bc)}, var{v̂ar(R̂bc)}, and var(R̂bc) evaluated based on the simulation

replicates. It is seen that the %RB of the variance estimator stays in single-digit or low

double-digit, which is generally considered satisfactory in terms of the bias. On the

other hand, the CV of the variance estimator seems to be mixed, ranging from 0.11

to 2.25. Overall, the performance of the variance estimator seems to get worse as ρ

increases, but it does not seem to be affected by the change in population size.

In the variance estimation, it is observed that the CV increases with ρ. This is

reasonable because ρ is a parameter that controls the variation in the design-based

estimators involved in our estimates, with larger ρ corresponding to larger variance.

On the the hand, the relationship between %RB and ρ appears to be more complicated.

Note that %RB is a measure of bias; an estimator can have a larger variance, and yet

smaller (relative) bias at the same time. Other factors, such as the population size and
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true rate, can play bigger roles in %RB than in CV in the variance estimation.

4 Case study: Immigration disparities in cancer mor-

tality rates

As noted, the present study was inspired by a recent empirical study by 14, described

in Section 1. Our purpose, however, is not to replicate those results, but rather to

demonstrate use of the proposed bias-corrected rate estimators to improve inferential

validities and increase the granularity of important cancer research.

In the present study, we compute annual ASRs of all-cancer-cause mortality for

foreign-born Hispanics and US-born Hispanics from 2006 to 2013 for the states of

California, Texas, and New Mexico. We add New Mexico to demonstrate the impact

in areas with smaller populations. All rates are per 100,000 person-years and are age-

standardized to the 2000 US standard population by 5-year age group with the last

group being 85 and older. Cancer sites were coded according to the International Sta-

tistical Classification of Diseases (10th revision). Annual populations of Hispanics by

5-year age group, gender, immigration status (US-born vs. foreign-born) for Califor-

nia, Texas, and New Mexico are estimated using one-year ACS samples from 2006 to

2013. Sampling errors of population estimates are estimated using replicates weights.

Table 4 shows the distributions of estimated populations of Hispanics and CVs of

these estimates across all 18 age groups by immigration status for California, Texas,

and New Mexico. Note that CV is a precision measure and is computed as the stan-

dard error divided by the population estimate. California has the largest Hispanic

populations among all three states, estimated to range from approximately 25,000 to
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Table 1: Bias of R̂ and R̂bc and Estimation of var(R̂bc): r = 0.001

Bias Variance Estimation

Np ρ %RB of R̂ %RB of R̂bc var(R̂bc) E{v̂ar(R̂bc)} %RB CV

100K 0.05 0.29 0.04 1.02×10−8 1.03×10−8 0.74 0.11

100K 0.10 1.03 0.02 1.08×10−8 1.10×10−8 2.19 0.12

100K 0.15 2.40 0.10 1.19×10−8 1.23×10−8 3.62 0.15

100K 0.20 4.51 0.35 1.41×10−8 1.41×10−8 0.28 0.19

100K 0.25 8.05 1.33 1.80×10−8 1.69×10−8 -6.11 0.28

100K 0.30 13.87 3.67 3.51×10−8 2.31×10−8 -34.29 0.82

50K 0.05 0.08 -0.17 2.02×10−8 2.03×10−8 0.65 0.15

50K 0.10 1.04 0.03 2.09×10−8 2.14×10−8 2.37 0.16

50K 0.15 2.47 0.17 2.24×10−8 2.32×10−8 3.68 0.18

50K 0.20 4.61 0.45 2.46×10−8 2.59×10−8 5.09 0.22

50K 0.25 7.97 1.25 2.90×10−8 3.01×10−8 3.49 0.31

50K 0.30 14.37 4.13 4.91×10−8 4.06×10−8 -17.34 0.86

10K 0.05 0.27 0.04 1.02×10−7 1.01×10−7 -0.74 0.32

10K 0.10 1.07 0.07 1.03×10−7 1.05×10−7 1.89 0.33

10K 0.15 2.42 0.13 1.05×10−7 1.11×10−7 5.85 0.35

10K 0.20 4.91 0.74 1.11×10−7 1.21×10−7 8.52 0.39

10K 0.25 7.84 1.13 1.17×10−7 1.36×10−7 15.87 0.48

10K 0.30 14.14 3.92 1.59×10−7 1.77×10−7 11.59 1.16
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Table 2: Bias of R̂ and R̂bc and Estimation of var(R̂bc): r = 0.0002

Bias Variance Estimation

Np ρ %RB of R̂ %RB of R̂bc var(R̂bc) E{v̂ar(R̂bc)} %RB CV

100K 0.05 0.28 0.03 2.05×10−9 2.03×10−9 -1.13 0.23

100K 0.10 1.00 -0.00 2.02×10−9 2.10×10−9 4.21 0.24

100K 0.15 2.40 0.10 2.12×10−0 2.24×10−9 5.82 0.26

100K 0.20 4.57 0.41 2.19×10−9 2.45×10−9 11.90 0.29

100K 0.25 7.38 0.70 2.53×10−9 2.77×10−9 9.58 0.39

100K 0.30 14.07 3.86 3.64×10−9 3.69×10−9 1.26 1.00

50K 0.05 -0.48 -0.73 3.95×10−9 4.02×10−9 1.71 0.32

50K 0.10 0.58 -0.42 4.08×10−9 4.17×10−9 2.15 0.33

50K 0.15 2.61 0.31 4.26×10−9 4.44×10−9 4.23 0.35

50K 0.20 4.93 0.76 4.50×10−9 4.82×10−9 6.95 0.39

50K 0.25 8.21 1.48 4.75×10−9 5.44×10−9 14.33 0.49

50K 0.30 14.38 4.14 6.22×10−9 7.05×10−9 13.26 1.10

10K 0.05 -0.34 -0.57 1.96×10−8 2.01×10−8 2.73 0.71

10K 0.10 0.56 -0.44 2.01×10−8 2.08×10−8 3.23 0.73

10K 0.15 1.31 -0.96 2.09×10−8 2.17×10−8 3.96 0.77

10K 0.20 4.61 0.44 2.16×10−8 2.37×10−8 9.73 0.81

10K 0.25 7.49 0.80 2.32×10−8 2.67×10−8 14.98 1.00

10K 0.30 11.73 1.72 2.83×10−8 3.41×10−8 20.70 2.25
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Table 3: Bias and Variance Estimation: Np = 105; r = 0.0001 and r = 0.00005

Bias Variance Estimation

r ρ %RB of R̂ %RB of R̂bc var(R̂bc) E{v̂ar(R̂bc)} %RB CV

0.0001 0.05 0.57 0.32 9.97×10−10 1.02×10−9 1.77 0.32

0.0001 0.10 1.46 0.45 1.01×10−9 1.05×10−9 4.52 0.33

0.0001 0.15 3.18 0.87 1.07×10−9 1.12×10−9 4.47 0.35

0.0001 0.20 4.37 0.22 1.12×10−9 1.20×10−9 7.50 0.40

0.0001 0.25 7.86 1.15 1.21×10−9 1.36×10−9 13.00 0.50

0.0001 0.30 13.35 3.20 1.58×10−9 1.75×10−9 0.29 1.20

0.00005 0.05 0.79 0.54 5.04×10−10 5.08×10−10 0.83 0.45

0.00005 0.10 0.67 -0.33 5.11×10−10 5.20×10−10 1.76 0.46

0.00005 0.15 1.79 -0.49 5.12×10−10 5.47×10−10 6.88 0.48

0.00005 0.20 5.16 0.98 5.38×10−10 5.98×10−10 11.14 0.52

0.00005 0.25 8.30 1.56 5.90×10−10 6.69×10−10 13.45 0.66

0.00005 0.30 13.43 3.27 7.41×10−10 8.61×10−10 16.17 1.46
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1,300,000 across all age groups and years. All Californian population estimates are

very precise with CVs less than 0.003. In comparison, Hispanic population in Texas

are slightly smaller. The estimated populations range from 17,000 to 900,000 with

CVs ranging from less than 0.02 to about 0.1. US-born Hispanics are about 2 times

the sizes of foreign-born Hispanics. In New Mexico, although Hispanics make up

almost 50% of the state overall population, only about 20% are foreign-born. In ad-

dition, Hispanic populations in New Mexico are much smaller compared to California

and Texas. The estimated Hispanics populations in New Mexico range from about 500

to 75,000 with CVs ranging from about 0.1 to about 0.8∼0.9 in certain age groups.

A closer examination reveals that the high CVs mostly occur in those subpopulations

corresponding to foreign-born and 0-4 years old (data not shown); the CVs for the

remaining age groups are almost all below 0.3.

Table 5 compared the estimated rates and standard errors using the bias-corrected

method and the simple-ratio method. As expected, in California, all estimated ASRs

and variances are almost identical between the two methods. The results also suggest

that mortality rates are stable for foreign-born Hispanics, but have decreased for US-

born Hispanics over the study period. In Texas, bias-corrected rates are slightly lower

than simple-ratio rates, and bias-adjusted variances are slightly higher than simple-

ratio variances. This pattern is also as expected as the simple-ratio method overesti-

mates the rates and underestimates the variance. However, differences are too small

in magnitude to affect inferences of trends in immigration disparities. In both Cal-

ifornia and Texas, immigration disparities in mortality have increased from 2006 to

2013. In contrast, the effect of over-estimation is more pronounced among New Mex-

ico Hispanics. Particularly in 2006, the mortality rate is artificially inflated by 25%
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for foreign-born Hispanics, whereas the inflation is only 0.7% for US-born Hispanics.

This striking differential impact by immigration status would have produced a spuri-

ous significant result suggesting that foreign-born Hispanic is at a higher risk dying

from cancers than their US-born counterparts. Although the differential impact is not

as pronounced in other years as in 2006, the tendency persists.

5 Concluding remarks

In this paper, we develop and evaluate a new inference method about ASRs for sit-

uations where population denominators involve sampling errors. This method, to the

best of our knowledge, is the first in the cancer statistics literature that tackles the coex-

istence of errors that are unique to one of two competing theories of inference, that is,

natural variability in the numerator according to the super-population model, and sur-

vey sampling variability in the denominator according to the finite population theory.

When the sampling error is small (less than 10% of the denominator estimate), the sim-

ple ratio estimator, as implemented in the existing method, produces nearly unbiased

results (relative bias less than 1% of the true ASR), and its variance estimator is ap-

proximately unbiased and reasonably reliable. The simple-ratio estimator is attractive

because it is simple to calculate and has the same form as the standard ASR. However,

the nontrivial bias limits its use in situations with moderate or large sampling errors.

We developed a bias-corrected estimator of ASR and its variance estimator. The bias-

corrected ASR is as accurate as the simple-ratio estimator when sampling errors are

small, and it outperforms the simple-ratio estimator when sampling errors are moder-

ate (less than 30% of the denominator estimates). The proposed variance estimator is
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Table 4: Distribution of Population Estimates of Hispanics and Corresponding

Coefficient of Variations (CVs) Across 18 Age Groups by Immigration Status in

California, Texas, and New Mexico, ACS 2006-2013
Foreign-born US-born

Estimated Population C.V. Estimated Population C.V.

Year Total Min Max Min Max Total Min Max Min Max

CA 2006 5,460,855 36,685 742,718 0.000 0.002 7,627,126 26,342 1,343,100 0.000 0.002

2007 5,547,810 31,892 732,657 0.000 0.002 7,671,537 24,118 1,352,314 0.000 0.002

2008 5,389,763 36,757 725,535 0.000 0.002 8,045,133 27,870 1,382,469 0.000 0.002

2009 5,434,335 29,729 701,645 0.000 0.002 8,247,852 30,647 1,438,445 0.000 0.001

2010 5,489,479 31,433 705,306 0.000 0.002 8,602,513 36,731 1,320,472 0.000 0.001

2011 5,450,231 23,972 692,912 0.000 0.003 8,908,162 36,622 1,336,897 0.000 0.001

2012 5,419,477 26,446 694,671 0.000 0.003 9,120,101 42,014 1,335,478 0.000 0.001

2013 5,422,604 26,624 694,088 0.000 0.003 9,293,717 45,773 1,305,963 0.000 0.001

TX 2006 2,781,931 17,567 377,823 0.018 0.085 5,598,061 25,714 914,651 0.011 0.063

2007 2,865,727 17,180 377,689 0.017 0.111 5,725,625 25,596 954,159 0.011 0.080

2008 2,866,522 19,258 386,599 0.016 0.092 5,949,060 30,963 983,198 0.008 0.068

2009 2,931,212 21,295 391,403 0.014 0.098 6,220,043 33,152 1,022,611 0.008 0.057

2010 3,016,333 19,647 385,495 0.014 0.085 6,516,698 29,655 959,562 0.008 0.059

2011 3,073,933 20,476 385,062 0.016 0.095 6,720,304 31,694 976,911 0.008 0.061

2012 3,049,590 18,890 367,776 0.018 0.082 6,910,265 36,073 968,280 0.008 0.050

2013 3,128,519 19,958 388,577 0.016 0.098 7,026,483 35,628 966,921 0.009 0.055

NM 2006 157,121 431 20,005 0.087 0.518 717,004 7,627 79,304 0.034 0.104

2007 150,747 788 18,293 0.088 0.479 721,879 8,290 74,545 0.039 0.121

2008 147,603 708 18,887 0.092 0.652 747,547 7,773 85,311 0.034 0.143

2009 162,305 919 21,292 0.082 0.847 754,055 7,939 84,625 0.029 0.103

2010 171,004 823 19,432 0.075 0.713 788,850 7,524 84,355 0.024 0.115

2011 173,804 633 21,067 0.085 0.536 798,400 8,191 85,223 0.026 0.117

2012 153,665 1,074 20,027 0.097 0.633 826,312 8,909 85,496 0.029 0.106

2013 180,286 562 22,368 0.081 0.983 806,431 8,195 86,117 0.031 0.112
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Table 5: Comparisons of Age-standardized Rates of All Cancer Cause Mortality

(Per 100,000 Person Years) Estimated using the Bias-Corrected Method and the

Simple-Ratio Method for Hispanics by Immigration Status in California, Texas,

and New Mexico, 2006-2013

Foreign-Born US-Born Difference

Bias-Corrected Simple-Ratio Bias-Corrected Simple-Ratio Bias-Corrrected

Year ASR SE ASR SE Deaths Population ASR SE ASR SE Deaths Population Diff. SE

CA 2006 141.4 4.3 141.4 4.3 4,133 5,460,855 105.7 4.3 105.7 4.3 3,498 7,627,126 35.7 6.1

2007 141.4 4.2 141.4 4.2 4,320 5,547,810 117.4 4.8 117.4 4.8 3,446 7,671,537 24.0 6.4

2008 134.1 3.9 134.1 3.9 4,396 5,389,763 106.9 4.2 106.9 4.2 3,671 8,045,133 27.2 5.7

2009 140.9 4.0 140.9 4.0 4,617 5,434,335 99.4 3.8 99.4 3.8 3,822 8,247,852 41.5 5.5

2010 132.4 3.6 132.4 3.6 4,806 5,489,479 91.4 3.5 91.4 3.5 3,906 8,602,513 40.9 5.0

2011 135.1 3.5 135.1 3.5 5,234 5,450,231 84.5 3.2 84.5 3.2 3,930 8,908,162 50.6 4.7

2012 137.8 3.4 137.8 3.4 5,287 5,419,477 89.4 3.2 89.4 3.2 4,097 9,120,101 48.5 4.7

2013 143.9 3.4 143.9 3.4 5,574 5,422,604 91.4 3.3 91.4 3.3 4,126 9,293,717 52.4 4.7

TX 2006 124.8 7.9 125.5 6.1 2,053 2,781,931 117.5 5.9 117.8 4.6 3,566 5,598,061 7.3 9.8

2007 128.1 8.0 128.7 6.2 2,101 2,865,727 123.8 6.6 124.3 4.8 3,620 5,725,625 4.3 10.4

2008 124.8 7.2 125.5 5.5 2,258 2,866,522 108.9 5.2 109.2 4.1 3,722 5,949,060 16.0 8.9

2009 126.2 7.0 126.7 5.5 2,365 2,931,212 105.5 4.7 105.7 3.9 3,759 6,220,043 20.7 8.4

2010 127.4 6.6 127.8 5.4 2,496 3,016,333 115.6 5.4 115.9 4.3 4,095 6,516,698 11.7 8.5

2011 131.4 7.2 132.0 5.4 2,662 3,073,933 105.2 4.9 105.4 4.0 4,103 6,720,304 26.2 8.7

2012 134.0 6.3 134.4 5.2 2,855 3,049,590 103.5 4.3 103.7 3.7 4,223 6,910,265 30.5 7.7

2013 145.9 7.4 146.4 5.7 2,930 3,128,519 99.5 4.2 99.7 3.6 4,363 7,026,483 46.3 8.5

NM 2006 196.5 66.1 247.1 56.8 115 157,121 91.8 7.0 92.4 6.4 823 717,004 104.7 66.5

2007 132.6 33.9 153.5 30.6 155 150,747 101.3 8.3 102.1 7.0 825 721,879 31.3 34.9

2008 171.4 44.3 194.7 37.1 152 147,603 99.1 8.0 100.1 6.9 828 747,547 72.3 45.0

2009 120.2 27.2 129.3 23.1 151 162,305 111.4 8.9 112.2 7.7 821 754,055 8.7 28.6

2010 142.1 29.7 151.8 24.4 170 171,004 105.1 9.0 105.8 7.6 834 788,850 37.1 31.0

2011 130.3 33.8 152.4 29.0 182 173,804 93.8 7.5 94.5 6.6 876 798,400 36.6 34.6

2012 92.4 15.5 96.0 14.2 167 153,665 97.2 7.1 97.8 6.3 966 826,312 -4.8 17.0

2013 116.8 33.0 128.4 30.7 191 180,286 97.8 7.0 98.4 6.2 950 806,431 18.9 33.7
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accurate. We have also observed that the confidence intervals constructed based on the

rate and variance estimators achieve approximately nominal levels.

It is important to note that, with large sampling errors (more than 30% of the de-

nominator estimates), the bias-corrected estimator can produce slightly biased results.

This is due to omission of the third and higher-order terms in the asymptotic expan-

sion (e.g., Jiang 16, p. 103). Fortunately, we anticipate few such applications as survey-

based population estimates with low reliabilities are rarely useful in empirical analyses

because of excessive random noise.

The new inferential method developed in this study do not require individual-level

survey data for estimating the denominators. Thus, it can be easily applied to situations

in which only aggregated population data are available. Individual-level sample data,

if available, can be used to pre-calculate population denominators and corresponding

sampling errors using survey statistical software to incorporate sampling features.

Although this development is motivated mostly by the need to estimate cancer in-

cidence or mortality rates by immigration status, the setup is very generic, and the pro-

posed methods can tremendously improve accuracies or granularities of cancer studies

on a wide range of topics. For example, local plannings often requires cancer rates

for small geographic areas (e.g., towns and cities), where population estimates are

commonly derived from ACS. Incidence rates of cervical, uterine, or ovaries cancers

corrected for hysterectomy requires population estimates by hysterectomy status from

national health surveys. Furthermore, the proposed methods are not limited to cancer

research; they can be applied to other types of diseases or issues related to health.

A web-based computational tool is also in development at the National Cancer

Institute to implement the new bias-corrected estimators for calculating ASRs of can-
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cer mortality separately for US-born and foreign-born Americans. This tool is user

friendly and users can inquire annual ASRs of state-level mortality by cancer site, age,

gender, race and ethnicity group, and immigration status for 2006 to 2014. The under-

lying annual population estimates stratified by immigration status are derived from the

Integrated Public Use Microdata Series (IPUMS) developed and maintained by the he

University of Minnesota (19). For more information about this tool and its availability

timeline, interested users are encouraged to contact the authors.

Finally, our new method has a considerable promise as a solution to errors intro-

duced to the publicly released 2020 US decennial census data products by differential

privacy (DP) and post-processing (PP) procedures. Decennial census data is the pri-

mary data source of population denominators for generating official reports of cancer

rates. DP is a new change made to 2020 decennial census enumeration data to protect

confidentiality. Considerable concerns have been expressed about the impact of DP

on data usability as noticeable discrepancies are observed between DP-modified 2010

demonstration census populations and enumerated 2010 populations. Drawn from our

current study, it is not difficult to foresee the impact of DP errors on the accuracy and

precision of cancer rates. Research has shed lights on similarities between sampling

errors and DR errors in general settings. Our method has demonstrated the case of

incorporating sampling errors by inferring decennial census populations from sample-

based population estimates in the first step of our two-step inferences, and it holds

great promise to be adapted to deal with DP errors instead. However, at the writing of

this paper, the US Census Bureau has not provided a releasing plan for DP/PP errors

for the 2020 decennial census data products. Undoubtedly, information about DP pro-

cedures and DP/PP errors is as important as DP-modified population estimates, as they



24 Jiang et al.

together are the building blocks to inferring the true decennial population totals from

the DP-modified census population estimates. Further rigorous research is needed to

advance the understanding of DP and, more importantly, to ensure continued thrive of

cancer research in the era of DP protected census data.
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Appendix: Regularity conditions regarding Section 2.1,

and examples

1. Regularity conditions:

A1. N̂ is a design-unbiased estimator of NA, that is, E(N̂ |P) = NA.

A2. An estimator of var(N̂ |P), v̂ar(N̂ |P), is available such that v̂ar(N̂ |P) ≈ var(N̂ |P)

in the sense that the difference between the two sides of the ≈ is of lower order than

the right side.

A3. X|NA ∼ Poisson(λNA), where λ is an unknown constant.

Assumptions A1, A2 are design-based while assumption A3 is model-based.
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2. Examples.

Example 1 (SRS). Under simple random sampling (SRS), a standard estimator of

the age-specific population total is N̂ = Npȳ, where Np is the population size (as-

sumed known), ȳ = n−1
∑

i∈S yi, n is the sample size, S is the set of sampled indexes,

and yi = 1(i∈A), the indicator that index i belongs to the designated age A. Intuitively,

ȳ is the proportion of individuals in the sample that belong to age group A. It can be

shown that a design based estimator of var(N̂ |P) is given by

v̂ar(N̂ |P) =
NPN̂(NP − N̂)

NP − 1

(
1

n
− 1

NP

)
,

where n is the SRS sample size.

Example 2 (STR). In the case of stratified random sampling (STR), suppose that

the population P is divided into H strata, Ph = {yhj, j = 1, . . . , Nh}, h = 1, . . . , H ,

where Nh is the population size for the hth stratum. Let yhj, j ∈ sh be a SRS from the

hth stratum, where sh denotes the set of sampled indexes with |sh| = nh (| · | denotes

cardinality), so nh is the sample size for the hth stratum. Then, a stratified estimator

of the population total is given by N̂ =
∑H

h=1Nhȳh, where yh = n−1h
∑

j∈sh yhj is the

sample mean for the hth stratum. For such an estimator N̂ , we have (e.g.,20)

var(N̂ |P) =
H∑
h=1

(
1− nh

Nh

)
N2
h

S2
h

nh
,

where S2
h is the population variance for the hth stratum. A design-unbiased estimator

of var(N̂ |P) is thus given by

v̂ar(N̂ |P) =
H∑
h=1

(
1− nh

Nh

)
N2
h

s2h
nh
,

where s2h = (nh − 1)−1
∑

j∈sh(yhj − ȳh)2 is the sample variance for the hth stratum.
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The above results are general. They apply, in particular, to the case where yhj is

the indicator of membership to age group A, that is, yhj = 1(ahj∈A), where ahj denotes

the age of the j individual in the hth stratum. In this case, the population total is∑H
h=1

∑Nh

j=1 yhj =
∑H

h=1NA,h = NA, where NA,h is the total number of individuals

in stratum h that belong to age group A. It is easy to see that, in this case, ȳh = p̂h =

nA,h/nh, where nA,h is the number of sampled individuals from stratum h that belong

to age group A. Also, we have s2h = nh(nh − 1)−1p̂h(1 − p̂h). The general formulae

now become N̂ =
∑H

h=1Nhp̂h, and

v̂ar(N̂ |P) =
H∑
h=1

(
1− nh

Nh

)
N2
h

p̂h(1− p̂h)
nh − 1

.


