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ABSTRACT
Network traffic classification has become increasingly important
as the number of devices connected to the Internet is rapidly grow-
ing. Proportionally, the amount of encrypted traffic is also increas-
ing, making payload based classification methods obsolete. Conse-
quently, machine learning approaches have become crucial when
user privacy is concerned. For this purpose, we propose an accurate,
fast, and privacy preserved encrypted traffic classification approach
with engineered flow feature extraction and appropriate feature
selection. The proposed scheme achieves a 0.92899 macro-average
F1 score and a 0.88313 macro-averaged mAP score for the encrypted
traffic classification of Audio, Email, Chat, and Video classes derived
from the non-vpn2016 dataset. Further experiments on the mixed
non-encrypted and encrypted flow dataset with a data augmenta-
tion method called Synthetic Minority Over-Sampling Technique
are conducted and the results are discussed for TLS-encrypted and
mixed flows.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Security
and privacy → Security protocols; • Networks → Network
privacy and anonymity.
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1 INTRODUCTION
As applications on the Internet proliferate, network traffic classifica-
tion becomes more important in network security and management
such as quality of service (QoS) control, resource allocation, and ma-
licious flow detection. Traffic classification has gained substantial
attention for Internet Service Providers (ISP) in order to properly
maintain certain networks as well as improve upon the existing
networks. Many network flows from major applications such as
WhatsApp have the option to be encrypted in order to protect the
users’ privacy. In addition, malicious users tend to use encryption
to hide their actions. Therefore, categorizing encrypted network
flows to application types, while protecting the privacy of users,
remains an imperative area for research.

Transport Layer Security (TLS) [14] is the cryptographic pro-
tocol used to provide communication security in many modern
applications. It uses symmetric cryptography to encrypt data. At
the handshaking stage of two parties initiating TLS, a shared secret
is negotiated and the keys for the symmetric encryption are gen-
erated uniquely. The parties settle on the encryption algorithms
before their first message is exchanged. The network applications
using TLS have secure, authenticated, and reliable connections,
which are based on encrypted packet payloads and plain packet
headers. While it is computationally feasible to analyze the packet
headers in depth, decrypting the payload is computationally chal-
lenging and violates the users’ privacy. Therefore, classification of
flows based on header information, even for TLS encrypted flows,
is possible and has recently drawn tremendous interest especially
in the machine learning community.

In previous researches, port-based and payload inspections were
conducted for network traffic analysis [10]. With the increase in
the number of encrypted flows, payload based deep packet inspec-
tion (DPI) methods become obsolete, urging the network traffic
analysis community to utilize machine learning models that rely
on statistical flow features rather than the payload itself.

With machine learning, there are several ways to classify en-
crypted network traffic including models that use extracted features
and deep learning models that use the raw bytes of packets. For
feature extraction, a domain expert deals with the raw traffic data
and extracts relevant flow features by computing statistics such
as the number of bytes, the number of packets, the time duration
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of the flow, etc. For models that use feature extraction, flow fea-
tures are extracted from the headers in the Ethernet frame, the IP
datagram, and the TCP/UDP segment. The payload of the packet
itself is not included in the feature extraction phase, preserving
the user’s privacy. Without feature engineering, the classification
models utilize all of the features in predicting the network traffic.
Utilizing feature selection can sometimes improve the accuracies
of the trained models performances if the features are carefully
selected [26]. Thus, a feature selection phase is implemented so
that the features can be analyzed. Deep learning models, however,
do not need feature extraction as they can learn the representations
of the data by themselves through their inner neural network layers.
Due to their innate feature extraction, deep learning models have
become prevalent in classifying images and audio, and recently on
traffic data. However, deep learning models have two serious draw-
backs that hinder their end-to-end implementation on encrypted
traffic analysis. Firstly, they require a large amount of data to train
and many prior research works include the packet payloads as input
to deep learning models to achieve a higher accuracy, thus poten-
tially violating user privacy [9, 13, 16, 18, 19, 23]. Secondly, deep
learning models are computationally onerous in both the training
and inference phases.

We are motivated to answer two important open questions on
encrypted traffic classification: (1) How effective are the features
extracted from encrypted flows in applying machine learning mod-
els? (2) Can deep learning models be applied onto flow features,
as opposed to the raw payload bytes, to improve the classification
accuracy of TLS encrypted flows? Recently, the usage of machine
learning (ML) models in malware detection and traffic classification
has been explored [9, 17, 19, 23]. These ML models, such as Random
Forest (RF) and Multilayer Perceptron (MLP), have been applied to
non-TLS flow features. We plan to evaluate these approaches on
TLS encrypted flows. In addition, we investigate the performance
in network traffic classification through deep learning models such
as 1D Convolutional Neural Network (1D CNN). We compare a
baseline ML classifier with a CNN model in terms of accuracy and
the time to execute the prediction. The data and the source code
will be publicly available upon publication.

We make the following contributions in this paper:
• We determine that selecting a smaller number of features but
more discriminative features improves the macro-average
F1 score of RF models by 5% on the TLS encrypted subset of
the dataset.

• We observe that TLS features are useful in classifying en-
crypted traffic but they degrade the performance on the
whole dataset if the proportion of encrypted traffic in the
mixed dataset is too small.

• We show that Synthetic Minority Oversampling Technique,
a data augmentation method, is helpful to reduce bias and
to increase the performance when used with all features
available whereas it does not prevent bias but increases the
macro-average F1 and mAP scores on the narrower dataset
with only 10 features.

• We conduct a preliminary study of small-scale deep learn-
ing models trained with TLS features, which serves as an
important framework when a significantly larger amount of
labeled TLS flows are available.

The rest of the paper is organized as follows: Section 2 provides
an overview of related works regarding network traffic classifica-
tion. Section 3 describes our proposed approach in designing this
research, including the experiment setup and data preprocessing. In
Section 4, we evaluate and discuss our results. Finally, we conclude
our paper in Section 5 and discuss future work.

2 RELATEDWORK
2.1 Transport Layer Security
TLS is a cryptography protocol that encrypts data sent over the
Internet [14]. It supersedes the Secure Socket Layers (SSL) for net-
work security. While it is used for secure email sending and secure
file uploading, TLS is most prominently utilized for secure web
browsing. In the TCP/IP network stack, TLS is a layer that fits be-
tween the transport and application level, making it easy to add on
top of TCP services which results in TLS’s increasing popularity.
TLS uses a handshake protocol between the web server and web
client to establish a connection and negotiate a secret key used to
encrypt and decrypt the information. Through symmetric encryp-
tion, where the same key is used to encrypt and decrypt, and public
key encryption, TLS protects the users’ privacy. Thus, if there is an
eavesdropper or hacker, the secret key is unknown to the hacker,
and the information is protected. Some of the TLS features used in
research works include the number of TLS packets, the number of
TLS extensions, and the number of ciphersuites.
2.2 Encrypted Traffic Classification
Previous works in classifying encrypted network traffic involve us-
ing machine learning models to predict network traffic. Deep learn-
ing models including Convolutional Neural Network (CNN) and
Long Short Term Memory (LSTM) have shown their effectiveness
in many applications including computer vision [1], human activity
recognition [2] and Internet traffic classification [9, 15, 19, 22, 25].
Lotfollahi et al. [9], for example, use a CNN and stacked autoen-
coder neural network in order to identify applications and classify
traffic using network flow data. In training the model, they keep
the IP header as well as the first 1480 bytes of each IP packet to
perform packet classification. Through their work, they conclude
that the CNN results in 0.93 precision and a F1 score of 0.95 when
using the “ISCX VPN-nonVPN” dataset. Similarly, Yang et al. use an
autoencoder to extract features in TLS/SSL encrypted traffic data
and a CNN that achieves state-of-the-art results [22]. In another
research, Zhang et al. [25] combine LSTM and CNN to create a new
neural network called Stereo Transform Neural Network (STNN).
The model achieves an average F1 measure of 0.95 and an average
accuracy of 99.5% on TLS/SSL encrypted traffic classification. Vu et
al. [15], on the other hand, use LSTM, a type of recurrent neural
network, for a time series analysis of traffic data. Based on packet
payload features, their LSTM model achieves a 98% accuracy on
ISCX VPN-nonVPN dataset. Wang et al. [19] use an end-to-end
framework to classify traffic data. In other words, they use raw traf-
fic as input and final labels as output as opposed to hand-designed
features for input. They train 1D CNN on the ISCX VPN-nonVPN
dataset. However, they do not address the imbalance in the training
data when training the 1D CNN.

Other researchers propose training a artificial neural network
(ANN) to classify typical P2P protocol such as Kazaa and BitTorrent.
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Ting et al. [8] find that utilizing ANN achieve greater accuracy.
Gao et al. [6] apply deep belief networks (DBN) on the KDD Cup
1999 dataset with a specific focus on intrusion detection. Utilizing
feature selection, Gao et al. conclude that their model outperforms
a Support Vector Machine (SVM).

Another area garnering increased attention in encrypted traffic
identification is mobile app traffic data. Using their own dataset
on Android traffic, Wang et al. [20] employ several deep learning
models including a Stacked Denoising Autoencoder (SDAE), 1D
CNN, and a bidirectional LSTM to identify encrypted traffic. They
conclude that the 1D CNN classifier performs the best with a 91.8%
accuracy and a macro-average F-measure of 90.1%. All their models,
however, achieve high accuracy regardless of TLS encryption.

While these research works focus on using deep learning mod-
els to classify traffic data, other researchers such as Wang et al.
[17] employ traditional machine learning models. They train a
Random Forest (RF) classifier to identify smartphone apps from
encrypted data. In another study, Taylor et al. [12] improve upon
Wang’s framework by adding 110 applications to classify, eventu-
ally achieving a 73% accuracy in the multi-class classification. To
improve the RF accuracy on certain datasets, Yamansavascilar et al.
[21] use feature selection, citing an improvement of 2% in their RF’s
accuracy. For feature selection, Yamansavascilar manually selected
111 flow features to use from the dataset. In some research works,
including Gil et al. [4], they analyze specific features in traffic flow
such as duration of the flow, forward and backward inter-arrival
time, etc. to train a k-nearest neighbor (k-NN) and C4.5 decision
tree algorithm. The C4.5 algorithm they employ achieves 88% re-
call on their dataset. While other studies focus on packet-based
and payload-based features for classification, Gil et al. utilize time-
based attributes for traffic classification. Similarly, Ding and Li [11]
propose a hybrid method to classify traffic data in real time using
C4.5 decision tree algorithms and then classify the services using
a RF classifier. Through their hybrid model, Ding et al. achieve a
95% accuracy. Another traditional machine learning model utilized
in classifying encrypted traffic is Naive Bayes classifier, which is
employed by Zhang et al. [24].

3 PROPOSED APPROACH
Wepropose a feature selectionmechanism before training themodel
to improve the performance of encrypted application classification
using the non-vpn2016 dataset. The overall proposed flowchart
is provided in Figure 1. Firstly, Metadata and TLS features are ex-
tracted using the flow feature extraction tool. Then, TLS-encrypted
flows are extracted from the whole dataset. After, we filter out the
flows without any packets towards the client and end up with a
pure bidirectional flow data, as the number of packets received by
the client should play an important role in application classification,
assuming that this classification model is deployed in the client
end of the network. Then, we read Metadata and TLS features sepa-
rately and combine them to create the data matrix. After that, label
information is added according to the filename of network capture
and 20% of each class is reserved as the validation set while the
remaining samples are used to train the classifier. Finally, we use
the validation set to obtain results in macro-average F1 and mAP
scores.

Figure 1: Proposed approach for TLS-encrypted flow classi-
fication

Deep learning models are widely used in network traffic classi-
fication. Most of the previous researches deploy CNN and LSTM
models with the raw traffic capture data as input and exploit the
models to learn their own representations internally. In the light of
the previously reported state-of-the-art classification performance
on network traffic using deep models on top of the raw data, we are
inspired to implement similar deep models on top of the extracted
features to see if the model can produce more accurate results.
Therefore, we compare the effect of feature selection methods by
implementing deep learning models, 1D CNN and 2D CNN, on top
of the extracted features. Moreover, we implement the Synthetic
Minority Over-Sampling Technique (SMOTE) to overcome the bias
due to the imbalance of the dataset.

The non-vpn2016 dataset is a mixture of both TLS-encrypted
and non-encrypted flows. Along with the TLS-encrypted traffic
classification, we also attempt to increase the classification perfor-
mance of all the flows. For that purpose, the proposed approach in
Figure 1 can still be applied by only removing the TLS-encrypted
flow extraction step.

3.1 Feature Selection Methods
We evaluate four different feature selection methods to select the
most powerful features for an efficient classification. Firstly, the
Random Forest algorithm provides feature importance which can
be used to evaluate the importance of the features. Secondly, the
correlation between the feature and the label is used as another
feature selection method. Thirdly, Principal Component Analysis
(PCA) is implemented to select features with high relevance. Fi-
nally, a novel method using Jensen-Shannon Divergence values is
proposed for feature selection.

3.1.1 Random Forest as feature selector. The Random Forest clas-
sifier has a feature importance attribute that weighs the features
according to the contribution to the classification. Therefore, we
use the feature importances assigned by the Random Forest as a
feature selection method.

3.1.2 Feature selection using correlation. The correlation of two
distributions gives an indication of how much one of the distri-
butions is affected by a change in the other distribution. In other
words, if a change in the value of a feature triggers a similar change
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in the value that represents the label of the class, then we may
assume the feature possesses discriminative information.

3.1.3 Feature selection with PCA. We apply a feature selection
method using the eigenvalues of the covariance matrix obtained
from the training set.We get the contribution from each eigenvector
to the principal component and sort the features accordingly.

3.1.4 Feature selection with Jensen-Shannon Divergence. Jensen-
Shannon Divergence computes how similar or different the given
two distributions are. The computed value is a continuous number
in the interval of [0, 1] where 0 means the two distributions are
identical and 1means the two distributions are completely different.
Using this score, we compute the distribution of each feature in
one class to other classes one by one, and get the average of them
to obtain a value between 0 and 1.

3.2 Data and Preprocessing
3.2.1 Dataset description. We get the raw traffic data from the pub-
licly open CIC repository. The ISCX VPN-nonVPN2016 dataset [4]
has different classes including “facebook_audio", “facebook_chat",
“skype_audio", “skype_chat" etc. with and without VPN. Similarly,
the ISCX Tor-nonTor2017 dataset [7] includes similar classes with
and without Tor traffic. First, network flow features including Meta-
data, TLS, DNS and HTTP header features are extracted using our
feature extraction tool. Then, a binary Tor-nonTor classification
dataset is generated according to Scenario A in [7] and a seven-
class network traffic classification dataset is obtained with “P2P",
“Audio", “Chat", “Email", “File_Transfer", “Tor", and “Video" labels
by combining relevant sub-classes into the broader groups using
the non-vpn2016 dataset.

Non-vpn2016 and Tor-nonTor2017 datasets contain 163831 and
51574 flow samples, respectively, with many different Metadata
features along with protocol-defined features such as TLS, DNS and
HTTP if used in the flow. In this study, we include only TLS defined
protocol features along with Metadata features for the encrypted
traffic analysis experiments. A small percentage, in other words,
only 1578 flows are TLS encrypted in non-vpn2016 dataset. Since
Tor-nonTor2017 Scenario A is a binary classification dataset, we
use it to expand our results in feature selection and evaluation
experiments only.

3.2.2 TLS feature processing. Machine learning models require a
data matrix as input. This input data matrix is usually a two dimen-
sional array whose rows correspond to flow samples and columns
correspond to the features. Metadata features are numerical fea-
tures that can be extracted for any type of flow and therefore can
be easily loaded into a data matrix. Some examples of metadata
features include, but are not limited to, the source port number, the
destination port number, the number of packets inbound, the num-
ber of packets outbound, the number of bytes inbound, the number
of bytes outbound, the time duration of the flow, etc. On the other
hand, TLS features contain both numerical features such as the
number of ciphersuites offered by the client and server, the number
of TLS encrypted packets in the flow, etc. as well as variable-size
non-numerical feature arrays such as the ciphersuites offered by the
client, the supported TLS extensions of the client, etc. Hence, it is
important to find a way to convert the variable-size non-numerical

features into fixed length numerical features to be able to load the
TLS information into the data matrix.

Firstly, we import TLS features along with metadata features.
Tls_cnt, tls_cs_cnt, tls_ext_cnt, tl_key_exchange_len, tls_svr_cnt,
tls_svr_cs_cnt, tls_svr_ext_cnt and tls_svr_key_exchange_len fea-
tures contain single integer values; therefore, it is straightforward
to load those features into data matrix. Each of these features occu-
pies a single column and the corresponding value is loaded to the
corresponding column.

Tls_cs, and tls_ext_types are features with variable sizes. For ex-
ample, the tls_cs feature for a single flow sample may contain ‘c00a’,
‘00af’ and other ciphersuites as an array of strings. Tls_ext_types
is also similar to tls_cs. Therefore, we first analyze those cipher-
suites and extension types and get top-N most common features,
say N=10, for each class in the dataset. Then, we combine those
top-10 common ciphersuites for each class. It usually makes a num-
ber larger than 10, for example 16, because different classes may
contain different top common ciphersuites. We then place each of
these 16 ciphersuites as a separate column in data matrix, and if
the flow contains any of those ciphersuites in tls_cs feature, we
put 1 for the corresponding column. If not, we put 0. At the end of
the line, we add another column as the 17th column that represents
the ciphersuites that are not among the top-N. For example, a flow
sample containing 11 other ciphersuites that are not among the top
commons has 11 for the 17th column of tls_cs feature in the data
matrix. The same approach applies for the tls_ext_types feature.

Tls_svr_cs feature is a single-valued feature with a ciphersuite
selected among the advertised ciphersuites in tls_cs. Therefore, we
have a binary feature for this. If the selected ciphersuite is among
the common-N ciphersuites in tls_svr_cs, then we put 1, otherwise
we put 0 for the corresponding column in the data matrix.

Tls_svr_ext_types is almost the same as the tls_cs and
tls_ext_types. So, the same procedure also applies for this feature
as well.

Tls_len and tls_svr_len are variable length integer arrays with
payload sizes. For example, tls_len: [541, 45, 234, 21] and tls_svr_len:
[67, 54, 256]. For these two features, we allocate 4 columns for each
to represent this information in the data matrix: (1) the length of
the array, (2) the minimum value in array, (3) the maximum value
in array, and (4) the mean value of array.

If a flow sample does not contain any TLS features, or in other
words, the flow is not TLS encrypted, we then insert all zeros for
the corresponding TLS columns in the data matrix.

Secondly, we observe that there are many flows whose number
of inbound packets feature is zero. In other words, the flow is not
bidirectional. In a scenario where the proposed application classi-
fication model is deployed in the client end of the network, then
it is reasonable to assume that the flows in the dataset that have
no incoming packet to the client can be considered as unacknowl-
edged queries. Therefore, we filter out those flows and come up
with 13635 pure bidirectional flows in the dataset.

3.2.3 Data augmentation using SMOTE. Many of the datasets are
naturally imbalanced due to the data collection setup [5]. SMOTE
[3] is a method to increase the numbers of undersampled instances
in the dataset by computing the synthetically generated features
according to the k-nearest neighbors of the instance in the feature
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space. We utilize the imbalance-learn library for python to apply
SMOTE in the non-vpn2016 dataset. By the default parameters,
the SMOTE method generates synthetic samples for all classes
except for the one with the majority in the dataset, making the
number of samples for each class equal to that of the majority. In
our experiments, we observe a significant imbalance in the non-
vpn2016 dataset and augment the minority classes with SMOTE to
mitigate the bias in the prediction.

3.3 TLS-Encrypted Flow Classification
The non-vpn2016 dataset contains both TLS-encrypted and non-
encrypted flows. We define a flow as TLS-encrypted if the flow
contains TLS features in the input data. We observe that after pre-
processing, there are 1360 TLS-encrypted flows, i.e. about 1% of the
entire dataset. We create a TLS-encrypted subset to perform feature
selection and compare the results with deep learning algorithms
on the TLS-encrypted dataset.

4 EVALUATION AND DISCUSSION
Accuracy in the validation set is the most popular metric for a clas-
sification evaluation. However, accuracy by itself does not provide
a detailed insight about the performance of a model for a multi-
class problem, especially if the dataset is imbalanced. Therefore, we
utilize the recall, precision, macro-average F1 and macro-average
mAP scores whose formulae are given in equation (1) and (2)

Recall =
TP

(TP + FN )
, Precision =

TP

(TP + FP)
(1)

F1 =
2 ∗ precision ∗ recall

(precision + recall)
,mAP =

1
N

N∑
i=1

APi (2)

where N is the number of samples, TP is true positive, FN is false
negative, FP is false positive and APi is the average precision for
the ith class. In our experiments, we use macro-averaged F1 and
mAP scores because macro-averaged scores are not affected by the
imbalance in the dataset. Therefore, macro-averaged scores gives
an unbiased result about the model performance.

In our experiments, the Scikit-learn open-source Python library
is utilized to calculate the metrics aforementioned. Both encrypted
and non-encrypted flows, also referred to as the whole flows of
the non-vpn2016 dataset, are used to evaluate the feature selection
methods. All of the experiments are conducted on a machine with
Intel® Core™ i7-6700HQ CPU at 2.60GHz processor, 16 GB RAM
and a GPU GeForce GTX 1060 with 6 GB memory.

4.1 Feature Evaluation and Selection
Four different feature evaluation methods are implemented for the
feature selection phase. Random Forest and k-nearest neighbor
classifiers are used to evaluate the performance, as they provide
the most accurate results for the non-vpn2016 dataset. Since the
number of TLS-encrypted flows is very small, we use the whole
dataset to evaluate different feature selection methods. Figure 2
shows the macro-average F1-score of each method on the validation
set according to the different number of features using RF and kNN
classifiers. We observe that both PCA-based and correlation-based
feature evaluation methods degrade the classification performance
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Figure 2: Comparison of different feature selectionmethods
on the non-vpn2016 dataset

Figure 3: Confusionmatrix of theRFmodel trainedwith top-
10 features on the whole non-vpn2016 dataset

drastically when a smaller number of features are selected to train
the model. On the other hand, the proposed feature selection meth-
ods using Jensen-Shannon (FSwJS) Divergence and Random Forest
feature importance (RFFI) with the RF classifier produce more ac-
curate results than the other methods. However, we observe that
both FSwJS and RFFI cannot exceed the macro-average F1-score
that is achieved with the all Metadata features used.

The most accurate model after feature selection is obtained us-
ing the RF classifier with the top-10 features selected by the RFFI.
Although RF model with all 121 features achieves 0.6925 macro-
average F1-score, RF model with top-10 features of RFFI reaches
to 0.6803. The list of important top-10 features selected by RFFI is
given in Figure 4. The two most important features for the non-
vpn2016 application classification dataset are the port number of
the source and the mean of the payload sizes in the reverse direc-
tion of the flow. Similarly, the port number of the destination and
the duration of the flow, time_length, are evaluated as the third
and fourth important features, respectively. Other important fea-
tures selected in the top-10 are related to the payload sizes in both
direction and the number of bytes sent and received.

The confusion matrix of the Random Forest model trained with
the top-10 features on the whole non-vpn2016 dataset is given in
Figure 3. The most obvious observation is that the number of flows
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Figure 4: Top-10 important features selected by RFmodel on
the whole non-vpn2016 dataset

belonging to the Audio class is much higher than the other classes.
The same ratio of sample numbers between classes also applies to
the training set. As a result of this imbalance, the model becomes
biased and favors the Audio class more than others. Except for
the Tor class, all other classes have significant misprediction to
the Audio class because of this imbalance. The reason why the
Tor class is mispredicted as Video is because the majority of the
samples in the Tor class are actually samples for video flows, namely
tor_youtube and tor_vimeo obtained in the Tor browser.

The ISCX Tor-nonTor2017 [7] dataset from the CIC repository
is also utilized to evaluate the proposed feature selection methods
following the same approach given in Figure 1. In the first scenario,
the Tor-nonTor binary classification is performed. In the second
scenario, 8 different traffic types of nonTor (Audio, Browsing, Chat,
Email, File-transfer, P2P, Video, VoIP) dataset are classified. Since
RFFI and FSwJS based feature selection methods perform better in
non-vpn2016 dataset, only these two feature selectionmethods with
kNN and RF classifiers are used. Table 1 shows the feature selection
results with kNN and RF classifiers for all Metadata, Top-10, and
Top-5 selected features, respectively. Top-10 feature selection using
RFFI and RF classifier yields a perfect classification result on the
validation set with both recall and precision for Tor and nonTor
classes equal to 1.0. These results achieve higher accuracy when
compared to all 121 Metadata used to train the model. Moreover,
when compared to C4.5 proposed in [7], the top-5 features selected
in our proposed method using RF model achieves higher precision
for both Tor and nonTor classes as well as recall for nonTor class
while recall for Tor class is lower by only around 2%. Similarly, the
top-5 features selected by RFFI using the kNN classifier achieves
higher recall and precision for both Tor and nonTor classes except
recall for the Tor class where the difference is less than 1%.

As the second scenario, nonTor traffic is classified into 8 labels
with the top-10 features selected by RFFI as it yields the most useful
features in our previous experiments included in this paper. Recall
(Rc), and Precision (Pr) for the given number of features (#) are pro-
vided for the RF and kNN classifiers for all classes in Figure 5. Each
classifier has its own advantages. For example, the kNN method
with all Metadata features achieved higher recall and precision
values for Chat, Email and Video classes than the RF classifier. For

Table 1: Recall and Precision values for different methods
on tor-nonTor classification

#Features Metric RFFI-kNN FSwJS-kNN RFFI-RF FSwJS-RF

121

Rc-Tor 0.90909 0.90909 0.93939 0.93939
Rc-NonTor 1.0 1.0 0.99981 0.99981
Pr-Tor 1.0 1.0 0.93939 0.93939

Pr-NonTor 0.99971 0.99971 0.99981 0.99981

10

Rc-Tor 0.96967 0.87879 1.0 0.96968
Rc-NonTor 1.0 0.99932 1.0 1.0
Pr-Tor 1.0 0.80556 1.0 1.0

Pr-NonTor 0.99990 0.99961 1.0 0.99990

5

Rc-Tor 0.87879 0.51515 0.90909 0.81818
Rc-NonTor 0.99990 0.99932 0.99990 1.0
Pr-Tor 0.96667 0.70833 0.96774 1.0

Pr-NonTor 0.99961 0.99845 0.99971 0.99942
#Features Metric [7] C4.5 [7] kNN [7] ZeroR

5

Rc-Tor 0.93 0.88 0.0
Rc-NonTor 0.99 0.98 1.0
Pr-Tor 0.95 0.85 0.0

Pr-NonTor 0.99 0.98 0.89
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Figure 5: Recall (Rc) and Precision (Pr) on the non-tor2017
dataset

the RFFI selected top-10 features, similar but less accurate results
are obtained, as expected. Again, the kNN method classifies File-
transfer, Video and VoIP classes with higher recall and precision
than the RF model. Audio and P2P recall and precision values with
the kNN are increased up to 3% with the top-10 features while Chat
recall and precision values dramatically reduce. For the RF model,
similar to the kNN, Chat recall and precision values drop from 0.26
to 0.12 and 0.42 to 0.19, respectively, while Email and Video recall
and precision values improve up to 11%. Evaluation metrics for
other classes remain almost the same with minor reductions with
the top-10 features. Overall, Chat, Email and Video class perfor-
mances for the classifiers are the worst while File-transfer and P2P
class performances achieve more than 95%.

4.2 Contribution of TLS Features
The non-vpn2016 dataset consists of four different types of fea-
tures as described in section 3.2.1. TLS features play an important
role when it comes to TLS-encrypted network flow classification.
However, in the non-vpn2016 dataset, the encrypted flows only
cover around 1% of the whole data. Therefore, training a model
with TLS features may not contribute to the overall accuracy. In
order to test this, we compare the Random Forest classifier results
with and without TLS features. Figure 6 displays the macro-average
F1-scores of RF classifiers trained with and without TLS features
and with different numbers of features. Top important features are
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Figure 6: Contribution of TLS features to the classification
of the whole non-vpn2016 dataset

selected by the RFFI method. In Figure 6, we observe that taking
into account TLS features does not provide additional information
to the model for a better classification. Interestingly, the macro-
average F1-scores obtained with the Top-10 and the Top-5 features
are exactly the same with the two sets of input features because
the feature selection method interprets that TLS features do not
play an important roles for the current classification and does not
select them as top important features. The main reason behind it
is that the number of encrypted flows in the whole dataset is too
small such that the values of the TLS features for the majority of the
samples are zero. This causes the information that can be extracted
from TLS features to become noisy for the dataset.

4.3 TLS-Encrypted Traffic Classification
While the TLS features do not play an important role in classifica-
tion with regards to the whole dataset comprised of non-encrypted
and encrypted data, when only TLS-encrypted data is used, TLS fea-
tures play an imperative role in classification. The TLS-encrypted
subset of the non-vpn2016 dataset is used to analyze Metadata fea-
tures versus Metadata and TLS features to evaluate the TLS features
in a fair manner. To test if the TLS features affect the accuracy of the
Random Forest models on the TLS-encrypted subset, we compare
the results of the Random Forest classifier with and without TLS
features in addition to the RFFI feature selection method.

We first notice that there is not a single P2P flow that is TLS-
encrypted. Additionally, there are only two TLS-encrypted flows
for the Tor class. Since SMOTE requires, in our experiments, at
least three other samples in order to find the nearest neighbors
for data augmentation, we remove the Tor class samples in the
TLS-encrypted subset and obtain a dataset with four classes. While
SMOTE does not affect the model in this section, we need an unbi-
ased comparison between the current model and the model with
SMOTE augmented data, so we must filter out the Tor class.

Figure 7 details themacro-average F1-scores of both RF classifiers.
We observe that in both cases, selecting a smaller number of features
but more discriminative features generally increases the macro-
average F1-scores. In other words, when the uninformative features
are eliminated during feature selection, the results obtained from
the RF model are more accurate. While the RF classifier without TLS
features achieves its highest accuracy with the Top-5 features, the

Figure 7: Contribution of TLS features to the classification
of the TLS-encrypted subset of the non-vpn2016 dataset

Figure 8: Top-10 important features selected by RFmodel on
the TLS-encrypted subset of the non-vpn2016 dataset

RF classifier with TLS features achieves its highest accuracy with
the Top-10 features. Using only the Top-5 Metadata features, the
RF model achieves a 0.90615 macro-average F1-score as opposed
to the 0.92899 macro-average F1-score from the Top-10 Metadata
and TLS features from the RF model. However, with any number
of features, the RF classifier with TLS features outperforms the
RF classifier without TLS features. This means that there are TLS
features selected by the RFFI feature selection in each of the trials
so that the RF classifier’s accuracy increases. Figure ?? shows the
top-10 features selected by RFFI. We see that while there are some
common features such as source port, destination port and time
duration of the flow, there are also TLS features in the Top-10. Top
selected TLS features are mostly from the ciphersuites advertised
by the client. The most important TLS feature which comes after
the source port feature is the number of ciphersuites advertised by
the client. The other important TLS features are some of the most
common client advertised ciphersuites such as 0032, 0005 and 000a.
Thus, TLS features play an important role in classification when
classifying the TLS-encrypted flows.

The confusion matrix obtained with the Top-10 features in the
TLS-encrypted subset is given in Figure 9. Overall, the random forest
classifier achieves a successful classification. The only apparent
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Figure 9: Confusion matrix of Random Forest classifier on
the TLS-encrypted subset of the non-vpn2016 dataset

misclassification occurs between Audio and Video classes. More
than 10% of the Audio class in the validation set are misclassified
as Video and around 10% of the Video class are mispredicted as
Audio. This misclassification may be explained because any video
also contains an audio track.

4.4 Deep Learning with Flow Features
Deep learning methods are proven to perform very successfully
with a large amount of training data, referred to as big data. The
size of the data is considered big if the data has many features
or the dataset contains a lot of samples, or both. After observing
that adding TLS features does not contribute to the classification
performance for the non-vpn2016 dataset, one might think of im-
plementing more complex models, such as deep neural networks,
which integrate the classifier and feature selection in one process.

In this section, we evaluate the effect of deep learning methods
using convolutional neural networks as they are proven to be suc-
cessful in different related studies. We compare the classification
performance in terms of macro-average F1-score, macro-average
mAP score, and classification speed in terms of flow per second
for the whole dataset and TLS-encrypted subset, respectively. We
implement 1D CNN and 2D CNN networks that have similar ar-
chitecture to the famous LeNet-5 that contains two convolutional
layers followed by pooling layers, two fully connected layers and
the final output layer. Hyperparameters for these networks are
selected with grid search and the final set of hyperparameters that
gives the best results on the validation set is given in Table 2.

Two different CNN models are implemented on top of the ex-
tracted flow features and the results are compared with the Random
Forest classifier. The same validation data is used to test all the mod-
els to measure the classification speed in terms of flow per second.
We run the inference 100 times and get the average to find out how
many seconds one inference takes. The number of flow per second
is then obtained by dividing the number of flows in the validation
set by the average execution time of the classifier. The results, along
with the macro-average F1 and mAP scores are given in Table 3.
The best macro-average F1 score of 0.6925 is obtained using all of
the Metadata features with the RF classifier. On the other hand, the

Table 2: Hyperparameters set for the CNN models

1D CNN 2D CNN

Learning Rate 0.001 0.001
Decay Rate 1e-5 1e-5
Dropout Rate 0.5 0.5
Reg. constant 1e-5 1e-5
Batch Size 100 100
Epochs 1000 1000
Filters 128 128
Kernel Size 4x1 4x4
Strides 1 1
CNN Layers 2 2
# of params 27479 23767

best macro-average mAP score of 0.55542 is achieved by the RF
model trained using only the Top-10 important features selected
using RFFI. However, the RF model with Top-10 features is slightly
slower than the RF model trained on the whole 121Metadata fea-
tures. This means that using only 10 features for Random Forest
forces the trees in the forest to be deeper which causes the classifier
to perform slower.

Although CNN models are faster in terms of flow classification
per second, it should be kept in mind that the CNN models are
trained on GPU and tested on CPU while the RF model is trained
and tested on CPU. Despite being faster on GPU, the trained 1D and
2D CNN models cannot achieve as accurate results as the Random
Forest models. Additionally, the RF models outperform the kNN
classifiers when using all of the metadata and when using the Top-
10 features. However, the flow rate achieved by the kNN classifier
using the Top-10 features is the highest among the other models.

Table 3: Performances on the whole flows in the non-
vpn2016 dataset

Macro F1 Macro mAP Flow per Sec.
All Metadata (RF) 0.69250 0.55076 15661
Top-10 of Metadata (RF) 0.68033 0.55542 14990
All metadata (kNN) 0.62223 0.44749 567
Top-10 of Metadata (kNN) 0.57721 0.40574 23494
Metadata+TLS (1D CNN) 0.30600 0.25370 18265
Metadata+TLS (2D CNN) 0.23112 0.21030 20703

For the 1D and 2D CNN models on the TLS-encrypted dataset,
we must keep in mind that there are only approximately 1% of the
flows which are encrypted, resulting in a low number of flows in
our TLS-encrypted dataset. Therefore, a deep model may perform
well during the training phase, but not during the testing phase due
to overfitting. To prevent this, sufficiently small sized CNN models
are implemented. The results of the 1D CNN and 2D CNN models
are shown in Table 4. The macro-average F1 and macro-average
mAP scores for both the 1D CNN and 2D CNN are lower than those
of the RF and kNN classifiers. In particular, the macro-average F1
and macro-average mAP scores of the 1D CNN are 0.63256 and
0.57247 respectively. On the other hand, the macro-average F1
and macro-average mAP scores of the 2D CNN are 0.76728 and
0.67226 respectively. Thus, the 2D CNN outperforms the 1D CNN;
however, both models achieve less accurate results than the RF and
kNN classifiers. Compared to the 1D CNN and 2D CNN models
trained on the whole non-vpn2016 dataset, the 1D CNN and 2D
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CNNmodels trained on the TLS-encrypted subset have significantly
improved results, with themacro-averagemAP score of the 2DCNN
improving from 0.2103 to 0.67226. This means that TLS features
in addition to the Metadata features are providing discriminative
information to the deep learning models for a better TLS-encrypted
flow identification.

The deep learning models achieve slightly lower macro-average
F1 and macro-average mAP scores than the RF classifier trained
using all Metadata and TLS features. In fact, the RF classifier with
the top-10 Metadata and TLS features outperforms all three other
models. Additionally, kNN with top-10 features is faster in terms of
classifying flows per second; however, its F1 and mAP scores are
far lower than best performing RF classifier.

Table 4: Performances on the TLS-encrypted flows in the
non-vpn2016 dataset

Macro F1 Macro mAP Flow per Sec.
All Metadata+TLS (RF) 0.84364 0.75403 17197
Top-10 of Metadata+TLS (RF) 0.92899 0.88313 20658
All Metadata+TLS (kNN) 0.77466 0.66722 2752.82
Top-10 of Metadata+TLS (kNN) 0.89298 0.82733 25455
Metadata+TLS (1D CNN) 0.63256 0.57247 18673
Metadata+TLS (2D CNN) 0.76728 0.67226 21139

4.5 Bias Reduction with SMOTE
We observe a bias in the prediction of classes due to the imbalance
in the samples of the non-vpn2016 dataset. Therefore, we apply
SMOTE to increase the number of flows of the undersampled classes
to reduce this bias in prediction. Table 5 shows the macro-average
F1 and mAP scores of the different models and different number
of features with and without SMOTE. Despite the decrease in the
F1 and mAP scores for the RF classifier trained with the whole
Metadata features, the other five approaches with SMOTE yield a
boost in the classification accuracy. We observe a slight increase of
F1 and mAP scores with the RF classifier using the top-10 features
and the kNN classifiers; however, the increase of the scores for the
two CNN models are almost 13% and 20% for F1 score and around
6% and 9% for mAP score in the 1D CNN and 2D CNN respectively.
Even with SMOTE, the CNN models and the kNN models are still
less accurate than the RF classifier with the top-10 features.

In order to understand the reason behind the decrease in the F1
and mAP scores for the RF model with the all Metadata features, the
confusion matrix in Figure 10 is examined. We observe that SMOTE
has reduced the bias to the Audio class and helps the model produce
more accurate results for the other classes. For example, the Tor
class is now accurately classified with 70% recall rate. However, the
Audio class recall rate heavily drops from around 95% to 55%.

Figure 11 shows the confusion matrix obtained using the RF
classifier trained with the top-10 features on the SMOTE augmented
non-vpn2016 dataset. Even though both of the F1 and mAP scores
are slightly increased, there is still a bias towards to the majority
class in the predictions. Here we can conclude that SMOTE with
small number of features is not effective to prevent bias but has a
potential for a boost in the performance of the classifier with the
imbalanced dataset.

Figure 10: Confusion matrix obtained with Random For-
est classifier with all Metadata features on the SMOTE aug-
mented non-vpn2016 dataset

Figure 11: Confusion matrix obtained with Random Forest
classifier with top-10 features on the SMOTE augmented
non-vpn2016 dataset

Table 5: Effect of SMOTE to the classification of the whole
flows in the non-vpn2016 dataset

Macro F1 Macro mAP
SMOTE: No Yes No Yes

All Metadata (RF) 0.69250 0.59966 0.55076 0.44084
Top-10 of Metadata (RF) 0.68033 0.68301 0.55542 0.55840

All Metadata (kNN) 0.62223 0.63505 0.44749 0.46335
Top-10 of Metadata (kNN) 0.57721 0.58218 0.40574 0.41334
Metadata+TLS (1D CNN) 0.30600 0.43952 0.2537 0.31267
Metadata+TLS (2D CNN) 0.23112 0.43084 0.2103 0.30392

We see similar results when SMOTE is used on the TLS-encrypted
subset of the non-vpn2016 dataset. These results are detailed in Ta-
ble 6. Firstly, the macro-average F1 and macro-average mAP scores
for the RF classifiers and kNN with top-10 features suffer a decrease
in value when SMOTE is applied. To quantify, the macro-average
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F1 and macro-average mAP scores were 0.92899 and 0.88313 re-
spectively before applying SMOTE and decreased to 0.90855 and
0.85368 respectively after applying SMOTE when using the RF
classifier with the top-10 Metadata and TLS features. On the other
hand, when SMOTE is applied to the deep learning models and
kNN with all Metadata and TLS features, the macro-average F1 and
macro-average mAP scores increase. While the 2D CNN’s result
and both kNN classifiers’ results slightly increase, the 1D CNN’s
performance increases more: the macro-average F1 score increases
from 0.63256 to 0.81779 and themacro-averagemAP score increases
from 0.57247 and 0.72035. Thus, SMOTE can improve the accuracy
of a deep learning classifier even with small number of samples in a
dataset but it may not be sufficient to achieve the highest accuracy.

Table 6: Effect of SMOTE to the classification of the TLS-
encrypted flows in the non-vpn2016 dataset

Macro F1 Macro mAP
SMOTE: No Yes No Yes

All Metadata+TLS (RF) 0.84364 0.83181 0.75403 0.73905
Top-10 of Metadata+TLS (RF) 0.92899 0.90855 0.88313 0.85368

All Metadata+TLS (kNN) 0.77466 0.79855 0.66722 0.69072
Top-10 of Metadata+TLS (kNN) 0.89298 0.83331 0.82733 0.74065

Metadata+TLS (1D CNN) 0.63256 0.81779 0.57247 0.72035
Metadata+TLS (2D CNN) 0.76728 0.82666 0.67226 0.73581

5 CONCLUSION AND FUTURE WORK
In recent years, the demand for accurate, fast, and privacy pre-
serving application classification solutions has increased due to
the extended use of encrypted packet traffic on the Internet. How-
ever, most of the prior approaches fail to cover all three criteria
for classification. By analyzing and selecting flow features from
TLS-encrypted flows, we provide an accurate and relatively fast
approach while preserving user privacy. The experimental results
show that client advertised ciphersuites play significant roles for
an accurate encrypted traffic classification. However, the use of
TLS features for a mixed dataset is not effective when the number
of encrypted flows is too small. In addition, this paper shows that
engineered feature extraction and proper feature selection for en-
crypted traffic classification is still important and that accurate and
sufficiently fast classifiers can be achieved by the Random Forest
algorithm. Because the CNN models are used on the small sized
dataset, we plan to examine a larger dataset using selected flow
features and deep learning algorithms in the future.
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