

1 **Femtosecond X-ray Diffraction of Laser-shocked Forsterite (Mg_2SiO_4) to 122 GPa**

2 Donghoon Kim¹, Sally J. Tracy^{1,2}, Raymond F. Smith³, Arianna E. Gleason⁴, Cindy A.
3 Bolmes, Vitali B. Prakapenka⁶, Karen Appel⁷, Sergio Speziale⁸, June K. Wicks^{1,9}, Eleanor
4 J. Berryman^{1,10}, Sirus K. Han¹, Markus O. Schoelmerich⁸, Hae Ja Lee¹¹, Bob Nagler¹¹,
5 Eric F. Cunningham¹¹, Minta C. Akin³, Paul D. Asimow¹², Jon H. Eggert³, and Thomas S.
6 Duffy¹

7 ¹Department of Geosciences, Princeton University, Princeton, NJ, USA

8 ²Now at Geophysical Laboratory, Carnegie Institution for Washington, Washington, DC, USA

9 ³Lawrence Livermore National Laboratory, Livermore, CA, USA

10 ⁴Fundamental Physics Directorate, SLAC, Menlo Park, CA, USA

11 ⁵Shock and Detonation Physics, Los Alamos National Laboratory, Los Alamos, NM, USA

12 ⁶Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA

13 ⁷European XFEL, Holzkoppel 4, Schenefeld, Germany

14 ⁸GFZ German Research Centre for Geosciences, Telegrafenberg, Potsdam, Germany

15 ⁹Now at Department of Earth & Planetary Sciences, Johns Hopkins University, Baltimore, MD,
16 USA

17 ¹⁰Now at CanmetMINING, Natural Resources Canada, Ottawa, ON, Canada

18 ¹¹Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA

19 ¹²Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena,
20 CA, USA

21

22

23 Corresponding author: Donghoon Kim (donghoon@princeton.edu)

24

25

26 **Key Points:**

- 27
 - 28 The atomic-level structure of forsterite under shock compression has been determined
from 19 to 122 GPa.
 - 29 At shock stresses between 33 and 75 GPa, forsterite coexists with the metastable phase
30 forsterite III along the Hugoniot.
 - 31 Above 79 GPa, polycrystalline forsterite undergoes amorphization while single crystals
32 exhibit variable behavior depending on orientation.

33

34 **Abstract**

35
 36 The behavior of forsterite, Mg_2SiO_4 , under dynamic compression is of fundamental
 37 importance for understanding its phase transformations and high-pressure behavior. Here, we
 38 have carried out an *in situ* X-ray diffraction study of laser-shocked poly- and single-crystal
 39 forsterite (a -, b -, and c - orientations) from 19 to 122 GPa using the Matter in Extreme Conditions
 40 end-station of the Linac Coherent Light Source. Under laser-based shock loading, forsterite does
 41 not transform to the high-pressure equilibrium assemblage of $MgSiO_3$ bridgmanite and MgO
 42 periclase, as was suggested previously. Instead, we observe forsterite and forsterite III, a
 43 metastable polymorph of Mg_2SiO_4 , coexisting in a mixed-phase region from 33 to 75 GPa for
 44 both polycrystalline and single-crystal samples. Densities inferred from X-ray diffraction data
 45 are consistent with earlier gas-gun shock data. At higher stress, the behavior observed is sample-
 46 dependent. Polycrystalline samples undergo amorphization above 79 GPa. For [010]- and [001]-
 47 oriented crystals, a mixture of crystalline and amorphous material is observed to 108 GPa,
 48 whereas the [100]-oriented crystal adopts an unknown crystal structure at 122 GPa. The Q values
 49 of the first two sharp diffraction peaks of amorphous Mg_2SiO_4 show a similar trend with
 50 compression as those observed for $MgSiO_3$ glass in both recent static and laser-compression
 51 experiments. Upon release to ambient pressure, all samples retain or revert to forsterite with
 52 evidence for amorphous material also present in some cases. This study demonstrates the utility
 53 of femtosecond free-electron laser X-ray sources for probing the time evolution of high-pressure
 54 silicates through the nanosecond-scale events of shock compression and release.

55
 56 **1. Introduction**

57
 58 Mg-rich olivine, $(Mg,Fe)_2SiO_4$, occurs widely in igneous and metamorphic rocks, and is
 59 the dominant phase in Earth's upper mantle (Ringwood, 1991). The physical properties of
 60 amorphous and liquid Mg_2SiO_4 are also important for modeling partial melting of the mantle and
 61 the behavior of magma oceans (Mosenfelder et al., 2007). In addition, olivine is a common
 62 constituent of terrestrial planets (Mustard et al., 2005) and meteorites (Mason, 1963), and is also
 63 found in comets (Hanner, 1999), pre-solar grains (Nguyen, 2004), and in accretion disks around
 64 young stars (van Boekel et al., 2004).

65 Static compression experiments have shown that at high pressure and temperature (>1000
 66 K), $(Mg,Fe)_2SiO_4$ adopts a spineloid structure (wadsleyite) at about ~ 14 GPa, and then transforms
 67 to a spinel structure (ringwoodite) at ~ 18 GPa (Frost, 2008). At 24 GPa, ringwoodite dissociates
 68 into $(Mg,Fe)SiO_3$ bridgmanite and $(Mg,Fe)O$, which are expected to be the major phases of Earth's
 69 lower mantle. These phase transitions in olivine and its polymorphs are the primary cause of the
 70 major seismic discontinuities at 410-, 520-, and 660-km depths in the Earth's mantle (Ringwood,
 71 1991). These discontinuities play a key role in controlling the dynamics and heat flow in the
 72 Earth's interior (Ringwood, 1991).

73 Metastable polymorphs of Mg_2SiO_4 , the Mg end-member of olivine, have also been
 74 reported at high pressure. A 300-K single-crystal X-ray diffraction (XRD) study showed that
 75 forsterite (orthorhombic space group $Pbnm$) transforms to forsterite II (triclinic, $P1$) and forsterite
 76 III (orthorhombic, $Cmc2_1$) at 50 and 58 GPa, respectively (Finkelstein et al., 2014) (hereafter Fo,
 77 Fo II, and Fo III, respectively). Fo III is related to the post-spinel calcium titanate structure and
 78 has fully 6-coordinated silicon. It remains metastable to at least 160 GPa at ambient temperature
 79 (Lavina, 2019).

80 Due to the geophysical importance of Mg-rich olivine, there has been much interest in
 81 understanding its shock-compression behavior (e.g., Brown et al., 1987; Furnish and Brown, 1986;
 82 Jackson and Ahrens, 1979; Jeanloz, 1980; Langenhorst et al., 1999; Mosenfelder et al., 2007;
 83 Newman et al., 2018; Syono et al., 1981a; Watt and Ahrens, 1983). The Hugoniot of forsterite has
 84 been interpreted to reflect transformation to a high-pressure phase through a broad mixed-phase
 85 region that begins at about 50 GPa and is completed near 100 GPa (Mosenfelder et al., 2007). This
 86 stress is much greater than that required for transformation of olivine in static experiments,
 87 suggesting that the role of kinetics is captured on the short timescales of shock experiments. The
 88 metastable Fo III phase has been reported in recent gas-gun experiments at 44 and 73 GPa based
 89 on *in situ* XRD data (Newman et al., 2018). However, the exact natures of the mixed-phase and
 90 high-pressure phase regions are still not well understood. Upon shock compression to higher
 91 pressure, olivine is reported to melt at ~150 GPa on the Hugoniot (J. M. Brown et al., 1987).

92 The dynamic behavior of olivine is also of interest for understanding shock metamorphism
 93 generated by hypervelocity impacts on planetary bodies (Falko Langenhorst, 2002). High-pressure
 94 olivine polymorphs have been identified in shocked meteorites as a result of solid-solid phase
 95 transformations or crystallization of silicate liquids (Gillet et al., 2007). Ringwoodite, for example,
 96 has been identified in chondrites and Martian meteorites (Gillet et al., 2007). Analyses of such
 97 phases have been used to explore the shock and post-shock pressure-temperature history, as well
 98 as the dynamic deformation mechanisms. None of the laboratory-based shock-recovery
 99 experiments on olivine provide direct evidence for a phase transformation or disproportionation
 100 under shock compression (Bauer, 1979; Jeanloz, 1980; F. Langenhorst et al., 1999; Müller &
 101 Hornemann, 1969; Reimold & Stöffler, 1978; Shinno, 2002) with the exception of Syono et al.
 102 (1981). They reported evidence for $\text{MgO} + \text{MgSiO}_3$ glass in samples recovered from Fo shocked
 103 above 80 GPa.

104 Constraining the behavior of olivine under dynamic loading is necessary for understanding
 105 its metastable states, transformation pathways and kinetics, structural polymorphism, and
 106 equations of state, which all play a role in interpreting geophysical phenomena. Here, we report
 107 the results of *in situ* XRD measurements on laser-shock experiments on forsterite samples covering
 108 a wide pressure range.

109 **2. Material and methods**

110

111 **2.1. Sample Preparation**

112 Synthetic single-crystal and polycrystalline Fo (Mg_2SiO_4) samples were used in this
 113 study. The single-crystal samples (Roditi International, unit-cell volume $V_0=290.0 \text{ \AA}^3$) were cut
 114 into ~50- μm thick slices from a $10 \times 10 \times 10 \text{ mm}^3$ cube, with the main face of each slice
 115 oriented normal to the a -, b -, or c -axis. Sintered polycrystalline aggregates with negligible
 116 porosity, cut to the same dimensions, were also used. The polycrystalline samples were from the
 117 same sources as used in Newman et al. (2018). The approximate mean grain size was 10 μm and
 118 the measured unit-cell volume was 289.7 \AA^3 with a corresponding density 3.225 g/cm^3 .

119

120 **2.2. Laser Shock Experimental Configuration**

121 Laser-driven shock-compression experiments were performed at the Matter in Extreme
 122 Conditions (MEC) end-station of the Linac Coherent Light Source (LCLS) at the Stanford Linear
 123 Accelerator Center (SLAC) (Nagler et al., 2015). Target packages consisted of a 75- μm thick
 124 polyimide (CH) ablator glued to a Fo sample with or without a 100- μm (100) LiF window

125 epoxied to the rear surface (Figure 1). Epoxy layers were approximately 1- μm thick. The rear
126 surface of the Fo was coated with a 0.2- μm layer of Ti to enhance the reflectivity of the sample.
127 A 0.2- μm Al coating was deposited on the ablation side of the CH to ensure that the laser drive
128 was optimally coupled at this interface.

129 Samples were shock compressed using one or both of the lasers from a two-beam 527 nm
130 Nd:glass laser system (S. B. Brown et al., 2017) (Fig. 1). The laser pulses were 10–15 ns in
131 duration with a quasi-flat-top shape (Supplemental Material, Fig. S1). Experiments were
132 performed both with and without phase plates. The shock stress was varied from 19 to 122 GPa
133 by tuning the laser spot size ($\leq 300 \mu\text{m}$), pulse length (10–15 ns) and laser energy ($\leq 60 \text{ J}$). Pulse
134 shapes were monitored to assess the reproducibility of the drive conditions for a given laser
135 energy, pulse length, and spot size (Supplemental Material, Table S1).

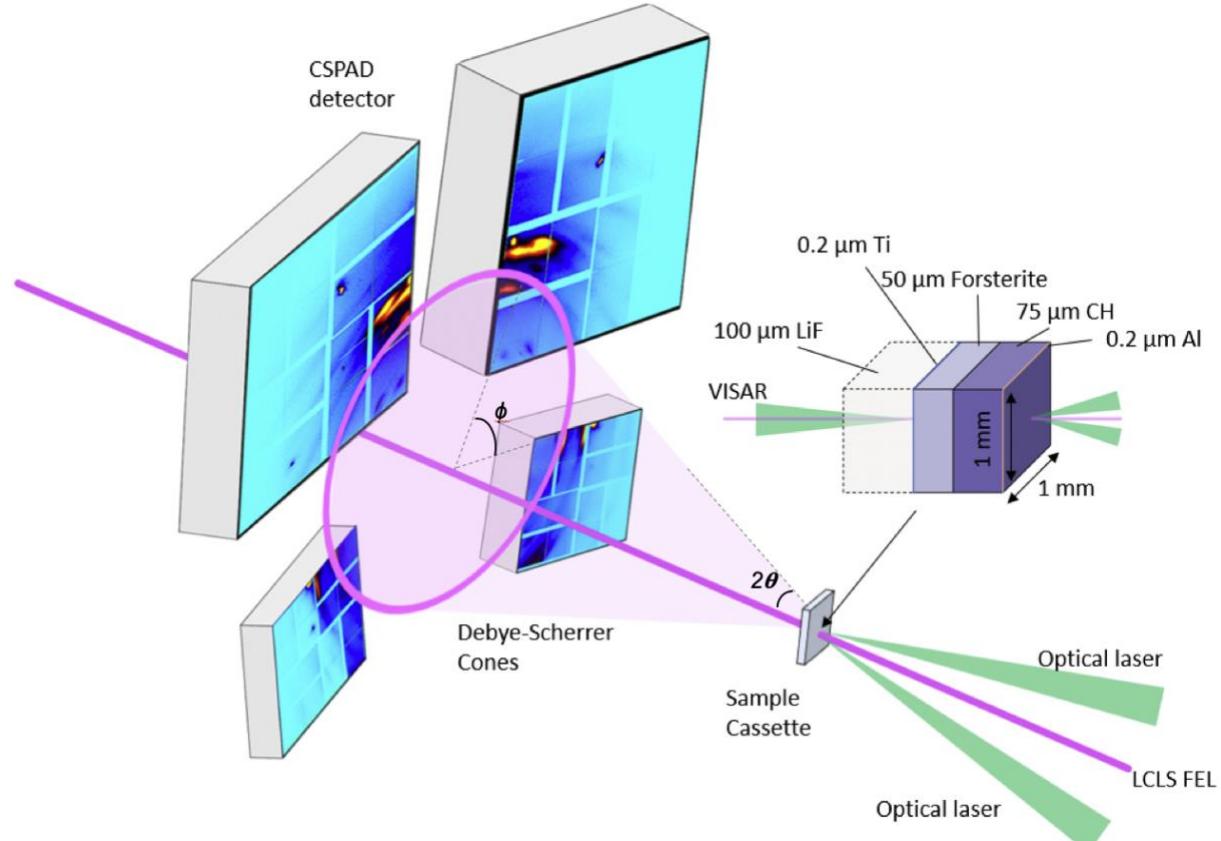
136

137 2.3. Pressure Determination

138 The forsterite free surface or Fo/LiF interface velocity was monitored by a line-imaging
139 velocity interferometer system for any reflector (VISAR) with a 532-nm wavelength laser. Two
140 independent VISAR channels with different velocity sensitivities were used to resolve
141 ambiguities in velocity resulting from limitations in the time response of the system. The VISAR
142 also provided information on the shock arrival time, spatial planarity, and peak elastic stress. For
143 a given drive condition, the peak stress in a sample backed by a LiF window was determined by
144 impedance matching using the measured interface particle velocity (u_p) and the known equations
145 of state of Fo and LiF (Supplemental Material, Figs. S2-S3 and Table S2). As the strength of
146 forsterite on the Hugoniot is poorly constrained, we have not made any correction for the
147 difference between axial stress (P_x) and mean pressure (P). The error in pressure was
148 determined from propagation of uncertainties in the impedance-matching analysis.

149

150 2.4. *In-situ* X-ray Diffraction Analysis


151 Samples were probed by angle-dispersive X-ray diffraction. The LCLS provided quasi-
152 monochromatic ($\Delta E/E = 0.2\text{--}0.5\%$), 8.5 keV, X-ray pulses of 60-fs duration, each containing 10^{12}
153 photons. The X-rays were incident to 30° relative to target normal and focused to a spot size of
154 $\sim 20 \mu\text{m}$ at the center of the laser drive. Diffraction peaks from the sample were recorded on four
155 Cornell-SLAC Pixel Array Detectors (CSPAD 550k) (Philipp et al., 2011), covering a two-theta,
156 2θ , range of $15\text{--}85^\circ$ (Supplementary Material, Fig. S4). For each shot, we also collected one or
157 more pre-shot XRD patterns with the incident X-ray intensity attenuated by 30–90%. This
158 provided a pre-compression reference pattern and facilitated screening for strong single-crystal
159 diffraction spots that could damage the detector. The two-dimensional (2D) CSPAD images were
160 integrated azimuthally to convert them to one-dimensional (1D) XRD patterns. The intensity of
161 the integrated pattern corresponding to each CSPAD was adjusted by equalizing the background
162 from each detector. CeO_2 and LaB_6 were used as standards to calibrate the sample-to-detector
163 distance and the orientation of each detector using the program Dioptas (Prescher & Prakapenka,
164 2015).

165 A time series of diffraction patterns was collected by changing the XRD probe time on a
166 sequence of shots using the same drive conditions and nominally identical targets with and
167 without a LiF window. The stress for the series of shots was determined from the target with a
168 LiF window. The shock-arrival time at the LiF window or the free surface was designated as $t =$
169 0. XRD patterns record both the compressed material and uncompressed material ahead of the
170 shock front at time points before the shock wave reaches the LiF window or free surface ($t < 0$).

171 In contrast, XRD patterns collected at $t > 0$ include a combination of compressed and partially
 172 released material. At time points late relative to shock propagation times, only diffraction from
 173 released materials is recorded.

174 Diffraction peak assignments were initially made by comparing the observed peaks to
 175 predicted peak positions based on 300-K static data (Finkelstein et al., 2014) at similar pressures.
 176 Lattice d -spacings were obtained by peak fitting, and unit-cell parameters were refined by least-
 177 squares fitting (Supplemental material, Table S3 and S4). It should be noted that some shots
 178 record only a few diffraction peaks, potentially limiting the precision of the unit-cell
 179 determination.

180

181

182

183

184 Figure 1. Schematic of the experimental setup for X-ray diffraction under laser-driven shock
 185 compression. The target package consisted of a CH ablator and a forsterite sample (with or
 186 without a LiF window). Diffraction was recorded on four CSPAD detectors. The VISAR laser
 187 was directed normal to the rear surface of the target to measure either the Fo-LiF-interface
 188 particle velocity or the free-surface velocity.

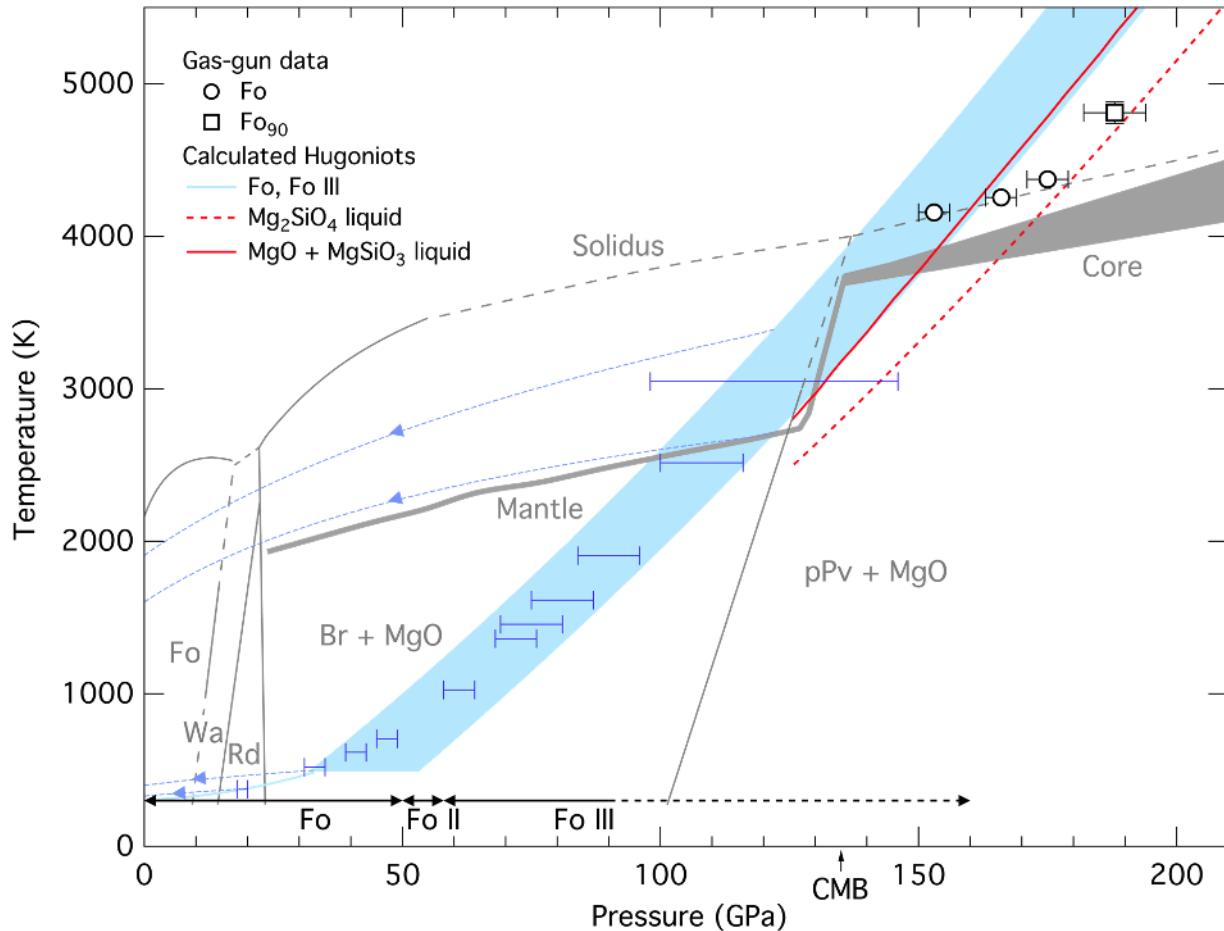
189

190

191 3. Results

192

193 Experiments were conducted at stresses from 19–122 GPa. Over this range, the shock-
 194 transit time for the 50-μm thick Fo sample was ~7–4.5 ns. Figure 2 shows the determined stresses


195 and calculated temperatures along with the equilibrium phase boundaries and 300-K metastable
 196 phases for Mg_2SiO_4 (Fig. 2). The peak stress achieved for each sample type is listed in the
 197 Supplemental Material, Table S1.

198

199

200

201

202
 203 Figure 2. Phase diagram for Mg_2SiO_4 together with 300-K metastable phases (Fo II and Fo III; Finkelstein et al., 2014). Estimated Hugoniot pressure-temperature states (blue shaded region) for forsterite and Fo III were calculated using the thermodynamic parameters listed in the
 204 Supplemental Material, Table S6. The stresses (with uncertainty) for the present study are shown
 205 as blue lines. The light-blue dashed curves show calculated release isentropes, assuming no
 206 phase changes occur upon release. Measured temperatures for forsterite and olivine (Fo90)
 207 shock-compressed in gas-gun experiments (Luo et al., 2004) are shown as open circles and a
 208 square, respectively. The gray band shows a representative geotherm for the Earth.
 209 Abbreviations used are: Fo – forsterite, Wa – wadsleyite, Rd – ringwoodite, Fo II – forsterite II,
 210 Fo III – forsterite III, Br – bridgmanite, pPv – post-perovskite, CMB – the core-mantle boundary.
 211 Sources are: Mg_2SiO_4 phase diagram (Katsura & Ito, 1989; Luo et al., 2004; Oganov & Ono,
 212 2004; Zerr, 1998), geotherm (Stacey & Davis, 2008; Tateno et al., 2010), calculated Hugoniot
 213 curves (red solid and dashed lines) (de Koker et al., 2008).
 214
 215

216 3.1. Low-Pressure Phase Regime (up to ~ 25 GPa)

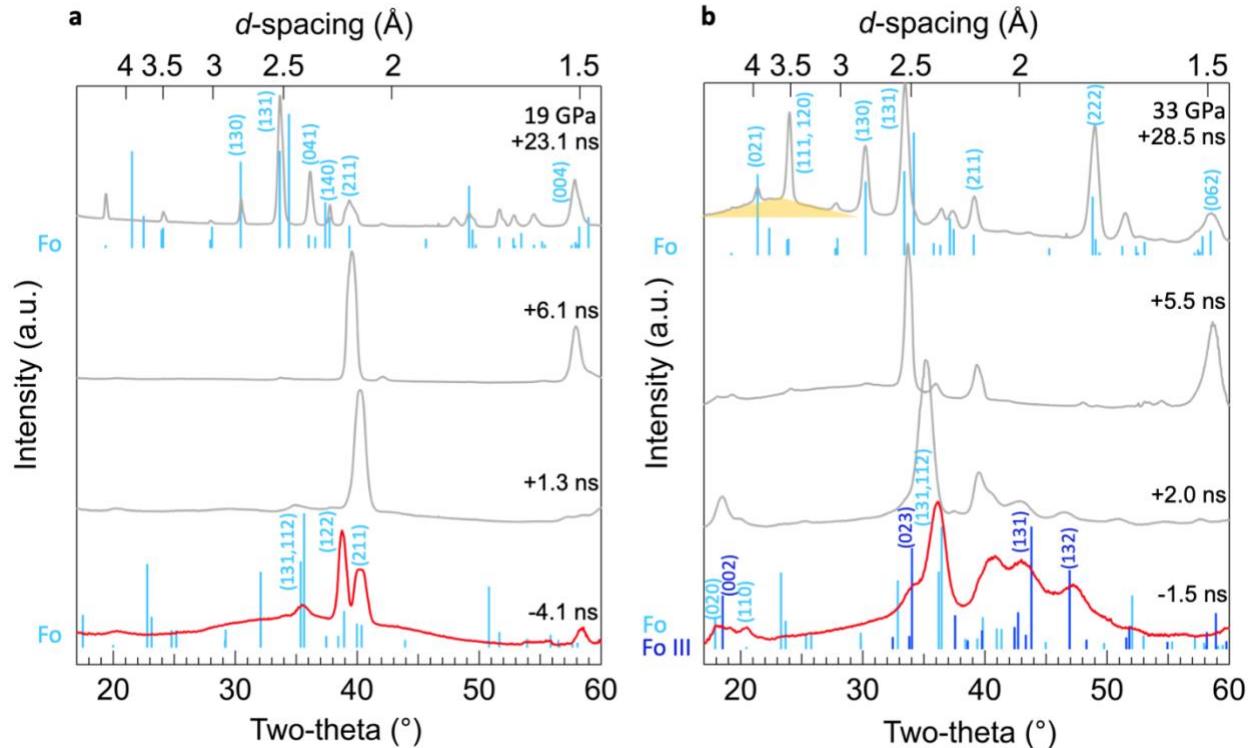
217 Compressed forsterite was identified in XRD patterns collected from single crystals
 218 shocked to 19 ± 1 GPa and 25 ± 1 GPa. Figure 3a shows a time series of XRD patterns for the
 219 [100]-single-crystal sample at ~ 19 GPa. Prior to the shot, we observe only diffraction from the
 220 (211) peak and, in some cases, 1-2 other single-crystal peaks. Upon compression, the (211) peak
 221 is shifted to higher two-theta values, and a few additional compressed forsterite diffraction spots
 222 are observed, likely due to the single crystal breaking into a few crystallites (Fig. S5). This is
 223 consistent with laboratory-based recovery experiments that report compressional fracture as a
 224 dominant deformation mechanism at these stresses (Bauer, 1979). Elongation of the spots in the
 225 azimuthal direction may reflect an increase in the mosaicity of the crystallites. There is no
 226 evidence of a phase transition at 19 GPa, consistent with gas-gun wave-profile measurements
 227 (M. D. Furnish et al., 1986). At +1.3 and +6.1 ns, the observed peaks shift to lower two-theta
 228 angles, indicating that release waves have reduced the stress. By +23.1 ns, diffraction spots, now
 229 frequently elongated along two-theta, are observed for multiple peaks that are all consistent with
 230 forsterite (Figs. 3a and S5). The increased number of observed diffraction spots indicates that the
 231 crystallite size is reduced, and their orientation distribution broadens especially at late times
 232 during the unloading process, likely due to fracturing resulting from interactions among
 233 unloading waves.

234

235 3.2. Mixed-Phase Regime (33 GPa – 75 GPa)

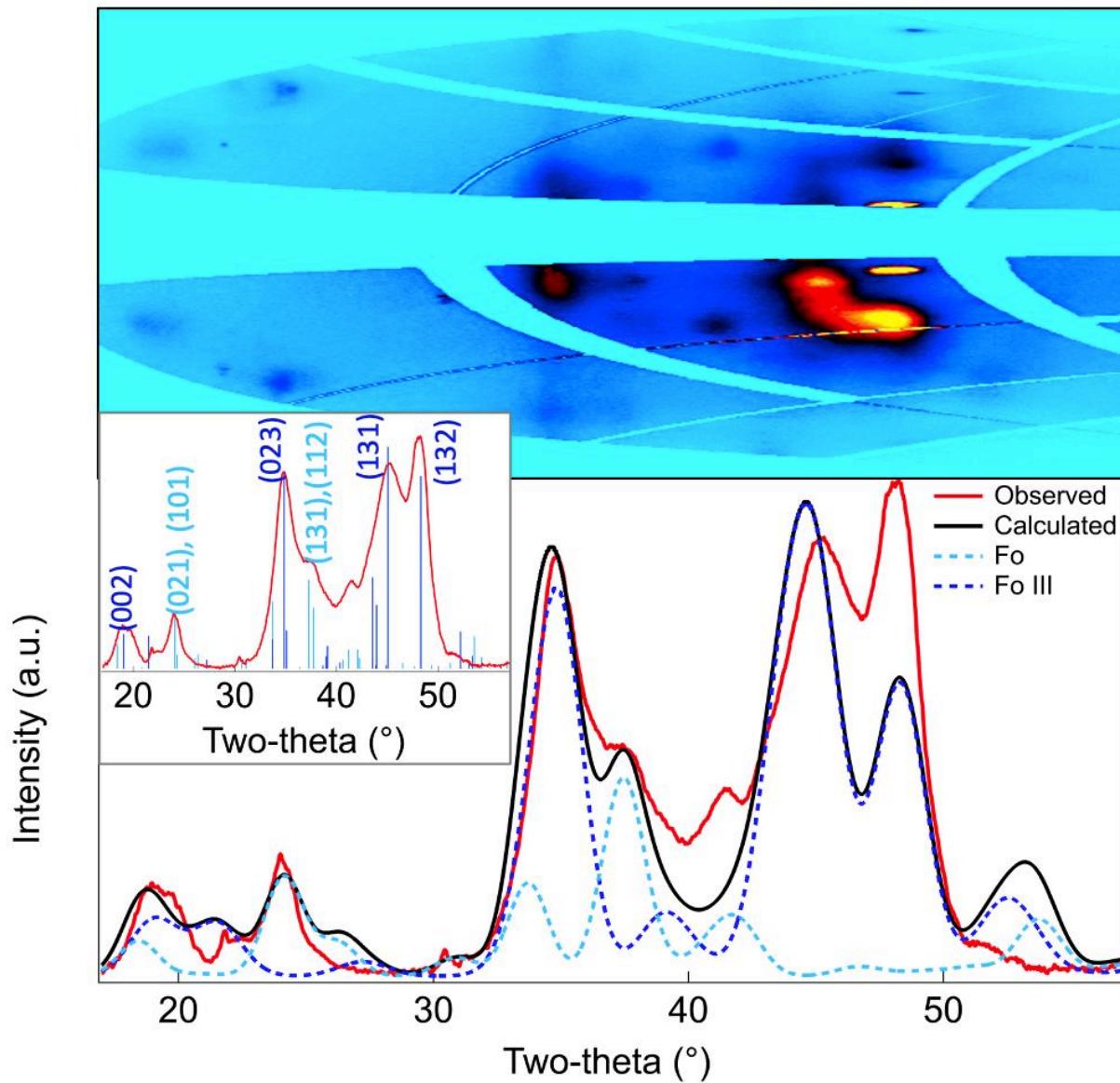
236 Figure 3b shows a time series of XRD patterns for forsterite shocked to a stress of 33 ± 2
 237 GPa. Here the diffraction peaks show evidence for further fracturing and lattice strain in the
 238 crystallites (Fig. S5). In addition, the observed peaks at -1.5 ns can no longer be solely assigned
 239 to forsterite. In particular, new peaks appear near a two-theta value of 34° and between 42 - 47° .
 240 We attempted to index the new peaks using the structural parameters of known high-pressure
 241 polymorphs of Mg_2SiO_4 (Smyth et al., 2000a, 2000b). Diffraction from wadsleyite, ringwoodite,
 242 or a mixture of bridgemanite and periclase cannot explain the observed patterns. Instead, we find
 243 that the metastable phases Fo II and Fo III (Finkelstein et al., 2014) can provide a reasonable
 244 match (Fig. 3b). It should be noted that Fo II crystallizes in the triclinic system ($P1$, $Z=4$)
 245 resulting in a complex diffraction pattern with many reflections. The large grain size maintained
 246 above the phase transition gives rise to insufficient powder averaging and diffraction spots to
 247 identify phases. This makes it difficult to rule out Fo II as a candidate phase. For simplicity, we
 248 have assigned the new peaks as Fo III throughout. Fo II and Fo III are both members of the post-
 249 spinel family of AB_2X_4 compounds. *Ab initio* calculations suggest that only Fo III is expected to
 250 be dynamically metastable (Bouibes & Zaoui, 2020; Zhang et al., 2019).

251 Our results are in agreement with recent *in situ* XRD results from gas-gun experiments,
 252 which first reported evidence for the formation of Fo III during dynamic loading of forsterite
 253 (Newman et al., 2018). We observe Fo III at a lower stress (~ 33 GPa) than reported observations
 254 of 50 and 58 GPa in 300-K static-compression experiments (Finkelstein et al., 2014) and 44 GPa
 255 in gas-gun experiments (Newman et al., 2018). Notably, *ab initio* computational studies have
 256 indicated that metastable Fo III may be able to form at as low as ~ 22 GPa (Zhang et al., 2019).
 257 These results show that the transformation from Fo to Fo III can proceed readily over timescales
 258 ranging from 10 ns (this study) to hundreds of ns (gas gun) as well as under 300-K static
 259 compression.


260 Shortly after the beginning of release (+2.0 ns), Fo III peaks are still observed, but are
 261 markedly weaker (Fig. 3b). Based on the measured unit-cell volume ($V = 264 \text{ \AA}^3$) of forsterite,

262 the estimated stress at this time point is near 15 GPa. Fo III is retained until 12 GPa on
263 decompression at 300 K in diamond-anvil-cell experiments (Finkelstein et al., 2014). By +5.5 ns,
264 the observed pattern can be indexed as forsterite except for a single peak near a two-theta value
265 of 18°, which corresponds to the (002) reflection of Fo III. At +28.5 ns, all diffraction peaks can
266 be assigned to Fo. The unit-cell volume ($V = 300 \text{ \AA}^3$) at this time is larger than that of ambient
267 forsterite ($V = 290 \text{ \AA}^3$). In addition, a broad feature is observed over 20-30° two-theta (Fig. S5),
268 suggesting the possible presence of amorphous material. In static experiments, the amorphization
269 of Fo III at ambient conditions was observed on decompression below 12 GPa (Finkelstein et al.,
270 2014).

271 Fo III peaks were observed for all four types of starting materials when shock-
272 compressed to stresses in the range of 33 to 75 GPa (Supplemental Material, Table S1). In
273 experiments on an [010]-oriented crystal shocked to 40 ± 2 GPa, a mixture of compressed Fo and
274 Fo III was observed (Fig. S6). The lattice parameters of the Fo III could not be determined due to
275 an insufficient number of observed peaks. Figure 4 shows the 2D diffraction image and
276 corresponding integrated 1D pattern for [010] Fo shocked to 72 ± 4 GPa. The observed peaks are
277 indexed as a mixture of Fo and Fo III. The integrated pattern is similar to that obtained from gas-
278 gun shock-compression experiments (Newman et al., 2018) (Fig. S7). However, in contrast to
279 Newman et al. (2018), who interpreted their gas-gun XRD pattern as a complete transformation
280 to Fo III, our interpretation is that compressed Fo and Fo III coexist at 40-44 and 72-73 GPa
281 under both laser and gas-gun compression (Fig. S7).


282 The 72-GPa diffraction pattern for shock-compressed [010] forsterite shows a complex
283 combination of broad spots and ring-like peaks (Fig. 4). In this case, we observed that the single-
284 crystal sample was altered by the X-ray beam during the pre-shot diffraction measurement. As
285 shown in Fig. S8, exposure of single-crystal sample to the FEL X-ray beam resulted in the
286 appearance of multiple diffraction spots on subsequent exposure. This indicated that the single
287 crystal disintegrated into smaller crystallites. X-ray damage due to FEL pulses has been
288 identified in previous studies on diamond and other materials (Inoue et al., 2016; Medvedev et
289 al., 2018).

290 Figure 5 shows the relative lattice parameters determined for Fo and Fo III in this study
291 compared with previous shock (gas-gun) and static-compression data (Supplemental Material,
292 Table S1). Although there are considerable uncertainties in the shock-wave data due to the spotty
293 nature of the patterns as well as stress uncertainty, the lattice parameters are generally consistent
294 with static data (Finkelstein et al., 2014; Newman et al., 2018) and *ab initio* computations
295 (Zhang et al., 2019). Shock-induced defects and shear stresses may account for discrepancies
296 between our data and some *ab initio* studies (Zhang et al., 2019).

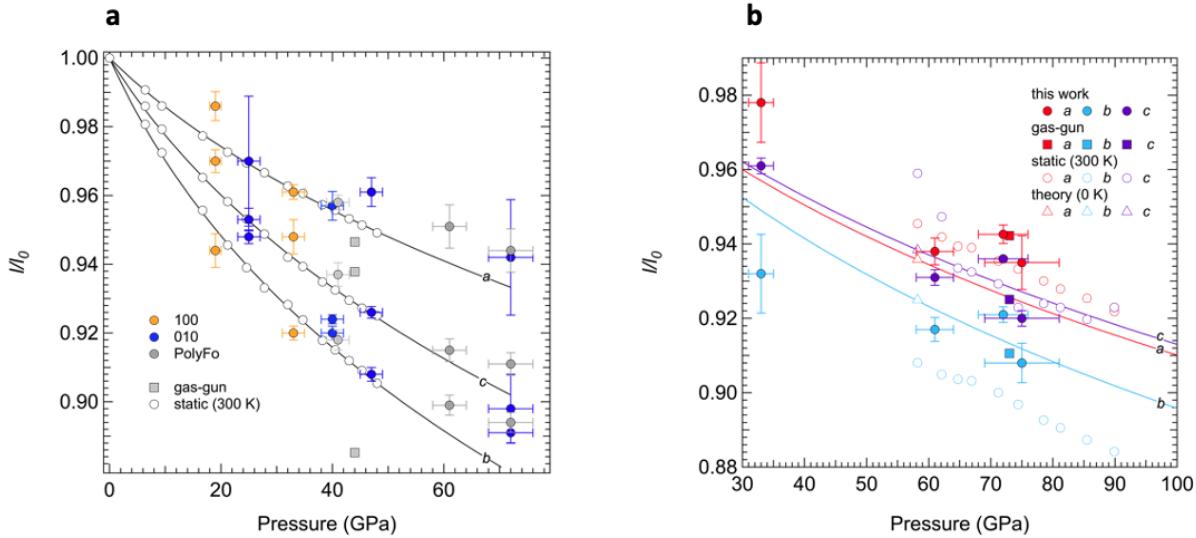

297
298
299
300
301
302
303

Figure 3. Integrated diffraction patterns for [100]-oriented single-crystal forsterite shots. X-ray probe times are with respect to the shock arrival at the LiF window or the free surface. **a)** At ~19 GPa, the pattern can be indexed as forsterite as indicated by the light blue tick marks below the pattern. **b)** At 33 GPa, Fo and Fo III peaks (blue tick marks) are observed at probe times of -1.5 to 2.0 ns. Upon decompression by +5.5 ns to 28.5 ns, only Fo peaks and amorphous structure (yellow shaded region) are observed.

304
305
306
307
308
309
310

Figure 4. Background-subtracted 1D diffraction pattern (below) with CSPAD images (above) for [010]-oriented forsterite shocked to 72 GPa compared to the calculated pattern (black) for a mixture of forsterite (light blue, dashed) and Fo III (blue, dashed). The mixed phase assemblage can explain the observed peaks (inset) and largely matches the observed intensities.

311
312

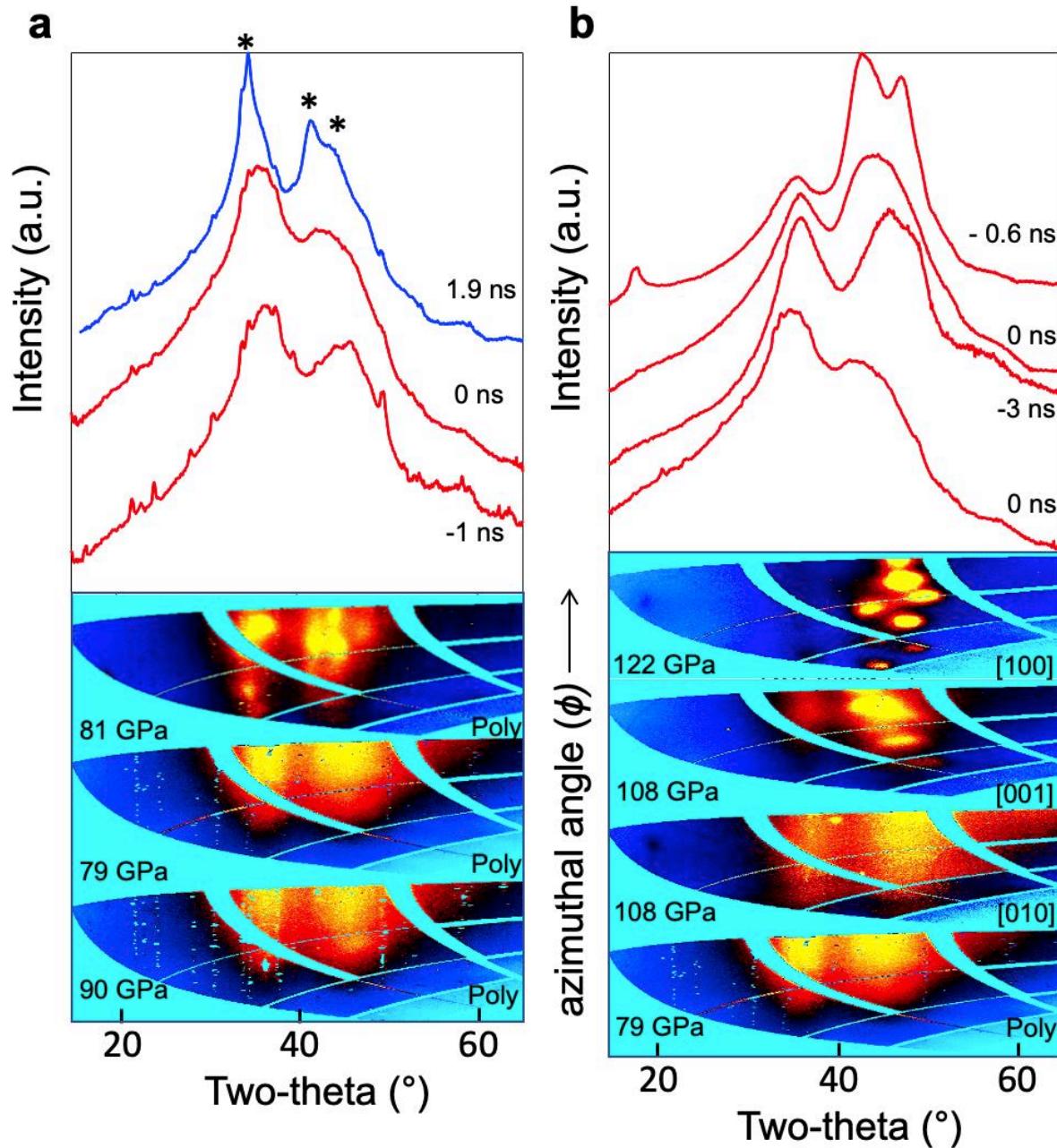
313 Figure 5. Relative unit-cell axial lengths of (a) forsterite and (b) Fo III under shock and static
 314 compression. **a)** Filled symbols are shock data (this study and gas-gun measurements (Newman
 315 et al., 2018)) and open symbols are static data (Finkelstein et al., 2014). The 300-K Fo pressure-
 316 volume equation of state (EOS) from static-compression data are shown as black solid lines. **b)**
 317 Open symbols are static (Finkelstein et al., 2014) and theoretical data (Zhang et al., 2019). The
 318 Fo III EOS from the theoretical data is shown as red, purple and light-blue solid lines. For
 319 tabular data, see the Supplemental Material, Table S1.

320
321
322

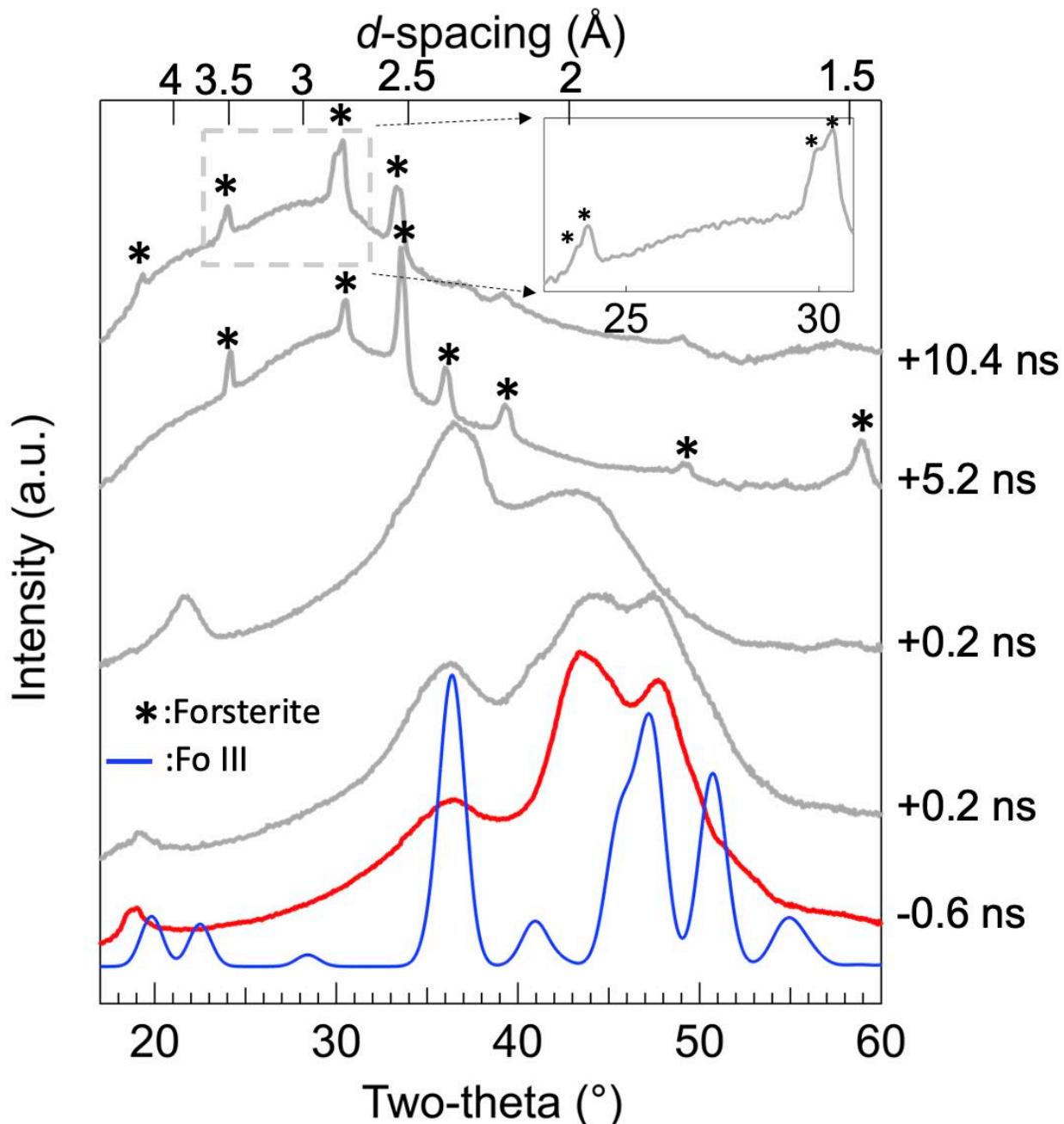
323 3.3. High-Pressure Phase Regime (above 79 GPa)

324 Although Fo III is observed at 61 ± 3 GPa for the shocked polycrystalline sample, the
 325 diffraction pattern changes between 79 ± 5 and 90 ± 6 GPa (Fig. 6a). At these stresses, we
 326 observe two broad, untextured peaks, which we interpret as amorphization of the sample (see
 327 discussion below). On release from these stresses, diffraction spots begin to emerge, indicating
 328 crystallization from the amorphous phase (top traces in Fig. 6a). Predicted diffraction peak
 329 positions for Fo III are compared to the observed pattern in Fig. S9, but neither Fo III nor Fo can
 330 explain one peak near a two-theta value of $41\text{--}42^\circ$. We speculate that a related post-spinel
 331 structure may form on release. A variety of related post-spinel structures have been identified in
 332 AB₂X₄ compounds at high pressure (Errandonea, 2014; Yamanaka et al., 2008).

333 Diffraction measurements were performed for the [010] and [001] orientations at 108 ± 8
 334 GPa (Fig. 6b). In contrast to the polycrystalline material, these diffraction patterns show
 335 evidence of significant disordering, but not complete amorphization. The [001] sample retains a
 336 higher degree of crystallinity than the [010] orientation. Upon integration, the diffraction patterns
 337 for all three crystals are broadly similar, consisting of two broad diffraction features near 36 and
 338 47° two-theta (Fig. 6b). This suggests that there is a continuous evolution from a disordered
 339 crystal to a fully amorphous phase with an amorphization stress that depends on the sample's
 340 starting orientation.


341 In contrast, [100] forsterite shocked to a peak stress of 122 ± 24 GPa retains a high
 342 degree of crystallinity as indicated by the spotty nature of the diffraction pattern (Fig. 6b). In this

343 case, the observed peaks cannot be indexed as Fo nor Fo III, as neither of these structures alone
344 nor a mixture of the two phases can explain the peak near a two-theta of 44° ($\sim 1.95 \text{ \AA}$) (Fig. 7).
345 We attempted to index the peaks to other possible post-spinel-type phases of Mg_2SiO_4 , but could
346 not explain the observed peaks. High-pressure equilibrium phase assemblages such as
347 bridgmanite and periclase or post-perovskite and periclase also fail to explain the observed
348 pattern. Therefore, [100] Fo shocked to this stress appears to transform to an unknown high-
349 pressure phase or a mixture of Fo III and an unknown phase.


350 Just after breakout (+0.2 ns), the diffraction peaks broaden (Figs. 7 and S5c). The two
351 shots at the same delay time show different degrees of crystallinity, which may reflect shot-to-
352 shot variation of the sample thickness, peak stress for a particular laser setting, or a
353 heterogeneous stress state on release (Fig. S5).

354 Upon release at +5.2 ns, sharp Fo peaks are observed, demonstrating that this unknown
355 phase or phase assemblage reverts to forsterite ($V = 297\text{--}300 \text{ \AA}^3$) on decompression (Fig. 7).
356 This is consistent with our lower stress results. At +10.4 ns, two sets of closely spaced Fo
357 diffraction peaks are observed, suggesting that the interaction of release waves produces a
358 heterogeneous stress condition. Additionally, we observe a broad background at low two-theta,
359 comparable to the Mg_2SiO_4 liquid and glass reported by Wilding et al. (2008). This suggests that
360 the unknown phase may have become amorphous or could be partially melted due to the residual
361 high temperature on release (Fig. 2).

362

363
 364 Figure 6. Integrated X-ray diffraction patterns compared with CSPAD images. **a**) Time series at
 365 a peak stress of 79 - 90 GPa for a polycrystalline sample. The sample becomes amorphous at
 366 these stresses on compression. Diffraction peaks from the uncompressed starting material
 367 produce the small, sharp peaks on the 79- and 90-GPa spectra. These peaks are mostly masked
 368 here to more clearly show the amorphous structure. Upon release (+1.9 ns), new peaks (asterisks)
 369 appear that cannot be assigned to forsterite or Fo III. **b**) The degree of amorphization is highly
 370 dependent on the starting material (see the lower CSPAD images). A fully amorphous structure
 371 is observed at 79 GPa for the polycrystalline sample, whereas a partial loss of crystallinity and
 372 amorphous structure are observed for the [010] and [001] samples at 108 GPa. The [100] sample
 373 retains crystalline peaks at 122 GPa.
 374

375
376

377 Figure 7. Integrated diffraction patterns for time series of shock compressed [100]-oriented
 378 forsterite collected at a peak stress of ~ 122 GPa for [100] single crystals. The calculated pattern
 379 for Fo III (blue) is compared to the observed data (red, gray). Asterisks indicate forsterite peaks
 380 upon release. The inset shows an expanded view of the region in the gray box.

381
382
383
384
385
386

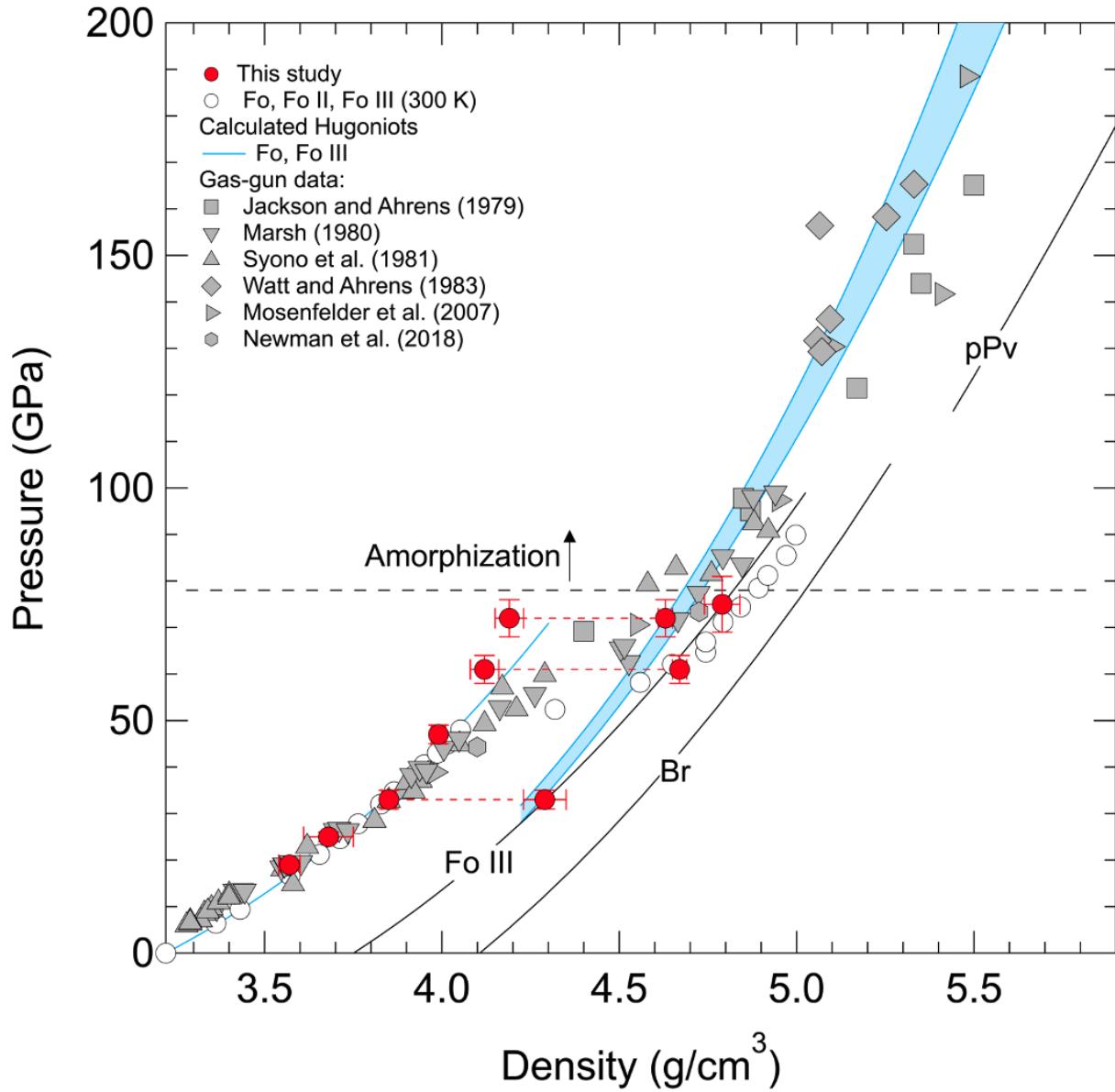
387 **4. Discussion**

388

389 **4.1. Wave profiles and peak elastic stress**

390 The VISAR wave profiles provide constraints on the peak elastic precursor stress, σ_E , of
 391 forsterite under the nanosecond timescales of laser-shock compression. The highest-quality data
 392 were obtained for the [010]-oriented single-crystal starting material as shown in Fig. S10. The
 393 measured σ_E values are 13, 18 and 26 GPa for shots corresponding to peak sample stresses of 40,
 394 47 and 72 GPa, respectively, using the orientation-dependent U_s - u_p relation in the elastic region
 395 shown in Fig. S3 (Syono, Goto, Sato, et al., 1981). These values are larger than the previously
 396 reported σ_E of 12 GPa for crystals shocked along [010] to peak stresses of 15-37 GPa from gas-
 397 gun studies (Syono, Goto, Sato, et al., 1981). Our results show a strong correlation between σ_E
 398 and the peak stress, which was also not observed in the gas-gun experiments. A large increase in
 399 σ_E in high-strain-rate laser-driven compression experiments has also been reported in other
 400 materials (Smith et al., 2011; Tracy et al., 2019). None of the measured wave profiles show
 401 evidence for any additional multi-wave structure that could be associated with a crystalline phase
 402 transformation or amorphization.

403


404 **4.2. Equation of state**

405 A mixture of Fo and Fo III is observed on the Hugoniot from 33 to 75 GPa. Figure 8
 406 shows densities obtained from our XRD measurements compared with those measured at the
 407 continuum level from gas-gun experiments. Beginning at 28 GPa, continuum Hugoniot states
 408 become at first slightly and then increasingly denser than forsterite at 300 K, consistent with the
 409 appearance and growth of the denser polymorph, as observed in our XRD data. Above 60 GPa,
 410 the densities of Fo III determined from our X-ray data are similar to static-compression results
 411 for this phase (Finkelstein et al., 2014). The fraction of Fo III is ~50-80 %, based on a
 412 comparison of the densities derived from the XRD patterns for Fo and Fo III at 72 GPa (Fig. 4)
 413 with those measured at the continuum level in gas-gun experiments at about this stress (Fig. 8).
 414 This is broadly comparable to the observed relative diffraction intensities of the spotty sample,
 415 although given the large crystal size only qualitative analysis of peak intensities is possible (Fig
 416 4).

417 In light of these findings, we recalculated linear fits to the shock velocity – particle
 418 velocity relationships for forsterite from gas-gun experiments using our new assignments for the
 419 low-pressure phase (LPP) and mixed-phase (MP) regimes (Fig. S3). The best-fit relationships
 420 along the Fo Hugoniot are: $U_s = 6.41(24) + 1.03(2)u_p$ for the LPP region (fit to data in the range
 421 $0.71 \leq u_p \leq 1.28$ km/s corresponding to the stress range of 18 - 33 GPa); and $U_s = 7.06(17) +$
 422 $0.64(8)u_p$ for the MP region (fit to data in the range $1.37 \leq u_p \leq 2.86$ km/s corresponding to
 423 the stress range of 35 - 82 GPa) (see also Supplemental Material, Table S2).

424 The transition pressure to Fo III observed in the present work (~33 GPa) is lower than
 425 that observed in static studies (50 GPa for Fo II and 58 GPa for Fo III) (Finkelstein et al., 2014).
 426 This could partially be related to a sluggish reaction rate of the transition at room temperature
 427 (Zhang et al., 2019). Alternatively, large shear stresses under shock loading may play a role in
 428 driving the transition. A lowering of phase-transition pressure/stress in laser-based dynamic
 429 compression relative to static compression has been reported in other materials such as Si
 430 (McBride et al., 2019).

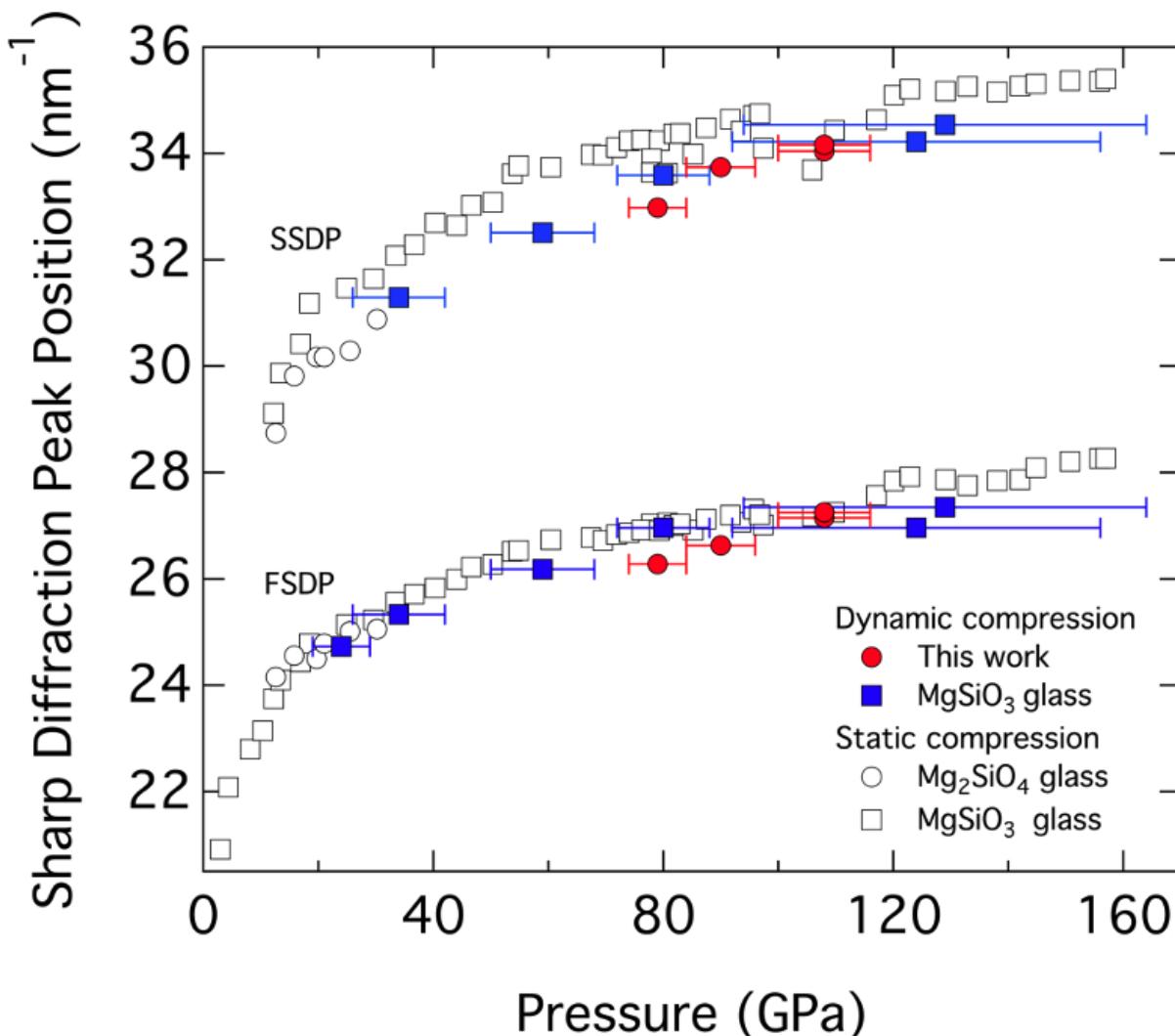
431

432
 433
 434
 435 Figure 8. Densities determined from the present data (red symbols) compared to continuum gas-
 436 gun results (gray symbols) (Jackson & Ahrens, 1979; Marsh, 1980; Mosenfelder et al., 2007;
 437 Newman et al., 2018; Syono, Goto, Sato, et al., 1981; Watt & Ahrens, 1983). 300-K static
 438 compression data are shown as open symbols (Finkelstein et al., 2014). The light-blue solid line
 439 and shaded region indicate a calculated Hugoniot for forsterite and Fo III based on the
 440 thermodynamic parameters in the Supplemental Material, Table S6. The densities of the two
 441 components (Fo and Fo III) in the mixed-phase region are connected by red dashed lines. The Fo
 442 III (Zhang et al., 2019), bridgemanite (Br) (Tange et al., 2012) and post perovskite (pPv) (Sakai et
 443 al., 2016) pressure-volume EOS at 300 K are shown as solid curves.
 444
 445
 446

447 4.3. Amorphization

448 Diffraction data from silicate glasses are generally characterized by a broad peak at low
 449 Q [$Q = 4\pi \sin \theta / \lambda$, where λ equals wavelength] values, known as the first sharp diffraction
 450 peak (FSDP). Under compression, a second feature (2nd sharp diffraction peak, SSDP) also
 451 emerges in silicate glasses. Figure 9 shows the position of the first two sharp diffraction peaks
 452 (SDPs) for amorphous Mg₂SiO₄ in our study compared to previous static and shock data for
 453 Mg₂SiO₄ and MgSiO₃ glasses as a function of pressure. Our XRD data for shock-compressed
 454 Mg₂SiO₄ show values and trends similar to the dynamic- and static-compression data for
 455 MgSiO₃ glass (Supplemental Material, Table S5) (Morard et al., 2020) and static-compression
 456 data for Mg₂SiO₄ glass (Benmore et al., 2011). The pressure dependence of the SDP positions
 457 provides evidence of structural modifications under compression (Zeidler & Salmon, 2016). For
 458 Mg₂SiO₄, the first SDP has been ascribed primarily to Mg-Mg and Mg-Si interactions, whereas
 459 the second SDP is associated with O-O and Mg-O interactions appearing at high pressure
 460 (Adjaoud et al., 2008; Benmore et al., 2011). The datasets for the two phases show a similar
 461 trend with increasing pressure, indicating that the amorphous structures of Mg₂SiO₄ and MgSiO₃
 462 materials may exhibit similar behavior in terms of atomic positions and packing.

463 Pressure-induced amorphization has been observed in many materials under static or
 464 dynamic compression (Sharma & Sikka, 1996; Sikka & Gupta, 1998). Our results provide
 465 evidence for shock-induced amorphization of forsterite above 79 GPa (Fig. 6). This contrasts
 466 with previous interpretations of continuum gas-gun data that suggest decomposition to
 467 crystalline periclase and bridgmanite (Mosenfelder et al., 2007; Syono, Goto, Takei, et al., 1981).
 468 We do not observe any diffraction attributable to MgO in samples shocked to 122 GPa,
 469 suggesting that crystallization of MgO is inhibited by the short timescales of these experiments.
 470 In dynamic-compression experiments, transformation to an equilibrium or metastable crystalline
 471 assemblage over laser (~ns) and/or gas-gun (~μs) timescales may be inhibited by low ionic
 472 diffusivity in the solid state (Newman et al., 2018). As a result of this kinetic limitation, a
 473 shocked sample may adopt a metastable amorphous structure as an intermediate state.


474 Pressure-induced amorphization in silicates is often driven by shear instabilities (Richet
 475 & Gillet, 1997). The directional dependence of amorphization stress observed here may reflect
 476 differences in shear stress along the Hugoniot at high compression. Interestingly, the
 477 amorphization stress of Fo single crystals inversely correlates with their corresponding Hugoniot
 478 Elastic Limit (HEL) values (and shear strength) as reported by Syono et al. (1981). The [010]
 479 orientation, which has the highest HEL, exhibits more amorphization at lower stress than the
 480 [100] orientation, which possesses the lowest HEL and does not amorphize up to 122 GPa. The
 481 presence of stress anisotropy and different orientation relationships of the crystal with respect to
 482 potential high-pressure polymorphs may lead to structural collapse at stresses that differ by
 483 several tens of GPa for different orientations of Fo crystals.

484 It is well known that metals can retain at least some shear strength up until melting on the
 485 Hugoniot and elastic anisotropy has been identified in aluminum single crystals shocked to 70
 486 GPa (Choudhuri & Gupta, 2013). The degree of shear stress sustained by silicates under shock
 487 loading is less clear. Measurements of sound speeds in some silicates are consistent with bulk
 488 velocities and hence strengthless behavior (Dennis E. Grady et al., 1975). For shocked forsterite,
 489 an orientation dependence of the Hugoniot density was reported above 100 GPa (Watt & Ahrens,
 490 1983), but this was not confirmed in subsequent experiments (Michael D. Furnish & Brown,
 491 1986). Sound-velocity measurements on shocked polycrystalline Fo and single-crystal olivine
 492 from ~50-150 GPa suggest initial release-wave speeds consistent with longitudinal sound

493 velocities, and hence the retention of shear stiffness (J. M. Brown et al., 1987). Our results
 494 further suggest that Fo may possess shear-stress anisotropy, leading to orientation-dependent
 495 transformation behavior, as well as differences between single crystals and low-porosity
 496 polycrystals that are retained up to 100 GPa or more.

497

498

499

500

501 Figure 9. Position of the first (FSDP) and second (SSDP) sharp diffraction peaks for shocked-
 502 compressed [010], [001] and polycrystalline forsterite (red circles) compared to laser-shock data
 503 for MgSiO_3 (blue squares) (Morard et al., 2020) and static-compression data (open symbols) for
 504 Mg_2SiO_4 (Benmore et al., 2011) and MgSiO_3 (Morard et al., 2020) glasses. For tabular data, see
 505 the Supplemental Material, Table S5.

506

507

508

509

510

511 4.4. Stress Release at Late Time

512 X-ray diffraction patterns were recorded up to 63 ns after the start of stress release for
513 select samples. We consistently observe persistence of, or recovery of, the forsterite structure
514 after unloading (Figs. 3, 7 and S5). The diffraction patterns at these late times (~10-63 ns after
515 shock breakout) have extended Debye-Scherrer rings compared to the shock-compressed states,
516 indicating that the crystals have broken into or recrystallized as finer-grained crystallites showing
517 a broader distribution of orientations. The unit-cell volumes obtained from our diffraction data
518 upon release are larger than that of ambient forsterite by 2.0 %, 4.5 %, and 5.9% following peak
519 stresses of 19, 33, and 122 GPa, respectively. This increase in volume may in part reflect residual
520 high post-shock temperatures after adiabatic release.

521 The temperatures required to account for the observed late-time volumes following shock
522 compression to the low stresses of 19 and 33 GPa in our experiments are about 880 and 1250 K,
523 respectively, based on the thermal expansivity of forsterite (Kroll et al., 2012). These
524 temperatures are significantly higher than the post-shock temperatures expected along the
525 isentropic release paths (< 500 K) (Fig. 2), which should result in a volume expansion of less
526 than 1 % at 1 bar. Recent molecular dynamic simulations and shock experiments (Heighway et
527 al., 2019) have reported that the post-shock temperature of tantalum and rocks greatly exceeds
528 values predicted by isentropic release. This difference is primarily explained by plastic-work
529 heating with an additional contribution from heat released by the defects. Kurosawa and Genda
530 (2018) has also suggested that additional heating on release in rocks with strength becomes
531 significant using hydrodynamic simulations. Although the strength and nature of defects in Fo on
532 shock loading and release are not known, we speculate that similar mechanisms may be
533 operating in these silicate samples, contributing to the larger-than-expected observed released
534 volumes.

535 Alternatively, we speculate that additional lattice expansion could arise from the small
536 amounts of tension generated from the interaction of unloading waves. The spall strength
537 determines the magnitude of tension that can be dynamically sustained. A uniform tensile stress
538 of 1-3 GPa would be sufficient to explain the observed volumes for the low-stress shots (19 and
539 33 GPa), considering post-shock temperatures from isentropic release alone (Fig. 2). The spall
540 strength of Fo is unknown, but available measurements on minerals and rocks yield values from
541 0.08-1.9 GPa (SiO_2 = 0.08-0.11 GPa, gabbro = 0.15 GPa, eclogite = 0.24 GPa, Al_2O_3 = 0.5-0.8
542 GPa, and ZrO_2 = 1.5-1.9 GPa) for strain rates of $\sim 10^4$ to 10^5 s^{-1} in gas-gun experiments (Ai &
543 Ahrens, 2004; D E Grady, 1998). In general, the spall strength increases with increasing strain
544 rate, but decreases with increasing shock-induced temperature (Kanel et al., 1996). Strain rates in
545 laser-driven shock experiments (10^7 - 10^9 s^{-1}) are 3 to 5 orders of magnitude higher than in plate-
546 impact experiments, suggesting the spall strength of Fo may be higher than typical values
547 measured in gas-gun experiments.

548 For the high-stress shot (122 GPa), the temperature required to explain the measured
549 release volume ($V = 307 \text{ \AA}^3$) is about 1780 K. This is within the calculated temperature range
550 (1590 – 1910 K) expected along the isentropic-release path from the peak stress of 122 GPa (Fig.
551 2), indicating good agreement between the measured volume and the expected release
552 temperature. The higher temperature of these experiments may limit the material strength and
553 thus reduce the contribution of plastic work heating or tensile stress on release. There is also
554 evidence for possible amorphous or liquid Mg_2SiO_4 on release from this pressure (Fig. 7).

557 **5. Conclusion**

558

559 The atomic-level structure of forsterite was determined by X-ray diffraction under laser-
560 driven shock loading to 19 – 122 GPa. Our results indicate that a mixture of forsterite and the
561 metastable polymorph forsterite III coexists from ~33 to 75 GPa along the Hugoniot. This is
562 generally consistent with a previous X-ray diffraction study using gas-gun experiments. The
563 lattice parameters and densities for forsterite and forsterite III determined from our shock data
564 are consistent with values from continuum gas-gun data, as well as static-compression and gas-
565 gun X-ray diffraction studies. These results indicate that the transformation of forsterite to
566 forsterite III can occur on timescales ranging from 10s of nanoseconds (laser compression) to
567 ~microseconds (gas gun), as well as under low-temperature (300 K) static compression.

568

569 Higher stress behavior under dynamic loading depends on the initial crystal orientation.
570 Polycrystalline forsterite undergoes amorphization above 79 GPa, but the [100]- and [001]-
571 oriented single crystals show only partially disordered structures at 108 GPa. For the [100]
572 orientation, an unknown crystalline phase occurs up to 122 GPa. For amorphous Mg_2SiO_4 at 79-
573 108 GPa, two sharp diffraction peaks are observed. These exhibit behavior similar to amorphous
574 Mg_2SiO_4 and $MgSiO_3$ under static compression and $MgSiO_3$ under dynamic compression,
575 implying that the two materials may adopt similar dense structures under compression.

576

577 Upon release from high stress, we observe retention of or reversion to forsterite, with
578 some evidence for the presence of amorphous material. The measured unit-cell volumes upon
579 release from (peak stress) of 19 and 33 GPa are larger than the 300-K values. This difference
580 may be explained by residual shock temperatures, plastic-work heating, and/or tensile stress. The
581 unit-cell volume upon release from 122 GPa is consistent with the expected residual temperature
582 due to isentropic release.

583

584 Overall, this study provides insight into the mechanisms and transformation pathways of
585 forsterite under nanosecond-duration shock loading. Future experiments are needed to better
586 understand the effects of timescale and loading rate on kinetics, metastability, and amorphization
587 and thereby provide a better understanding of the behavior of this fundamental mineral across the
588 timescales of laboratory and natural impact events.

589

590 **Acknowledgements**
591 The authors are grateful to Carol Davis of the target fabrication team at Lawrence Livermore
592 National Laboratory (LLNL) and the staff at Matter in Extreme Conditions end-station for
593 experimental assistance. A. M. Dillman and J. L. Mosenfelder synthesized the sintered
594 polycrystalline samples. Gregory J. Finkelstein provided helpful comments on the manuscript.
595 This research was supported by the U.S. Department of Energy (DE-SC0018925) and the
596 National Science Foundation (NSF) (EAR-1644614). AEG acknowledges support from LANL
597 Reines LDRD and the NSF Geophysics Program EAR-1446969. PDA acknowledges support
598 from NSF Geophysics Program award EAR-1725349. MS and KA acknowledge support from
599 the German Research Foundation DFG (AP 262/2-1 and FOR2440). This work was also
600 performed under the auspices of the U.S Department of Energy by LLNL under contract No.
601 DE-AC52-07NA27344. Use of the Linac Coherent Light Source, SLAC National Accelerator
602 Laboratory, is supported by the Department of Energy, Office of Science, Office of Fusion
603 Energy Sciences under Contract No. DE-AC02-76SF00515.

603 Additional experimental parameters and details of data extraction are available in the supporting
 604 information. Data from this work will be made available in the Department of Geosciences
 605 community of Princeton University's DataSpace.

606

607 **References**

608

- 609 Adjaoud, O., Steinle-Neumann, G., & Jahn, S. (2008). Mg₂SiO₄ liquid under high pressure from
 610 molecular dynamics. *Chemical Geology*, 256(3–4), 185–192.
 611 <https://doi.org/10.1016/j.chemgeo.2008.06.031>
- 612 Ai, H.-A., & Ahrens, T. J. (2004). Dynamic tensile strength of terrestrial rocks and application to
 613 impact cratering. *Meteoritics & Planetary Science*, 39(2), 233–246.
 614 <https://doi.org/10.1111/j.1945-5100.2004.tb00338.x>
- 615 Bauer, Jon. F. (1979). Experimental shock metamorphism of mono- and polycrystalline olivine:
 616 A comparative study. *Proceedings of the Lunar Planetary Science Conference*, 10th,
 617 2573–2596.
- 618 Benmore, C. J., Soignard, E., Guthrie, M., Amin, S. A., Weber, J. K. R., McKiernan, K., et al.
 619 (2011). High pressure x-ray diffraction measurements on Mg₂SiO₄ glass. *Journal of Non-*
 620 *Crystalline Solids*, 357(14), 2632–2636. <https://doi.org/10.1016/j.jnoncrysol.2010.12.064>
- 621 van Boekel, R., Min, M., Leinert, Ch., Waters, L. B. F. M., Richichi, A., Chesneau, O., et al.
 622 (2004). The building blocks of planets within the 'terrestrial' region of protoplanetary
 623 disks. *Nature*, 432(7016), 479–482. <https://doi.org/10.1038/nature03088>
- 624 Bouibes, A., & Zaoui, A. (2020). High-pressure phase transitions of forsterite from first-
 625 principles. *Journal of Physics and Chemistry of Solids*, 136, 109161.
 626 <https://doi.org/10.1016/j.jpcs.2019.109161>
- 627 Brown, J. M., Furnish, M. D., & McQueen, R. G. (1987). Thermodynamics for (Mg,Fe)₂SiO₄
 628 from the Hugoniot. In M. H. Manghnani & Y. Syono (Eds.), *Geophysical Monograph
 629 Series* (Vol. 39, pp. 373–384). Washington, D. C.: American Geophysical Union.
 630 <https://doi.org/10.1029/GM039p0373>
- 631 Brown, S. B., Hashim, A., Gleason, A., Galtier, E., Nam, I., Xing, Z., et al. (2017). Shock drive
 632 capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac
 633 Coherent Light Source. *Review of Scientific Instruments*, 88(10), 105113.
 634 <https://doi.org/10.1063/1.4997756>
- 635 Choudhuri, D., & Gupta, Y. M. (2013). Shock compression of aluminum single crystals to 70
 636 GPa: Role of crystalline anisotropy. *Journal of Applied Physics*, 114(15), 153504.
 637 <https://doi.org/10.1063/1.4824825>
- 638 Errandonea, D. (2014). AB₂O₄ compounds at high pressures. In F. J. Manjon, I. Tiginyanu, & V.
 639 Ursaki (Eds.), *Pressure-Induced Phase Transitions in AB₂X₄ Chalcogenide Compounds*
 640 (Vol. 189, pp. 53–73). Berlin, Heidelberg: Springer Berlin Heidelberg.
 641 https://doi.org/10.1007/978-3-642-40367-5_2
- 642 Finkelstein, G. J., Dera, P. K., Jahn, S., Oganov, A. R., Holl, C. M., Meng, Y., & Duffy, T. S.
 643 (2014). Phase transitions and equation of state of forsterite to 90 GPa from single-crystal
 644 X-ray diffraction and molecular modeling. *American Mineralogist*, 99(1), 35–43.
 645 <https://doi.org/10.2138/am.2014.4526>
- 646 Frost, D. J. (2008). The upper mantle and transition zone. *Elements*, 4(3), 171–176.
 647 <https://doi.org/10.2113/GSELEMENTS.4.3.171>

- 648 Furnish, M. D., Grady, D. E., & Brown, J. M. (1986). Analysis of shock wave structure in single-
649 crystal olivine using VISAR. In Y. M. Gupta (Ed.), *Shock Waves in Condensed Matter*
650 (pp. 595–600). North Holland, New York.
- 651 Furnish, Michael D., & Brown, J. M. (1986). Shock loading of single-crystal olivine in the 100–
652 200 GPa range. *Journal of Geophysical Research*, 91(B5), 4723.
653 <https://doi.org/10.1029/JB091iB05p04723>
- 654 Gillet, P., El Goresy, A., Beck, P., & Chen, M. (2007). High-pressure mineral assemblages in
655 shocked meteorites and shocked terrestrial rocks: Mechanisms of phase transformations
656 and constraints to pressure and temperature histories. In E. Ohtani, *Advances in High-
657 Pressure Mineralogy* (pp. 57–82). Geological Society of America.
658 [https://doi.org/10.1130/2007.2421\(05\)](https://doi.org/10.1130/2007.2421(05))
- 659 Grady, D. E. (1998). Shock-wave compression of brittle solids. *Mechanics of Materials*, 29, 181–
660 203.
- 661 Grady, Dennis E., Murri, W. J., & De Carli, P. S. (1975). Hugoniot sound velocities and phase
662 transformations in two silicates. *Journal of Geophysical Research*, 80(35), 4857–4861.
663 <https://doi.org/10.1029/JB080i035p04857>
- 664 Hanner, M. S. (1999). The Silicate Material in Comets. In K. Altweig, P. Ehrenfreund, J. Geiss,
665 & W. F. Huebner (Eds.), *Composition and Origin of Cometary Materials* (pp. 99–108).
666 Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-011-4211-3_10
- 667 Heighway, P. G., Sliwa, M., McGonegle, D., Wehrenberg, C., Bolme, C. A., Eggert, J., et al.
668 (2019). Nonisentropic release of a shocked solid. *Physical Review Letters*, 123(24),
669 245501. <https://doi.org/10.1103/PhysRevLett.123.245501>
- 670 Inoue, I., Inubushi, Y., Sato, T., Tono, K., Katayama, T., Kameshima, T., et al. (2016).
671 Observation of femtosecond X-ray interactions with matter using an X-ray–X-ray pump–
672 probe scheme. *Proceedings of the National Academy of Sciences*, 113(6), 1492–1497.
673 <https://doi.org/10.1073/pnas.1516426113>
- 674 Jackson, I., & Ahrens, T. J. (1979). Shock wave compression of single-crystal forsterite. *Journal
675 of Geophysical Research*, 84(B6), 3039. <https://doi.org/10.1029/JB084iB06p03039>
- 676 Jeanloz, R. (1980). Shock effects in olivine and implications for Hugoniot data. *Journal of
677 Geophysical Research*, 85(B6), 3163. <https://doi.org/10.1029/JB085iB06p03163>
- 678 Kanel, G. I., Razorenov, S. V., Bogatch, A., Utkin, A. V., Fortov, V. E., & Grady, D. E. (1996).
679 Spall fracture properties of aluminum and magnesium at high temperatures. *Journal of
680 Applied Physics*, 79(11), 8310–8317. <https://doi.org/10.1063/1.362542>
- 681 Katsura, T., & Ito, E. (1989). The system Mg_2SiO_4 – Fe_2SiO_4 at high pressures and temperatures:
682 Precise determination of stabilities of olivine, modified spinel, and spinel. *Journal of
683 Geophysical Research: Solid Earth*, 94(B11), 15663–15670.
684 <https://doi.org/10.1029/JB094iB11p15663>
- 685 de Koker, N. P., Stixrude, L., & Karki, B. B. (2008). Thermodynamics, structure, dynamics, and
686 freezing of Mg_2SiO_4 liquid at high pressure. *Geochimica et Cosmochimica Acta*, 72(5),
687 1427–1441. <https://doi.org/10.1016/j.gca.2007.12.019>
- 688 Kroll, H., Kirfel, A., Heinemann, R., & Barbier, B. (2012). Volume thermal expansion and
689 related thermophysical parameters in the Mg, Fe olivine solid-solution series. *European
690 Journal of Mineralogy*, 24(6), 935–956. <https://doi.org/10.1127/0935-1221/2012/0024-2235>

- 692 Kurosawa, K., & Genda, H. (2018). Effects of friction and plastic deformation in shock-
693 comminuted damaged rocks on impact heating. *Geophysical Research Letters*, 45(2),
694 620–626. <https://doi.org/10.1002/2017GL076285>
- 695 Langenhorst, F., Boustie, M., Migault, A., & Romain, J. P. (1999). Laser shock experiments with
696 nanoseconds pulses: a new tool for the reproduction of shock defects in olivine. *Earth*
697 and *Planetary Science Letters*, 173(3), 333–342. [https://doi.org/10.1016/S0012-821X\(99\)00224-1](https://doi.org/10.1016/S0012-821X(99)00224-1)
- 698 Langenhorst, Falko. (2002). Shock metamorphism of some minerals: Basic introduction and
699 microstructural observations. *Bulletin of the Czech Geological Survey*, 77, 265–282.
- 700 Lavina, B. (2019). Crystalline forsterite to 160 GPa. *Goldschmidt Conference*.
- 701 Luo, S.-N., Akins, J. A., Ahrens, T. J., & Asimow, P. D. (2004). Shock-compressed MgSiO_3
702 glass, enstatite, olivine, and quartz: Optical emission, temperatures, and melting. *Journal*
703 of *Geophysical Research: Solid Earth*, 109(B5). <https://doi.org/10.1029/2003JB002860>
- 704 Marsh, S. P. (1980). LASL Shock Hugoniot Data (Vol. 5). Berkeley, California: University of
705 California Press.
- 706 Mason, B. (1963). Olivine composition in chondrites. *Geochimica et Cosmochimica Acta*, 27,
707 1011–1023.
- 708 McBride, E. E., Krygier, A., Ehnes, A., Galtier, E., Harmand, M., Konôpková, Z., et al. (2019).
709 Phase transition lowering in dynamically compressed silicon. *Nature Physics*, 15(1), 89–
710 94. <https://doi.org/10.1038/s41567-018-0290-x>
- 711 Medvedev, N., Tkachenko, V., Lipp, V., Li, Z., & Ziaja, B. (2018). Various damage mechanisms
712 in carbon and silicon materials under femtosecond X-ray irradiation. *4open*, 1, 3.
713 <https://doi.org/10.1051/fopen/2018003>
- 714 Morard, G., Hernandez, J.-A., Guaraguaglini, M., Bolis, R., Benuzzi-Mounaix, A., Vinci, T., et al.
715 (2020). In situ X-ray diffraction of silicate liquids and glasses under dynamic and static
716 compression to megabar pressures. *Proceedings of the National Academy of Sciences*.
717 <https://doi.org/10.1073/pnas.1920470117>
- 718 Mosenfelder, J. L., Asimow, P. D., & Ahrens, T. J. (2007). Thermodynamic properties of
719 Mg_2SiO_4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite
720 and wadsleyite. *Journal of Geophysical Research*, 112(B6), B06208.
721 <https://doi.org/10.1029/2006JB004364>
- 722 Müller, W. F., & Hornemann, U. (1969). Shock-induced planar deformation structures in
723 experimentally shock-loaded olivines and in olivines from chondritic meteorites. *Earth*
724 and *Planetary Science Letters*, 7(3), 251–264. [https://doi.org/10.1016/0012-821X\(69\)90062-4](https://doi.org/10.1016/0012-821X(69)90062-4)
- 725 Mustard, J. F., Poulet, F., Gendrin, A., Bibring, J.-P., Langevin, Y., Gondet, B., et al. (2005).
726 Olivine and pyroxene diversity in the crust of Mars. *Science*, 307(5715), 1594–1597.
727 <https://doi.org/10.1126/science.1109098>
- 728 Nagler, B., Arnold, B., Bouchard, G., Boyce, R. F., Boyce, R. M., Callen, A., et al. (2015). The
729 matter in extreme conditions instrument at the Linac Coherent Light Source. *Journal of*
730 *Synchrotron Radiation*, 22(3), 520–525. <https://doi.org/10.1107/S1600577515004865>
- 731 Newman, M. G., Kraus, R. G., Akin, M. C., Bernier, J. V., Dillman, A. M., Homel, M. A., et al.
732 (2018). In situ observations of phase changes in shock compressed forsterite.
733 *Geophysical Research Letters*, 45(16), 8129–8135.
734 <https://doi.org/10.1029/2018GL077996>

- 737 Nguyen, A. N. (2004). Discovery of ancient silicate stardust in a meteorite. *Science*, 303(5663),
738 1496–1499. <https://doi.org/10.1126/science.1094389>
- 739 Oganov, A. R., & Ono, S. (2004). Theoretical and experimental evidence for a post-perovskite
740 phase of $MgSiO_3$ in Earth's D" layer. *Nature*, 430, 445–448.
741 <https://doi.org/10.1038/nature02701>
- 742 Philipp, H. T., Hromalik, M., Tate, M., Koerner, L., & Gruner, S. M. (2011). Pixel array detector
743 for X-ray free electron laser experiments. *Nuclear Instruments and Methods in Physics
744 Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*,
745 649(1), 67–69. <https://doi.org/10.1016/j.nima.2010.11.189>
- 746 Prescher, C., & Prakapenka, V. B. (2015). *DIOPTAS* : a program for reduction of two-
747 dimensional X-ray diffraction data and data exploration. *High Pressure Research*, 35(3),
748 223–230. <https://doi.org/10.1080/08957959.2015.1059835>
- 749 Reimold, W. U., & Stöffler, D. (1978). Experimental shock metamorphism of dunite. *Proc.
750 Lunar Plaeta. Sci. Conf.*, 9th, 2805–2824.
- 751 Richet, P., & Gillet, P. (1997). Pressure-induced amorphization of minerals: a review. *European
752 Journal of Mineralogy*, 9(5), 907–934. <https://doi.org/10.1127/ejm/9/5/0907>
- 753 Ringwood, A. E. (1991). Phase transformations and their bearing on the constitution and
754 dynamics of the mantle. *Geochimica et Cosmochimica Acta*, 55(8), 2083–2110.
755 [https://doi.org/10.1016/0016-7037\(91\)90090-R](https://doi.org/10.1016/0016-7037(91)90090-R)
- 756 Sakai, T., Dekura, H., & Hirao, N. (2016). Experimental and theoretical thermal equations of
757 state of $MgSiO_3$ post-perovskite at multi-megabar pressures. *Scientific Reports*, 6(1),
758 22652. <https://doi.org/10.1038/srep22652>
- 759 Sharma, S. M., & Sikka, S. K. (1996). Pressure induced amorphization of materials. *Progress in
760 Materials Science*, 40(1), 1–77. [https://doi.org/10.1016/0079-6425\(95\)00006-2](https://doi.org/10.1016/0079-6425(95)00006-2)
- 761 Shinno, I. (2002). A Raman spectroscopic study of shocked forsterite. *Journal of Mineralogical
762 and Petrological Sciences*, 97(4), 153–160. <https://doi.org/10.2465/jmps.97.153>
- 763 Sikka, S. K., & Gupta, S. C. (1998). Shock induced amorphization of materials. *AIP Conference
764 Proceedings*, 429, 145–150.
- 765 Smith, R. F., Eggert, J. H., Rudd, R. E., Swift, D. C., Bolme, C. A., & Collins, G. W. (2011).
766 High strain-rate plastic flow in Al and Fe. *Journal of Applied Physics*, 110(12), 123515.
767 <https://doi.org/10.1063/1.3670001>
- 768 Smyth, J. R., Jacobsen, S. D., & Hazen, R. M. (2000a). Comparative crystal chemistry of dense
769 oxide minerals. *Reviews in Mineralogy and Geochemistry*, 41(1), 157–186.
770 <https://doi.org/10.2138/rmg.2000.41.6>
- 771 Smyth, J. R., Jacobsen, S. D., & Hazen, R. M. (2000b). Comparative crystal chemistry of
772 orthosilicate minerals. *Reviews in Mineralogy and Geochemistry*, 41(1), 187–209.
773 <https://doi.org/10.2138/rmg.2000.41.7>
- 774 Stacey, F. D., & Davis, P. M. (2008). *Physics of the Earth* (4th ed.). Cambridge: Cambridge
775 Univ. Press.
- 776 Syono, Y., Goto, T., Takei, H., Tokonami, M., & Nobugai, K. (1981). Association reaction in
777 forsterite under shock compression. *Science*, 214(4517), 177.
778 <https://doi.org/10.1126/science.214.4517.177>
- 779 Syono, Y., Goto, T., Sato, J., & Takei, H. (1981). Shock compression measurements of single-
780 crystal forsterite in the pressure range 15–93 GPa. *Journal of Geophysical Research:
781 Solid Earth*, 86(B7), 6181–6186. <https://doi.org/10.1029/JB086iB07p06181>

- 782 Tange, Y., Kuwayama, Y., Irifune, T., Funakoshi, K., & Ohishi, Y. (2012). P-V-T equation of
783 state of MgSiO_3 perovskite based on the MgO pressure scale: A comprehensive reference
784 for mineralogy of the lower mantle. *Journal of Geophysical Research: Solid Earth*,
785 117(B6), B06201. <https://doi.org/10.1029/2011JB008988>
- 786 Tateno, S., Hirose, K., Ohishi, Y., & Tatsumi, Y. (2010). The structure of iron in Earth's inner
787 core. *Science*, 330(6002), 359–361. <https://doi.org/10.1126/science.1194662>
- 788 Tracy, S. J., Smith, R. F., Wicks, J. K., Fratanduono, D. E., Gleason, A. E., Bolme, C. A., et al.
789 (2019). In situ observation of a phase transition in silicon carbide under shock
790 compression using pulsed x-ray diffraction. *Physical Review B*, 99(21), 214106.
791 <https://doi.org/10.1103/PhysRevB.99.214106>
- 792 Watt, J. P., & Ahrens, T. J. (1983). Shock compression of single-crystal forsterite. *Journal of
793 Geophysical Research: Solid Earth*, 88(B11), 9500–9512.
794 <https://doi.org/10.1029/JB088iB11p09500>
- 795 Wilding, M. C., Benmore, C. J., & Weber, J. K. R. (2008). In situ diffraction studies of
796 magnesium silicate liquids. *Journal of Materials Science*, 43(14), 4707–4713.
797 <https://doi.org/10.1007/s10853-007-2356-5>
- 798 Yamanaka, T., Uchida, A., & Nakamoto, Y. (2008). Structural transition of post-spinel phases
799 CaMn_2O_4 , CaFe_2O_4 , and CaTi_2O_4 under high pressures up to 80 GPa. *American
800 Mineralogist*, 93(11–12), 1874–1881. <https://doi.org/10.2138/am.2008.2934>
- 801 Zeidler, A., & Salmon, P. S. (2016). Pressure-driven transformation of the ordering in
802 amorphous network-forming materials. *Physical Review B*, 93(21), 214204.
803 <https://doi.org/10.1103/PhysRevB.93.214204>
- 804 Zerr, A. (1998). Solidus of Earth's deep mantle. *Science*, 281(5374), 243–246.
805 <https://doi.org/10.1126/science.281.5374.243>
- 806 Zhang, Y., Zhang, Y., Liu, Y., & Liu, X. (2019). A metastable Fo-III wedge in cold slabs
807 subducted to the lower part of the mantle transition zone: A hypothesis based on first-
808 principles simulations. *Minerals*, 9(3), 186. <https://doi.org/10.3390/min9030186>
- 809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827