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ABSTRACT

We propose a new randomized Bregman (block) coordinate de-
scent (RBCD) method for minimizing a composite problem, where
the objective function could be either convex or nonconvex, and the
smooth part are freed from the global Lipschitz-continuous (partial)
gradient assumption. Under the notion of relative smoothness based
on the Bregman distance, we prove that every limit point of the gen-
erated sequence is a stationary point. Further, we show that the it-
eration complexity of the proposed method is O(nε−2) to achieve
ε-stationary point, where n is the number of blocks of coordinates.
If the objective is assumed to be convex, the iteration complexity
is improved to O(nε−1). If, in addition, the objective is strongly
convex (relative to the reference function), the global linear conver-
gence rate is recovered. We also present the accelerated version of
the RBCD method, which attains an O(nε−1/γ) iteration complex-
ity for the convex case, where the scalar γ ∈ [1, 2] is determined by
the generalized translation variant of the Bregman distance. Con-
vergence analysis without assuming the global Lipschitz-continuous
(partial) gradient sets our results apart from the existing works in the
composite problems.

Index Terms— Bregman distance, Non-Lipschitz, Coordinate
Descent, Convex and Nonconvex Optimization

1. INTRODUCTION

In this paper, we consider an optimization problem as follows

minimize
x

F (x) ≡ f(x) + r(x), (1)

where r has block separable structure. More specifically, we have

r(x) =

n∑
i=1

ri(xi), (2)

where xi denotes a subvector of x with dimension Ni such that∑n
i=1Ni = N , and each ri is a (possibly nonsmooth) convex func-

tion.
Due to the block separable structure, Problem (1) can be solved

by (block) coordinate descent (CD) methods or their variants, es-
pecially in the large scale optimization problems. Roughly speak-
ing, these methods are based on the strategy of selecting one coordi-
nate/block of variables at each iteration using some index selection
procedure (e.g., cyclic, greedy, randomized). This often dramatically
reduces the computational complexity of the algorithms per iteration
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as well as memory storage, making these methods simple and sal-
able. See for instance [1, 2, 3, 4] and references therein, as well as
the recent comprehensive review paper [5].

A widely used assumption in showing the convergence of CD
methods in the literature is that the (partial) gradient of f is globally
Lipschitz-continuous. However, this could be a restrictive assump-
tion violated in diverse applications in practice, such as matrix fac-
torization [6, 7], tensor decomposition [8], matrix/tensor completion
[9], Poisson likelihood models [10], etc. Although this assumption
may be relaxed by adopting conventional line search methods, the
efficiency and computational complexity of the first-order method
are unavoidably distorted, especially when the size of the problem
is large. In fact, this longstanding issue also appears in the classical
proximal gradient descent (PGD) method. Fortunately, this issue is
solved in [11, 12, 13]. They develop a new framework called Breg-
man proximal gradient (BPG) method that adapts the geometry of f
by the Bregman distance. In such a way, the decrease of the objective
value can be still quantified. As a result, they are able to characterize
the convergence behavior of BPG for minimizing convex composite
problems without assuming globally Lipschitz-continuous gradient
of the objective function. Further, this framework has been extended
to the case of nonconvex optimization in [14].

Despite the crucial issue is solved in PGD-type methods, there
are only few results on CD-type methods. A cyclic Bregman coor-
dinate descent (CBCD) method has been proposed in [15, 16, 17],
but no rates are given. In [18], the authors provide a convergence
rate results using randomized (block) coordinate selection strategy
in the special case where F is smooth convex and r ≡ 0. To the
best of our knowledge, how to deal with this crucial issue is still
an open problem, when using CD methods to solve a nonsmooth
and convex/nonconvex Problem (1). In this paper, we bridge this
gap by proposing a randomized Bregman (block) coordinate descent
(RBCD) method. In each iteration, a (block) coordinate is selected
uniformly at random, and updated using the Bregman proximal map-
ping, while the rest of blocks are fixed. The main contributions are
summarized as follows.

1. We propose a randomized Bregman (block) coordinate descent
(RBCD) method to solve the composite problem where the smooth
part does not have the global Lipschitz-continuous (partial) gradient
property.

2. By adapting the relative smoothness framework, we establish a rig-
orous convergence rate analysis of the RBCD method, showing that
the convergence rate to an ε-stationary point isO(nε−2) if F is non-
convex, where n is the number of iterations.

3. If F is convex, RBCD achieves the global sublinear convergence rate
of O(nε−1). The global linear convergence rate is obtained if f is
(relative) strongly convex.



4. The RBCD method can also be accelerated in the relative smooth-
ness setting. The iteration complexity ofO(nε−1/γ) can be obtained
through the notion of generalized translation variant (explained in
the latter section) of the Bregman distance.

2. PRELIMINARIES

Notation. Throughout this paper, we use bold upper case letters to
denote matrices (e.g., X), bold lower case letters to denote vectors
(e.g., x), and Calligraphic letters (e.g., X ) are used to denote sets.
For a function f , ∇f(x) denotes its the gradient, and ∇if(x) is
the i-th partial gradient. Let fi(xi) be the function with respect to
the i-th block, while the rest of blocks are fixed. Then ∇if(x) =
∇fi(xi). If f is not differentiable, ∂f denotes the subdifferential of
f .

Given a convex function φ, the Bregman proximal mapping of
φ at a point x is defined as Tφ(x) = argminuφ(u) + Dh(u,x),
where Dh(u,x) = h(u) − h(x) − 〈∇h(x),u − x〉 is the Breg-
man distance with the reference convex function h. This mapping
is well-defined since the functions φ and h are convex. The con-
vexity of h also implies Dh(x,y) ≥ 0, ∀x,y. If, in addition, h is
strictly convex, Dh(x,y) = 0 if and only if x = y. In the rest of
this paper, we assume h is strictly convex. Note that Dh(x,y) is
not symmetric in general. Therefore, we use symmetric coefficient
θ(h) = infx6=y {Dh(x,y)/Dh(y,x)} to measure the symmetry.
When φ = δx, the Bregman proximal mapping reduces to the Breg-
man projection PhX (x) = argmin{Dh(u,x) : u ∈ X}.

Our goal is to solve the optimization (1) and the following rea-
sonable assumptions are made throughout this paper.

Assumption 1.
(i) f is continuously differentiable.

(ii) r is convex, block separable, proper and loser semi-continuous.

(iii) F ∗ = infx F (x) > −∞.

An estimate x is said to be a stationary point of F if it satisfies

0 ∈ ∂F ≡ ∇f(x) + ∂r(x). (3)

Due to the page limit, all the proofs in details are omitted in this
paper and will be included in the journal version [19].

3. RANDOMIZED BREGMAN COORDINATE DESCENT

In this section, we introduce the randomized Bregman (block) co-
ordinate descent (RBCD) method for solving problem (1). Given
the current estimate x, the i-th block of coordinates is selected uni-
formly at random, then the new estimate x+ is updated as follows

x+
i = Ti(x), and x+

j = xj , ∀j 6= i, (4)

where, for some stepsize α, the vector Ti(x) is defined as

Ti(x) = argminui
〈∇if(x),ui − xi〉+ 1

α
Dh(ui,xi) + ri(ui). (5)

Note that we drop the index i in Dhi to simplify the notation. The
algorithm is summarized in Algorithm 1. Here the stepsize α can
be determined by a conventional line search method and the global
convergence results can be established. However, line search meth-
ods are usually expensive since this subroutine requires to evaluate
the objective function multiple times to ensure the sufficient descent
in the objective value. To establish convergence results for a CD-
type method with a constant stepsize, the common assumption is

Algorithm 1: RBCD Method.

Choose x0 and stepsize α.
for k = 1, 2 · · · do

Choose ik ∈ {1, 2, · · · , n} uniformaly at random
Compute Tik (x

k) from (5)
Update xk+1 by (4)

end

that∇f(x) (or∇if(x)) is globally Lipschitz-continuous [1, 2, 20].
However, this assumption may be restrict to some modern optimiza-
tion problems. See for instances [6, 8, 9, 10] and reference therein.
In the following section, we review the notion of relative smooth-
ness introduced in [11, 12, 13]. This notion allows us to establish
the convergence results for RBCD method without the assumption
of global Lipschitz-continuous gradient.

4. CONVERGENCE ANALYSES

Definition 1 (Relative Smoothness). [13, Definition 1.1] A pair of
functions (g, h) is said to be relatively smooth if h is convex and
there exists a scalar L > 0 such that Lh− g is convex.

The relative smoothness nicely translates the Bregman distance
to produce a non-Lipschitz descent lemma [13, 12].

Lemma 1. [12, Lemma 1] The pair of functions (g, h) is relatively
smooth if and only if for all x and y, it holds that

g(y)− g(x)− 〈∇g(x),y − x〉 ≤ LDh(y,x). (6)

Note that if h = 1
2
‖ · ‖2, the classical descent lemma is recov-

ered, i.e., g(y) − g(x) − 〈∇g(x),y − x〉 ≤ L
2
‖y − x‖2. To use

Lemma 1, we additionally make the following assumptions.

Assumption 2. The functions (fi, hi) are relatively smooth with
constants Li > 0, ∀i and let L = max

i
{Li}.

With the relative smoothness between (fi, hi), the following re-
sult shows the basic descent property of the proposed method.

Lemma 2. For any x, and any i ∈ {1, 2, · · · , n}, let x+ to be
defined as in E.q. (4) and stepsize α = 1+θi

2Li
. Then we have

F (x+) ≤ F (x)− LiDh(Ti(x),xi). (7)

where θi = θ(hi). In other words, the sufficient descent in the ob-
jective value of F is guaranteed.

Since only one block is selected and updated per iteration, the
quantity Dh(x+,x) introduced in [13, 12] cannot be used to mea-
sure the optimality of the RBCD method. Given an estimate x, we
introduce the reference function H and the corresponding Bregman
mapping as follows:

H(x) =

n∑
i=1

Lihi(xi), (8)

T (x) = argminu〈∇f(x),u− x〉+DH(u,x) + r(u). (9)

Based on this mapping, the following result shows that the quantity
DH(T (x),x) can be used to measure the optimality of F .

Lemma 3. A vector x is a stationary point of F if and only if
DH(T (x),x) = 0.

Clearly, whenF is convex, then the current estimate x is a global
minimum if DH(T (x),x) = 0.



4.1. Convex case

We use Ei (or Eik ) to denote the expectation with respect to a single
random variable i (or ik). We use E to denote the expectation with
respect to all random variables {i0, i1, · · · }.

For simplicity, we here use the relative strongly convexity intro-
duced in [13], which is similar to the relative smoothness.

Definition 2. A function g is µ-strongly convex relative to h if for
any x and y, there exists a scalar µ ≥ 0 such that

g(y) ≥ g(x) + 〈∇g(x),y − x〉+ µDh(y,x). (10)

Note that if µ = 0, the classical convexity for a smooth function
g is recovered. Moreover, when h = 1

n
‖ · ‖, the classical strongly

convexity is recovered. In the rest of this subsection, we assume f is
strongly convex relative to H .

Assumption 3. f is µ-strongly convex relative toH , i.e., there exists
a scalar µ ≥ 0 such that for every y and x

f(y) ≥ f(x) + 〈∇f(x),y − x〉+ µDH(y,x). (11)

Since r is assumed to be convex, the function F is also µ-
strongly convex relative to H , i.e.,

F (y) ≥ F (x) + 〈v,y − x〉+ µDH(y,x), (12)

for some v ∈ ∂F (x). Moreover, by Assumption 2, we have

f(Ti(x)) ≤ f(x) + 〈∇if(x), Ti(x)− xi〉+ LiDh(Ti(x),xi). (13)

Substituting y = Ti(x) in E.q.(11) and combing it with the inequal-
ity (13), we immediately obtain that µ ≤ 1.

The following lemma provides the key inequalities used to prove
the convergence results of the RBCD method.

Lemma 4. For any vector x, let x+ to be defined as in E.q.(4) by
picking up i ∈ {1, 2, · · · , n} uniformly at random. Set stepsize
α = 1+θi

2Li
. For any vector u, the expectation of F (x+) satisfies

Ei[F (x+)] ≤ 1
n

[
(n− 1)F (x) + F (u) + (1− µ)DH(u,x)−DH(u, T (x))

]
, (14)

and the expectation of DH(x+,x) satisfies

Ei[DH(u,x+)] =
n− 1

n
DH(u,x) +

1

n
DH(u, T (x)). (15)

Theorem 1. Let {xk} be the sequence generated by Algorithm 1.
Then for any k ≥ 0, the iterates xk satisfies

E[F (xk)− F (x∗)] ≤ n
n+k

(
F (x∗)− F (x0) +DH(x∗,x0)

)
. (16)

Further, if f is µ-strongly convex relative to H , i.e., µ > 0, then

E[F (xk)− F (x∗)] ≤
(
1− (1+θ)µ

n(1+θµ)

)k (
F (x0)− F (x∗) +DH(x∗,x0)

)
, (17)

where θ = min
i
{θi}.

Therefore, if F is convex, the sequence {xk} converges to a
global minimum at the rate of O( n

n+k
). Further, the classical linear

convergence rate is obtained if f is strongly convex (relative to H).

4.2. Nonconvex case

If F is nonconvex, the following result shows the descent property of
the proposed method in terms of the optimality gap DH(T (x),x).

Lemma 5. For any x, let x+ to be defined as in E.q.(4) by picking up
the index i uniformly at random. Let α = 1+θi

2Li
. Then the following

inequality holds:
Ei[F (x+)] ≤ F (x)− 1

n
DH(T (x),x). (18)

Theorem 2. Let {xk} to be the sequence generated by Algorithm 1.
Let stepsize αk =

1+θik
2Lik

, then

(i) The sequence {F (xk)} is non-increasing.

(ii)
∑∞
l=0 E[DH(T (xl),xl)] < ∞, and hence the sequence

{E[DH(T (xl),xl)]} converges to zero.

(iii) ∀k ≥ 0, we obtain
min0≤l≤k E

[
DH(T (xl),xl)

]
≤ n

k+1
(F (x0)− F ∗), (19)

where F ∗ = inf F (x) > −∞.

(iv) Every limit point of {xk} is a stationary point.

Suppose H is σ-strongly convex with respect to the Euclidean
norm ‖ · ‖. Then we have DH(y,x) ≥ σ

2
‖y− x‖2. Combining the

strongly convexity ofH with the Theorem 2, we immediately obtain
the following convergence rate result

min0≤l≤k E‖T (xl)− xl‖2 ≤ 2n
σ(k+1)

(F (x0)− F ∗). (20)

Therefore, the sequence {xk} converges to a stationary point at the
rate ofO(

√
n√
k
). In another word, to obtain an ε-stationary point, i.e.,

‖T (x)− x‖ ≤ ε, the RBCD method needs to run O( n
ε2
) iterations.

5. ACCELERATED RANDOMIZED BREGMAN
COORDINATE DESCENT

In this section, we restrict ourselves to the unconstrained smooth
minimization problem

minimize
x

f(x), (21)

where f is convex and satisfies Assumption 1.
The accelerated randomized Bregman coordinate descent (AR-

BCD) method is given in Algorithm 2. At the k-th iteration, the
ARBCD method selects a coordinate ik uniformly at random, and
generates the three vectors yk, zk+1, and xk+1, where

zk+1 = argminu〈∇ikf(y
k),uik − ykik 〉+ (nβk)

γ−1DH(u, zk). (22)

Note that Step 1 and 3 of Algorithm 2 need O(n) operations, while
O(1) operations are usually expected in a general coordinate descent
method. Due to the space limit, we will introduce an efficient imple-
mentation of the ARBCD method in our journal version that only
needs O(1) operations at each iteration.

One of the challenges to establish the convergence results is
from the nature of Bregman distances, that is, a Bregman distance
does not hold the homogeneous translation invariant, i.e.,

‖u+ θ(v −w)− u‖ = |θ| ‖v −w‖, ∀θ,u,v,w. (23)

To handle this issue, [21] introduces the notion of triangle scaling
property (TSP). In contrast, we introduce the notion of generalized
translation invariant (GTI), and show it is equivalent to triangle scal-
ing property, when restricting θ ∈ [0, 1].
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Fig. 1: Poisson inverse problem: synthetic dataset with M = 500 and N = 500. (a)-(b) are the results for (27) and (c)-(d) are for (28).

Algorithm 2: Accelerated Randomized Bregman (Block)
Coordinate Descent (ARBCD).

Input: initial x0 and γ ≥ 1
Initialize: z0 = x0 and β0 = 1
for k = 1, 2 · · · do
1. yk = (1− βk)xk + βkz

k

2. Choose ik ∈ {1, 2, · · · , n} uniformaly at random

3. Compute zk+1 by Eq.(22)

4. xk+1 = yk + nβk(z
k+1 − zk)

5. Choose βk+1 ∈ (0, 1] such that 1−βk+1

β
γ
k+1

≤ 1
β
γ
k

end

Definition 3 (Generalized Translation Invariant). The Bregman dis-
tance defined with a convex reference function h has the generalized
translation invariant property if there exists some scalar γ > 0 such
that for all u,v,w

Dh(u+ θ(v −w),u) ≤ |θ|γ Dh(v,w). ∀θ ∈ R. (24)

Lemma 6. The Bregman distance has the generalized translation
invariant with θ ∈ [0, 1] iff it holds the triangle scaling property.

Note that the GTI is more general since TSP needs θ ∈ [0, 1],
but GTI holds for all θ ∈ R. To use the notion of GTI, we make the
following assumption.

Assumption 4. The Bregman distances Dh(·, ·) have the general-
ized translation invariant with the constant γ > 0, ∀i.

Using the notion of GTI, we will show that the ARBCD method
converges with a sublinear rate of O(nγk−γ). The key relationship
between two consecutive iterates in Algorithm 2 is established in the
following lemma.

Lemma 7. Suppose Assumptions 1, 2, and 4 hold. For any vector
u, the sequences generated by Algorithm 2 satisfy, for all k ≥ 0,

Eik

[
1− βk+1

βγk+1

(f(xk+1)− f(u)) + nγDH(u, zk+1)

]
≤1− βk

βγk
(f(xk)− f(u)) + nγDH(u, zk). (25)

The following lemma introduces a sequence {βk} that satisfies
the condition in Step 4 of Algorithm 2.

Lemma 8. The sequence βk = γ
k+γ

satisfies βk+1−1

β
γ
k+1

≤ 1
β
γ
k
, ∀k.

Theorem 3. Suppose Assumptions 1, 2, and 4 hold. If βk = γ
k+γ

for all k ≥ 0, then the following inequality holds, for any u,

E
[
f(xk+1)− f(u)

]
≤
(
nγ
k+γ

)γ
DH(u,x0), ∀k ≥ 0. (26)

6. NUMERICAL EXPERIMENTS

To showcase the strength of the proposed methods, we consider an
application of Poisson inverse problem or relative-entropy nonnega-
tive regression.

A large number of problems in nuclear medicine, night vision,
astronomy and hyperspectral imaging can be formulated as Poisson
inversion problems [22, 23, 24, 25, 26] in the following form

minimize
x≥0

f(x) ≡ DKL(b,Ax). (27)

where A ∈ RM×N
+ is nonnegative observation matrix and b ∈ RM

+

is noisy measurement. To apply the proposed methods, we applied
the Burg’s entropy as the reference function. Then we can show the
functions (fi, hi) are relatively smooth with any scalar Li satisfying
Li ≥ ‖b‖1 =

∑M
i=1 bi.

Anther broadly used formulation to solve the Poisson inverse
problem is to minimize DKL(Ax,b) [25], i.e.,

minimize
x≥0

f(x) ≡ DKL(Ax,b). (28)

In this case, we choose the Boltzman-Shannon entropy h(x) =
x log x as the reference function. We can show (fi, hi) are rela-
tively smooth with any scalar Li satisfying Li ≥

∑M
i=1 aij .

We compare the proposed algorithms RBCD and ARBCD with
two state-of-the-art algorithms: Bregman Proximal Gradient (BPG)
method [12] and accelerated Bregman Proximal Gradient (ABPG)
[21] method. All algorithms are implemented in Matlab code.

In Figure 1(a) and (c), we can see that the RBCD method is only
slightly better than the BPG method, because BPG and RBCD meth-
ods use the same stepsize αk = 1

2‖b‖1
, while the ARBCD method is

faster than the other methods. ARBCD method can be even faster if
we select γ smaller which are shown in Figure 1(c) and (d). If γ is
too small, however, ARBCD method could diverge which is shown
in Figure 1(d), since DIS does not hold GTI or TSP property.
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A. APPENDIX

A.1. Proof of Lemma 2

Proof. From the relative smoothness, we obtain

f(x+) ≤ f(x) + 〈∇if(x), Ti(x)− xi〉+ LiDh(Ti(x),xi). (29)

From the optimality of Ti(x) in (5), we have

∇if(x) +
1

α
(∇hi(Ti(x)−∇hi(xi)) + v+

i = 0,

for some v+
i ∈ ∂ri(Ti(x)). The convexity of ri implies

ri(xi) ≥ri(Ti(x)) + 〈v+
i ,xi − Ti(x)〉

=ri(Ti(x))− 〈∇if(x) +
1

α
(∇hi(Ti(x)−∇hi(xi)) ,xi − Ti(x)〉

=ri(Ti(x))− 〈∇if(x),xi − Ti(x)〉+
1

α
(Dh(xi, Ti(x)) +Dh(Ti(x),xi)) (30)

Combining the equations (29) and (30) yields

f(x+) + ri(Ti(x)) ≤f(x) + ri(xi) + LiDh(Ti(x),xi)−
1

α
(Dh(xi, Ti(x)) +Dh(Ti(x),xi))

≤f(x) + ri(xi)−
(
1 + θ

α
− Li

)
Dh(Ti(x),xi),

where the second inequality is due to Dh(xi, Ti(x)) ≥ θDh(Ti(x),xi). Since x+
j = xj ∀i 6= j, we obtain

F (x+) ≤ F (x)−
(
1 + θ

α
− Li

)
Dh(Ti(x),xi).

A.2. Proof of Lemma 3

Proof. (=⇒). Suppose x is a stationary point. Then we have

∇f(x) + v = 0,

for some v ∈ ∂r(x). From the convexity of r, it follows that for any vector u

r(u) ≥ r(x)− 〈∇f(x),u− x〉. (31)

By the optimality of (9), we obtain

∇f(x) +∇H(T (x))−∇H(x) + v+ = 0, (32)

for some v+ ∈ ∂r(T (x)). It follows that

r(x) ≥ r(T (x))− 〈∇f(x),x− T (x)〉 − 〈∇H(T (x))−∇H(x),x− T (x)〉. (33)

Let u = T (x) and combine the equations (31) and (33). Then we obtain

0 ≥ DH(x, T (x)) +DH(T (x),x).

Since DH(x, T (x)), DH(T (x),x) ≥ 0, we obtain DH(T (x),x) = 0.
(⇐=). Suppose DH(T (x),x) = 0. The (strict) convexity of H implies T (x) = x. From (32), we obtain

0 ∈ ∇f(x) + ∂r(x),

which indicates x is a stationary point.



A.3. Proof of Lemma 4

Proof. Since each block i is selected uniformly at random, we have

Ei[F (x+)] =

n∑
i=1

1

n
F (x+)

=
1

n

n∑
i=1

f(x+) + r(x+)

(a)

≤ 1

n

n∑
i=1

f(x) + 〈∇if(x), Ti(x)− xi〉+ LiDh(Ti(x),xi) + ri(Ti(x)) +
∑
j 6=i

rj(xj)

(b)

≤ 1

n
[nf(x) + 〈∇f(x), T (x)− x〉+DH(T (x),x) + r(T (x)) + (n− 1)r(x)]

=
1

n
[(n− 1)F (x) + f(x) + 〈∇f(x), T (x)− x〉+DH(T (x),x) + r(T (x))]

(c)
=

1

n
[(n− 1)F (x) + f(u)− µDH(u,x) +DH(T (x),x) + r(u) + 〈∇H(T (x))−∇H(x),u− T (x)〉]

(d)
=

1

n
[(n− 1)F (x) + F (u) + (1− µ)DH(u,x)−DH(u, T (x))]

where (a) follows from the relative smoothness of (fi, hi); (b) uses the fact of Ti(x) = T (x)i; (c) is based on the convexity of f and r; (d)
uses the the fact of 〈∇h(z)−∇h(x),y − z〉 = Dh(y,x)−Dh(y, z)−Dh(z,x).

For any vector u, we have

DH(u,x+) =LiDh(ui, Ti(x)) +
∑

j 6=i
LjDh(uj ,xj)

=LiDh(ui, Ti(x))− LiDh(ui,xi) +DH(u,x) (34)

Taking the expectation of Eq.(34) with respect to i yields

Ei[DH(u,x+)] =Ei [DH(u,x)− LiDh(ui,xi) + LiDh(ui, Ti(x))]

=

n∑
i=1

1

n
[DH(u,x)− LiDh(ui,xi) + LiDh(ui, Ti(x))]

=
1

n
[nDH(u,x)−DH(u,x) +DH(u, T (x))]

=DH(u,x)− 1

n
[DH(u,x)−DH(u, T (x))]

A.4. Proof of Theorem 1

Proof. Combining (15) with (14), let u = x∗, and we have

Ei[F (x+) +DH(x∗,x+)] ≤n− 1

n
F (x) +

1

n
F (x∗) +

(
1− µ

n

)
DH(x∗,x) (35)

≤n− 1

n
F (x) +

1

n
F (x∗) +DH(x∗,x). (36)

Taking the expectation of (36) with respect to {i0, i1, · · · } yields

E[F (x+)] ≤ E
[
F (x) +DH(x∗,x)−DH(x∗,x+)− 1

n
(F (x)− F (x∗))

]
.

Summing over l = 0, 1, · · · , k − 1 yields

E[F (xk)] ≤F (x0) +DH(x∗,x0)− E[DH(x∗,xk)]− 1

n

k−1∑
l=0

E
[
F (xl)− F (x∗)

]

≤F (x0) +DH(x∗,x0)− 1

n

k−1∑
l=0

E
[
F (xl)− F (x∗)

]
≤F (x0) +DH(x∗,x0)− k

n
E
[
F (xk+1)− F (x∗)

]
,



where the last inequality is because {F (xl)} is a descent sequence. Subtracting F (x∗) on both sides and rearrange yields

n+ k

n
E[F (xk)− F (x∗)] ≤ F (x∗)− F (x0) +DH(x∗,x0).

Dividing both sides by n+k
n

yields the desired result.
If f is µ-strongly convex relative to H , we have

Ei[F (x+) +DH(x∗,x+)] ≤ n− 1

n
F (x) +

1

n
F (x∗) +

(
1− µ

n

)
DH(x∗,x).

Subtracting F (x∗) on the both sides and rearrange yields

Ei[F (x+)− F (x∗) +DH(x∗,x+)] ≤ F (x)− F (x∗) +DH(x∗,x)− 1

n
F (x)− F (x∗) + µDH(x∗,x). (37)

The relative strongly convexity of F implies

F (x)− F (x∗) + µDH(x∗,x) ≥ µDH(x,x∗) + µDH(x∗,x) ≥ (1 + θ)µDH(x∗,x).

Define

β =
(1 + θ)µ

1 + θµ
. (38)

Clearly, we have β ≤ 1 since µ ≤ 1. Then

F (x)− F (x∗) + µDH(x∗,x) ≥β(F (x)− F (x∗) + µDH(x∗,x)) + (1− β)(1− θ)µDH(x∗,x)

=β(F (x)− F (x∗) +DH(x∗,x)).

Combining the inequality above with (37) yields

Ei[F (x+)− F (x∗) +DH(x∗,x+)] ≤
(
1− β

n

)
(F (x)− F (x∗) +DH(x∗,x))

Taking the expectation with respect to {i0, i1, · · · } on the both sides of the relation above, we have

E[F (xk)− F (x∗) +DH(x∗,xk)] ≤
(
1− β

n

)k (
F (x0)− F (x∗) +DH(x∗,x0)

)
.

Dropping DH(x∗,xk) on the left hand yields the desired result.

A.5. Proof of Lemma 5

Proof. Taking the expectation of (7) with respect to i yields

Ei[F (x+)] ≤ F (x)− Ei[LiDh(Ti(x),xi)]

= F (x)−
n∑
i=1

1

n
LiDh(Ti(x),xi)

= F (x)− 1

n

n∑
i=1

LiDh(Ti(x),xi)

(a)
= F (x)− 1

n

n∑
i=1

LiDh(T (x)i,xi)

= F (x)− 1

n
DH(T (x),x),

where (a) is because Ti(x) = T (x)i.



A.6. Proof of Theorem 2

Proof. (i). The result is directly obtained from Lemma 5.
(ii). Taking the expectation of (18) with respect to all variables and rearranging yields

E
[
DH(T (xl),xl)

]
≤ nE

(
F (xl)− F (xl+1)

)
.

Taking the telescopic sum of the above inequality for l = 0, 1, · · · , k gives us

k∑
l=0

E
[
DH(T (xl),xl)

]
≤ n

(
F (x0)− E[F (xK+1)]

)
≤ n

(
F (x0)− F ∗

)
. (39)

Since F is lower bounded, taking the limit k →∞ yields the desired result.
(iii). The inequality (39) further implies that

(k + 1) min
0≤l≤k

E
[
DH(T (xl),xl)

]
≤

k∑
l=0

E
[
DH(T (xl),xl)

]
≤ n(F (x0)− F ∗).

Dividing k + 1 on both sides gives us the desired result.

(iv) Let x∗ to be a limit point of {xk} and there exists a subsequence {xkp} such that xkp → x∗ as p→∞.
Since the functions ri are lower semi-continuous, we have for all i,

lim inf
p→∞

ri(x
kp
i ) ≥ ri(x∗i ). (40)

At the k-th iteration, suppose the index i is selected, then the convexity of ri implies that

ri(x
k+1
i ) ≤ ri(x∗i ) + 〈∇if(xk) +∇hi(xk+1

i )−∇hi(xki ),x∗i − xk+1
i 〉

Let {xkq} be the subsequence of {xkp} such that the index i is selected. Choosing k = kq−1 in the above inequality, and letting q → yields

lim sup
q→∞

ri(x
kq
i ) ≤ ri(x∗i ), (41)

where we use the facts xkq → x∗ as q →∞. Thus, combining (41) with (40), we have

lim
q→∞

ri(x
kq
i ) = ri(x

∗
i ).

Since i is selected arbitrarily, we have

lim
p→∞

ri(x
kp
i ) = ri(x

∗
i ), ∀i.

Furthermore, by the continuity of f , we obtain

lim
p→∞

F (xkp) = lim
p→∞

{
f(xkp) +

n∑
i=1

ri(x
kp)

}
= f(x∗) +

n∑
i=1

ri(x
∗
i ) = F (x∗).

From (ii) and Lemma 3, it follows that x∗ is a stationary point of F .

A.7. Proof of Lemma 6

Proof. =⇒. Suppose the Bregman distance Dh(·, ·) holds the generalized translation variant, and let u = (1 − θ)x + θw for any x. Then
we have

Dh((1− θ)x+ θv, (1− θ)x+ θw) ≤ |θ|γ Dh(v,w), ∀θ ∈ R.

Since the above inequality holds for all θ, it must hold for θ ∈ [0, 1].
⇐=. Suppose the triangle scaling property holds. Let y = (1− θ)u+ θw, then we have

Dh(y + θ(v −w),y) ≤ θγDh(v,w), ∀θ ∈ [0, 1]. (42)

Therefore, the generalized translation invariant holds for θ ∈ [0, 1].



A.8. Proof of Lemma 7

Proof. With simple algebra operations, we have

xk+1 − yk = n
[
βk(z

k+1 − yk) + (1− βk)(xk − yk)
]
. (43)

Based on the relation in E.q. (??), we know xk+1 and yk satisfy the relative smoothness property since they are only one coordinate difference
from each other. Therefore, we obtain

f(xk+1) ≤f(yk) + 〈∇ikf(y
k),xk+1

ik
− ykik 〉+ LikDh(x

k+1
ik

,ykik )

=f(yk) + 〈∇ikf(y
k),xk+1

ik
− ykik 〉+ LikDh(yik + nβk(z

k+1
ik
− zkik ),y

k
ik )

(i)

≤f(yk) + 〈∇ikf(y
k),xk+1

ik
− ykik 〉+ (nβk)

γLikDh((z
k+1
ik

, zkik ))

(ii)
= f(yk) + nβk〈∇ikf(y

k), zk+1
ik
− ykik 〉+ n(1− βk)〈∇ikf(y

k),xkik − ykik 〉+ (nβk)
γLikDh((z

k+1
ik

, zkik ))

(iii)
= βk

[
f(yk) + n〈∇ikf(y

k), z̃k+1
ik
− ykik 〉

]
+ (1− βk)

[
f(yk) + n〈∇ikf(y

k),xkik − ykik 〉
]
+ (nβk)

γLikDh((z̃
k+1
ik

, zkik )),

where (i) is using the generalized transition invariant, (ii) is due to E.q. (43), and (iii) is due to E.q. (??). Taking the expectation with
respect to ik on both sides yields for all u

Eikf(x
k+1) ≤ βk

[
f(yk) + 〈∇f(yk), z̃k+1 − yk〉

]
+ (1− βk)

[
f(yk) + 〈∇f(yk),xk − yk〉

]
+ nγ−1βγkDH(z̃k+1, zk)

(i)

≤ (1− βk)f(xk) + βk
[
f(yk) + 〈∇f(yk), z̃k+1 − yk〉+ (nβk)

γ−1DH(z̃k+1, zk)
]

(ii)

≤ (1− βk)f(xk) + βk
[
f(yk) + 〈∇f(yk),u− yk〉+ (nβk)

γ−1DH(u, zk)− (nβk)
γ−1DH(u, z̃k+1)

]
(iii)

≤ (1− βk)f(xk) + βk
[
f(u) + (nβk)

γ−1DH(u, zk)− (nβk)
γ−1DH(u, z̃k+1)

]
,

where (i) is due to the convexity of f , (ii) is due to the definition of z̃k+1 in E.q. (??), and (iii) is due to the convexity of f . Subtracting
f(u) on both sides gives us

Eikf(x
k+1)− f(u) ≤ (1− βk)(f(xk)− f(u)) + nγ−1βγkDH(u, zk)− nγ−1βγkDH(u, z̃k+1).

Dividing βγk on both sides, we have

1

βγk
Eik

[
f(xk+1)− f(u)

]
≤ 1− βk

βγk
(f(xk)− f(u)) + nγ−1DH(u, zk)− nγ−1DH(u, z̃k+1). (44)

Taking the expectation of DH(u, zk+1) with respect to Eik yields

Eik [DH(u, zk+1)] =Eik
[
DH(u, zk)− LikDh(uik ,x

k
ik ) + LikDh(uik , z̃

k+1
ik

)
]

=

n∑
ik=1

1

n

[
DH(u, zk)− LikDh(uik , z

k
ik ) + LikDh(uik , z̃

k+1
ik

)
]

=
1

n

[
nDH(u, zk)−DH(u, zk) +DH(u, z̃k+1)

]
=DH(u, zk)− 1

n

[
DH(u, zk)−DH(u, z̃k+1)

]
.

Multiplying both sides by nγ , we obtain

nγEik [DH(u, zk+1)] = nγDH(u, zk)− nγ−1
[
DH(u, zk)−DH(u, z̃k+1)

]
(45)

Combining (45) with (44), we have

Eik

[
1

βγk
(f(xk+1)− f(u)) + nγDH(u, zk+1)

]
≤ 1− βk

βγk
(f(xk)− f(u)) + nγDH(u, zk) (46)

Finally applying the condition in Step 4 of Algorithm 2 yields the desired result.



A.9. Proof of Theorem 3

Proof. Taking the expectation with respect to {i0, i1, · · · , } yields

E
[
1− βk+1

βγk+1

(f(xk+1)− f(u)) + nγDH(u, zk+1)

]
≤ E

[
1− βk
βγk

(f(xk)− f(u)) + nγDH(u, zk)

]
. (47)

The direct consequence of E.q. (47) is, for any u,

E
[
1− βk+1

βγk+1

(f(xk+1)− f(u)) + nγDH(u, zk)

]
≤ 1− β0

βγ0
(f(x0)− f(u)) + nγDH(u, z0).

Using DH(u, zk+1) ≥ 0, and the initialization β0 = 1 and z0 = x0, we obtain

E
[
1− βk+1

βγk+1

(f(xk+1)− f(u))
]
≤ nγDH(u,x0),

which implies

E
[
f(xk+1)− f(u)

]
≤ nγβγkDH(u,x0) =

(
nγ

k + γ

)γ
DH(u,x0).

A.10. Proof of Proposition ??

Proof. It is straightforward to see that x0 = y0 = z0 = v0. Suppose the recursive hypotheses hold for the k-th iteration. From the optimality
of E.q. (??), we have

〈∇ikf(β
γ
ku

k + vk),dkik 〉+ (nβk)
γ−1LikDh(v

k
ik + dkik ,v

k
ik )

(i)

≤〈∇ikf(β
γ
ku

k + vk), zk+1
ik
− zkik 〉+ (nβk)

γ−1LikDh(z
k+1
ik

,vkik )

(ii)
= 〈∇ikf(y

k), zk+1
ik
− zkik 〉+ (nβk)

γ−1LikDh(z
k+1
ik

, zkik ), (48)

where (i) is due to the optimality, and (ii) is due to the recursive hypotheses. Similarly, from the optimality of E.q. (22), we obtain

〈∇ikf(y
k), zk+1

ik
− zkik 〉+ (nβk)

γ−1LikDh(z
k+1
ik

, zkik )

(i)

≤〈∇ikf(y
k),dkik 〉+ (nβk)

γ−1LikDh(z
k
ik + dkik , z

k
ik )

(ii)
= 〈∇ikf(β

γ
ku

k + vk),dkik 〉+ (nβk)
γ−1LikDh(v

k
ik + dkik ,v

k
ik ), (49)

where (i) is due to the optimality, and (ii) is due to the recursive hypotheses. Combing (48) and (49) yields

zk+1
ik

= zkik + dkik = vkik + dkik = vk+1
ik

,

or equivalently

zk+1 = vk+1.

From Step 3 of Algorithm ??, we have

uk+1 = uk − 1− nβk
βγk

(vk+1 − vk). (50)

Then, we have

βγku
k+1 + vk+1 (i)

=βγk

(
uk − 1− nβk

βγk
(vk+1 − vk)

)
+ vk+1

=βγku
k − (1− nβk)(vk+1 − vk) + vk+1

=βγku
k + vk + nβk(v

k+1 − vk)

(ii)
= yk + nβk(z

k+1 − zk)

=xk+1,



where (i) is due to E.q. (50) and (ii) is due to the recursive hypotheses.
Finally, we have

βγk+1u
k+1 + vk+1 (i)

=
βγk+1

βγk
(xk+1 − vk+1) + vk+1

(ii)
= (1− βk+1)(x

k+1 − vk+1) + vk+1

=(1− βk+1)x
k+1 + βk+1v

k+1

(iii)
= (1− βk+1)x

k+1 + βk+1z
k+1

=yk+1,

where (i) and (iii) is due to recursive hypotheses, and (ii) is due to Step 4 of Algorithm ??.


