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A B S T R A C T

We investigate non-Hermitian degeneracies, also known as exceptional points, in continuous
elastic media, and their potential application to the detection of mass and stiffness perturbations.
Degenerate states are induced by enforcing parity-time symmetry through tailored balanced
gain and loss, introduced in the form of complex stiffnesses and may be implemented through
piezoelectric transducers. The introduction of external perturbations leads to a splitting of the
eigenvalues, which is explored as a sensitive approach to the detection of such perturbations.
Numerical simulations on one-dimensional waveguides illustrate the presence of several excep-
tional points in their vibrational spectrum, and conceptually demonstrate their sensitivity to
point mass inclusions. Second order exceptional points are shown to exhibit a frequency shift
in the spectrum with a square root dependence on the perturbed mass, which is confirmed
by a perturbation approach and by frequency response analyses. Elastic domains supporting
guided waves are then investigated, where exceptional points are formed by the hybridization
of Lamb wave modes. After illustrating a similar sensitivity to point mass inclusions, we
also show how these concepts can be applied to surface wave modes for sensing crack-type
defects. The presented results describe fundamental vibrational properties of PT-symmetric
elastic media supporting exceptional points, whose sensitivity to perturbations goes beyond
the linear dependency commonly encountered in Hermitian systems. The findings are thus
promising for applications involving sensing of perturbations such as added masses, stiffness
discontinuities and surface cracks.

1. Introduction

In the broad context of wave physics and related areas, a recent focus of the scientific community at large has been the exploration
f non-Hermitian (NH) systems (Ashida et al., 2020). Broadly speaking, NH systems are non-conservative due to interactions with
the environment producing gain and/or loss. As such, the eigenfrequencies of NH systems are generally complex, precluding many of
the well-known properties of Hermitian (conservative) systems to be directly applied. For example, the topological properties of NH
systems are remarkably different from that of their Hermitian counterparts (Lee, 2016; Xiong, 2018), motivating re-classifications
of topological phases for NH systems to be recently proposed (Gong et al., 2018; Shen et al., 2018; Kawabata et al., 2019). These
oncepts have been exploited to produce one-way wave amplification and edge localization of bulk modes (called the NH skin effect)
n mechanical metamaterials with feedback interactions (Ghatak et al., 2019; Brandenbourger et al., 2019; Rosa and Ruzzene, 2020).
n this context, recent studies focus on a particular class of NH systems which preserve Parity-Time (PT) symmetry and exhibit
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exceptional points (Longhi, 2018; El-Ganainy et al., 2018; Miri and Alù, 2019). The interest in these systems has early roots in
the seminal work by Bender and Boettcher (1998), where it was shown that PT-symmetric NH Hamiltonians may exhibit purely
real spectra. Exceptional points are special degeneracies where two or more eigenfrequencies and eigenvectors coalesce, defining
a transition from a phase where eigenfrequencies are purely real, to one where they are complex conjugates (Bender et al., 2013).
Among the intriguing properties of exceptional points one finds unconventional phenomena such as unidirectional invisibility (Lin
et al., 2011; Fleury et al., 2015), single-mode lasers (Feng et al., 2014), and enhanced sensitivity to perturbations (Hodaei et al.,
2017; Chen et al., 2017; Xiao et al., 2019). Such sensitivity is investigated here for continuous elastic media.

This work contributes to recent efforts in exploring the role of PT symmetry in acoustics and mechanics (Zhu et al., 2014; Chris-
ensen et al., 2016; Liu et al., 2018). Notable applications include the observation of the asymmetric scattering properties around
xceptional points in 1D waveguides (Fleury et al., 2015; Wu et al., 2019; Hou and Assouar, 2018), and second-order topological
nsulators demonstrated in acoustics (Zhang et al., 2019; López et al., 2019). More recently, exceptional points were experimentally
emonstrated as vibrating modes of an elastic plate hosting two mechanical oscillators with tailored losses (Domínguez-Rocha
t al., 2020), while an optomechanical accelerometer based on the enhanced sensitivity around exceptional points was also
roposed (Kononchuk and Kottos, 2020). Also, based on parallels between elastodynamics and NH quantum mechanics, exceptional
oints and their sensitivity to point masses have been recently illustrated for bi-material elastic slabs (Shmuel and Moiseyev,
020). These works illustrate the potential of elastic domains for hosting exceptional points with enhanced sensing capabilities.
owever, a treatment from a fundamental structures perspective is still missing, along with potential implementations related
o sensing and detection. Towards bridging this gap, we investigate 1D and 2D PT symmetric elastic domains and illustrate the
ormation of exceptional points arising from the introduction of balanced gain and loss elements. In particular, we first investigate
D elastic waveguides featuring a PT symmetric pair of ground springs with complex stiffnesses, and illustrate how a large number
f exceptional points naturally appear in their vibrational spectra. We investigate their sensitivity to perturbations in the form of
oint mass inclusions, and demonstrate both numerically and through a perturbation approach that the sensitivity has a leading
erm of square root order, as expected of second-order exceptional points (Chen et al., 2017; Shmuel and Moiseyev, 2020). These
inding are useful when extended to 2D elastic domains, where gain and loss may be implemented through piezoelectric transducers
o detect mass inclusions and surface cracks. In this context, our results open new avenues in the area of dynamic-based non-
estructive testing. Changes in modal properties have long been investigated as tools to detect structural changes resulting for
xample from the onset of cracks. Methods based on shifts in natural frequencies provide in principle a convenient detection scheme
hat requires limited sensing, but they have broadly shown strong sensitivity limitations. Other techniques have explored monitoring
f mode shapes and curvature shapes (Sharma et al., 2006), which while promising, suffer from high spatial measurement resolution
equirements. Examples that exploit the perturbation of modal parameters, such as those caused by cracks in elastic beams and
lates are illustrated in Luo and Hanagud (1997) and Sharma et al. (2006). A review of other well-establish methods for sensing
nd damage detection can be found in Staszewski et al. (2004) and Giurgiutiu (2007). Also, guided waves have been employed for
amage detection in plates (Ruzzene, 2007) and composite materials (Kessler et al., 2002), while surface acoustic waves have been
mployed for sensing liquid viscosity (Jakoby and Vellekoop, 1998) and surface mass loading (Du et al., 1996). Several of these
contributions exploit a linear sensitivity with respect to a perturbation parameter, which may potentially be improved in the context
of exceptional points with enhanced sensitivity of square root leading order. Therefore, the findings presented in this paper may
open new avenues for the general exploration of PT symmetry, exceptional points and their sensitivity in continuous elastic media,
with potential applications ranging from sensors to novel structural health monitoring strategies.

This paper is organized as follows: following this introduction, Section 2 presents the analysis of PT-symmetric 1D waveguides,
describing the formation of exceptional points and their sensitivity using a perturbation approach. Section 3 then presents the
analysis of 2D elastic domains with PT-symmetric pairs of piezoelectric patches, where exceptional points and their sensitivity to
perturbations is numerically investigated. Finally, Section 4 summarizes the main findings of the work and briefly outlines future
research directions.

2. PT symmetric elastic rods

We begin our study by considering a 1D elastic waveguide equipped with a pair of ground springs (Fig. 1). We employ conceptual
complex spring constants, which represent elements that introduce a gain and loss through what essentially is a feedback loop that
applies restoring forces that are proportional and out-of-phase by 𝜋∕2 with the displacement at their location. Their imaginary
components with opposite signs induce gain and loss in equal proportions, thus making the structure PT symmetric (Domínguez-
Rocha et al., 2020). We illustrate how exceptional points emerge in such a system, and investigate their sensitivity to a perturbation
in the form of a point mass inclusion (𝑀𝑎).

2.1. Governing equations and approximate solution approach

The equation governing the motion of the waveguide can be generally expressed as (Meirovitch, 1975):

L [𝑢(𝑥, 𝑡)] − 𝑚(𝑥)
𝜕2𝑢(𝑥, 𝑡)

= 𝑞(𝑥, 𝑡), (1)
2

𝜕𝑡2
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Fig. 1. Schematic of elastic rod with PT symmetric pair of ground springs and a point mass 𝑀𝑎 attached to the center.

here 𝑢(𝑥, 𝑡) is the longitudinal displacement, 𝑞(𝑥, 𝑡) is the external loading and 𝑚(𝑥) = 𝜌𝐴+𝑀𝑎𝛿(𝑥− 𝑥𝑚) is the linear mass density.
Here, 𝜌 and 𝐴 respectively denote the mass density and cross-sectional area, while 𝑀𝑎 is the mass at location 𝑥 = 𝑥𝑚 defined by the
𝛿 function. Assuming longitudinal motion, the linear differential operator L is given by:

L = 𝐸𝐴 𝜕2

𝜕𝑥2
−

𝑆
∑

𝑠=1
𝑘𝑠𝛿(𝑥 − 𝑥𝑠), (2)

where 𝐸 is the Young’s modulus, 𝑘𝑠 and 𝑥𝑠 are respectively the spring constant and the location of the 𝑠th (𝑠 = 1,… , 𝑆) ground
spring. While we here focus our attention to axial motion, this formulation lends itself to the analysis of other wave motion, such
as flexural (transverse) vibrations for which the operator L includes a fourth-order derivative (Pal et al., 2019). Numerical results
for flexural vibrations of elastic beams are presented at the end of this section.

We seek for approximate solutions to Eq. (1) by expressing the axial displacement through a set of 𝑁 comparison functions 𝜙𝑛(𝑥)

𝑢(𝑥) =
𝑁
∑

𝑛=1
𝑢𝑛𝜙𝑛(𝑥), 𝜙𝑛(𝑥) = sin

(𝜋𝑛𝑥
𝐿

)

, 𝑛 = 1,… , 𝑁, (3)

for a rod of length 𝐿, that is fixed at bound ends, i.e. 𝑢(0) = 𝑢(𝐿) = 0.
Assuming an external harmonic load 𝑞(𝑥, 𝑡) = 𝑞(𝑥)𝑒𝑖𝜔𝑡, the application of Galerkin’s method (Meirovitch, 1975) leads to a set of

𝑁 algebraic equations, which can be expressed in the following matrix form:

(𝐊 − 𝜔2𝐌)𝐮 = 𝒒 (4)

where 𝐮 = [𝑢1, 𝑢2,… , 𝑢𝑁 ]𝑇 , while 𝐊 and 𝐌 are the 𝑁 ×𝑁 mass and stiffness matrices, whose 𝑖, 𝑗th entries are given by:

𝑘𝑖𝑗 = ∫

𝐿

0
L [𝜙𝑖(𝑥)]𝜙𝑗 (𝑥)𝑑𝑥 = 𝐸𝐴

(

𝑖2𝜋2

2𝐿

)

𝛿𝑖𝑗 +
𝑆
∑

𝑠=1
𝑘𝑠𝜙𝑖(𝑥𝑠)𝜙𝑗 (𝑥𝑠)

𝑚𝑖𝑗 = ∫

𝐿

0
𝑚(𝑥)𝜙𝑖(𝑥)𝜙𝑗 (𝑥)𝑑𝑥 =

𝜌𝐴𝐿
2

𝛿𝑖𝑗 +𝑀𝑎𝜙𝑖(𝑥𝑚)𝜙𝑗 (𝑥𝑚), (5)

with 𝛿𝑖𝑗 denoting the Kronecker delta. Also in Eq. (4), 𝒒 = [𝑞1, 𝑞2,… , 𝑞𝑁 ]𝑇 is the external load projected in the basis of the comparison
functions, i.e. 𝑞𝑛 = ∫ 𝐿

0 𝑞(𝑥)𝜙𝑛𝑑𝑥. For the purposes of the present work, we consider a point force 𝑓 applied at a location 𝑥 = 𝑥𝑓 ,
i.e. 𝑞(𝑥, 𝑡) = 𝑓 (𝑡)𝛿(𝑥 − 𝑥𝑓 ), which gives 𝑞𝑛(𝑡) = 𝑓 (𝑡)𝜙𝑛(𝑥𝑓 ).

2.2. Perturbation approach

We carry out a perturbation approach to predict the frequency splitting at an exceptional point due to the perturbation associated
with the point mass inclusion 𝑀𝑎. While we consider perturbations in the mass matrix 𝐌 only, similar derivations can be carried
ut for stiffness perturbations that affect matrix 𝐊. We consider a first order expansion of the mass matrix around 𝜀 = 0, where

𝜀 = 𝑀𝑎∕(𝜌𝐴𝐿) is the non-dimensional parameter associated with the added mass. As such, the eigenvalue problem associated with
the homogeneous form of Eq. (4) is rewritten as

𝐊𝐮 = 𝜔2(𝐌0 + 𝜀𝐌1)𝐮, (6)

where 𝐌0 = 𝐌|𝜀=0, while 𝐌1 = 𝜕𝐌∕𝜕𝜀|𝜀=0 is the contribution due to the added mass, i.e. 𝑚1𝑖𝑗 = (𝜌𝐴𝐿)𝜙𝑖(𝑥𝑚)𝜙𝑗 (𝑥𝑚).
An exceptional point is a degenerate eigenvalue of algebraic multiplicity 𝑟 and geometric multiplicity 1, producing a single

inearly independent eigenvector. The perturbation around such type of degeneracy follows a Newton–Puiseux series of leading
rder 𝜀1∕𝑟 (Seyranian and Mailybaev, 2003), in contrast with common degeneracies producing two linearly dependent eigenvectors
here the perturbation follows with leading order 𝜀, i.e. O(𝜀). We here focus on second order exceptional points with 𝑟 = 2, resulting
n the following expansions of eigenvectors and eigenfrequencies

𝐮 = 𝐮0 + 𝐮1𝜀1∕2 + 𝐮2𝜀1 + 𝐮3𝜀3∕2 + 𝐮4𝜀2 +⋯ (7)

𝝎 = 𝝎0 + 𝝎1𝜀
1∕2 + 𝝎2𝜀

1 + 𝝎3𝜀
3∕2 + 𝝎4𝜀

2 +⋯ (8)

Substitution of the series expansions into Eq. (6) yields the following set of ordered equations

𝜀0 ∶ 𝐊𝐮 = 𝜔2𝐌 𝐮 (9)
3

0 0 0 0
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𝜀1∕2 ∶ (𝐊 − 𝜔2
0𝐌0)𝐮1 = 2𝜔0𝜔1𝐌0𝐮0 (10)

𝜀1 ∶ (𝐊 − 𝜔2
0𝐌0)𝐮2 = 𝜔2

0𝐌1𝐮0 + 2𝜔0𝜔1𝐌0𝐮1 + (𝜔2
1 + 2𝜔0𝜔2)𝐌0𝐮0 (11)

𝜀3∕2 ∶ (𝐊 − 𝜔2
0𝐌0)𝐮3 = 2𝜔0𝜔1𝐌0𝐮2 + 2𝜔0𝜔1𝐌1𝐮0 + (𝜔2

1 + 2𝜔0𝜔2)𝐌0𝐮1 + 𝜔2
0𝐌1𝐮1 + (2𝜔0𝜔3 + 2𝜔1𝜔2)𝐌0𝐮0 (12)

Note that to obtain up to the second correction 𝜔2, equations up to 𝜀3∕2 are needed. The 𝜀0 equation corresponds to the eigenvalue
problem of the unperturbed system, i.e. the rod with no added mass. This eigenvalue problem is solved numerically as a function of
the spring constant 𝑘 to find the existence of exceptional points. A second order exceptional point produces a double eigenvalue 𝜔0
and a single eigenvector 𝐮0. The corresponding left-eigenvector 𝐯0 satisfying 𝐯𝐻0 𝐊 = 𝜔2

0𝐯
𝐻
0 𝐌0 is also obtained numerically, where

)𝐻 denotes the conjugate transpose. It is useful to consider the Jordan chain of length 2 associated with the degeneracy (Seyranian
nd Mailybaev, 2003), i.e. {𝐮0,𝐰0} and {𝒗𝟎, 𝐳0}, where 𝐰0 and 𝐳0 are associated (or generalized rank 2) right and left eigenvectors
atisfying the equations

𝐊𝐰0 = 𝜔2
0𝐌0𝐰0 +𝐌0𝐮0, 𝐳𝐻0 𝐊 = 𝜔2

0𝐳
𝐻
0 𝐌0 + 𝐯𝐻0 𝐌0, (13)

ith the following normalization conditions

𝐯𝐻0 𝐌0𝐰0 = 𝐳𝐻0 𝐌0𝐮0 = 1, 𝐯𝐻0 𝐌0𝐮0 = 𝐳𝐻0 𝐌0𝐰0 = 0. (14)

A choice of associated eigenvectors {𝐰0, 𝐳0} is determined numerically by using the pseudo-inverse of the matrix 𝐊−𝜔2
0𝐌0. While

he Jordan chain is not unique (Seyranian and Mailybaev, 2003), for a given choice of right eigenvectors {𝐮0,𝐰0} the left eigenvectors
𝐯0, 𝐳0} are uniquely determined by the normalization conditions stated in Eq. (14). To determine the perturbed eigenvector 𝐮
niquely, it is convenient to consider the normalization 𝐳𝐻0 𝐌0𝐮 = 1. Since 𝐳𝐻0 𝐌0𝐮0 = 1 from Eq. (14), this gives the following
onditions for the eigenvector perturbations:

𝐳𝐻0 𝐌0𝐮𝑖 = 0, 𝑖 = 1, 2,… (15)

Starting with the 𝜀1∕2 equation, we remark that the matrix operator 𝐊−𝜔2
0𝐌0 is singular with rank 𝑁 −1 due to the degeneracy

t 𝜔0. To circumvent this issue, the normalization condition for 𝐮1 given by Eq. (15) is pre-multiplied by 𝐯0 and added to the 𝜀1∕2

equation, yielding

𝑮𝐮1 = 2𝜔0𝜔1𝐌0𝐮0, (16)

where 𝑮 = 𝐊−𝜔2
0𝐌0 + 𝐯0𝐳𝐻0 𝐌0 becomes a non-singular matrix due to the addition of the term 𝐯0𝐳𝐻0 𝐌0 (Seyranian and Mailybaev,

2003). The same procedure applied to the 𝐰0 equation (Eq. (13)) gives 𝑮𝐰0 = 𝐌0𝐮0, which when compared to Eq. (16) (and noting
that 𝑮 is non-singular) gives

𝐮1 = 2𝜔0𝜔1𝐰0. (17)

Substitution of Eq. (17) into the 𝜀1 equation, left multiplication by 𝐯𝐻0 and considering the normalization conditions described
reviously yields the 𝜀1∕2 frequency correction:

𝜔1 = ±1
2

√

−𝐯𝐻0 𝐌1𝐮0 (18)

Next, we establish the 𝜀1 order correction 𝜔2. To that end, the 𝜀1 equation is first multiplied by 𝐳𝐻0 from the left, which upon
ormalization gives:

𝐯𝐻0 𝐌0𝐮2 = 𝜔2
0𝐳

𝐻
0 𝐌1𝐮0 + 𝜔2

1 + 2𝜔0𝜔2. (19)

Now, multiplying the 𝜀3∕2 equation by 𝐯𝐻0 from the left, and using Eq. (17), Eqs. (18) and (19), along with normalization
onditions, gives

𝜔2 = − 1
8𝜔0

𝐯𝐻0 𝐌1𝐮0 −
𝜔0
4
(𝐳𝐻0 𝐌1𝐮0 + 𝐯𝐻0 𝐌1𝐰0) (20)

According to the equations above, we conclude that the degeneracy at 𝜔0 initially splits symmetrically with respect to 𝜔0 with a
𝜀1∕2 dependence due to the 𝜔1 corrections, which are equal and opposite in sign (Eq. (18)). For higher 𝜀 values a linear correction
𝜔2 (depending on 𝜀1) becomes relevant, which is equal for both branches (Eq. (18)). The difference between the frequency of the
two branches considering only the first two perturbation orders is therefore expressed as

𝛥𝛺 = 𝜀1∕2
√

−𝐯𝐻0 𝐌1𝐮0 , (21)

ince the 𝜔1 correction is the same for both branches. As further described in the next section, the frequency splitting 𝛥𝛺 is a
arameter commonly used for sensing, which is said to be enhanced due to the dependence on 𝜀1∕2 (Hodaei et al., 2017; Chen et al.,
2017; Kononchuk and Kottos, 2020; Shmuel and Moiseyev, 2020).
4
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Fig. 2. Eigenfrequencies of PT-symmetric rod as a function of 𝛾. The real components for the first 50 modes are displayed in (a) illustrating the presence of
everal exceptional points. In (b,c), the real and imaginary eigenfrequency components are respectively displayed zoomed in the shaded blue region of (a).

.3. Numerical results and analysis

The elastic waveguide has two ground springs attached to locations 𝑥1 and 𝑥2, with spring constants 𝑘1 = 𝑖𝑘 and 𝑘2 = −𝑖𝑘 (Fig. 1).
To guarantee PT symmetry, we consider 𝑥2 = 𝐿−𝑥1, such that the locations of the ground springs are symmetric with respect to the
center, where the mass 𝑀𝑎 is attached (𝑥𝑚 = 𝐿∕2). The role of parity is to produce spatial inversions, say with respect to the center
𝑥 = 𝐿∕2, which when combined with time reversal (𝑖 → −𝑖) produces the same structure and operator, confirming the PT-symmetry.
As expected (Bender and Boettcher, 1998), we find that the eigenvalues of the PT-symmetric rod are either real or come in complex
conjugate pairs, and exceptional points are found defining a transition from the first case to the latter as the spring constant 𝑘 is
varied. In our numerical simulations, we consider 𝑥1 = 0.2𝐿 and a set of 𝑁 = 400 basis functions in Eq. (3). Results are displayed in
terms of non-dimensional frequency 𝛺 = 𝜔∕𝜔0, with 𝜔0 =

√

𝐸∕(𝜌𝐿2), and non-dimensional ground spring stiffness 𝛾 = 𝑘∕𝑘0, where
𝑘0 = 𝐸𝐴∕𝐿 is a measure of the rod stiffness.

Fig. 2(a) displays the real part of the numerically computed eigenfrequencies for the first 50 modes of the PT symmetric rod as
a function of 𝛾. A notable feature is the presence of several exceptional points (EPs) occurring at increasing values of 𝛾 for modes of
increasing order. In Figs. 2(b,c), the real and imaginary eigenfrequency components are respectively displayed zoomed in the region
of the first three exceptional points (blue shaded region in Fig. 2(a)), and are labeled as 𝑃1, 𝑃2 and 𝑃3. Note that these points mark
he transition from the region where the two branches forming the EP are purely real, to the region where they become complex
onjugate. This is usually referred to as a PT phase transition, from the unbroken (purely real) to the broken (complex conjugate)
T phases (Bender et al., 2013). For a continuous medium, the spectrum exhibits several PT phase transitions occurring for different
values of 𝛾.

In Fig. 3, we illustrate the variation of the mode shapes in the vicinity of the first two exceptional points. In particular, Figs. 3(a,c)
display zoomed views of the first and second EPs, where solid black and dashed blue lines differentiate the two branches obtained
from the numerical solution. Mode shapes corresponding to the points marked in Figs. 3(a,c) are displayed in Figs. 3(b,d), where each
panel displays the two mode shapes for a particular 𝛾, respectively denoted by the solid black and dashed blue lines representing
the corresponding line type in (a,c). As 𝛾 increases, the modes hybridize and coalesce at the EP, where, as expected, they become
identical. After the exceptional point, the two modes seem to be inverted copies of each other with respect to the center of the rod,
although we dot not explore this property in further detail. We remark that the modes forming the EPs are naturally dependent
on the location of the PT-symmetric inclusions. For the current example with the springs located at 𝑥1 = 0.2𝐿 and 𝑥2 = 0.8𝐿, the
first EP is formed through the coalescence of the second and third vibration modes, while the second EP is formed by the 7th and
8th modes. The reader can verify in Fig. 3 that, for 𝛾 = 0, these modes have high amplitude at the locations of the springs, which
facilitates their hybridization and the formation of the EP. In contrast, some modes are not modified by the presence of the springs
(straight lines in Fig. 2), as they have nodes at these locations. In the Appendix section, the reader can find examples of different
EPs formed with different locations of the PT-symmetric pair of ground springs.

As mentioned previously, the PT symmetric pair of springs introduce gain and loss, which in the unbroken PT phase are balanced
and result in purely real eigenfrequencies. This behavior can be elucidated by analyzing the energy dissipated or provided to the
system by the springs. Assuming harmonic motion, the work done by a spring in one cycle (𝑡 = {0, 2𝜋∕𝜔}) is 𝑊𝑠 = ±𝑘𝜋𝑈2, where 𝑈
is the amplitude of displacement at the location of the spring, and the ± signs are associated with loss and gain. For the resonances
in the unbroken PT phase, the springs have the same amplitude of displacement (see modes in Fig. 3), and thus gain and loss are
indeed balanced.

Next, we explore the sensitivity of the EPs to the point mass inclusion 𝑀𝑎. In Fig. 4(a), we repeat the eigenfrequencies of
the PT rod plotted as a function of 𝛾 (black), superimposed to the frequencies for a mass inclusion 𝜀 = 𝑀𝑎∕(𝜌𝐴𝐿) = 0.5% (red).
This very small inclusion in general introduces small changes to the resonant frequencies; however, larger changes are observed
around the EPs. Figs. 4(b,c) display zoomed views of the first and second EPs. In the first case (Fig. 4(b)), the exceptional point is
moved to a lower value of 𝛾, while in the second case (Fig. 4(c)) it is moved to a higher 𝛾. Experimentally, these changes can be
5
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Fig. 3. Zoomed view on first (a) and second (b) exceptional points of PT symmetric rod, with variation of mode shapes for points labeled in (a,c) displayed in
(b,d). Each panel in (b,d) displays two modes whose black solid or blue dashed lines represent solutions corresponding to the branches with same line type in
(a,c).

detected by measuring the resonant peaks in the frequency response (Hodaei et al., 2017). This is illustrated in the right panels of
Fig. 4(b,c), which display the frequency response at a point 𝑥 = 0.9𝐿 resulting from a point force applied at 𝑥𝑓 = 0.1𝐿, obtained
from the solution of Eq. (4). Dashed blue lines are added to identify the fixed 𝛾 value used in the computation. In Fig. 4(b), this
line intersects the exceptional point in the added mass case (red dot) and two distinct frequencies on the baseline case with no
mass (black dots). The frequency response highlights the split of the resonant peak (red) into two distinct resonant peaks (black)
matching the frequencies obtained from the eigenvalue analysis. A similar behavior is demonstrated in Fig. 4(c), except that now
the dashed blue line intersects the EP for the baseline (no mass) case, and the corresponding resonant peak (black) splits into two
peaks (red) upon addition of the attached mass.

The resonance split around the EPs suggest possible schemes for detection and quantification of the added mass (Hodaei et al.,
2017; Chen et al., 2017; Kononchuk and Kottos, 2020; Shmuel and Moiseyev, 2020). Fig. 5(a) displays the eigenfrequencies of
he PT rod as a function of 𝛾 for the second exceptional point, for 𝜀 ∈ [0, 0.5%]. The shaded blue plane corresponds to 𝛾 = 𝛾0
efining the EP for 𝜀 = 0, and its intersection with the frequency plots highlight the frequency split as a function of 𝜀 (red dots).
ndeed, the frequency difference 𝛥𝛺 corresponding to the split can provide a way to quantify 𝜀 = 𝑀𝑎∕(𝜌𝐴𝐿), as illustrated in
ig. 5(b), showing potentials for higher sensitivity due to the 𝜀1∕2 dependence. For comparison, the eigenfrequencies bifurcating
rom the EP are repeated in the top panel of Fig. 5(c), along with the predictions given by the perturbation approach (solid curves).
pecifically, the black curve corresponds to the 𝜀1∕2 approximation, while the blue curve contains also the 𝜀1 dependence. While
igher order terms would be required for complete agreement, the perturbation approach produces a good match considering terms
p to 𝜀1, and confirms the expected dominant dependence upon 𝜀1∕2 for 𝜀 ≪ 1. The frequency splitting 𝛥𝛺 as a function of the
erturbations is often considered as the main sensing parameter (Hodaei et al., 2017), and is displayed in the bottom panel of
ig. 5(c), with the black line corresponding to the prediction given by the perturbation approach (Eq. (21)). The change in such
arameter is theoretically infinite at the onset of the splitting, i.e. lim𝜀→0 𝜕𝛥𝜔∕𝜕𝜀 = ∞, which is of course limited by the resolution
f the frequency measurements (Shmuel and Moiseyev, 2020).
The presented approach can also be applied to other 1D waveguides such as elastic beams undergoing flexural motion. This is

onveniently done by employing Euler–Bernoulli beam theory, where the operator L defined in Eq. (2) is replaced by a fourth-order
6
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Fig. 4. Eigenfrequencies of PT symmetric rod without (black) and with (red) point mass inclusion 𝑀𝑎 = 0.005𝜌𝐴𝐿 (a), with zoomed views of the first and second
xceptional points displayed in (b,c). The right panels in (b,c) display the frequency response of the rod for a fixed 𝛾 value (dashed blue lines) illustrating the
plitting of the resonant peak of the EP into two separate peaks.

Fig. 5. Variation of EP as a function of added mass 𝜀 = 𝑀𝑎∕(𝜌𝐴𝐿) (a). The blue plane corresponds to 𝛾 = 𝛾0 defining the EP for 𝜀 = 0, and intersects the
frequency plots defining the frequency splitting from the EP (red dots). The frequency splitting can be measured by the variation of the resonant peaks with 𝜀
(b). The bifurcation of the EP with 𝜀 is repeated in the top panel of (c), where red dots correspond to the numerical solution, while black and blue solid curves
correspond to predictions given by the perturbation approach with terms up to

√

𝜀 and 𝜀, respectively. The frequency splitting 𝛥𝛺 defined by the two branches
is displayed in the bottom panel of (c), with the black curve corresponding to the prediction given by the perturbation approach.

operator. The described numerical procedures are then analogously applied in terms of the vertical displacement 𝑣(𝑥, 𝑡) of the beam
see Pal et al., 2019 for more details). Fig. 6 displays the results for an elastic beam equipped with the PT symmetric pair of ground
prings, where non-dimensional quantities are now defined as 𝛺 = 𝜔∕𝜔0, with 𝜔0 =

√

(𝐸𝐼)∕𝜌𝐴𝐿4, and 𝛾 = 𝑘∕𝑘0, with 𝑘0 = 𝐸𝐼∕(𝐿3),
while 𝐼 denotes second moment of area of the beam cross section. Fig. 6(a) displays the variation of an exceptional point formed
by the first two modes of the beam as a function of 𝜀. Similarly to the case of the rods, the EP bifurcates into two branches as a
function of 𝜀 (red dots), which can be detected by the splitting of resonant peaks in the forced response (Fig. 6(b)). The sensitivity of
the EP is illustrated in Fig. 6(c), where both numerical results (red dots) and the perturbation analysis results (black curve) confirm
the 𝜀1∕2 dependence.

3. Guided waves in PT symmetric elastic domains

The investigations are extended to 2D elastic domains supporting guided waves. Gain and loss are now conceptually introduced
through a PT symmetric pair of piezoelectric patches (Fig. 7). Piezoelectric transducers are commonly used for the generation of
lamb waves (Giurgiutiu, 2007; Raghavan and Cesnik, 2005; Collet et al., 2011), for active structural control (Marconi et al., 2020;
Xia et al., 2020), and, more recently, for the investigating the scattering properties of exceptional points (Wu et al., 2019; Hou and
Assouar, 2018), to name a few. Therefore, they are excellent candidates for inducing gain and loss through distributions of surfaces
stresses that mimic the gain and loss interactions.

3.1. Governing equations and transducer modeling

We consider a rectangular elastic domain in the 𝑥–𝑦 plane (Fig. 7) in plane strain conditions. Unit thickness along the out-of-plane
direction is considered for simplicity. The top surface of the domain includes a PT symmetric pair of piezoelectric elements that
induce gain and loss, in addition to two piezoelectric transducers used for actuation and sensing. The considered domain includes
7
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Fig. 6. Variation of EP as a function of added mass 𝜀 = 𝑀𝑎∕(𝜌𝐴𝐿) for elastic beam (a). The blue plane corresponds to 𝛾 = 𝛾0 defining the EP for 𝜀 = 0, and
intersects the frequency plots defining the frequency splitting from the EP (red dots). The frequency splitting can be measured by the variation of the resonant
peaks with 𝜀 (b). The bifurcation of the EP with 𝜀 is repeated in the top panel of (c), where red dots correspond to the numerical solution, while the black curve
corresponds to the prediction given by the perturbation approach illustrating a dependence with

√

𝜀. The frequency splitting 𝛥𝛺 defined by the two branches
is displayed in the bottom panel of (c), with the black curve also corresponding to the prediction given by the perturbation approach.

Fig. 7. Two-dimensional elastic domain (gray) with PT symmetric pair of piezoelectric patches (blue). Smaller patches (purple) are used for actuation and
sensing, and point mass 𝑀𝑎 is also attached to the top surface.

he point mass 𝑀𝑎 also on the top surface at 𝑥 = 𝐿𝑥∕2. The equation of motion for the 2D domain is expressed in the frequency
domain as (Graff, 2012)

𝜔2𝜌(𝑥, 𝑦)𝐮 + (𝜆 + 𝜇)∇(∇ ⋅ 𝐮) + 𝜇∇2𝐮 = 𝒒𝑎(𝑥, 𝑦, 𝑡) + 𝒒𝑃𝑇 (𝑥, 𝑦, 𝑡) (22)

where 𝐮 = [𝑢𝑥(𝑥, 𝑦) 𝑢𝑦(𝑥, 𝑦)]𝑇 is the displacement vector field, 𝜆 and 𝜇 are lamé constants, and ∇ = [𝜕∕𝜕𝑥 𝜕∕𝜕𝑦]𝑇 . The density is
expressed as 𝜌(𝑥, 𝑦) = 𝜌0 + 𝑀𝑎𝛿(𝑥 − 𝐿𝑥∕2)𝛿(𝑦 − 𝐿𝑦), where 𝜌0 is the density of the domain material. Also in Eq. (22), 𝒒𝑎(𝑥, 𝑦) and
𝒒𝑃𝑇 (𝑥, 𝑦) respectively define the area forces associated with actuation and with the gain–loss transducers. The latter consist of a
pair of transducers of length 2𝑎 deposited on the top surface of the domain, centered at locations 𝑥𝑐1 = 𝑥𝑝 and 𝑥𝑐2 = 𝐿𝑥 − 𝑥𝑝,
respectively. As previously noted, the symmetry with respect to the center is necessary to preserve PT symmetry. Their modeling
follows Refs. Raghavan and Cesnik (2005) and Collet et al. (2011), which assumes their dynamics to be decoupled from that of
the 2D domain, and considers their action in terms of stress components applied tangentially to the surface. Under the plane strain
assumption, the 𝒒𝑃𝑇 (𝑥, 𝑦, 𝑡) = [𝜙(𝑥, 𝑦, 𝑡), 0]𝑇𝑦=𝐿𝑦

, where

𝜙(𝑥, 𝑦 = 𝐿𝑦) = 𝑉01 (𝑡)[𝛿(𝑥 − 𝑥𝑐1 + 𝑎) − 𝛿(𝑥 − 𝑥𝑐1 − 𝑎) − 𝑉02 (𝑡)(𝛿(𝑥 − 𝑥𝑐2 + 𝑎) − 𝛿(𝑥 − 𝑥𝑐2 − 𝑎))]. (23)

Here, the applied voltage 𝑉0𝑖 (𝑡) is defined by the difference between the 𝑥−component of the velocities at the edges of the piezo,
i.e. 𝑉0𝑖 (𝑡) = 𝛾(𝑢̇𝑥(𝑥𝑐𝑖 +𝑎)− 𝑢̇𝑥(𝑥𝑐𝑖 −𝑎)), which results from the implementation of a feedback derivative scheme with gain 𝛾 as suggested
by the schematics of Fig. 7. The two additional transducers of length 2𝑑 and centered at locations 𝑥𝑎 and 𝑥𝑠 are respectively used for
actuation and sensing. According to what previously described, the stress due to the piezoelectric actuation leads to the following
expression for 𝒒𝑎 = [𝑞𝑥, 0𝑇 ], where:

𝑞𝑥(𝑥, 𝑦 = 𝐿𝑦, 𝑡) = 𝑞0(𝑡)𝛿(𝑦 − 𝐿𝑦)(𝛿(𝑥 − 𝑥𝑎 + 𝑑) − 𝛿(𝑥 − 𝑥𝑎 − 𝑑)), 𝑞𝑦 = 0, (24)

with 𝑞0(𝑡) denoting the forcing time history. For simplicity, we consider excitation of unitary amplitude 𝑞0 = 1 in the frequency
domain, and we measure the response at the sensing transducer as the integration of the strain 𝜀𝑥𝑥 at the top surface over the extent
of the sensor 𝑉𝑜 (Raghavan and Cesnik, 2005), i.e.

𝑉𝑜 = ∫

𝑥𝑠+𝑑

𝑥𝑠−𝑑
𝜀𝑥𝑥(𝑥, 𝐿𝑦)𝑑𝑥. (25)
8
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Fig. 8. Natural frequencies (a) and deformed mode shapes (b,c) for elastic domain with 𝛾 = 𝑀𝑎 = 0. The frequencies in (a) are color-coded according to a
polarization factor 𝑝 that identifies modes with predominant flexural (red) or longitudinal (blue) motion.

Fig. 9. Natural frequencies of 2D domain as a function of 𝛾 (a), illustrating the formation of two exceptional points. The real and imaginary frequency components
of the first and second exceptional points, highlighted by the shaded red and blue areas in (a), are displayed in (b,c). The color change as the two branches in
(b,c) merge indicates the hybridization between the longitudinal and flexural modes forming the EP, measured by the polarization factor 𝑝. The hybridization
is further illustrated in (d,e), where deformed shapes for modes marked in (b,c) are displayed.

The resulting equation, expressed in Eq. (22), is conveniently solved using a finite element discretization of the 2D domain within
the COMSOL Multiphysics environment. Specifically, under the assumption of zero external loading (𝒒𝑎 = 0), the discretization leads
to a polynomial eigenvalue problem that can be solved for eigenfrequencies and mode shapes. Consideration of the external load
leads to a system that is solved in the frequency domain assuming harmoning forcing 𝑞𝑥𝑎 (𝜔) at specified frequencies.

3.2. Exceptional points through hybridized Lamb modes

The 2D elastic domain (Fig. 7) is made of aluminum, with material coefficients 𝜆 = 40.38 Gpa, 𝜇 = 26.92 Gpa and 𝜌 = 2700 kg∕m2.
he dimensions are set to 𝐿 = 30 cm and 𝐿 = 2 cm, with the transducers of length 2𝑎 = 4.5 cm placed at positions 𝑥 = 7.5 cm
9
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Fig. 10. Eigenfrequencies of 2D domain as a function of 𝛾 with (red) and without (black) added mass 𝑀𝑎 = 0.005𝜌𝐿𝑥𝐿𝑦 (a). The right panel displays the
frequency response measured by the sensor for 𝛾 = 𝛾0, illustrating the splitting of the single (red) into two (black) resonant peaks. The variation of the EP with
𝜀 = 𝑀𝑎∕(𝜌𝐿𝑥𝐿𝑦) is displayed in (b), where the blue plane defined for 𝛾0 highlights the bifurcation of the EP (red dots). The splitting of the eigenfrequencies with
𝜀 is repeated in (c) showing good agreement with the splitting of the resonant peaks measured by the sensor. The frequency splitting is compared to polynomial
fits in (d) illustrating the dependence on

√

𝜀 (black), with better agreement for higher 𝜀 values when the linear coefficient is also included (blue). The frequency
plitting 𝛥𝑓 defined by the two branches is displayed in (e), along with polynomial fittings (solid curves) illustrating dominant dependence with

√

𝜀.

and 𝑥𝑐2 = 22.5 cm. Also, the actuation and sensing piezoelectric elements have length 2𝑑 = 0.3 cm, and are respectively placed at
ositions 𝑥𝑎 = 1.5 cm and 𝑥𝑠 = 28.5 cm.
A 2D elastic domain of the dimensions considered supports a family of guided waves (or Lamb waves) (Graff, 2012), that

ropagate along the 𝑥 direction in the form of symmetric (S) or anti-symmetric (A) modes. We consider traction-free boundary
onditions in both 𝑥 and 𝑦 directions, resulting in a set of vibrating modes that are formed from standing guided waves, as illustrated
n Fig. 8. In particular, Fig. 8(a) displays the first natural frequencies of the domain without any influence from the piezoelectric
lements or added mass (𝛾 = 𝑀𝑎 = 0). Selected modes from the S0 and A0 groups are displayed in Fig. 8(b,c). These modes are
racked by considering a polarization factor 𝑝, defined as

𝑝 =
∬ 𝑢2𝑦𝑑𝐴

∬ (𝑢2𝑥 + 𝑢2𝑦)𝑑𝐴
. (26)

The polarization factor 𝑝 is employed to color code the scatter plot in Fig. 8(a), where blue dots for 𝑝 → 0 correspond to
predominantly longitudinal modes (𝑢𝑥 ≫ 𝑢𝑦), while red dots for 𝑝 → 1 identify predominantly transverse modes (𝑢𝑦 ≫ 𝑢𝑥). This
is illustrated in the deformed shapes for selected flexural and longitudinal modes displayed in Fig. 8(b) and (c), respectively.

The variation of the corresponding frequencies with 𝛾 is displayed in Fig. 9(a). The introduction of the PT symmetric pair of
piezoelectric transducers leads to the formation of two EPs in the considered frequency range, which are highlighted by the shaded
red and blue areas in Fig. 9(a), while Fig. 9(b,c) display zoomed views of their real and imaginary frequency components. As
expected, the EPs define a transition from a region with purely real frequencies, to a region with complex conjugate frequencies.
Interestingly, both EPs are formed by the hybridization of a longitudinal (S0) and a flexural (A0) mode, as indicated by the color
changes as the branches merge. This color change tracks their change in polarization as quantified by 𝑝. The deformed mode shapes
for selected points marked in Fig. 9(b,c) are displayed in Fig. 9(d,e), illustrating the formation of the EP through the hybridization
of the modes, with identical mode shapes occurring for the 𝛾 value corresponding to the EP.

Next, we illustrate the sensitivity of the EP to the point mass inclusion. Fig. 10(a) displays the real frequency component of the
10

first EP for an added mass 𝜀 = 𝑀𝑎∕(𝜌𝐿𝑥𝐿𝑦) = 0.5% (red), which is compared to the baseline case with 𝜀 = 0 (black). Similar to the



Journal of the Mechanics and Physics of Solids 149 (2021) 104325M.I.N. Rosa et al.

𝛾
s
c
b

b
a
d
l
s

Fig. 11. Two-dimensional elastic domain with fixed boundary conditions at all edges except the top surface, where the PT symmetric pair of transducers is
deposited. At the center of the top surface, a rectangular crack defect of dimensions 𝑐𝑤 × 𝑐ℎ is illustrated.

first EP of the rod spectrum (Fig. 4(b)), the inclusion produces a considerable shift of the EP to a lower 𝛾 value, which we denote
0. Note that, in contrast to results of Fig. 5, 𝛾0 is chosen as the EP in the perturbed configuration instead of the unperturbed case,
ince the EP moves to a lower 𝛾 value with the addition of the mass. Hence, the frequency splitting will occur with the perturbed
onfiguration as the starting point. This starting point, defined by the amount of perturbation added, is arbitrary and can be chosen
ased on the required ranges of specific applications. On the right panel of Fig. 10(a), the frequency response 𝑉𝑜 measured by the
sensor illustrates the splitting of the single resonant peak (red) into two separate peaks (black) occurring for 𝛾 = 𝛾0 (dashed blue
line). The frequencies of the resonant peaks correspond to the eigenfrequencies for 𝛾 = 𝛾0, as illustrated by dashed red and black
lines. Starting from an added mass 𝜀 = 0.5%, Fig. 10(b) illustrates the variation of the eigenfrequencies for decreasing 𝜀 values
(black), highlighting the bifurcation of the EP into two branches (red dots) for 𝛾 = 𝛾0 (blue plane). The frequency splitting can be
measured by the response in the sensor as illustrated in Fig. 10(c), where red dots corresponding to the numerical eigenfrequencies
match the frequency of the resonant peaks as 𝜀 is varied. Hence, by using the frequency split of the resonant peaks measured by the
sensor, one could estimate the value of an inclusion whose mass lies in the considered region. While a perturbation analysis is not
conducted for this case, we illustrate in Fig. 10(d) that the splitting from the EP occurs according to the ansatz given by Eq. (7).
In particular, a polynomial of the form 𝜔(𝜀) = 𝜔0 + 𝜔1𝜀1∕2 + 𝜔2𝜀 can be fitted exactly to the first 3 points of each branch, resulting
in the displayed solid curves. The behavior is similar to that of Fig. 5(b): the black line corresponds to the solution with only the
𝜀1∕2 dependence, showing a good agreement for lower 𝜀 values, while the blue line considers also the linear correction and better
approximates the numerical solution for increasing 𝜀 values. The frequency splitting 𝛥𝑓 is displayed separately in Fig. 10(e), with
solid curves corresponding to the polynomial fits. Thus, a sensor operating in such conditions would have a high sensitivity for
masses around 𝜀 = 0.5%, since 𝜕𝛥𝑓∕𝜕𝜀 → ∞ in that region.

3.3. Exceptional points from surface waves and crack sensing

We now consider the 2D domain depicted in Fig. 11, similar to that of Fig. 7 but with a higher height 𝐿𝑦 = 9 cm and fixed
oundary conditions on all edges except the top surface. This modification facilitates the formation of vibration modes concentrated
t the top surface, where in addition to point mass inclusions we also consider a defect in the form of a rectangular crack of
imensions 𝑐𝑤 × 𝑐ℎ. The domain also includes the PT symmetric pair of transducers located at 𝑥𝑐1 = 7.5 cm and 𝑥𝑐2 = 22.5 cm, with
ength 2𝑎 = 3 cm, and the two smaller elements for actuating and sensing as previously defined. The free surface of the 2D domain
upports surface (or Rayleigh) waves (Graff, 2012), whose wave speed can be approximated as 𝑐𝑟 = 𝑐𝑠(0.87 + 1.12𝜈)∕(1 + 𝜈), where
𝑐𝑠 =

√

𝜇∕𝜌 is the shear wave speed, and 𝜈 = 0.3 is the Poisson’s ratio. This approximation gives 𝑐𝑟 = 2929.27 m∕s for the case at
hand. We illustrate the formation of exceptional points from such surface wave modes, and their sensitivity to point mass inclusions
and to the crack defect.

Fig. 12(a) displays the real and imaginary eigenfrequency components as a function of 𝛾 in the frequency range of one EP, formed
by a surface wave mode and a bulk mode. The modes are differentiated by a polarization factor 𝑝𝑠 defined as

𝑝𝑠 =
∫

𝐿𝑥

0 ∫

𝐿𝑦

0.75𝐿𝑦

(𝑢2𝑥 + 𝑢2𝑦)𝑑𝐴

∫

𝐿𝑥

0 ∫

𝐿𝑦

0
(𝑢2𝑥 + 𝑢2𝑦)𝑑𝐴

. (27)

Such polarization factor averages the total displacement at a region near the top surface (𝑦 ∈ [0.75𝐿𝑦, 𝐿𝑦]), which is then divided by
the total displacement integrated in the entire domain, and is employed as the color of the dots representing the eigenfrequencies
in Fig. 12(a). Hence, higher values of 𝑝𝑠 (red) signal modes with energy concentrated at the surface, while lower values of 𝑝𝑠
(blue) indicate globally spanning modes, as verified in the mode shapes of Fig. 12(b). The modes concentrated at the surface
are formed by a standing Rayleigh wave, with a small contribution from other bulk modes. For example, mode Ib in Fig. 12(b)
11

corresponds to an eigenfrequency of 𝑓 = 141.784 kHz. At this frequency, the non-dispersive Rayleigh waves are characterized by a
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Fig. 12. Real and imaginary frequency components as a function of 𝛾 illustrating formation of the EP (a). The frequencies are color-coded according to the
polarization 𝑝𝑠, indicating the hybridization of the surface mode (red) and the bulk mode (blue) as the EP is formed, also illustrated by the deformed mode
hapes in (c).

avelength 𝜆 = 𝑐𝑟∕𝑓 = 2.07 cm approximately. In the domain with 𝐿𝑥 = 30 cm, this mode should contain 𝐿𝑥∕𝜆 = 14.5 wavelengths
approximately, which can be verified in its deformed shape displayed in Fig. 12(b). As 𝛾 increases, the surface mode hybridizes
with the bulk mode to form the EP, as indicated by the color changes associated with 𝑝𝑠, and also visualized in the deformed mode
shapes displayed in Fig. 12(b). At the exceptional point, both eigenfrequencies produce a single linearly independent eigenvector,
constituted primarily of a surface wave mode.

Finally, we investigate the sensitivity of the EP to a point mass inclusion and to a small crack defect. Fig. 13(a) displays the
variation of the EP with the added mass 𝜀 = 𝑀𝑎∕(𝜌𝐿𝑥𝐿𝑦), while Fig. 13(d) displays the variation with the crack height 𝜀 = 𝑐ℎ∕𝐿𝑦,
for a fixed crack width of 𝑐𝑤 = 32.43 μm. The blue planes for 𝛾 = 𝛾0 highlights the bifurcation of the EP as a function of the
perturbation 𝜀 (red dots). Similar to previous results, this eigenfrequency splitting may be detected by monitoring the resonant
peaks split (Figs. 13(b,d)). The corresponding frequency splits 𝛥𝑓 for the added mass and the crack are displayed in the top and
bottom panels of Fig. 13(c,f), along with solid curves representing the polynomial fits previously described. Compared with previous
results in this paper, we note that considerable 𝛥𝑓 shows a larger linear dependence on the perturbation, and a smaller square root
dependence, especially for the case of the surface crack. In fact, the very small crack whose width 𝑐𝑤 approximately corresponds
to 0.16% of the wavelength is sufficient to produce significant frequency splittings. This suggests that EP sensing may provide a
very sensitive framework for the considered type of defect. A dominant square root dependence would be found for even smaller
𝜀, which could generate smaller 𝛥𝑓 values that would challenge the frequency resolution of sensing systems. These considerations
will be the subject of future investigations.

4. Conclusions

In this work we have investigated elastic media such as 1D waveguides and 2D elastic domains, where PT-symmetric attachments
leads to the formation of exceptional points in their vibrational spectra. We have illustrated the sensitivity of the EPs to defects such
as point mass inclusions and surface cracks. In particular, the defects produce a bifurcation of the EP into two eigenfrequency
branches which can be measured through the splitting of resonant peaks in the frequency response. Several opportunities are
identified for future studies, such as the design of higher order EPs (Hodaei et al., 2017; Xiao et al., 2019) which provide even higher
sensitivity, investigations of alternative structures and PT-symmetric gain/loss strategies, influence of noise and non-linearities and
12

experimental demonstrations. Also, this work suggests the monitoring of resonant peaks associated with global vibration modes as



Journal of the Mechanics and Physics of Solids 149 (2021) 104325M.I.N. Rosa et al.

s

A

g

A

s

Fig. 13. Variation of eigenfrequencies forming the EP with added mass (𝜀 = 𝑀𝑎∕(𝜌𝐿𝑥𝐿𝑦)) (a) and crack height (𝜀 = 𝑐ℎ∕𝐿𝑦) (d). The blue planes defined by
𝛾 = 𝛾0 highlights the bifurcation of the EP as a function of 𝜇0 or 𝑐ℎ (red dots). The frequency response plots in (b,e) illustrate the splitting of the resonant peaks
measured by the sensor, which match the splitting of the resonance frequencies. The variation of the frequencies and frequency splitting 𝛥𝑓 with 𝜀 are displayed
in the top and bottom panels of (c,f), compared with polynomial fits (solid curves).

Fig. 14. Real part of eigenfrequencies as a function of 𝛾 for PT elastic rods with springs located at 𝑥1 = 0.15𝐿 (a), 𝑥1 = 0.2𝐿 (b), and 𝑥1 = 0.35𝐿 (c), illustrating
the formation of EPs by the coalescence of different modes depending on the springs locations.

a detection strategy, but other methods based on wave scattering (Xiao et al., 2019) might be of significance for future work on
urface waves.
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ppendix. Additional examples of EPs in elastic rods with different PT-symmetric springs locations

Additional examples of EPs formed in the elastic rods are reported here for different locations of the PT-symmetric pair of ground
prings. The results displayed in Fig. 14 correspond to the variation of the real part of the eigenfrequencies of the rod as a function
13
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of 𝛾 for 𝑥1 = 0.15𝐿 (a), 𝑥1 = 0.2𝐿 (b) and 𝑥1 = 0.35𝐿 (c). As noted in the main text, the location of the springs influence which
modes form the EPs. For example, the first EP is formed by the 3rd and 4th modes for 𝑥1 = 0.15𝐿 (a), by the 2nd and 3rd modes
for 𝑥1 = 0.2𝐿 (b), and by the 1st and 2nd mode for 𝑥1 = 0.35𝐿 (c). In general, we note that a higher number of EPs is formed
at lower frequencies when the springs are closer. Although we present a few numerical results, a general rule for estimating and
predicting the formation of the EPs based solely on the locations of the inclusions is still missing, and can be the subject of future
investigations.
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