Applied Physics Letters ARTICLE

scitation.org/journal/apl

Exploring topology of 1D quasiperiodic
metastructures through modulated

LEGO resonators ©

Cite as: Appl. Phys. Lett. 118, 131901 (2021); doi: 10.1063/5.0042294
Submitted: 29 December 2020 - Accepted: 12 February 2021 -

Published Online: 29 March 2021

©

Export Citation

®

View Online CrossMark

Matheus I. N. Rosa,” () Yuning Guo, (¥) and Massimo Ruzzene ()

AFFILIATIONS

P. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA

Note: This Paper is part of the APL Special Collection on Metastructures: From Physics to Applications.
2 Author to whom correspondence should be addressed: matheus.rosa@colorado.edu

ABSTRACT

We investigate the dynamics and topology of metastructures with quasiperiodically modulated local resonances. The concept is implemented
on a LEGO beam featuring an array of tunable pillar-cone resonators. The versatility of the platform allows the experimental mapping of the
Hofstadter-like resonant spectrum of an elastic medium, in the form of a beam waveguide. The non-trivial spectral gaps are classified by eval-
uating the integrated density of states of the bulk bands, which is experimentally verified through the observation of topological edge states
localized at the boundaries. Results also show that the spatial location of the edge states can be varied through the selection of the phase of
the resonator’s modulation law. The presented results open new pathways for the design of metastructures with functionalities going beyond
those encountered in periodic media by exploiting aperiodic patterning of local resonances and suggest a simple, viable platform for the

observation of a variety of topological phenomena.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0042294

The discovery of topological insulators' has attracted significant
interest from the metamaterials community due to promising pros-
pects for robust wave localization and transport.” ~ Recent effort
focuses on exploring higher dimensional topological effects in lower
dimensional systems by exploiting virtual dimensions in parameter
space.'” " Indeed, edge states commonly attributed to the quantum
Hall effect in 2D systems” have been illustrated in 1D periodic' *'® and
quasiperiodic'” "’ systems, while 4D and 6D quantum Hall phases
have been observed in 2D**** and 3D'*"’ lattices. In addition to
opening avenues for the exploration of novel topological wave physics
phenomena, these investigations are also promising for technological
applications and devices. For example, topological pumps as originally
envisioned by Thouless” were recently implemented, """ *” sugges-
ting new mechanisms for robust energy transport in systems of a sin-
gle spatial dimension.

Among the many types of elastic metamaterials, locally resonant
metastructures are particularly interesting due to the possibility of
affecting dispersion at subwavelengths.” *° Recent studies have
explored the effects of aperiodicity and disorder’” ™" for bandgap wid-
ening and producing rainbow effects. For example, elastic beams with
identical arrays of resonators located according to quasiperiodic

patterns investigated in Ref. 22 were shown to feature additional spec-
tral gaps hosting topological edge states. These were produced at no
additional cost or increase in mass when compared to the nominal
periodic configurations. Thus, quasiperiodic patterning of locally reso-
nant metastructures may open new avenues for wave localization or
attenuation in multiple bands and for extending the behavior of peri-
odic configurations.

In this Letter, we investigate locally resonant metastructures
whose resonating attachments are tuned according to a quasiperiodic
modulation law. We employ a LEGO elastic beam with pillar-cone res-
onators (Fig. 1), whose resonant frequencies are readily adjusted by
sliding the cones along the pillars. LEGO bricks of this type were
already employed in prior works to explore the effects of disorder in
locally resonant metamaterials*®’" through an experimental platform
that is also suitable for investigations in the context of quasiperiodic
media. Indeed, the versatility of the platform enables the experimental
mapping of the Hofstadter-like resonant spectrum of the beam.
Numerical simulations are conducted and allow for predictions of the
spectral gaps, along with their topological classification based on the
framework presented in Ref. 18, while the experimental observation of
a Hofstadter’s spectrum in acoustic waveguides is reported in Ref. 20.
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FIG. 1. Schematic of the LEGO beam with pillar-cone resonators. A modulation of
the cones’ heights h, = hy + Ahsin (2z0n + ¢) is employed, represented by the
dashed red line. The figure illustrates a periodic domain obtained with 6 = 1/4,
comprising four resonators per unit cell.

Our experiments also illustrate the presence of topological edge states
spanning the gaps, which are localized at one of the boundaries of the
beam. In contrast to the investigations presented in Ref. 22, this work
considers equally spaced resonators whose resonant frequencies are
modulated instead of their spacing. This alternative approach may be
advantageous, especially for tunable devices, whereby the modulation
of local properties such as the resonant frequency of piezoelectric
shunt circuits”” ** may be employed for versatile platforms without
the need for the physical reconfiguration.

The considered elastic LEGO beam (gray solid in Fig. 1) is
equipped with an array of resonators of equal spacing a, whose reso-
nance frequencies are modified by sliding the cones (blue) along the
pillars (black). The height A, of the cone in the nth resonator is
assigned according to the law

hy, = hg + Ahsin (2n0n + ¢), (1)

where h, and Ah denote the offset and amplitude of the modulation.
Such modulation can be visualized as the sampling of a sinusoidal
waveform h(x) = hy + Ahsin (2n0x + ¢) (dashed red line in Fig. 1)
at locations x,, = n.' Alternatively, the law can also be visualized as
the projection from an array of circles.”*"*” The parameter 0 controls
the periodicity of the modulation: rational 0 values of the form p/q
with co-prime p, g identify periodic structures with g resonators per
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unit cell, while irrational 0 values are associated with quasiperiodic
domains. The illustration in Fig. | exemplifies a periodic domain with
6 = 1/4, comprising four resonators per unit cell. The phase (or
phason) ¢ does not affect the periodicity of the domain but is a
parameter that reveals the existence of edge states and defines their
localization at one of the two boundaries.' """

The spectral properties of the beam are first characterized for the
case of uniform distribution of resonators (0 = 0) by conducting 3D
finite element (FE) simulations and subsequent experimental verifica-
tion. Following the process detailed in the supplementary material, the
local resonant gap produced by the pillar-cone resonator is mapped as
a function of the height of the cone . This shows that the center fre-
quency of the gap varies approximately from 200 Hz to 350 Hz as hj is
varied from 0 to 30 mm (other relevant physical parameters are pro-
vided in the supplementary material). The spectrum for the quasiperi-
odic modulation [Eq. (1)] is then conveniently mapped by using
periodic approximants.'®”' To this end, the eigenfrequencies of a finite
beam comprising N = 100 resonators are computed by applying peri-
odic boundary conditions for 0 varying in steps of 1/100, correspond-
ing to the subset of periodic values for the chosen structure size. The
modulation parameters hy, Ah = 15 mm are considered to explore
the entire range of height variation (from 0 to 30 mm). The results
reported in Fig. 2(a) show the Hofstadter-like spectrum of the beam as
a function of 0. For 0 =0, a single local resonant gap exists in the
f ={280,360} Hz range, which corresponds to the gap predicted
by the analysis of uniform resonators with hy = 15 mm (see the
supplementary material). Interestingly, such a local resonant gap is
quickly transformed into a series of additional gaps at lower and
higher frequencies as 0 is varied through the reconfiguration of the
cones’ heights defined by the modulation law of Eq. (1). We note that
in the analysis we only include bending modes with a significant com-
ponent of motion that is perpendicular to the beam axis (along z).
These are separated from the other polarizations by considering a
polarization factor that filters out predominantly longitudinal or
torsional modes. Definitions of the polarization factor and the modal
filtering process are found in the supplementary material.
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FIG. 2. Spectrum (a) and IDS (b) of quasiperiodic LEGO beam as a function of 0. The non-trivial spectral gaps in (a) are associated with non-horizontal straight lines in (b).
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The topological properties of the spectrum are revealed by com-
puting the integrated density of states (IDS),**" which is displayed in
Fig. 2(b). The rendering of the IDS highlights straight lines, which are
associated with the spectral gaps. Non-horizontal lines indicate non-
trivial gaps, identified by non-zero Chern numbers that are evaluated
from the slope of the corresponding gap line."**’ The most prominent
gap in Fig. 2(a) (rising up from 400 to 800 Hz approximately) is
labeled by the fitting highlighted in Fig. 2(b) (white dashed line), illus-
trating that IDS = 2 + 0 for that gap, and thus its Chern number is
C=1

The experimental investigations have as a first goal the mapping
of the Hofstadter-like spectrum of Fig. 2(a). A beam comprising
N =42 resonators is clamped at the right end and excited at the left
end by an electrodynamic shaker. A broadband pseudo-random signal
in the range f = {0,800} Hz is applied to excite the bending motion
of the beam. The motion is recorded by a scanning laser Doppler vibr-
ometer (SLDV) at a total of 80 points aligned along the span of the
beam. Finally, the transmission is calculated by computing the ratio
between measured velocity at the measurement points to the beam
velocity at the location of shaker, i.e., the input point. The results pre-
sented in Fig. 3 compare the simulation results computed via 3D FE
(a) with experimental measurements (b). A total of 20 experiments are
conducted for 0 varying from 0 to 0.5, and the results are presented in
the range 6 € [0, 1] for better visualization, which utilizes symmetry in
the quasiperiodic pattern allowing mirroring the results obtained for
0 € [0,0.5]. In the figure, the color denotes the magnitude of the log
scale of the transmission amplitude averaged across all measurement
points. The experimental results in (b) are in good agreement with the
numerical results in (a) and overall display most of the features pre-
dicted by the spectrum of Fig. 2(a), confirming, in particular, the pres-
ence of the largest gap labeled with C=1. We do note that some
discrepancies in spectral positions and brightness of the modes are
observed, which arise primarily due to slightly mismatched material
properties and dissipation modeling.

Next, we experimentally demonstrate the existence of topological
edge states spanning the non-trivial gaps. We consider a representative
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case of 0 = 0.2, corresponding to a periodic beam with five resonators
per unit cell and explore the spectral variation with the phason param-
eter ¢ in Eq. (1). Two sets of experiments are conducted on the beam
with N=42 resonators under the same conditions as previously
described, but with excitation at the left boundary in one case, and at
the right boundary in the other. For each case, 41 experiments are con-
ducted for ¢ varying within the {0, 27} range. As illustrated in the
results detailed in the supplementary material (which also includes
numerical results), the spectrum averaged across all points along the
beam captures one group of branches corresponding to the edge states.
The left-localized branches are captured by the left-excitation experi-
ment, while the right-localized branches are captured by the right-
excitation experiment. We here provide a single spectral characteriza-
tion of the beam in Fig. 4(a) obtained by combining the results from
both experiments, which allows the observation of both left- and
right-localized branches of the edge states. Two sets of experimental
modes illustrating a transitions of the edge states are marked in
Fig. 4(a) and displayed in Figs. 4(b) and 4(c). In the first case
[Fig. 4(b)], a smooth transition from left-localized (I), to bulk mode
(II), and finally to right-localized (III) is observed. In the second case
[Fig. 4(c)], the branches of the edge state cross and a transition from
bulk (I) to left-localized (II) are first illustrated, while a representative
right-localized response (III) from the right-localized branch is also
displayed. These transitions are commonly explored for topological
pumping in passive systems exploiting an extra spatial dimen-
sion,'”"”***% or in active systems by modulating the phason in time
$."*" Video animations of these experimental vibration modes
captured by the SLDV are provided in the supplementary material.
The results presented in this Letter illustrate experimentally how
quasiperiodic patterning of the resonant attachments on 1D meta-
structures can be used to open additional non-trivial gaps hosting
topological edge states. Such analysis expands the results reported in
Ref. 22 by considering modulations of the resonant frequencies instead
of operating on the locations of inclusions. This provides potential for
implementation of these patterns using tunable devices, such as elec-
tromechanical waveguides.” In addition, the LEGO platform is shown
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FIG. 3. Numerical (a) and experimental (b) average transmission of quasiperiodic beam as a function of 0, capturing the features of the Hofstadter-like spectrum.
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FIG. 4. Experimentally measured average transmission of beam with & = 0.2 as a function of ¢ (a). Edge states are observed to span the non-trivial gaps. Representative
modes marked in (a) are displayed in (b) and (c), illustrating the edge states and their transitions.

to be suitable for the exploration of elastic wave phenomena and may
be applicable for other related explorations. Future work may focus on
extending the presented analysis to two-dimensional (2D) quasiperi-
odic media, where higher dimensional topologies such as the 4D quan-
tum Hall effect may be explored.””*>

See the supplementary material for additional details regarding
the numerical and experimental methods.
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