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Abstract

We study a discrete dynamical Schrodinger bridge problem (SBP) as a dynamical varia-
tional problem on a finite graph. We prove that the discrete SBP exists a unique minimizer,
which satisfies a boundary value Hamiltonian flow on probability simplex equipped with L2-
Wasserstein metric. In our formulation, we establish the connection between discrete SBP
problems and Hamiltonian flows.

Keywords Optimal transport - Schrodinger bridge problem - Fisher information -
Hamiltonian system - Graph

1 Introduction

Inrecent years, Schrodinger bridge problem (SBP) has been studied extensively in mathemat-
ics and engineer communities [19,30]. It plays important roles in applications, such as mean
field games [2,4,17], Bayesian sampling problems [1] and machine learning [31,32]. The
problem is proposed by Schrodinger [33], which describes the optimal value and trajectory
in the space of probability densities for minimal kinetic energy transported by drift-diffusion
processes. Nowadays, SBP can be viewed as a relaxation of optimal transport [29,34], which
has both static and dynamical formulations. The static formulation refers to the entropic
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relaxation of linear programming problems, whose computation, known as the Sinkhorn’s
algorithm [13], has been widely used. The dynamical formulation of SBP studies an opti-
mal control problem on density space constrained by the Fokker-Planck equation. In this
formulation, the path of the minimizer is a Hamiltonian flow on the density space equipped
with L2-Wasserstein metric. This interpretation has been found strong connections to the
Nelson’s variational problem, from which he derives Schrodinger equation. It is related to
the Nelson’s stochastic mechanics [5—7,28] and stochastic calculus of variations [21,35,36].

In this paper, we study a dynamical SBP on finite graphs. Here the graph represents the
discrete states, which arises in numerical computations and modeling [24]. Our approach
is mainly based on the recently developed theories on discrete dynamical optimal transport
[9,25-27] and discrete Nelson’s stochastic mechanics [10]. The SBP on a graph can be posed
as a variational problem on the probability simplex constrained by the discrete Fokker—Planck
equation. We prove that the minimizer of the SBP on the graph is a unique path, which
satisfies a Hamiltonian system in the probability simplex w.r.t. discrete Wasserstein-2 metric.
Furthermore, after applying the discrete version of “Nelson’s transformation”, i.e. a canonical
symplectic transform, we convert the Hamiltonian system into a different expression in term
of the discrete Fisher information on the graph.

There exist many different models for the discrete SBP in the literature. Among them,
Léonard proposed it as a dynamical variation problem based on random walks [20]. Chen
et al. studied the problem based on forward-backward heat equations [8]. They are different
from our consideration, which is based on the dynamical optimal transport on graphs. Our
formulation naturally connects with Hamiltonian flows on discrete probability simplex, see
related works in Wasserstein extreme flows by Conforti and Pavon [11,12]. We remark that
our Hamiltonian flow on a graph has potential connections to the discrete Ricci curvature
introduced by Erbar and Maas [14], see related discussions in [17]. In addition, the derived
Hamiltonian flow can be used as a spatial discretization scheme to compute the minimizer of
SBP. We use a few simple examples to illustrate the relation between the proposed discrete
SBP problems and their graph structures.

We arrange the paper as follows. In Sect. 2, we briefly review the dynamical SBP on
continuous space. In Sect. 3, we propose dynamical SBP on a graph and prove the existence
of minimizer path. In Sect. 4, we prove the uniqueness of minimizer by Nelson transform.
We end the paper by showing a few numerical examples.

2 Review of Dynamical Schrédinger Bridge Problem

In this sequel, we briefly review optimal transport and Schrodinger bridge problem (SBP);
see more details in [19]. The SBP has many different, but equivalent formulations in the
continuous sample space. We focus on its dynamical formulation as follows:

, 1 . .
n;f{/ SEximp b0, X1 Xo = b(t, Xo) +V/2BBi, Xo ~p, X ~p1}.<1)
0

Here E is the expectation operator and the infimum is taken over all possible drift function
b: [0,1] x R? — R, such that X, is a stochastic process in R? with a standard Brownian
motion By, B > 0 is a given scalar, and X¢, X are random variables with given fixed
probability densities p2(x), pl(x).
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Here the variational problem (1) can be reformulated in term of probability densities.
Denote

/ p(t,x)dx = Pr(X,; € A), for any measurable set A.
A

Then p(t, x) satisfies the forward transition equation of Xy, i.e., the Fokker—Planck equation

ap
at
And the objective functional of (1) can be rewritten as

+ V- (pb) — BAp = 0.

1 1
/ Ex -y Ib(t, X0)|2dt = / / Ib(t, )2t x)dxd.
0 0 R4

One can reform (1) as an action minimization problem in the space of densities:

! 1 9
inf / / —||b(¢, x)||2,0(t, x)dxdt: i + V - (pb)
b 0 JRrd 2 dat

—BAp =0, p(0,x) = p°(x), p(1, %) = p' M)}, 2
The minimizer of (2) satisfies the following system of equations:

b(t,x) =VP(t,x)

ap (1, x)

P + V- (o, x)VO(t,x)) = BAp(t, x) 3)
000 1 gei 2 = —pas
T 5” )" == (t,x).

Here the first PDE is the Fokker—Planck equation while the second PDE is the Hamilton—
Jacobi equation, and @ (¢, x) is the Lagrange multiplier for variational problem (2). We
notice that variational problem (2) and its minimizer (3) are very similar to the Benamou—
Breiner variational formula for the 2-Wasserstein metric [3] and its geodesic equations. The
differences are the two extra Laplacian terms in SBP.

More interestingly, there are more connections between SBP and optimal transport [7].
Denote

v(t,x) :=b(t,x) — BVilogp(t, x). “4)

Substituting v into (2) and performing the integration by parts with respect to both time and
spatial variables, SBP (2) can be rewritten as

1
inf /{/ lvz(r,x),o(t,x)dx+I(,o(t,-))dt}
0 R4 2

+B [ /R , pl(x)log p' (x) — p°(x) log p°<x>dx] , 5)

where the infimum is taken over all Borel vector fields v(z, x), such that

dp(t, x)
ot

+ V- (p(t, ), x) =0, p0,x)=p"x), pd,x)=p"x).

and

I(p) = / 1V log p(0) 12 (x)dx,
Rd
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represents the Fisher information functional [15]. Hence the minimizer of (5) satisfies

v(t,x) = VS(t, x)

dp(t, x)

- + V- (p(t,x)VS(t,x)) =0 (6)
aS(t,x) 1 2 B

P + 2||VS(t,x)|| =3 ap(t,x)l(p)-

Here 5,0(%) is the L? first variation operator w.r.t. density p (¢, x), and the first PDE of (6)

is a continuity equation while the second PDE is an Hamilton—Jacobi equation with the L?
differential of Fisher information functional.

We notice that (4) is the key technique used by Edward Nelson to derive Schrédinger equa-
tion [28]. So we call (4) the Nelson transformation. We will also perform this transformation
discretely, and derive the discrete version of (3), (6) on finite graphs.

3 Schrodinger Bridge Problem on Graphs

In this section, we study a Schrodinger bridge problem on a graph. It is a discrete analog of
variational problem (2).

3.1 Dynamical Optimal Transport on Graphs

We review some notations in optimal transport on graphs. Consider a weighted graph G =
(V,E,w), where V = {1,2,...,n} is the vertex set, E is the edge set, and w is the set of
weights on edges.The probability set (simplex) supported on all vertices of G is defined by

n
P(G) = {(m?l €ER": Y pi=1p= 0} :
i=1
where p; is the discrete probability function at node i. Its interior is denoted by P (G).

For the convenience of notions, we define the following operations on graphs. A vector
field b on G refers to a skew-symmetric matrix,b: V x V — R:

—bji if(i,j)GE;
bij = .
0 otherwise.
Given a function ®: V — R, a potential vector field Va®: V x V — R is defined as
Vobi; = JOij (D — D)) if(lUj)’ € L;
0 otherwise.

Letm: VxV — Rbeananti-symmetric flux function such thatm;; = —m;;. The divergence
of m, denoted as divg(m): S — R, is defined by

divg(m); = — Y Jogmi;.
JEN (@)
where N(i) = {j € V: (i, j) € E} represents the adjacent set of i. Consider a particular
flux function

mij :=0;j(p)bij,
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where 6;;(p) represents the discrete probability (weight) on edge (i, j), defined by

pi_Pj
4~ d; .
———77 ifp; >0 and p; > 0;
0ij(p) = | log g —log 7 (7
0 otherwise,
withd; = M representing the volume at node i.
i=1 ZjeN(i) ij

We remark that the choice of 6;; is not unique [25]. The other choice of 6; is the arithmetic

mean
L (pi  pj
Oiip)==5+=).
1(10) 2<di+dj)

For the simplicity of proof, we present the result by using 6;; in (7). In fact, the proof can be
adjusted to the arithmetic mean. More details are provided in Remark 4.

Given two vector fields v = (v;j) ¢, j)ee, ¥ = (Vi) ¢, j)ee on the graph and p € P(G).
The discrete inner product is defined by

- 1 -
W, 0)p 1= 5 D w0 (o).
(. ))eE

Here the coefficient % is due to the convention that the graph is undirected. Hence the term

on each edge, e.g. (i, j), (j, i), is counted twice. The L2-Wasserstein metric on P(G) can
be defined as follows.

Definition 1 Forany o, p' € P(G), define the Wasserstein distance W : P(G)xP(G) — R
by

1
W(po, p1)2 — p([iilli:([) {/(; (v(), v(t))p(t)dt} .

Here the infimum is taken over pairs (o(t), v(r)) with p € H'((0, 1), R") and vij =
—vji: [0, 1] — R measurable, satisfying

d
PO +divG(p(H(1) =0, p(O0) = P’ p() =p'.

Variational problem in Definition 1 has an equivalent representation, which allow us to
equip the probability simplex with a Riemannian structure. We show this by the follow-
ing matrix function following graph Laplacian notations. We notice that these divergence,
gradient operators in matrix forms are consistent with the ones in previous definitions.

Definition 2 (Weighted Laplacian matrix) Define the matrix function L(-) : R” — R"*" by
L(a) = D'®(a)D, a=(a)!_; €R",
where
e D c RIEI*" is the discrete gradient operator
SO, ifi=ki>j

D jeEkev =\ —Joij, ifj=ki>j;
0, otherwise
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e —D'" e R™¥IEl is the discrete divergence operator, which is the transpose of discrete
gradient operator D;
e O(a) € RIEIXIEl is a weight matrix depending on a,

Oij(a) if (@, j)= (k1) ek

Oa)g,j =
(@), ek, k.neE {() otherwise

Leta = p € P4+(G), we next study the property of matrix L(p), from which we shall build
the Riemannian metric tensor of probability simplex.

Lemma 3 (Discrete Hodge decomposition) Given p € P,(G), the following properties hold:

(1) L(p) is a semi-positive matrix with zero being its simple eigenvalue. Denote the eigen-
value and corresponding orthonormal eigenvectors of L(p) by 0 = Ao(p) < A1(p) <
« < A—1(p), and U(p) = (ug, u1(p), -+ , un—1(p)), then L(p) has the decomposi-
tion
0

A1(p) r
L(p) =U(p) . Uip)”,

An—1(0)

withug = J=(1,.... DT,
(ii) For any discrete vector field v and p € P+(G), there exists a unique discrete gradient
vector field Vg ® € RIEl such that

vij = Vo ®ij +V¥ij, divg(p¥) =0.
In addition,
(v, v)p = (Vg o, VGqD)p + (¥, ¥),.

Proof The proof is a direct extension of the classical graph Hodge decomposition with the
probability weight function 6;; (o). Given a discrete vector field v and p € P, (G), we shall
show that there exists a unique gradient vector field Vg ®, such that

—divg(pVg®) = L(p)® = —divg(pv).

Consider
1 .
LD =3 3w (® = ()% =0,
(i,/)eE
Since p; > Oforanyi € V and the graphis connected, we find that ®; = - - - = ®,, isthe only

solution of the above equation. Thus O must be the simple eigenvalue of L(p) with eigenvector
1, ..., DT Since divg (pv) € Ran(L(p)) and Ker(L(,o)) = {uo}. Thus there exists a unique
solution of @ up to a constant shrift, i.e. Vg® is unique. And ¥ = v — Vg & satisfies
divg (p¥) = divg(pv) — divg (oV®) = 0. Let v;; = Vg ®@;; + W;;, where divg (oW) = 0.
Then
(v, v)p = (Vg®, V@), +2(Vg®, ¥), + (¥, V),
= (Vg®,Vg®), + (W, ),

which finishes the proof. O
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From Lemma 3, for any discrete vector field v, there exists an unique pair (Vg ®, V), such
that divg (pv) = divg(pVg®P) and

(0, v)p = (Vg®, V@), + (¥, V), = (VG P, VgP),.

Thus the proposed L?-Wassertsein metric W on graph is equivalent to

dt
+divg(0V®) =0, p(0) = p°, p(1) =p'}. ®)

1
W, p")? = nf { / (V6@ (1), Vo (1))pdt :
0

Remark 1 We notice that the Wasserstein distance has several equivalent formulations in
continuous sample space. One is the linear programming minimization over couplings with
a given ground cost. The other is the dynamical formulations, as we stated in this paper, also
known as Benamou—Breiner formula [34]. The discretization of these formulations results in
different formulations in discrete space, despite their limit to continuous space are equivalent.
We select the dynamical formulation because it fits our goal of making dynamical connections
to Schrodinger equations and bridge problems on graphs.

3.2 Riemannian Manifold of Probability Simplex

Here, our goal is to demonstrate that (8) introduces a Riemannian metric tensor of the prob-
ability simplex in both primal and dual coordinates. The probability simplex P(G) is a
manifold with boundary. To simplify the discussion, we focus on the interior P (G). For
carefully geometric description of probability simplex, see [23,25,26]. And for more details
about the geodesics on the boundary set, see [16].

Denote the tangent space at a point p € P, (G) by

n
T,P4(G) =1 (o)} €R": Y 0; =07,
i=1

and the space of potential function on the set of vertices set by 7(G) = {(®;)]_; € R"}.
Consider the quotient space

F(G)/R={[®] | ()}, € R"},

where [®] = {(®(1) +c,...,DP(n) + c) | ¢ € R} are functions defined up to a shift of
constants.
We introduce an identification map by the weighted Laplacian operator L(p).

V: F(G)/R - T,PL(G), Vo = L(p)®.

From Lemma 3, V: 7(G)/R — T,P;(G) is a well defined linear and one to one map, i.e.,
FG)/R= T;PJF(G). Here T;P+(G) is the cotangent space of P4 (G).
This identification induces the following inner product on 7, P4 (G).

Definition 4 (Inner product in dual coordinates) Given p € P4 (G), the inner product gy :
T,P+(G) x T,P+(G) — R takes any two tangent vectors Vg and Vg € T,P(G) to

gw(Vo,Vz) = (Vod, Vg d),. )
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The above equation is written in the dual coordinates of the Riemannian manifold, i.e. ® €
F(G)/R. Here (P+(G), gw) is a (n — 1) dimensional Riemannian manifold. As in [18], we
call (P+(G), gw) probability manifold.

On this manifold, the heat flow is the gradient flow of negative Boltzmann—Shannon
entropy given by,

H(p) =Y pilog pi.
i=1

In other words,

d .
2~ (L)) (Y, M

dt
= —L(p)(logp + 1)
= divg(pVg log p),
where the symbol { represents the Moore—Penrose inverse operator. Thus the Fokker—Planck

equations on a graph is given by

dp | .
ot divg(p(b — BVglog p)) = 0,

where b is the discrete drift vector and 8 > 0 is the noise level.

3.3 Discrete Schrodinger Bridge Problem

We are now ready to present the SBP on a graph G.

Definition 5 Given a graph G = (V, E, w) with a scale 8 > 0, SBP on a graph is the
following action minimization problem:

1
1
J:=inf [ =(b,b),dt 10
inf /0 S0, by, (10)
where the infimum is taken over p; () € H'((0,1)) and b;;(t) € L*(0, 1;6;;(p)), i.e.,
0;j (p(1)b;j(t) € L*((0, 1)), such that

dp
dt

In the following theorem, we demonstrate that the minimizer of (10) exists, and we
characterize the minimizer by a pair of ODEs.

+divg(p(b — BVglogp)) =0, with p(0), p(1) fixed in P(G).

Theorem 6 There exists a minimizer of problem (10), denoted by (p*(t), b*(¢)) such that
pi (1) € H'((0. 1), and bf;(1) € L*(0, 1 6;;(0").
In addition, (p*(t), b*(t)) satisfies a pair of ODEs for a.e. t € [0, 1]:

bij = Jij(®i — @)
dp; 1
= > w0 (@i = @)b(p) =B > wij(pj — pi)
dt  ~ di “~
JENG) JENG) an
do; 1 5 96 1
dtt t3 Z w;j(P; — D)) a,ol,] = _ﬂdT Z wij(Pj — P;).
JEN() JEN ()
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Remark 2 We observe that ODE (11) can be viewed as equation (3) on graphs. Here the
first ODE is the discrete Fokker—Planck equation, while the second ODE is the discrete
Hamilton—Jacobi-Bellman equation.

3.4 Proof of Theorem 6

To study (10), we consider the following related minimization problem

1
. 1
Ji= ;)1;;1/0 5 2. @Oi(e).mijdr, (12)
(i,j)eE
where
% x>0

a(x,y): =10 y=0,x=0
+00 otherwise

and the infimum is taken over p; € H'((0, 1)) and m;; € L?((0, 1)) such that

dp; 1 .
d—; + Z VoM + B Z wij(pi —pj) =0, p(0), p(1) are fixed in P(G).
JEN() JEN (@)
Here we point out the technical difficulties in action problem (10). In particular, the
boundary of probability set provides the difficulties in characterizing the geodesics [16]. It

is no longer an issue in studying minimizers of SBP (10). The proof is outlined as follows:

Step 1: In Lemma 7, we show that there exists a feasible path. In Lemmas 8 and 9, we show
that the minimization problems (10) and (12) are equivalent, from which we prove
the existence of minimizer;

Step 2: InLemma 10, we prove that the minimizer path p*(f) almost surely lies in the interior
of probability simplex;

Step 3: In Lemmas 11 and 12, we characterize the minimizer path.

Lemma?7 For any p°, p! € P(G), there exists a path p € H'((0,1); R") and m €
L2((0, 1); R™™), such that p(0) = p°, p(1) = p! with

1
fo 5 2 @O(p®), mijdr < oo, (13)

(i, J)eE
Proof Let p = (1/n, ..., 1/n) € P(G). We now define

) — (1 =20p° 4+ 215, r €[0,1/2);
PIO=V 2205+ @—p', 1€[0,1/2).

Since p € P1(G), then L(p(t)): R"/Span{(1,...,1)} — T,P,(G) is a bijection, and
thus L(p(t)) and its pseudo inverse operator L(p (), as in Lemma 3, are bounded linear
operators in (0, 1). By the construction of p (), there exists a constant C > 0 such that

d
£ _ BL(p(t))log p(1)

<C.
dt -

sup
t€(0,1]

Let

d
O(1) = Lp)' (d—f + L(p(1) logpm)
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and
m(t) = (mi_/(f)),-j = (0i (p (1) Jwij (P (1) — d’i(l))),»f

Using the boundedness property of L(p )T, we have sup;cpo,17 Im@)| < C. Then, by the
choice of 6;;, it is obvious that (13) holds. O

Lemma8 The minimization problem (12) can be obtained by (p*, m*) which satisfies p; €
H'((0, 1)), m}; € L*((0, 1)) and

£t e .1 65" () =0, mi1) £0, for some (i, j) € E}) =0,  (14)
where L' is the Lebesgue measure of R!.

Proof We define

I
Alp,m) = /0 5 2 @), mijn)dr

(i.))eE
for any p; € H'((0, 1)) and m;; € L*((0, 1)).

2
We notice a(6;;(o(2)), m;j(t)) > % if p(t) € P(G). Now suppose that {(,ok,mk)},‘(":(xl>
is a minimizing sequence of minimization problem (12), i.e., J = limg_s 400 .A(,ok, mk).
Therefore, there exists K > 0 such that k > K

1
/ D mb0)kdr < T +1,
O G j)eE

ie., supysg |||mk|||Lz((0’1)) < J + 1. There exists m* € L2((0, 1)) such that m* converges
to m* weakly in L2((0, 1)). Consider the Fokker—Planck equation as follows:

dp¥ 1
ot D g =B Y @il =) (15)
JENG) ' jeN(()

Since |||mk|||L2((071)) < J+1and ,ok € P(G) if k = K, we have by Sobolev Embedding
Theorem

k k T
su t | < C su t 1 <C{),
kzg llo"( )||C§((0,1)) < kzg "Dl g1 0,1y = C()

where C(J) depends on J. By Arzela—Ascoli Theorem, there exists p* € C% ((0, 1)) such
that p* converges to p* in L°°((0, 1)) and ok converges to p* weakly in H'((0, 1)) up to a
subsequence. Now taking limit in (15), we get (p*, m*) satisfying

dp¥ 1
i * * *
W‘i‘ Z wijmji=ﬂg Z U)ij(/)j—ﬂi) (16)
JEN() " jeNG)
in the weak sense. Since « is a non-negative convex, lower semicontinuous function, by the
standard theory of the calculus of variations we obtain .4 is non-negative and lower semi-

continuous on L2((0, 1)) x L2((0, 1)) for the weak convergence. So it achieve its minimum
at (p*, m*). O

Lemma 9 Minimization problems (10) and (12) are equivalent.
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Proof By Lemma 8, the minimization problem (12) can be obtained by (p*, m*) satisfying
pf e H'((0, 1)), mf; € L2((0, 1)) and (14) holds. We define

B0 {0 0ij (p* (1)) =0; an
.. = mf.(t)
Y 791_]_(/)’*(,)) 0;j (p*()) = 0.
Then b;*/. e L0, 1; 6;j (p*)). Since (16) holds, we have, by the definition ofb;.“j (t) and (14),
O+ D0 b 00t O) =B Y @i(pj@) —pf @) (8)
JENG) ' jeN()
and
1 1 5 1 1
/ 1 Z 0;j (p™ (1)b}; (1) dZ=/ 3 Z a (0 (p* (1)), m; (1))dt.
0 7 G ek O % jeE
Therefore
J>1J.

For any (p, b) satisfying p; € H'((0, 1)), bij € L2(0, 1; 0ij(p)) such that (18) holds, we
define m;;(t) := 0;;(p(¢))b;;(t). It is obvious that m;; € L2((0, 1)) and (16) holds. Then

J=<1J.

Therefore we have

m}

Remark 3 Let b* be given by (17). By the proof of Lemma 9, the minimization problem (10)
can be obtained by (p*, b*).

Lemma 10 Let (p*, b*) be given in Lemma 9. Then
LY €[0,1]; pft) =0 forsomeie V}=0. (19)
Proof We define a set A; := {t € [0, 1]; p/(¢) =0, ,o;f(t) > 0 for some j € N(i)}. Thus,

we have 6;; (p*)(t) = O forany t € A; and j € N(i). We claim that £1(A;) = 0. If not, we

have El(Ai) > (. Since dfz"* € L2((0, 1)), then, for a.e. t € [0, 1],

dp¥ *(t—r)— pr(t
Pi ) = lim w
dt r—0t

-r
Now we can choose a time #y € [0, 1] such that

pi(to —r) — p}(t0)
—r

do¥
b (t0) = 1ir(r)1+ (20)
r—

dt
and 19 € {t € [0, 1]; p/ (1) =0, p;.‘(t) > 0, for some j € N(i)}. By (18), we have
*

dp;
0.
R (to) >
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By (20), there exists rp > 0 such that p}* (o —ro) < 0. It contradicts with p*(to —ro) € P(G).
Therefore,

El({t €[0,11; pf@) =0, p;‘(t) =0, forall j € N(i)}) =1.
Since i is arbitrary and G is connected, (19) holds. ]

Lemma 11 The minimization problem (10) can be obtained by (p*, Vi ®) satisfying p} €
H'((0, 1)) and % — 7 € L*(0, 1; 6;(p*))-

Proof By the proof of Lemma 9, (10) can be obtained by (p*, b*) where b* is given by
(17). Using Lemma 10, we know that p* € P4 (G) for a.e. r € [0, 1]. For each ¢ € [0, 1]

n
such that p*(t) € P4 (G), we have, by Lemma 3, (ngN(i) [@i;b7; ()0 (p*(t)))' , €
i=
Ran(L(p*(1))), i.e., there exists ®*(¢) such that
n n

D VEgh 00 @) | = D @) — @ (0)0;(0* (1)

JEN () i=1 JEN() i=1

We let u*(t) := b*(t) — Vg ®*(t). Then

L | L | |
/ 7(b*,b*)p*dt :/ — (Vg @*, VGq)*)p*dl -‘r/ f(u*,u*)p*dt.
0o 2 0 2 0 2

Therefore, &% — & € L2(0,1;6;;(p*)) and

"1 * *
E(VGCI) , V@) pxdt <
0 0

1
1
S b pedt = 1.

Lemma 12 The minimizer (p*, Vg ®*) of minimization problem (10) solves (11) weakly.

Proof Since we prove that p*(¢) is a.e. in [0, 1], then we can apply the standard perturbation
argument. We then obtain the minimizer (p*, Vg ®*) satisfying the ODEs in (11). See details
in the proof of Theorem 3 at [10] O

Finally, we are ready to present the proof of Theorem 6.

Proof of Theorem 6 For any ty € [0, 1] such that p*(t9) € P+(G), there exists §o > 0 such
that p*(¢) € 73+(G).Sincef01 (Vo ®*, Vg @*) prdt < oo andinf,;e(qy—sy,10+80) 0ij (0* (1)) >
Oforall (i, j) € E, then ®} — Qj € L2((to — 80, 1o + 80)) for any (i, j) € E. Using Lemma
12, we have ®* € Wh1(1g — 89, to + 80). Using a bootstrap argument, we have (p*, ®*) is
smooth and solves (10) classically in (#p — 8o, o + 8¢). Thus Theorem 6 follows from Lemma
10. o

4 Nelson’s Transformation

In this sequel, we prove that there exists a unique minimizer for discrete SBP. Our main tool
is based on Nelson’s transformation as follows. Define a new vector field v on a graph

vij := bij — BV (og p)ij.

Substituting v into (10), we obtain a new action minimization problem.
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Definition 13 Given a graph G = (V, E, w) with a scale 8 > 0, consider the following
action minimization problem:

1 1 ’32
Ji = ipngfo { (v, V)p) + I(,O(t))} e2y)

where the infimum is taken over p; (f) € H!((0, 1)) and v;j(t) € L%(0, 1; 6;j(0)), such that

d
d—'(; +divg(pv) =0, and p(0), p(1) are fixed in P(G).

Here Z: P(G) — R is the discrete Fisher information functional defined by
1 2
T(p) := (Vo logp, Vg logp)p = 5 ) wijlog pi —log pj)?6i;(p).
(i, j)eE

We use the convention that Z(p) = 400 if p € P(G)\P+(G).

Derivation of (21): first, the Fokker—Planck equation on a graph in (10) can be rewritten in
term of v (continuity equatlon) + divg (pv) = 0. Second, the Lagrangian in (10) forms

E(b’ b)p = E(v + BV logp, v+ BVglogp),
2

1
= E(v, v)p + %(Vc log p, Vg log p), + B(Vglogp, v),.
Notice
1
f (Vg log p, v)pdt = H(p(1)) — H(p(0)) = Constant, (22)
0

where H(p) = Z?:] pi log p; is the discrete negative Boltzmann—Shannon entropy. Here
(22) holds since

/ (Vg log p. v)pdt = / > wij(log pi — log pj)vij6 (p)dt
@i,))EE

1 n
—f Zlogpi Z w;jvijb;ij(p) | dt
0 =1

JEN (@)

1 n
d .
:/ E logpiﬁdt
0 “ dt
i=1
n 1 n d
=1
= E_ pi(t)logpi(t)lizo—/o E_ pialogpidt

1 dp;
—H(P(l))—H(p(O))—/ Zpliid

= H(p(1)) = H(p(0)), (23)

where the second equality is by discrete continuity equation, the third equality is based

integration by parts w.r.t time and the last equality is from % >y pi = 0. Combining
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above three steps, we obtain (21). Following (21), several properties of SBP on a graph can
be shown in next theorem.

Theorem 14 The minimizer path p*(t) of SBP is unique.

Proof Before presenting the proof, we follow the idea in (12) to reform (21). Define the
discrete flux function as m = (m;;), j)ee = (vij0ij(0)) ¢, j)ee. Consider

_ ) 1 1 132
J(p(t), m(t)) := mf/ = Z a(8;j(p), mij) + —ZI(p(t))dt, (24)
pm Jo 2 & 2
(i,j)eE
where the infimum is taken over p; € H'((0, 1)) and m;; € L?((0, 1)) such that
dp . .
I + divg(m) =0, p(0), p(1) are fixed in P(G).

Claim 1 Minimization problems (10), (12), (21), (24) are equivalent.

Proof of Claim 1 Since the equivalence between (21) and (24) is similar to the one for (10)
and (12) in Lemma. We only need to show minimization problems (10), (21) are equivalent.
Let (p*, Vg ®*) be the minimizer of minimization problem (10). By Lemma 10, we know
that the following discrete Nelson’s transformation

v* = V5®* — BV log p*

is well defined a.e. in [0, 1]. Similarly, $* := ®* — log p* is also well defined a.e. in [0, 1].
Thus, we have Vg §* = v*. Since p € H 1((0, 1)) and the continuity equation holds for the
pair (p*, Vg ®), we have (23):

1
/0 (V6 log p*. v*) edi = H(p(1)) — H(p(0)).

where H(p) = Y _7_, pi log p; is the discrete linear entropy. It is obvious that H(p(0)) and
H(p(1)) are fixed finite constants. Then v;‘j (1) € L%(0, 1; 0;j(p*)) and

,0*
dt
Therefore, we have J > J; + H(p (1)) — H(p(0)).

Let (p. v) satisfy pi (1) € H'((0, 1)), vi; (1) € L*(0, 1: 6;;(p)).

+divg(p*v™) = 0.

9P | Givg(ov) = 0
— +divg(pv) =
di G\p
and
1 1 ﬁZ
/ (v, v)p + =Z(p()dt < +oo. (25)
0 2 2
We claim that
,cl[r € [0, 1]; p; (1) = 0 for some i € v] —0. (26)

Otherwise there exists i € V and €y > 0 such that

[ll[t € [0, 1T; piy (1) = 0] = €.
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We define a set A;, := {r € [0, 1]; p;, (1) = 0, p;(t) > O for some j € N(ip)}. Thus, we
have Z(p)(t) = +oo for any ¢t € A;,. Since (25) holds, we have ! (Ai,) = 0. Therefore,

! |t € [0, 13; piy (1) =0, p;(r) = 0 for some j € N(io)} = .
Since the graph G is connected, we have
! [t €0, 11; pi (1) = 0, foralli e v] = «.
It contradicts with p € P(G). Therefore, (26) holds. Then

b:=v+ BVglogp

is well defined a.e. in [0, 1]. By a similar calculation to (23), we have

1 1 2
1 1
/ E(b’ b)pdt = / E(v, v)p + %(Vc log p, Vi log p) pdt + H(p(1)) — H(p(0)).
0 0
27)
Using (25), we have b;; € L2(0, 1; 6;j(p0)) and

dp

- Hdivg(p(b — Vg log p)) = 0.

Therefore,

1 1 1 1
/0 E(b,b)pdtZ[) E(V(;qD*,V(;d)*)p*dt.

By (23) and (27), we have
1 1 ﬂZ
/0 E(U,v)p + T(VG log p, Vi log p)pdt

1 1 2
z/ E(v*, v ) + %(VG log p*, Vg log p*) p=dt.
0

Then J < J; 4+ H(p(1)) — H(p(0)). Therefore, J = J; + H(p(1)) — H(p(0)). Mor-
ever, (p*, Ve ®*) and (p*, Vi S*) are the minimizers of variational problems (10) and (21),
respectively. O

Our proof is based on formulation (24). If there are two minimizer paths (o' (), m' (1)),
(p%(t), m*(t)), we shall prove

ol() = pz(t) fora.e.t € [0, 1]. (28)

Here the uniqueness can be shown by the strictly convexity of discrete Fisher information
functional:

Claim 2 Z(p) is a strictly convex functional in P+ (G).

Assume the claim is true and suppose (28) is not true, p! (1) # p2(r) a.e. t € [0, 1]. Then
for a fixed A € [0, 1],

JOp' + (1 = 1)p% am! + (1 = nm?)

1
1
=[5 X @0 + =0y + (1 oy
@, J)eEE
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1 ﬂ2
+ / 100 @+ (1= np2wnds

<Af > ayh, m,,)dr+(1—x>/ Y. ay(ph). mipdr

2 neE 2 ihee
1[32
+A/ —I(,O )dr + (1 —A)/ 7I(pz(r))dz
=AJ(p' m") + (1 =) J(p*, m?),

where the inequality is from both & and Z are convex function. While the strictly inequality
is from Claim 2 and Lemma 10, in which the minimizer path p] (1), pz(t) are positive a.e.
Clearly, o'+ (1 = 2)p%, am' + (1 — 1)m?) is with smaller cost functional than the one in
(p'(t), m'(¢)), which is a contradiction. In the end, we prove Claim 2.

Proof of Claim 2
n
A(p) ;== min O‘THGSSRnI(,O)O’Z olo =1, Zai =0; >0. (29)
0T, P+(G) .
Since
) p,lpj wijtij if j € N(@i);
A = g ifi = i
ity 1) = | of Lo g 11 =
0 otherwise,
where
tij =pi +p; >0.
Then

N —

2 2
UTHeSSRnI(,O)O' = E tij [<l> + <7j) _ zil J }
(,))EE pi Pj Pi Pj
1 Z oi o\’
= — tij 7[ — J 2 0
2 £ P Pj
(i,j)eE

Suppose (29) is not true, there exists a unit vector o *, such that

£\ 2
by _xT * 1 Oj _ 071 _
Mp) = 0" HessmnI(p)o™ = 5 > b =0.

(i ])eE Pi Pj
Then ;‘I = Z = .- 22 = (. Combining with >/, 0* = 0, we have the fact o = o5 =
- =o0,f =0, which contradicts that o™ is a unit vector. O
Combining Claims 1 and 2, we finish the proof. O

Problem (21) characterizes the other formulation of minimizer.
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Corollary 15 The minimizer of (21), (p* (), v*(¢)), satisfies the following ODE classically,
fora.e.t €[0,1]

v;j (1) = Jij (Si(t) — Sj(1));
dp;
T D 0i(Si = 8)0i(p) = 0;
JEN() (30)
dsi 1 ,00;;  B* 9
4 S (S: — S =2 " 70
dt + 3 Z (Ut]( i ]) i 2 op; (0)
JEN ()
Proof The derivation of (30) is similarly to the one in (11). We omit the proof here. m}

Here the ODEs (11) and (30) represent the same minimizer path under a change of variable
Si = ®; — Blogp;. (31

We observe that ODEs (11), (30) can be both written into the following symplectic forms:

d(p\_ (01 (% d<p)_(ou);_
dt (q:)_(_]lo) (ﬁ)H(p,tb), di \S) ~\-Io0 % Hie, 5),

where T € R"*" is an identity matrix, and H, H are Hamiltonians,

1
H(p, @) := E(VGQ V@), — B(Vglogp, V@),
and

_ 1 1
Hp, $) = 5(V6S,Y6S), = 5B (Vg log p, Vi log p),.
It is clear that the change of variable (31) is a canonical transformation.

Remark 4 For 6;;(p) = M, the proof for characterization of the minimizer is dif-
ferent. We shall prove the existence of minimizer path from variational problem (21). In this
approach, we mainly use the fact that the Fisher information is infinity on the boundary of
probability simplex. Based on it, we show that the minimizer path is in the interior of prob-
ability simplex almost surely for ¢ € [0, 1]. From the Nelson transformation, the minimizer
path of (10) and (21) are equivalent. Hence we characterize the minimizer path in (10).

Remark 5 Tt is worth mentioning that our dynamical Schrédinger bridge problem on graphs
naturally connects with the Hamiltonian flows in density space. This is because our problems
come from the geometric action in probability simplex with a Fisher information regulariza-
tion. Hence our formulation is automatically connected with entropic Ricci curvature defined
by [14]. In other words, one can prove energy splitting type functional inequalities, using
the lower bound of Hessian operator of entropy in discrete Wasserstein space. See related
discussions in Theorem 2 of [22].

5 Numerical Examples

In this section, we demonstrate SBP on graphs (10) by several examples. We mainly
use the build-in function bvp4c in MATLAB to solve the problem (30) numerically. In our

computations, we assume ;; = 1 for all edges and further let 6;; = @.
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Fig.4 The optimal value of (10) /O/O\O

is 30.4671 ? \O

Fig.5 The optimal value of (10) /O/O\O

is 29.2792 ? \O

Example 1 (Lattice graph) Our first example is the SBP (10) on a lattice graph G = L,,,
ie. 0——0——0—O0 Letn = 13, & = 1074, p0 = Koe 20@*/2=x®)"/9) 4nq

pil = Kle’x<i)2/4, where x(I) = =6+ (i — 1) * Ax, Ax = 1, Kg, K are normalization
constants such that Z?:l ,olQ = Z?:l ,oi1 = 1. The optimal value of (10) is 52.9057 and the
snapshots of the optimal path is demonstrated in Fig. 1.

VAN

Example 2 (Cycle graph) Here we consider (10) onacycle graph G = Cy,,i.e. O—C/
Let n = 13, '3—22 =107% p? = L and p! = Kie **/4 where x(i) = —6 + (i — 1) % Ax,

Ax = 1, Ky is a normalization constants such that Y/, p? = 37, p! = 1. The optimal
value of (10) is 40.1917 and the snapshots of the minimizer is demonstrated in Fig. 2.

Example 3 (Effect of graph structures) In the last example, we illustrate how the graph struc-
ture affects the optimal value of SBP (10). Consider a configuration similar as example 2
with n = 12. We introduce three graphs in Figs. 3, 4 and 5. Our computation indicates that
the minimal values for the corresponding SBPs are significantly different from each other,
which depends on the structures of graphs.

Acknowledgements We would like to thank Professor Wilfrid Gangbo for many discussions on the related
topics.
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