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Abstract

Non-standard structured, multivariate data are emerging in many research areas,
including genetics and genomics, ecology, and social science. Suitably defined pair-
wise distance measures are commonly used in distance-based analysis to study the
association between the variables. In this work, we consider a linear quantile regres-
sion model for pairwise distances. We investigate the large sample properties of an
estimator of the unknown coefficients and propose statistical inference procedures
correspondingly. Extensive simulations provide evidence of satisfactory finite sam-
ple properties of the proposed method. Finally, we applied the method to a microbi-
ome association study to illustrate its utility.

Keywords Pairwise distance - Quantile regression - Asymptotic property -
Microbiome association study - Ecology

1 Introduction

It has long been known that some microbes play critical roles in human health.
For example, Clostridium difficile infections have been reported for more than
30 years [8], with the Centers for Disease Control reporting nearly half a million
Americans infected in 2015 and a mortality rate of 1.3% within the first 30 days
of diagnosis [23]. Not all microbiome health associations are due to infection by
a single pathogenic bacteria, however. Even C. difficile infections often occur
opportunistically, after a subject’s microbiome becomes significantly altered,
such as through the use of broad-spectrum antibiotics. Usage of such antibiot-
ics significantly depletes the normal microbial diversity in the gut, thereby
allowing pathogenic strains to proliferate. A dysbiosis, or imbalance, of the gut
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microbiome has been associated with conditions as varied as inflammatory bowel
disease [14], graft-versus-host disease [34], and response to checkpoint inhibitor
theory [7]. In the last decade, the role that the gut microbiome as a whole sys-
tem plays in human disease has become widely appreciated. The emergence of
high-throughput sequencing technologies, particularly 16S rRNA sequencing and
whole metagenomics shotgun sequencing, has allowed the generation of microbi-
ome data at unprecedented quantities and speeds. It is often now the analysis of
these data and the extraction of meaningful biological signals that has become the
bottleneck.

There are several essential features of microbiome data that challenge existing
statistical methods. Microbiome data are typically high dimensional, with hundreds
of species observed in a single subject’s gut microbiome. Additionally, microbiome
data are often compositional, given as abundance profiles, or they could be repre-
sented as the number of reads assigned to a species or other taxonomic level, and
are, therefore, non-normally distributed. Another consideration is that microbiome
data can be considered as phylogenetically structured, so that two samples that
appear on the surface compositionally distinct may be phylogenetically or function-
ally similar.

Classical statistical methods for vectorially structured multivariate data, such as
multivariate analysis of variance (MANOVA) and the Kruskal-Wallis test, become
unsuitable. It is instead common to describe variation in multivariate outcomes by
analyzing distance among all pairs of sample units. This distance measure could
be a classical metric such as the Manhattan and Euclidean distance, or a study and
data-type-specific measure, for example, the widely used identity-by-state (IBS)
genetic distance in genetic association studies [24, 36], and the f—diversity metric in
ecological studies. f—diversity is one type of biodiversity measurement for ecologi-
cal data and is traditionally used to measure the number of species as well as the dis-
tribution of their abundances between two ecological communities [22]. Commonly
used f—diversity measures, including the Bray-Curtis dissimilarity measure [3] and
Jaccard distance [15], quantify the compositional dissimilarity between samples
based on abundance distributions. More recently, UniFrac and generalized UniFrac
distances were developed specifically for microbiome data to allow the incorpora-
tion of phylogenetic relatedness of species between samples [4, 27]. Once a distance
measure is selected, pairwise distance between all samples is calculated and aggre-
gated in a distance matrix. Statistical methods based on such distance matrices are
termed distance-based methods [5, 22].

Distance-based analysis tools have been widely used in ecological research for
decades [22] and are gaining attention across multiple fields, including genomics
[35], social science [30], and microbiome studies [26]. Permutational multivariate
analysis of variance (PERMANOVA) [1, 2, 29] and the distance-based F-test (DBF)
[31, 32] are extensions of MANOVA to distance matrices, which examine the within
and/or between-group variations of the pairwise distances. PERMANOVA is com-
monly used in microbiome studies to determine the significance of segregation of
samples by a distance matrix, as it is nonparametric unlike the MANOVA, and unaf-
fected by data sparsity [1]. The Mantel test [28] and the least-squares linear regres-
sion model for distance matrices [5, 6, 22, 25], on the other hand, are regression
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models of pairwise distances. Regression models are more flexible in terms of incor-
porating multiple covariates and handling different experimental designs.

Although existing methods for analyzing pairwise distances, current approaches
have limitations. First, pairwise distances are likely to be positively skewed due
to their non-negativity. For example, pairwise-weighted UniFrac distances in our
application example are positively skewed (left panel of Fig. 1). Quantiles at tails
could be significantly different, even when the median/mean of pairwise distances
is the same (e.g., right panel, Fig. 1). As such, a quantile regression (QR) model
is more suitable for the analysis of pairwise distances. Quantile regression models
rth quantile of a response variable Y condition on a (p + 1) X 1 vector of covari-
ates x = (1,x;,...,x,)" as Q_(Y|x) = x f(z), 7 € (0, 1). It requires minimal distribu-
tional assumptions and, therefore, is more robust. Also, by allowing the entire spec-
trum of the conditional distribution of the response variable to be related to a group
of covariates, it provides much richer information on the distributional changes of
the response variable than least-squares regression. To the best of our knowledge,
however, there is no existing literature on distance-based quantile regression. Sec-
ond, existing distance-based analysis tools rely on either a permutation procedure or
a distribution approximation approach [31, 32] for statistical inference. Permutation
testing is known to be computationally expensive, especially when there are tens
of thousands of tests, as required in genome-wide association studies. In addition,
permutation testing gives severely inflated type I error rate when heteroscedasticity
presents. The distribution approximation-based approach is much faster; however,
it is not generally applicable as it requires known closed form for the moments of
the test statistic. Therefore, we propose a quantile regression (QR) model of pair-
wise distances and investigate the asymptotic properties of an estimator of the model
parameter for an efficient statistical inference procedure.

The rest of the article is organized as follows. The QR model for pairwise dis-
tances, model parameter estimation, and asymptotic results are presented in Sect. 2.
Hypothesis testing is discussed in Sect. 3. Section 4 demonstrates the finite sam-
ple performance of our proposed method by numerical simulations. We apply the
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Fig.1 (Left panel) A histogram of pairwise-weighted UniFrac distances for the iHMP dataset. (Right
panel) Boxplot of pairwise-weighted UniFrac distances by group: pairwise distance between healthy con-
trols (non-IBD vs non-IBD), healthy controls and UC patients (non-IBD vs UC), healthy controls and
CD patients (non-IBD vs CD), UC patients (UC vs UC), UC patients and CD patients (UC vs CD), and
CD patients (CD vs CD)
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proposed method to a motivating microbiome association study and report the
results in Sect. 5. Concluding remarks are given in Sect. 6.

2 Statistical Model
2.1 Model Specification and Parameter Estimation

Suppose a set of i.i.d. observations (y;,x,),i =1,2,...,n, with x; € R and y, € RY,
p, q are fixed numbers. Calculate the pairwise distance for the response variable,
Vi = s;, yj), i=1,2,...,n,j > i, and the pairwise distance for the covariates between
x; and X, X; = (l,sl(xil,le), ,sp(xip,xjp)), where s,s, ... .S, are pre-selected,
known functions that quantify the pairwise distances. Depending on the subject of an
application, various distance metrics may be used. In microbiome studies, for example,
the Bray-Curtis measure of f-diversity is commonly used for measuring dissimilarity
between sample profiles. Once a distance metric is decided, dissimilarity between
microbiome profiles are calculated and aggregate in a distance matrix, which is square
and symmetric. Vectorize the upper triangle of each distance matrix and denote them
by ¥ = (V12130 - s Vins Y23 -+ s Yops oo s Yne 1,Z)T. Similarly, distance matrices on
covariates are calculated and vectorized: X = (x”. 12 13, X )T Although pairwise
distances on each individual covariate are used here for model demonstratlon distances
can also be defined using sub-groups of covariates or all covariates. For example,
x; = (1,56, (l)) s (x(z) x(z))) where [T, ) = xT. Let
) 1 2 i i i

Fylx;) = P(y; < nyU) i=1, 2 .,n,j > i, we model = quantile of the conditional
distribution of y; given x;, Q. (v;; |xU) = F~!(1), through the following regression:

Qf(y[jlxij) = x,’jﬂ(f) for 7 €(0,1), e

where B(7) = (fy(7), f,(7), ... ,ﬁp(r))T is a (p+ 1) x 1 vector of unknown coeffi-
cients representing the effect of x; on the zth quantile of y;, and f() can be differ-
ent at different 7.

We estimate the unknown coefficients f(z) by minimizing the following objective
function [16-19]:

-1
S,(B(r)) = (g) Z p.(v; — x;B(7)), )

1<i<j<n

where function p_(4) = u(r —I(u < 0)) is the so-called “check” function. An esti-
mate of f(7) is obtained by minimizing S,(f) using linear programming (LP) via the
rq() function in the contributed R package quantreg.

The asymptotic results for the i.i.d case are not applicable because the pairwise
distances are dependent: all y;,j > i involve the ith observation and are correlated.
Therefore, we investigate the large sample properties of f(z) = argmingS,(B(7)) by
taking into account the pairwise correlation structure.
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2.2 Large Sample Properties

For simplicity, we use notation f instead of f(7) in the following demonstration.
Since the “check” function p,(u) is not differentiable at u = 0, a normalized subgra-
diant of S, () is used and denoted as U, (B) [11]:

-1
U,(B) = ﬁ(;) Y a0 xB),

1<i<j<n

where each component of the vector q(y,-j,xij, p) is a convex combination of the left
and right partial derivatives of p_(-;f) with respect to the corresponding component
of B, that is,

0 p.(+; otp,(;
P ﬂ)+(1_a) P /3)’
op op
So, when function p_(-;p) is differentiable, g(-;8) = %ﬂﬂ), and when p_(-;p) is not
differentiable,  g(-;B) = T‘”’a—;ﬂ) +(1 - 1)"*’3—;;”) = (z(z = D+ (1 = D))l =0,
with @ = 7. Noticing that both the objective function S,(f) and the normalized sub-
gradiant U, (B) have the form of a second-order U-statistic, we were inspired to
incorporate the large sample theories of U-statistics into the framework of regular
quantile regression model and derive the asymptotic consistency and normality of f.

We state the major results here, assumptions (A1)—(A8) and detailed proofs are
referred to the web-based supporting material.

Theorem 1 Under Assumptions (Al) through (A3), S,(B) — E[S,(B)] converges to
zero almost surely uniformly over p € O.

The strong law of large numbers (SLLN) for U-statistics [9] implies that
S,(B) = E(S,(P)) a.s. We further show that S,(f) is almost surely Lipschitz con-
tinuous and, therefore, stochastically equicontinuous. Then S,(B) — EI[S,(B)]
almost surely over © according to the Stochastic Ascoli Lemma.

Theorem 2 (Asymptotic Consistency) Under Assumptions (Al) through
(AS5), the estimator defined by minimizing S,(B) is strongly consistent for
By = argmingoE[S, (B)].

We show that B, is an unique minimizer of E(S,(f)). Combining the almost
surely uniform convergence of S,(f) to E(S,(B)) by Theorem 1, we have that

B = argmingS, (B) is strongly consistent of f, following the consistency theorem
for M-estimator [12, 13].

Theorem 3 (Asymptotic Normality) Under Assumptions (Al) through (AS), if B is
consistent for B, then P satisfies the following asymptotic linearity relation

@ Springer



296 Statistics in Biosciences (2021) 13:291-312

\/_(,B By) = —A7 1\/_21 L TO X5 Bo) +0,(1), and  has asymptotic  normal
distribution,

VB - By~ N(0,47'VoAT"), @

with Ay = d';(—lf,“) and Vo = 4E[r(y;, x;, Bo) i X;, Bo)' ], where
r(vi, X;, Bo) = E(q(vy x5, Bo)lyix;) and A(By) = Elq(yy. x5, Bp)l = E[r(y;, x;, Bo))

We first prove that U,(f,) + \/_ A(ﬁ)—» 0. Even though U,(p) is not differenti-
able, its expected value EU, (ﬂ)) is. The Taylor series expansion of A(ﬂ) around f,
yields \/_ (ﬁ Bo) = 1\/_ A(,B) + 0,(1), where A is the Hessian matrix. Replace
\/— AP)by U .(Bo) and apply the asymptotlc normality theorem for U-statistics, we
prove the asymptotic linearity and the normality.

2.3 Estimating the Covariance Matrix

Statistical inference about the unknown coefficients is always important in real appli-
cations. Although we have derived the asymptotic results, the asymptotic covariance
matrix of f involves unknown matrices A, and V;; and needs to be estimated.
Estimating V/, is relatively straightforward. The conditional expectation r(y;, x;, )
can be estimated by its sample mean rOnx;, B) = ZJ i 4(v;> X;j, B). By construc-
n

tion =+ 3, F(yp.x; B) = <2> X i<ici<n q(yg,xﬁ, B) = U,(B)/\/n=0,(1/+/n).

An estimator of V;, using 7 is given by

Vo= % D 0% B x, B )

i=1

The estimation of A is challenging. We adopt a simpler bootstrap approach by Hon-
oré and Hu [10]. The simpler bootstrap approach utilizes the relationship between
the proposed estimator ff and a “split-sample”-based estimator § defined as follows:

B = argmin 5;(6) = argmin - D 0.6y x B J=itnt. )
i=1

B is the minimizer based on n* = int(n/2) non-overlapping, and therefore, inde-
pendent, pairwise distances. That means the general large sample properties
for M-estimators can be applied; hence, \/ﬁ(ﬁ - By) —>N(0,A]‘1V1A1‘1), where
A =(3E[6SZ(ﬂO)/aﬂ]/aﬂ’ and V, =2Var(g;(B,)]. Notice that, A; =A; under
random sampling, an estimate of A, can be obtained by estimating A, using the
“split-samples.”

Specifically, we obtain a series of estimates Bb, for b=1,2,...,B, using
bootstrap. Then We calculate the sample covariance matrix of B and denote
it by Var(p). A can then be solved from the following equation, with the
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cionstraint that A1 is symgletrlc and positive definite: Var(ﬁ) lVIA where
vV, =2B"! Zf:]((n*)‘ - ql o (ﬁ )). These equations are spemal cases of the
continuous time albegraic Riccati equations [20], and they are known to have unique
and non-negative definite solutions. We use the Schur method by Laub [21] to solve
the equation for A",

The simpler bootstrap approach is computationally much more efficient than ordi-
nary bootstrap procedure, because we only need to refit models using “split-sam-
ples,” which is much smaller in size. For example, when sample size n = 100, the

simpler bootstrap procedure refits QR models with 50 independent pairwise dis-

tances, while, ordinary bootstrap approach refits QR model with < 120 = 4950

data points.

3 Hypothesis Testing

Hypothesis testing is an essential component of statistical inference because it is
often of practical interest to test if a certain covariate is significantly associated
with the response variable. This testing problem can be accommodated by con-
sidering the null hypothesis: H, : f.(z) = 0 that coefficient of the kth covariate in

the zth quantile model is zero. We may use a Wald-type t-statistic T = Wf ;(2))
Se(Pr

calculate p values using our derived asymptotic normality result.

As one would expect, the normal approximation can be unsatisfactory when
the sample size is small. In such cases, empirical p values may be calculated
using the following permutation procedure: (1) simultaneously permute the rows
and columns of the pairwise distance matrix of the kth covariate (xf;. = 5 (i Xig)),
while keeping distance matrices of the response variable and other covariates
unchanged; (2) fit the QR model using the vectorized permuted distance matrix
and calculate the value of test statistic; (3) Repeat (1)—(2) a large number of times

B, say B =1000, and an empirical p value can be obtained by comparing the
observed test Statﬁﬁ%ﬁa})&e in the original model with the permuted ones. Specif-
ically, pvalue HIAPDH Additionally, we can test if the covariate is associ-
ated with any considered quantiles usm%(éik magy = TN max (| ﬂk(r)l) We denote the p
value for the supremum test by p,,, = M where f . and ﬁk o AT€
calculated in the original and permuted data, respectlvely

We recommend conducting the permutation test only when the sample size is

small for three reasons. First, fitting a QR model with data points becomes

n
2
exponentially slower as the sample size increases, and the permutation procedure
becomes especially time consuming. Second, the performance of the proposed T test
statistic using the asymptotic distribution is satisfactory when sample size is large.
Based on our numerical simulations, a sample size of n = 200 may be considered
large enough. Finally, permutation testing is not a universal solution. When hetero-
scedasticity presents, permutation testing has a severely inflated type I error rate.
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4 Numerical Simulations
We conducted Monte-Carlo simulations to evaluate the finite sample performance of

our proposed method, including estimation accuracy and empirical type I error rate
and power for our proposed test.

4.1 Model Performance

We considered two scenarios by generating data from models with homosce-
dastic and heteroscedastic random errors, and called them scenarios I and II,

respectively.

In scenario I, responses were generated through the following linear regres-
sion  model: i =bix;+byz;+e;, =12, ,nj=i+l,...,n, with
x; ~ Unif(0,1), z ~N(O 1) and the Euclidean d1stance was used for pair-
wise distance matrices. That is, x; = |x; — x|, z; = |z; — z;|. The random error
terms €; =¢; +¢;, with €,,i=1,2,...,n are 11d random samples from a nor-

ij
mal d1str1but10n N(O 62) The correspondlng rth quantile regression model

is Qr(yij|xlj,zi]~) = ﬂ0(7)+ﬁ1(7)xii +ﬂ2(r)z1j, po(7) is the rth quantile of £ and
(B, (z), (7)) = (by,b,) are constants for all 7 € (0,1). We set b, =1and b, =0
or 1, corresponding to the null and alternative hypothesis for testing H,, : f; = 0.
Two different values of 6%(= 0.5, 1) were used.

In scenario II, we considered two different cases: case 1 has a dis-
crete covariate and case 2 has only continuous covariates. In case 1,
we generated data via a linear model Yij = byx; + z;by + (zymy; + €),
where x; and ¢; were simulated as in scenario L Whlle we simulated
z; ~ Bernoulli(p = 0.5) and z; is the Manhattan distance between z; and gz;.
An additional random error, n; =n;+mn;, n; ~N(0,1),i=1,2,....n was mul-
tiplied to z;. The corresponding true quantile regression model then is
Q. ylx;. ) = byxy + byzyy + O (zymy + €5) = FT'(T) + byxy + (by + F; ' (1) — FT L (0)z
where F|,F, are cumulative distribution functlons of ¢, and g; +n;, respec-
tively. Clearly, py(7) = 1('r) and B(r)=by +F; L(r) - 1(’1’) are T
dependent, and f,(7) = b, does not depend on 7. We set b, to be 0 or 1 cor-
responding to the null and alternative model for testing H, : f;(r) =0
We set b, = Fl‘l(r) — F;l(r) for 7=(0.1,0.3,0.5,0.7,0.9), respectively.
For example, when we set b2=F1‘1(0.5)—F2‘1(0.5), then, f,(0.5) =0 and
Pr(7) = Fl‘1(0.5) - FZ‘I(O.S) + F;l(r) - Fl‘l(r) #0, when 7#0.5. There-
fore, same data were used to exam the empirical type I error rate for testing

: ,(0.5) = 0 and study the empirical power of testing H, : f,(r) = 0,7 # 0.5.

In case 2, we generated y; = byx; +byz; + (1 +2z5)e;. x;, z; and £; were
simulated s1mllarly as in scenario I The conditional zth quantile of y; i
Q. ylx;» z) = byx; + byzy + \/EZ (1+z;)o, where Z_ denotes zth quantile of
a standard normal d15tr1but10n That means fy(r) = \/EO’ZT, pi(r) =b,, and
b(t)=by+Z, \/_6 We set b, =1, b,=—-\20Z,,7=(0.1,0.3,0.5,0.7,0.9),
respectively. By setting b, = —\/20Z, at different levels of 7, we generate data
under the null hypothesis of H,, : f,(7) = 0, which also serves as an alternative
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case for testing H, : f,(6) =0,6 # r. For example, when b, = —\/EGZO_I,
5(0.1) = 0, but py(z) = b, + V26Z, = \/26Z, — \/26Z,, # 0, when  # 0.1.

Sample sizes of (30, 50, 100, 200) were considered, and 1,000 bootstrap/per-
muted samples were used in all procedures. Results reported here are based on
1,000 replicates. We also simulated data with &; ~ exp(1) and &; ~ Cauchy(1).
Results of these additional simulations are referred to the online supplementary
file.

4.2 Results

We summarized the empirical mean bias (EmpBias), the empirical standard devia-
tion (EmpSD), and the average estimated standard deviation (EstSD) of ﬁ, and
empirical coverage probability (EmpCP) of 95% confidence intervals. We calculated
the empirical type I error rate and power for the proposed test statistic based on
asymptotic normality and compare the results with permutation test. We denote the
two methods as “A” and “P,” respectively, in the tables. We benchmark our method
against permutation test because it is the most commonly used approach in many
distance-based tools, including the Mantle test and PERMANOVA. Besides, the
Mantle test and PERMANOVA are not directly comparable to DBQR. The Mantel
test tests the null hypothesis H, : r, , =0 and PERMANOVA tests if location

iV
parameter in the original data is different between groups.

4.2.1 Parameter Estimation Results

Table 1 shows simulation results of parameter estimation. The estimated f is vir-
tually unbiased. Their mean bias converges to zero as sample size increases at all
quantiles considered. For example, the mean bias for f,(z = 0.1) decreases from
0.0213 to —0.00003 as sample size n increases from 30 to 200 in scenario I. The
simpler bootstrap approach tends to over-estimate the standard errors at lower quan-
tiles and under-estimate them at upper quantiles, especially when sample size is
small. As the sample size n increases, the mean estimated standard errors of j agree
better with the empirical sample standard error. Correspondingly, the EmpCP is big-
ger at lower quantiles and smaller at upper quantiles than the true confidence level,
95%, when n is small. And it approaches the true confidence level as sample size
n reaches 200 from both ends. The proposed method is robust to heteroscedastic-
ity and the results under scenario II (lower panel, Table 1) are comparable to those
of the homoscedastic scenario. The mean bias of the estimator converges to zero
as sample size increases. The standard error of § was over-/under-estimated at the
lower/upper quantiles, and therefore, larger/smaller empirical coverage probability
when n is small. As n increases, the performance improves and the results become
satisfactory when n reaches 200 for models with normal random errors. Results for
models with €; ~ exp(1) have similar patterns and are included in the supplementary
file (Table C.1).
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Table2 Empirical type I error rate and power for testing the null hypothesis H,, : f,(z) = 0 under sce-
nario I

n T Pmax
0.1 0.3 0.5 0.7 0.9
A P A P A P A P A P

e ~(N(,0.5)), p, =0
50 0.016 0.048 0.017 0.048 0.018 0.049 0.030 0.058 0.062 0.055 0.052
100 0.022 0.052 0.023 0.047 0.030 0.045 0.028 0.049 0.054 0.049 0.048
200 0.042 0.061 0.041 0.055 0.045 0.054 0.045 0.045 0.046 0.046 0.052
400 0.044 0.055 0.041 0.051 0.039 0.047 0.040 0.048 0.044 0.051 0.051
e ~(N(@,0.5)), p =1
50 0.689 0.799 0.792 0.869 0.811 0.887 0.794 0.870 0.739 0.740 0.839
100 0950 0982 0986 0994 0990 0.995 0.988 0995 0957 0972 0.9%4
200 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.997 1.000 1.000
e~ep(l), f=0
50 0.001 0.052 0.015 0.057 0.017 0.046 0.024 0.052 0.097 0.056 0.054
100 0.007 0.052 0.025 0.053 0.033 0.056 0.035 0.052 0.063 0.046 0.047
200 0.029 0.046 0.042 0.050 0.041 0.057 0.041 0.046 0.047 0.052 0.051
400 0.036 0.043 0.048 0.054 0.042 0.049 0.042 0.051 0.049 0.049 0.050
e~exp(l), pi=1
50 0917 0992 0.820 0905 0.628 0.726 0.447 0.512 0.327 0.267 0.351
100 0977 0995 0954 0966 0.872 0901 0.697 0.744 0450 0430 0.574
200 1.000 1.000 1.000 1.000 0.998 0.998 0969 0970 0.706 0.703 0911

A asymptotic; P permutation

4.2.2 Hypothesis Testing Results

Table 2 compares the empirical type I error rate and power for testing
H, : p,(z) =0 at the nominal level 0.05 by using asymptotic normality (A) and
the permutation test (P) for scenario I. As n increases, the empirical type I error
rate of the asymptotic test approaches to the nominal level of 0.05 and gets around
the nominal level when n reaches 200. However, when the sample size is small,
p values calculated based on the asymptotic normality are conservative at lower
quantiles and slightly liberal at upper quantiles. For example, when n = 50, the
empirical type I error rates by asymptotic test are 0.016, 0.017, 0.018, and 0.030
for the (0.1, 0.3, 0.5, 0.7)th quantiles, and 0.062 for 0.9th quantile. The empiri-
cal type I error rate for the permutation test under scenario I is well controlled
around the nominal level even when 7 is small. The asymptotic test has compa-
rable power to the permutation test for large sample cases (n >= 200). But when
n is small, the asymptotic test is less powerful. The empirical type I error rate of
the permutation-based supremum test is also well controlled at around the nomi-
nal level regardless of sample size and quantile level. And its power increases as
sample size increases. A similar pattern was observed in data with exponentially
distributed random errors as shown in the lower panel of Table 2. However, an
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even larger sample size (n = 400) seems to be needed for the asymptotic test to
have type I error around the nominal level and comparable power to the permuta-
tion test.

We examined the performance of testing H, : f,(r) =0 under scenario II,
where f,(7) is = dependent. The empirical type I error rate of the permutation test
is greatly inflated in both cases as shown in Fig. 2 and Fig. I in Supplementary.
While this may seem surprising at first, it should not. The permuting procedure
not only breaks the association between the covariate of interest and the response
variable, but also the underlying structure of heteroscedasticity. Therefore, the
permuted test statistics are not samples from the true distribution under the null
hypothesis. With normal random errors, the asymptotic test is still able to pro-
vide well-controlled type I error rate at different quantile levels, especially for the
median (upper panel, Fig. 2). In case 2, where random errors are from a Cauchy
distribution, our test is liberal at tail quantiles (z = 0.1,0.9) but conservative at
7 =0.3,0.5,0.7 compared to the normal and exponential errors with similar sam-
ple sizes (Table C.3-C.6 in supplementary). Although we do see a pattern of the
empirical type I error rate approaches the nominal level as sample size increases,
a sample size of 200 is still not large enough for satisfactory results. This indi-
cates that a much larger sample size may be required to test the quantiles at two
tails for heavy tail errors. The empirical type I error rates for case 1 in scenario II
are summarized as in Fig. I (Supplementary). The permutation test has severely
inflated type I error rate, and our method has well-controlled error rate with suffi-
ciently large sample size. The empirical power of testing H, : f,(r) = 0 with var-
ious effect sizes can be found in the supplementary (Tables C.3-C.6). Basically,
as effect size and sample size increase, the empirical power of our test increases.
Results for testing H, : f,(r) = 0 under scenario II are very similar to that of
Scenario I (supplementary, Table C.2).

Empirical Type | Error Rate (Scenario 11, Case 2-normal errors)
0.5
0.45

035
03
0.25

0.2
0.15
. |
0.05
N | 1] N N |

A0.1 PO.1 AD.3 PO.3 A0.5 PO.5 A0.7 PO.7 A0.9 P0.9

Empirical Type | Error Rate, (Scenario Il, Case 2-cauchy errors)
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m30 m50 =100 =200

Fig.2 Empirical type I error rate for testing the null hypothesis H, : f,(r) = 0 under scenario II, case 2
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Overall, a sufficiently large sample size is required to guarantee satisfactory
performance of the asymptotic test. However, the permutation test fits in as a
good back-up and provides controlled type I error rate and high power when sam-
ple size is small and there is no heteroscedasticity.

5 An Application Example

5.1 Association Between the Composition of Gut Microbiome and Inflammatory
Bowel Diseases

Ulcerative colitis (UC) and Crohn’s disease (CD), both of which fall under the
umbrella of inflammatory bowel diseases (IBD), are chronic conditions of the
gastrointestinal tract that affect several million individuals worldwide. While the
exact causes of IBD are unknown, genetic, environmental, and more recently,
microbial associations have been implicated over the years as potential contribu-
tors to the disease [14, 26, 33]. Various aspects of microbiome composition—
here, the distribution of bacterial species in a subject’s gut, have been found to
be associated with disease status, including but not limited to an increased abun-
dance of certain families of bacteria, such as the Enterobacteriaceae, a decreased
abundance of other families of bacteria, such as the Lachnospiraceae, and in
some cases an overall decreased diversity of bacteria in patients diagnosed with
IBD [14]. It is arguable that disease status associates with a “re-set” of the whole
microbial community, where the presence or abundance of many coordinating
species varies and reaches a new equilibrium. Therefore, we look into pairwise
distances between microbiome profiles and examine the association of the distri-
bution of these distances and disease status, using our proposed method.

We downloaded species-level taxonomic profiles and metadata for UC, CD,
and non-IBD subjects from the Integrative Human Microbiome Project website
(https://ibdmdb.org/). This dataset consists of 1638 samples from 130 subjects.
Multiple samples were collected from each subject and samples from each sub-
ject were assigned a time point relative to the first sample collected, on the inter-
val of weeks over a period of about 57 weeks. Detailed information regarding
study design, sample collection, and data preprocessing can be found in a recent
publication [26]. Briefly, subjects were approached for enrollment into the study
following routine colorectal cancer screening, suspected IBD, or other presenta-
tion of other gastrointestinal symptoms. Enrolled subjects were then subject to a
colonoscopy, where IBD status was determined. We excluded samples that fail
quality control and normalized the abundance of bacterial species in each sam-
ple to 100%. We conducted two independent analyses using the week 0 and week
8 samples, respectively. Both UC and CD are cyclical diseases where patients
experience flares and periods of remission. Therefore, we do not expect over the
course of the study for subjects to progressively develop more severe disease.
Further, we do not expect that subjects’ flares and remission periods are synced.
However, clinical and biological markers of disease severity in this dataset were
not well correlated (Lloyd-Price et al. 2019), and so determining which samples

@ Springer


https://ibdmdb.org/

Statistics in Biosciences (2021) 13:291-312 305

best represent those with severe disease or not is nontrivial, leading the authors
to develop their own measure of dysbiosis (imbalance of the microbiome). The
selection of time points reflect the presumption that at enrollment, subjects later
diagnosed with IBD were in early stages of the disease, as they had never been
diagnosed before. At week 8, these subjects would have been two months into a
diagnosis, and while we would not expect all week 8 samples to represent a flare,
we may expect at least more variability between IBD vs. non-IBD subjects. Our
hypothesis is then that pairwise distances among week 8 samples are better at dis-
tinguishing disease groups than those of week 0 samples. An additional factor for
time point selection was the relatively large sample sizes at these two time points:
ny =91 and ng = 64.

We considered six groups of pairwise distances: between non-IBD individuals
(non-IBD vs non-IBD), non-IBD and UC patients (non-IBD vs UC), non-IBD and
CD patients (non-IBD vs CD), UC patients (UC vs UC), UC and CD patients (UC vs
CD), and CD patients (CD vs CD) (top panel, Fig. 3). We modeled the distribution
of non-IBD vs non-IBD pairwise distances as the baseline, estimated, and tested
how quantiles of pairwise distance in other five groups are different from the base-
line by using our proposed quantile regression model. Specifically, by denoting
“non-IBD” as group 0, “UC” as group 1, and “CD” as group 2, we define five
dummy variables: Xy ;;, Xo4s X115 X124 %22, indicating membership of the five
comparison groups. X, ; = lif ith sample is in group 0 and jth sample is in group 1;
and xy; ; = 0, otherwise. The other four dummy variables are similarly defined. y; is
the pairwise distance between the ith and jth microbiome profiles. The conditional
7th quantile of Vi is modeled by
Qf(yl_‘,'|xg,') =py+h (T)xou,' + ﬁz(f)xoz,g,' + ﬁ3(7)x11,g,' + ﬁ4(7)x12,g,' + ﬁs(T)xzz,g,'- Here,
x; = Bi1(Dxg1 5 + Po(D)xX g + B3(T)xyy j + Ba(T)x15 5 + Ps(7)xy, ;; can be viewed as a
weighted pairwise distance between subjects i and j. x;."j = f(r),k=1,2,...,5if two
samples are in the kth comparison group that we considered. f,(7),k=1,2,...,5
are the effect sizes of kth group on rth quantile of y;. We fitted quantile regression
models at 7 = (0.1,0.3,0.5,0.7,0.9) for the Bray-Curtis dissimilarity, UniFrac and
weighted UniFrac distance. We tested the hypotheses H, : fi(r) =0 vs
H,: p(r)#0for k=1,...,5, separately, and we compared our results with two
other commonly used methods in microbiome association studies: the Mantel test
[28] and PERMANOVA [1]. R functions: partial.mantel.test and adonis were used
for these two tests.

5.2 Analysis Results

We observed significant difference in Bray-Curtis, weighted UniFrac, and unweighted
UniFrac between the comparison groups at week 8. Pairwise Bray-Curtis dissimilar-
ities observed between UC samples were found to be significantly greater than those
between non-IBD samples (/§3(O.1) = 0.109, p = 0.003; /%(0.3) =0.138,p = 0.001;
£5(0.5) = 0.116,p = 0.018; f;(0.7) = 0.100, p = 0.035; $;(0.9) = 0.054, p = 0.091).
All effect sizes are estimated to be positive and pj ,,, = 0.001. Bray-Curtis dissimi-
larities between non-IBD and UC samples are also significantly greater than those
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Fig.3 Top: The defined six groups of pairwise distances: non-IBD vs non-IBD (baseline), non-IBD vs p
UC, non-IBD vs CD, UC vs UC, UC vs CD, and UC vs CD. Middle: Empirical quantiles of pairwise
Bray-Curtis dissimilarity in the six groups. Within non-IBD individuals (black, solid dots), non-IBD vs
UC (green, triangles), non-IBD vs CD (red, triangles), UC vs UC (blue, stars), UC vs CD (gray, circles),
and CD vs CD (purple, stars) based on week O (left) and 8 (right) samples; Bottom: (left) Empirical
quantiles of pairwise Bray-Curtis dissimilarity within non-IBD individuals (black, solid dots), non-IBD
vs UC (green, triangles), and UC vs UC (blue, stars); (right) Empirical quantiles of pairwise Bray-Curtis
dissimilarity between within-disease category (black, solid dots) and between-disease category (green
triangles)

within non-IBD samples (ﬁl (0.1) = 0.066,p = 0.011; ﬁl (0.3) = 0.070,p = 0.014;
£,(0.5) = 0.059, p = 0.069; $,(0.7) = 0.069, p = 0.031; f,(0.9) = 0.034, p = 0.058)
and pj .« = 0.010. Bray-Curtis dissimilarities between UC samples, which are
“within-group” measures, are also significantly greater than those between non-IBD
and UC samples, which are “between-group” measures. This result is consistent
with the biology of UC — given that week 8 does not represent any real biology in
IBD subjects, there would be variability in disease severity at that time point among
IBD subjects, but less so among non-IBD subjects.

A similar pattern was observed when comparing Bray-Curtis dissimilarity in
non-IBD vs CD and CD vs CD groups with the non-IBD vs non-IBD group. The
Bray-Curtis dissimilarities between CD samples are the greatest, followed by the
distances between non-IBD and CD samples, and the distances between non-IBD
samples are the smallest (Table 3). The estimated effect sizes are about the same
at all quantile levels. The distribution of UniFrac and weighted UniFrac distances
tends to have heavier tails in the five groups compared to the baseline group. In
particular, the upper tail quantiles of these distributions are significantly greater
than in the baseline distribution. Besides, as the quantile level increases, the esti-
mated effect sizes increase (for example, ﬁz(r) = (0.007,0.021,0.035,0.056, 0.069);
and fs = (0.031,0.049,0.070, 0.085, 0.109) for UniFrac dis-
tance, and B,(z) = (0.004,0.037,0.066,0.121,0.285); and
ﬁ3 = (0.044,0.079,0.157,0.283,0.411) for weighted UniFrac distance). This finding
agrees with empirical quantiles (Fig. 3 (middle-right panel) and Fig. II in the Sup-
porting Material).

As we expected, quantiles of pairwise distances are not significantly different at
week 0 (middle-left panel in Fig. 3 and Fig. II in the online supplementary file).
Detailed model fitting and test results for week O samples are included in supple-
mentary (Table C.7).

To lend additional support to our findings, we examined the dysbiotic status of
week 0 and week 8 samples using the dysbiosis score defined by Lloyd-Price et al.
[26].This score was developed by the authors as an independent measure of disease
severity and is defined by a sample’s median Bray-Curtis dissimilarity to a set of
non-IBD reference samples. This value was then compared to the respective non-
IBD-to-reference distribution of Bray-Curtis dissimilarities. If the sample-to-refer-
ence value was in the 90th or greater percentile compared to the non-IBD-to-refer-
ence values, it was classified as a dysbiotic sample. Among all week 0 samples, 4
out of 24 non-IBD, 10 out 43 CD, and 6 out of 24 UC samples are determined to be
dysbiotic, and there is no significant enrichment of dysbiotic samples in any disease
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category (Person’s Chi-square test, pvalue = 0.8067). There are 2 out of 13 non-
IBD, 10 out 35 CD, and 6 out of 16 UC microbiome profiles are designated as dys-
biotic at week 8. More CD samples are determined to be dysbiotic, though it is not
statistically significant (Person’s Chi-square test, pvalue = 0.4218). We compared
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Table 3 Estimate and testing p value of coefficients in = = (0.1,0.3,0.5,0.7,0.9)th quantile regression
models for three pairwise distance measures: Bray-Curtis (Bray-Curtis), UniFrac distance (UniFrac), and
weighted UniFrac distance (wUniFrac) based on 8-th week samples (n = 64). p values by the Mantle test
and PERMANOVA are also include

Method T Pmax

0.1 0.3 0.5 0.7 0.9

fx P ) By P b P b P

Bray-Curtis (BC)
Xo1 0.066 0.011 0.070 0.014 0.059 0.069 0.069 0.031 0.034 0.058 0.010
X 0.047 0.030 0.045 0.057 0.061 0.031 0.074 0.005 0.066 0.001 0.009
Xy 0.109 0.003 0.138 0.001 0.116 0.018 0.100 0.035 0.054 0.091 0.001
Xin 0.113  0.001 0.114 0.001 0.103 0.001 0.107 0.001 0.085 0.001 0.001
Xy, 0.071  0.001 0.098 0.001 0.119 0.001 0.135 0.001 0.094 0.001 0.055
Mantel non-IBD vs UC, p = 0.707

non-IBD vs CD, p = 0.193
PERMANOVA non-IBD vs UC, p = 0.108

non-IBD vs CD, p = 0.133

UniFrac Distance
Xo1 —0.020 0.361 0.012 0.564 0.042 0.031 0.078 0.001 0.120 0.001 0.001
Xop 0.007 0.728 0.021 0.216 0.035 0.034 0.056 0.001 0.069 0.001 0.001
Xy —0.011 0.671 0.049 0.088 0.085 0.003 0.143 0.001 0.157 0.001 0.001
Xi 0.003 0.852 0.044 0.005 0.076 0.001 0.098 0.001 0.128 0.001 0.001
Xy 0.031  0.158 0.049 0.010 0.070 0.001 0.085 0.001 0.109 0.001 0.001
Mantel non-IBD vs UC, p = 0.563

non-IBD vs CD, p = 0.089
PERMANOVA non-IBD vs UC, p = 0.225

non-IBD vs CD, p = 0.203

wUniFrac Distance
Xo1 0.004 0.809 0.037 0.326 0.066 0.252 0.121 0.113 0.285 0.001 0.001
Xop - 0.688 0.015 0.601 0.062 0.230 0.138 0.058 0.288 0.001 0.002

0.005

Xy 0.044  0.150 0.079 0.132 0.157 0.057 0.283 0.004 0.411 0.002 0.001
X1n 0.027 0.057 0.076 0.010 0.156 0.001 0.254 0.001 0.371 0.001 0.001
Xy, 0.010 0.546 0.074 0.060 0.183 0.004 0.250 0.002 0.341 0.001 0.001
Mantel non-IBD vs UC, p = 0.299

non-IBD vs CD, p = 0.023
PERMANOVA non-IBD vs UC, p = 0.205

non-IBD vs CD, p = 0.196

the dysbiosis scores of all samples at the two time points using side-by-side box
plots and observed that the dysbiosis score of non-IBD samples are much lower than
that of UC and CD samples at week 8 than at week 0 (Supplementary, Fig. III).
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However, both Mantel test and PERMANOVA fail to detect significant differ-
ences, possibly because these methods assume that the distances between individu-
als from a same disease category (for example, non-IBD vs non-IBD, UC vs UC,
CD vs CD) have a similar underlying distribution, which is an assumption that obvi-
ously does not hold in these data. The bottom-left panel of Fig. 3 shows percentiles
of Bray-Curtis dissimilarities in the UC vs UC group are the greatest (blue stars),
followed by that in the non-IBD vs UC group (green triangles), percentiles of Bray-
Curtis dissimilarities in the non-IBD vs non-IBD group are the smallest (black solid
dots). If we ignore this underlying difference and exam the within- and between-dis-
ease category pairwise dissimilarities by merging Bray-Curtis dissimilarities in UC
vs UC group to the non-IBD vs non-IBD group, the difference is completely masked
(bottom-right panel, Fig. 3).

To sum up, our DBQR is more flexible in modeling and can provide detailed
information about the association of a pairwise distance matrix with covariates of
interest by providing estimates of effect sizes and comparisons across multiple quan-
tile levels. In spite of the interesting findings, we acknowledge that only samples at
two time points were used in our analysis to study the association and, therefore,
illustrate the utility of our method in microbiome association studies. However,
given that for the IBD cohort, the second time point likely reflected a mixture of
more severe and less severe cases, the fact that our method could detect a signifi-
cant difference among non-IBD and both UC and CD cohorts when a classic PER-
MANOVA could not is promising. For a complete understanding of the relation-
ship between gut microbiome and IBD, a more in-depth analysis of the full dataset
is warranted. Ideally, additional analyses would include relevant clinical metadata
regarding clinically evaluated disease status at each time point, as both Crohn’s dis-
ease and ulcerative colitis are chronic, and cyclical, conditions. A comprehensive
listing of these types of clinical variables in this dataset is missing or highly sparse,
and therefore, such an analysis was not possible. An additional algorithmic develop-
ment could possibly to take into account the temporal structure of the samples in
this study in addition to disease status.

6 Discussion

The association of environmental and disease covariates with pairwise distance
matrices appears frequently in some fields of study—traditionally in ecology, where
scientists have long used diversity metrics to summarize high-dimensional species
abundance data, and more recently in studies of the microbiome, where scientists
have adopted many of these ecological approaches to compare samples which con-
tain information on hundreds and potentially thousands of species. While in some
cases, this approach has been driven by necessity to reduce high-dimensional data,
from a biological perspective the community structure of an ecosystem as a whole
may hold answers that presence or abundance of individual species may not. The
biological need for methods which can adequately model such associations is clear,
and several methods have been adopted by the community, most of which are based

@ Springer



310 Statistics in Biosciences (2021) 13:291-312

on permutation testing. However, as the amount of data grows and the questions
asked expand, the need for additional methods still stands.

In this work, we propose a quantile regression model for distance matrices,
which uses pairwise distances between the original observations to study the
association between these distances and other factors of interest, whether they be
environmental variables, such as spatial distance between samples to each other,
or clinical variables such as disease status. We derive asymptotic consistency and
normality of the proposed estimator by incorporating the theories for U-statistics
into the framework of a classical quantile regression model. We also propose a
procedure to estimate the asymptotic covariance matrix for statistical inference.
Results of numerical simulations under various settings suggest satisfactory per-
formance of our proposed method, especially with a median to large sample size:
empirical coverage probability is close to the true level, the empirical type I error
rate is well controlled at around the nominal level, and empirical power is also
comparable to that of the permutation-based approach. Importantly, in the case
of heteroscedasticity where the empirical type I error rate of permutation test
inflated severely, our approach still maintains the error rate around the nominal
level.

The proposed method is computationally faster than a permutation-based
approach. The simpler bootstrap used for the estimation of the covariance matrix
in our method only requires [n/2] data points to fit the quantile regression model
while the permutation approach requires (Z) data points. Further, the linear pro-
gramming used for fitting quantile regression can be very slow and memory
intensive when the number of data points reaches the thousands. This shows the
merits of our approach in large-scale studies with decent sample sizes.

Although the paper considers distances that measure dissimilarity, the concept
of distance can be relaxed to a more general non-negative symmetric kernel func-
tion, y; = s(y;,y;) = y;- For example, in our application example, incorporating
multiple dummy variables indexing group membership can be viewed as a
“weighted” distance x;‘j = Bixj1 + BoXyn + PaXji3 + Puxjja + Psx;s in a way that
each individual effect f, can be estimated and tested.

There are a few additional notes worth mentioning. Although the choice of
distance measurement generally depends on the nature of the data as well as the
objective of the study, it is possible that an optimal metric exists. We provide an
overall conclusion that as long as the selected pairwise distance measure satis-
fies the fundamental assumptions for the large sample properties of U-statistics,
the asymptotic results are valid. The selection of the optimal distance measure is
beyond the scope of this work, but it certainly is an important concept we con-
tinue to pursue. Meanwhile, a drawback of distance-based analysis for microbi-
ome analysis is that they cannot identify the individual contribution of species,
which could be of great interest in real studies. While permutation tests seem
straightforward and work well when sample sizes are small, they cannot account
for heteroscedasticity, and indeed popular tests such as the PERMANOVA often
suffer from the inability to distinguish significance due to differences in mean and
significances due to differences in variance among samples being compared.
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