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Abstract
Non-standard structured, multivariate data are emerging in many research areas, 
including genetics and genomics, ecology, and social science. Suitably defined pair-
wise distance measures are commonly used in distance-based analysis to study the 
association between the variables. In this work, we consider a linear quantile regres-
sion model for pairwise distances. We investigate the large sample properties of an 
estimator of the unknown coefficients and propose statistical inference procedures 
correspondingly. Extensive simulations provide evidence of satisfactory finite sam-
ple properties of the proposed method. Finally, we applied the method to a microbi-
ome association study to illustrate its utility.

Keywords  Pairwise distance · Quantile regression · Asymptotic property · 
Microbiome association study · Ecology

1  Introduction

It has long been known that some microbes play critical roles in human health. 
For example, Clostridium difficile infections have been reported for more than 
30 years [8], with the Centers for Disease Control reporting nearly half a million 
Americans infected in 2015 and a mortality rate of 1.3% within the first 30 days 
of diagnosis [23]. Not all microbiome health associations are due to infection by 
a single pathogenic bacteria, however. Even C. difficile infections often occur 
opportunistically, after a subject’s microbiome becomes significantly altered, 
such as through the use of broad-spectrum antibiotics. Usage of such antibiot-
ics significantly depletes the normal microbial diversity in the gut, thereby 
allowing pathogenic strains to proliferate. A dysbiosis, or imbalance, of the gut 
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microbiome has been associated with conditions as varied as inflammatory bowel 
disease [14], graft-versus-host disease [34], and response to checkpoint inhibitor 
theory [7]. In the last decade, the role that the gut microbiome as a whole sys-
tem plays in human disease has become widely appreciated. The emergence of 
high-throughput sequencing technologies, particularly 16S rRNA sequencing and 
whole metagenomics shotgun sequencing, has allowed the generation of microbi-
ome data at unprecedented quantities and speeds. It is often now the analysis of 
these data and the extraction of meaningful biological signals that has become the 
bottleneck.

There are several essential features of microbiome data that challenge existing 
statistical methods. Microbiome data are typically high dimensional, with hundreds 
of species observed in a single subject’s gut microbiome. Additionally, microbiome 
data are often compositional, given as abundance profiles, or they could be repre-
sented as the number of reads assigned to a species or other taxonomic level, and 
are, therefore, non-normally distributed. Another consideration is that microbiome 
data can be considered as phylogenetically structured, so that two samples that 
appear on the surface compositionally distinct may be phylogenetically or function-
ally similar.

Classical statistical methods for vectorially structured multivariate data, such as 
multivariate analysis of variance (MANOVA) and the Kruskal-Wallis test, become 
unsuitable. It is instead common to describe variation in multivariate outcomes by 
analyzing distance among all pairs of sample units. This distance measure could 
be a classical metric such as the Manhattan and Euclidean distance, or a study and 
data-type-specific measure, for example, the widely used identity-by-state (IBS) 
genetic distance in genetic association studies [24, 36], and the �−diversity metric in 
ecological studies. �−diversity is one type of biodiversity measurement for ecologi-
cal data and is traditionally used to measure the number of species as well as the dis-
tribution of their abundances between two ecological communities [22]. Commonly 
used �−diversity measures, including the Bray-Curtis dissimilarity measure [3] and 
Jaccard distance [15], quantify the compositional dissimilarity between samples 
based on abundance distributions. More recently, UniFrac and generalized UniFrac 
distances were developed specifically for microbiome data to allow the incorpora-
tion of phylogenetic relatedness of species between samples [4, 27]. Once a distance 
measure is selected, pairwise distance between all samples is calculated and aggre-
gated in a distance matrix. Statistical methods based on such distance matrices are 
termed distance-based methods [5, 22].

Distance-based analysis tools have been widely used in ecological research for 
decades [22] and are gaining attention across multiple fields, including genomics 
[35], social science [30], and microbiome studies [26]. Permutational multivariate 
analysis of variance (PERMANOVA) [1, 2, 29] and the distance-based F-test (DBF) 
[31, 32] are extensions of MANOVA to distance matrices, which examine the within 
and/or between-group variations of the pairwise distances. PERMANOVA is com-
monly used in microbiome studies to determine the significance of segregation of 
samples by a distance matrix, as it is nonparametric unlike the MANOVA, and unaf-
fected by data sparsity [1]. The Mantel test [28] and the least-squares linear regres-
sion model for distance matrices [5, 6, 22, 25], on the other hand, are regression 
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models of pairwise distances. Regression models are more flexible in terms of incor-
porating multiple covariates and handling different experimental designs.

Although existing methods for analyzing pairwise distances, current approaches 
have limitations. First, pairwise distances are likely to be positively skewed due 
to their non-negativity. For example, pairwise-weighted UniFrac distances in our 
application example are positively skewed (left panel of Fig. 1). Quantiles at tails 
could be significantly different, even when the median/mean of pairwise distances 
is the same (e.g., right panel, Fig.  1). As such, a quantile regression (QR) model 
is more suitable for the analysis of pairwise distances. Quantile regression models 
� th quantile of a response variable Y condition on a (p + 1) × 1 vector of covari-
ates x = (1, x1,… , xp)

T as Q�(Y|x) = xT�(�) , � ∈ (0, 1) . It requires minimal distribu-
tional assumptions and, therefore, is more robust. Also, by allowing the entire spec-
trum of the conditional distribution of the response variable to be related to a group 
of covariates, it provides much richer information on the distributional changes of 
the response variable than least-squares regression. To the best of our knowledge, 
however, there is no existing literature on distance-based quantile regression. Sec-
ond, existing distance-based analysis tools rely on either a permutation procedure or 
a distribution approximation approach [31, 32] for statistical inference. Permutation 
testing is known to be computationally expensive, especially when there are tens 
of thousands of tests, as required in genome-wide association studies. In addition, 
permutation testing gives severely inflated type I error rate when heteroscedasticity 
presents. The distribution approximation-based approach is much faster; however, 
it is not generally applicable as it requires known closed form for the moments of 
the test statistic. Therefore, we propose a quantile regression (QR) model of pair-
wise distances and investigate the asymptotic properties of an estimator of the model 
parameter for an efficient statistical inference procedure.

The rest of the article is organized as follows. The QR model for pairwise dis-
tances, model parameter estimation, and asymptotic results are presented in Sect. 2. 
Hypothesis testing is discussed in Sect.  3. Section  4 demonstrates the finite sam-
ple performance of our proposed method by numerical simulations. We apply the 

Fig. 1   (Left panel) A histogram of pairwise-weighted UniFrac distances for the iHMP dataset. (Right 
panel) Boxplot of pairwise-weighted UniFrac distances by group: pairwise distance between healthy con-
trols (non-IBD vs non-IBD), healthy controls and UC patients (non-IBD vs UC), healthy controls and 
CD patients (non-IBD vs CD), UC patients (UC vs UC), UC patients and CD patients (UC vs CD), and 
CD patients (CD vs CD)
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proposed method to a motivating microbiome association study and report the 
results in Sect. 5. Concluding remarks are given in Sect. 6.

2 � Statistical Model

2.1 � Model Specification and Parameter Estimation

Suppose a set of i.i.d. observations (yi, xi), i = 1, 2,… , n , with xi ∈ R
p and yi ∈ R

q , 
p,  q are fixed numbers. Calculate the pairwise distance for the response variable, 
yij ≡ s(yi, yj), i = 1, 2,… , n, j > i , and the pairwise distance for the covariates between 
xi and xj , xij ≡ (1, s1(xi1, xj1),… , sp(xip, xjp)) , where s, s1,… , sp are pre-selected, 
known functions that quantify the pairwise distances. Depending on the subject of an 
application, various distance metrics may be used. In microbiome studies, for example, 
the Bray-Curtis measure of �-diversity is commonly used for measuring dissimilarity 
between sample profiles. Once a distance metric is decided, dissimilarity between 
microbiome profiles are calculated and aggregate in a distance matrix, which is square 
and symmetric. Vectorize the upper triangle of each distance matrix and denote them 
by � = (y12, y13,… , y1n, y23,… , y2n,… , yn−1,n)

T . Similarly, distance matrices on 
covariates are calculated and vectorized: X = (xT

12
, xT

13
,… , xT

n−1,n
)T . Although pairwise 

distances on each individual covariate are used here for model demonstration, distances 
can also be defined using sub-groups of covariates or all covariates. For example, 
xij ≡ (1, s1(x

(1)

i
, x

(1)

j
), s2(x

(2)

i
, x

(2)

j
)) , where [(x

(1)

i
)T , (x

(2)

i
)T ] = xT

i
 . Let 

F(y|xij) = P(yij ≤ y|xij), i = 1, 2,… , n, j > i , we model � quantile of the conditional 
distribution of yij given xij , Q�(yij|xij) = F−1(�) , through the following regression:

where �(�) = (�0(�), �1(�),… , �p(�))
T is a (p + 1) × 1 vector of unknown coeffi-

cients representing the effect of xij on the � th quantile of yij , and �(�) can be differ-
ent at different �.

We estimate the unknown coefficients �(�) by minimizing the following objective 
function [16–19]:

where function 𝜌𝜏(u) = u(𝜏 − �(u < 0)) is the so-called “check” function. An esti-
mate of �(�) is obtained by minimizing Sn(�) using linear programming (LP) via the 
rq() function in the contributed R package quantreg.

The asymptotic results for the i.i.d case are not applicable because the pairwise 
distances are dependent: all yij, j > i involve the ith observation and are correlated. 
Therefore, we investigate the large sample properties of �̂(𝜏) = argmin�Sn(�(𝜏)) by 
taking into account the pairwise correlation structure.

(1)Q�(yij|xij) = xij�(�) for � ∈ (0, 1),

(2)Sn(�(𝜏)) =

(
n

2

)−1 ∑

1≤i<j≤n

𝜌𝜏(yij − xij�(𝜏)),
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2.2 � Large Sample Properties

For simplicity, we use notation � instead of �(�) in the following demonstration. 
Since the “check” function ��(u) is not differentiable at u = 0 , a normalized subgra-
diant of Sn(�) is used and denoted as Un(�) [11]:

where each component of the vector q(yij, xij, �) is a convex combination of the left 
and right partial derivatives of ��(⋅;�) with respect to the corresponding component 
of � , that is,

So, when function ��(⋅;�) is differentiable, q(⋅;�) = ��� (⋅;�)

��
 , and when ��(⋅;�) is not 

differentiable, q(⋅;�) = �
�−�� (⋅;�)

��
+ (1 − �)

�+�� (⋅;�)

��
= (�(� − 1) + (1 − �)�)xT

ij
= 0 , 

with � = � . Noticing that both the objective function Sn(�) and the normalized sub-
gradiant Un(�) have the form of a second-order U-statistic, we were inspired to 
incorporate the large sample theories of U-statistics into the framework of regular 
quantile regression model and derive the asymptotic consistency and normality of �̂ . 
We state the major results here, assumptions (A1)–(A8) and detailed proofs are 
referred to the web-based supporting material.

Theorem  1  Under Assumptions (A1) through (A3), Sn(�) − E[Sn(�)] converges to 
zero almost surely uniformly over � ∈ �.

The strong law of large numbers (SLLN) for U-statistics [9] implies that 
Sn(�) → E(Sn(�)) a.s. We further show that Sn(�) is almost surely Lipschitz con-
tinuous and, therefore, stochastically equicontinuous. Then Sn(�) → E[Sn(�)] 
almost surely over � according to the Stochastic Ascoli Lemma.

Theorem  2  (Asymptotic Consistency) Under Assumptions (A1) through 
(A5), the estimator defined by minimizing Sn(�) is strongly consistent for 
�0 = argmin�∈�E[Sn(�)].

We show that �0 is an unique minimizer of E(Sn(�)) . Combining the almost 
surely uniform convergence of Sn(�) to E(Sn(�)) by Theorem  1, we have that 
�̂ = argmin�Sn(�) is strongly consistent of �0 following the consistency theorem 
for M-estimator [12, 13].

Theorem 3  (Asymptotic Normality) Under Assumptions (A1) through (A8), if �̂ is 
consistent for �0 , then �̂ satisfies the following asymptotic linearity relation 

Un(�) ≡
√
n

�
n

2

�−1 �

1≤i<j≤n

q(yij, xij;�),

(3)q(⋅;�) = �
�−��(⋅;�)

��
+ (1 − �)

�+��(⋅;�)

��
, � ∈ [0, 1].
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√
n(�̂ − �0) = −A−1

0

2√
n

∑n

i=1
r(yi, xi, �0) + op(1) , and has asymptotic normal 

distribution,

with A0 =
��(�0)

���  and V0 = 4E[r(yi, xi, �0)r(yi, xi, �0)
�] , where 

r(yi, xi, �0) ≡ E(q(yij, xij, �0)|yi, xi) and �(�0) ≡ E[q(yij, xij, �0)] = E[r(yi, xi, �0)].

We first prove that Un(�0) +
√
n𝜆(�̂)

p
�����→ 0 . Even though Un(�) is not differenti-

able, its expected value E(Un(�)) is. The Taylor series expansion of 𝜆(�̂) around �0 
yields 

√
n(�̂ − �0) = A−1

0

√
n𝜆(�̂) + op(1) , where A0 is the Hessian matrix. Replace √

n𝜆(�̂) by −Un(�0) and apply the asymptotic normality theorem for U-statistics, we 
prove the asymptotic linearity and the normality.

2.3 � Estimating the Covariance Matrix

Statistical inference about the unknown coefficients is always important in real appli-
cations. Although we have derived the asymptotic results, the asymptotic covariance 
matrix of �̂ involves unknown matrices A0 and V0 and needs to be estimated.

Estimating V0 is relatively straightforward. The conditional expectation r(yi, xi, �) 
can be estimated by its sample mean r̂(yi, xi, �) =

1

n−1

∑
j≠i q(yij, xij, �) . By construc-

tion 1

n

∑n

i=1
r̂(yi, xi, �̂) =

�
n

2

�−1 ∑
1≤i<j≤n q(yij, xij, �̂) = Un(�̂)∕

√
n = op(1∕

√
n) . 

An estimator of V0 using r̂ is given by

The estimation of A0 is challenging. We adopt a simpler bootstrap approach by Hon-
oré and Hu [10]. The simpler bootstrap approach utilizes the relationship between 
the proposed estimator �̂ and a “split-sample”-based estimator �̃ defined as follows:

�̃ is the minimizer based on n∗ = int(n∕2) non-overlapping, and therefore, inde-
pendent, pairwise distances. That means the general large sample properties 
for M-estimators can be applied; hence, 

√
n(�̃ − �0) → N(�,A−1

1
V1A

−1
1
) , where 

A1 = �E[�S∗
n
(�0)∕��]∕��

� and V1 = 2Var[qij(�0)] . Notice that, A1 = A0 under 
random sampling, an estimate of A0 can be obtained by estimating A1 using the 
“split-samples.”

Specifically, we obtain a series of estimates �̃b , for b = 1, 2,… ,B , using 
bootstrap. Then we calculate the sample covariance matrix of �̃ and denote 
it by �Var(�̃) . A−1

1
 can then be solved from the following equation, with the 

(4)
√
n(�̂ − �0)

d
�����→ N

�
�,A−1

0
V0A

−1
0

�
,

(5)V̂0 =
4

n

n∑

i=1

r̂(yi, xi, �̂)r̂(yi, xi, �̂)
T .

(6)�̃ = argmin
�

S∗
n
(�) = argmin

�

1

n∗

n∗∑

i=1

𝜌𝜏(yij, xij, �), j = i + n∗.
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constraint that A−1
1

 is symmetric and positive definite: �Var(�̃) = A−1
1
V̂1A

−1
1

 , where 
V̂1 = 2B−1

∑B

b=1
((n∗)−1

∑n∗

i=1
q⊗2

i,i+n∗
(�̃

b
)) . These equations are special cases of the 

continuous time albegraic Riccati equations [20], and they are known to have unique 
and non-negative definite solutions. We use the Schur method by Laub [21] to solve 
the equation for A−1

1
.

The simpler bootstrap approach is computationally much more efficient than ordi-
nary bootstrap procedure, because we only need to refit models using “split-sam-
ples,” which is much smaller in size. For example, when sample size n = 100 , the 
simpler bootstrap procedure refits QR models with 50 independent pairwise dis-

tances, while, ordinary bootstrap approach refits QR model with 
(
100

2

)
= 4950 

data points.

3 � Hypothesis Testing

Hypothesis testing is an essential component of statistical inference because it is 
often of practical interest to test if a certain covariate is significantly associated 
with the response variable. This testing problem can be accommodated by con-
sidering the null hypothesis: H0 ∶ �k(�) = 0 that coefficient of the kth covariate in 
the � th quantile model is zero. We may use a Wald-type t-statistic T =

𝛽k(𝜏)

se(𝛽k(𝜏))
 and 

calculate p values using our derived asymptotic normality result.
As one would expect, the normal approximation can be unsatisfactory when 

the sample size is small. In such cases, empirical p values may be calculated 
using the following permutation procedure: (1) simultaneously permute the rows 
and columns of the pairwise distance matrix of the kth covariate ( xk

ij
= sk(xik, xjk) ), 

while keeping distance matrices of the response variable and other covariates 
unchanged; (2) fit the QR model using the vectorized permuted distance matrix 
and calculate the value of test statistic; (3) Repeat (1)–(2) a large number of times 
B, say B = 1000 , and an empirical p value can be obtained by comparing the 
observed test statistic value in the original model with the permuted ones. Specif-
ically, pvalue = #(|𝛽b

k
|>|𝛽k|)+1
B

 . Additionally, we can test if the covariate is associ-
ated with any considered quantiles using 𝛽k,max = max𝜏(|𝛽k(𝜏)|) . We denote the p 
value for the supremum test by pmax =

#(𝛽b
k,max

>𝛽k,max)+1

B
 , where 𝛽k,max and 𝛽b

k,max
 are 

calculated in the original and permuted data, respectively.
We recommend conducting the permutation test only when the sample size is 

small for three reasons. First, fitting a QR model with 
(
n

2

)
 data points becomes 

exponentially slower as the sample size increases, and the permutation procedure 
becomes especially time consuming. Second, the performance of the proposed T test 
statistic using the asymptotic distribution is satisfactory when sample size is large. 
Based on our numerical simulations, a sample size of n = 200 may be considered 
large enough. Finally, permutation testing is not a universal solution. When hetero-
scedasticity presents, permutation testing has a severely inflated type I error rate.
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4 � Numerical Simulations

We conducted Monte-Carlo simulations to evaluate the finite sample performance of 
our proposed method, including estimation accuracy and empirical type I error rate 
and power for our proposed test.

4.1 � Model Performance

We considered two scenarios by generating data from models with homosce-
dastic and heteroscedastic random errors, and called them scenarios I and II, 
respectively.

In scenario I, responses were generated through the following linear regres-
sion model: yij = b1xij + b2zij + �ij, i = 1, 2,… , n, j = i + 1,… , n , with 
xi ∼ Unif (0, 1) , zi ∼ N(0, 1), and the Euclidean distance was used for pair-
wise distance matrices. That is, xij = |xi − xj| , zij = |zi − zj| . The random error 
terms �ij = �i + �j , with �i, i = 1, 2,… , n are i.i.d. random samples from a nor-
mal distribution N(0, �2) . The corresponding � th quantile regression model 
is Q�(yij|xij, zij) = �0(�) + �1(�)xij + �2(�)zij , �0(�) is the � th quantile of �ij and 
(�1(�), �2(�)) = (b1, b2) are constants for all � ∈ (0, 1) . We set b2 = 1 and b1 = 0 
or 1, corresponding to the null and alternative hypothesis for testing H0 ∶ �1 = 0 . 
Two different values of �2(= 0.5, 1) were used.

In scenario II, we considered two different cases: case 1 has a dis-
crete covariate and case 2 has only continuous covariates. In case 1, 
we generated data via a linear model yij = b1xij + zijb2 + (zij�ij + �ij) , 
where xij and �ij were simulated as in scenario I. While, we simulated 
zi ∼ Bernoulli(p = 0.5) and zij is the Manhattan distance between zi and zj . 
An additional random error, �ij = �i + �j , �i ∼ N(0, 1), i = 1, 2,… , n was mul-
tiplied to zij . The corresponding true quantile regression model then is 
Q� (yij|xij, zij) = b1xij + b2zij + Q� (zij�ij + �ij) = F−1

1
(�) + b1xij + (b2 + F−1

2
(�) − F−1

1
(�))zij , 

where F1,F2 are cumulative distribution functions of �ij and �ij + �ij , respec-
tively. Clearly, �0(�) = F−1

1
(�) and �2(�) = b2 + F−1

2
(�) − F−1

1
(�) are � 

dependent, and �1(�) = b1 does not depend on � . We set b1 to be 0 or 1 cor-
responding to the null and alternative model for testing H0 ∶ �1(�) = 0 . 
We set b2 = F−1

1
(�) − F−1

2
(�) for � = (0.1, 0.3, 0.5, 0.7, 0.9) , respectively. 

For example, when we set b2 = F−1
1
(0.5) − F−1

2
(0.5) , then, �2(0.5) = 0 and 

�2(�) = F−1
1
(0.5) − F−1

2
(0.5) + F−1

2
(�) − F−1

1
(�) ≠ 0 , when � ≠ 0.5 . There-

fore, same data were used to exam the empirical type I error rate for testing 
H0 ∶ �2(0.5) = 0 and study the empirical power of testing H0 ∶ �2(�) = 0, � ≠ 0.5.

In case 2, we generated yij = b1xij + b2zij + (1 + zij)�ij . xij , zij, and �ij were 
simulated similarly as in scenario I. The conditional � th quantile of yij is 
Q�(yij�xij, zij) = b1xij + b2zij +

√
2Z�(1 + zij)� , where Z� denotes � th quantile of 

a standard normal distribution. That means �0(�) =
√
2�Z� , �1(�) = b1 , and 

�2(�) = b2 + Z�

√
2� . We set b1 = 1 , b2 = −

√
2�Z� , � = (0.1, 0.3, 0.5, 0.7, 0.9) , 

respectively. By setting b2 = −
√
2�Z� at different levels of � , we generate data 

under the null hypothesis of H0 ∶ �2(�) = 0 , which also serves as an alternative 
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case for testing H0 ∶ �2(�) = 0, � ≠ � . For example, when b2 = −
√
2�Z0.1 , 

�2(0.1) = 0 , but �2(�) = b2 +
√
2�Z� =

√
2�Z� −

√
2�Z0.1 ≠ 0 , when � ≠ 0.1.

Sample sizes of (30, 50, 100, 200) were considered, and 1,000 bootstrap/per-
muted samples were used in all procedures. Results reported here are based on 
1,000 replicates. We also simulated data with �i ∼ exp(1) and �i ∼ Cauchy(1) . 
Results of these additional simulations are referred to the online supplementary 
file.

4.2 � Results

We summarized the empirical mean bias (EmpBias), the empirical standard devia-
tion (EmpSD), and the average estimated standard deviation (EstSD) of �̂ , and 
empirical coverage probability (EmpCP) of 95% confidence intervals. We calculated 
the empirical type I error rate and power for the proposed test statistic based on 
asymptotic normality and compare the results with permutation test. We denote the 
two methods as “A” and “P,” respectively, in the tables. We benchmark our method 
against permutation test because it is the most commonly used approach in many 
distance-based tools, including the Mantle test and PERMANOVA. Besides, the 
Mantle test and PERMANOVA are not directly comparable to DBQR. The Mantel 
test tests the null hypothesis H0 ∶ rxij,yij = 0 and PERMANOVA tests if location 
parameter in the original data is different between groups.

4.2.1 � Parameter Estimation Results

Table 1 shows simulation results of parameter estimation. The estimated �̂ is vir-
tually unbiased. Their mean bias converges to zero as sample size increases at all 
quantiles considered. For example, the mean bias for �2(� = 0.1) decreases from 
0.0213 to −0.00003 as sample size n increases from 30 to 200 in scenario I. The 
simpler bootstrap approach tends to over-estimate the standard errors at lower quan-
tiles and under-estimate them at upper quantiles, especially when sample size is 
small. As the sample size n increases, the mean estimated standard errors of �̂ agree 
better with the empirical sample standard error. Correspondingly, the EmpCP is big-
ger at lower quantiles and smaller at upper quantiles than the true confidence level, 
95% , when n is small. And it approaches the true confidence level as sample size 
n reaches 200 from both ends. The proposed method is robust to heteroscedastic-
ity and the results under scenario II (lower panel, Table 1) are comparable to those 
of the homoscedastic scenario. The mean bias of the estimator converges to zero 
as sample size increases. The standard error of �̂ was over-/under-estimated at the 
lower/upper quantiles, and therefore, larger/smaller empirical coverage probability 
when n is small. As n increases, the performance improves and the results become 
satisfactory when n reaches 200 for models with normal random errors. Results for 
models with �i ∼ exp(1) have similar patterns and are included in the supplementary 
file (Table C.1).
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4.2.2 � Hypothesis Testing Results

Table  2 compares the empirical type I error rate and power for testing 
H0 ∶ �1(�) = 0 at the nominal level 0.05 by using asymptotic normality (A) and 
the permutation test (P) for scenario I. As n increases, the empirical type I error 
rate of the asymptotic test approaches to the nominal level of 0.05 and gets around 
the nominal level when n reaches 200. However, when the sample size is small, 
p values calculated based on the asymptotic normality are conservative at lower 
quantiles and slightly liberal at upper quantiles. For example, when n = 50 , the 
empirical type I error rates by asymptotic test are 0.016, 0.017, 0.018, and 0.030 
for the (0.1, 0.3, 0.5, 0.7)th quantiles, and 0.062 for 0.9th quantile. The empiri-
cal type I error rate for the permutation test under scenario I is well controlled 
around the nominal level even when n is small. The asymptotic test has compa-
rable power to the permutation test for large sample cases ( n >= 200 ). But when 
n is small, the asymptotic test is less powerful. The empirical type I error rate of 
the permutation-based supremum test is also well controlled at around the nomi-
nal level regardless of sample size and quantile level. And its power increases as 
sample size increases. A similar pattern was observed in data with exponentially 
distributed random errors as shown in the lower panel of Table 2. However, an 

Table 2   Empirical type I error rate and power for testing the null hypothesis H0 ∶ �1(�) = 0 under sce-
nario I

A asymptotic; P permutation

n � p
max

0.1 0.3 0.5 0.7 0.9

A P A P A P A P A P

� ∼ (N(0, 0.5)), �1 = 0

50 0.016 0.048 0.017 0.048 0.018 0.049 0.030 0.058 0.062 0.055 0.052
100 0.022 0.052 0.023 0.047 0.030 0.045 0.028 0.049 0.054 0.049 0.048
200 0.042 0.061 0.041 0.055 0.045 0.054 0.045 0.045 0.046 0.046 0.052
400 0.044 0.055 0.041 0.051 0.039 0.047 0.040 0.048 0.044 0.051 0.051

� ∼ (N(0, 0.5)), �1 = 1

50 0.689 0.799 0.792 0.869 0.811 0.887 0.794 0.870 0.739 0.740 0.839
100 0.950 0.982 0.986 0.994 0.990 0.995 0.988 0.995 0.957 0.972 0.994
200 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.997 1.000 1.000

� ∼ exp(1), �1 = 0

50 0.001 0.052 0.015 0.057 0.017 0.046 0.024 0.052 0.097 0.056 0.054
100 0.007 0.052 0.025 0.053 0.033 0.056 0.035 0.052 0.063 0.046 0.047
200 0.029 0.046 0.042 0.050 0.041 0.057 0.041 0.046 0.047 0.052 0.051
400 0.036 0.043 0.048 0.054 0.042 0.049 0.042 0.051 0.049 0.049 0.050

� ∼ exp(1), �1 = 1

50 0.917 0.992 0.820 0.905 0.628 0.726 0.447 0.512 0.327 0.267 0.351
100 0.977 0.995 0.954 0.966 0.872 0.901 0.697 0.744 0.450 0.430 0.574
200 1.000 1.000 1.000 1.000 0.998 0.998 0.969 0.970 0.706 0.703 0.911
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even larger sample size ( n = 400 ) seems to be needed for the asymptotic test to 
have type I error around the nominal level and comparable power to the permuta-
tion test.

We examined the performance of testing H0 ∶ �2(�) = 0 under scenario II, 
where �2(�) is � dependent. The empirical type I error rate of the permutation test 
is greatly inflated in both cases as shown in Fig. 2 and Fig. I in Supplementary. 
While this may seem surprising at first, it should not. The permuting procedure 
not only breaks the association between the covariate of interest and the response 
variable, but also the underlying structure of heteroscedasticity. Therefore, the 
permuted test statistics are not samples from the true distribution under the null 
hypothesis. With normal random errors, the asymptotic test is still able to pro-
vide well-controlled type I error rate at different quantile levels, especially for the 
median (upper panel, Fig. 2). In case 2, where random errors are from a Cauchy 
distribution, our test is liberal at tail quantiles ( � = 0.1, 0.9 ) but conservative at 
� = 0.3, 0.5, 0.7 compared to the normal and exponential errors with similar sam-
ple sizes (Table C.3-C.6 in supplementary). Although we do see a pattern of the 
empirical type I error rate approaches the nominal level as sample size increases, 
a sample size of 200 is still not large enough for satisfactory results. This indi-
cates that a much larger sample size may be required to test the quantiles at two 
tails for heavy tail errors. The empirical type I error rates for case 1 in scenario II 
are summarized as in Fig. I (Supplementary). The permutation test has severely 
inflated type I error rate, and our method has well-controlled error rate with suffi-
ciently large sample size. The empirical power of testing H0 ∶ �2(�) = 0 with var-
ious effect sizes can be found in the supplementary (Tables C.3-C.6). Basically, 
as effect size and sample size increase, the empirical power of our test increases. 
Results for testing H0 ∶ �1(�) = 0 under scenario II are very similar to that of 
Scenario I (supplementary, Table C.2).

Fig. 2   Empirical type I error rate for testing the null hypothesis H0 ∶ �2(�) = 0 under scenario II, case 2
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Overall, a sufficiently large sample size is required to guarantee satisfactory 
performance of the asymptotic test. However, the permutation test fits in as a 
good back-up and provides controlled type I error rate and high power when sam-
ple size is small and there is no heteroscedasticity.

5 � An Application Example

5.1 � Association Between the Composition of Gut Microbiome and Inflammatory 
Bowel Diseases

Ulcerative colitis (UC) and Crohn’s disease (CD), both of which fall under the 
umbrella of inflammatory bowel diseases (IBD), are chronic conditions of the 
gastrointestinal tract that affect several million individuals worldwide. While the 
exact causes of IBD are unknown, genetic, environmental, and more recently, 
microbial associations have been implicated over the years as potential contribu-
tors to the disease [14, 26, 33]. Various aspects of microbiome composition—
here, the distribution of bacterial species in a subject’s gut, have been found to 
be associated with disease status, including but not limited to an increased abun-
dance of certain families of bacteria, such as the Enterobacteriaceae, a decreased 
abundance of other families of bacteria, such as the Lachnospiraceae, and in 
some cases an overall decreased diversity of bacteria in patients diagnosed with 
IBD [14]. It is arguable that disease status associates with a “re-set” of the whole 
microbial community, where the presence or abundance of many coordinating 
species varies and reaches a new equilibrium. Therefore, we look into pairwise 
distances between microbiome profiles and examine the association of the distri-
bution of these distances and disease status, using our proposed method.

We downloaded species-level taxonomic profiles and metadata for UC, CD, 
and non-IBD subjects from the Integrative Human Microbiome Project website 
(https://​ibdmdb.​org/). This dataset consists of 1638 samples from 130 subjects. 
Multiple samples were collected from each subject and samples from each sub-
ject were assigned a time point relative to the first sample collected, on the inter-
val of weeks over a period of about 57 weeks. Detailed information regarding 
study design, sample collection, and data preprocessing can be found in a recent 
publication [26]. Briefly, subjects were approached for enrollment into the study 
following routine colorectal cancer screening, suspected IBD, or other presenta-
tion of other gastrointestinal symptoms. Enrolled subjects were then subject to a 
colonoscopy, where IBD status was determined. We excluded samples that fail 
quality control and normalized the abundance of bacterial species in each sam-
ple to 100% . We conducted two independent analyses using the week 0 and week 
8 samples, respectively. Both UC and CD are cyclical diseases where patients 
experience flares and periods of remission. Therefore, we do not expect over the 
course of the study for subjects to progressively develop more severe disease. 
Further, we do not expect that subjects’ flares and remission periods are synced. 
However, clinical and biological markers of disease severity in this dataset were 
not well correlated (Lloyd-Price et al. 2019), and so determining which samples 

https://ibdmdb.org/
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best represent those with severe disease or not is nontrivial, leading the authors 
to develop their own measure of dysbiosis (imbalance of the microbiome). The 
selection of time points reflect the presumption that at enrollment, subjects later 
diagnosed with IBD were in early stages of the disease, as they had never been 
diagnosed before. At week 8, these subjects would have been two months into a 
diagnosis, and while we would not expect all week 8 samples to represent a flare, 
we may expect at least more variability between IBD vs. non-IBD subjects. Our 
hypothesis is then that pairwise distances among week 8 samples are better at dis-
tinguishing disease groups than those of week 0 samples. An additional factor for 
time point selection was the relatively large sample sizes at these two time points: 
n0 = 91 and n8 = 64.

We considered six groups of pairwise distances: between non-IBD individuals 
(non-IBD vs non-IBD), non-IBD and UC patients (non-IBD vs UC), non-IBD and 
CD patients (non-IBD vs CD), UC patients (UC vs UC), UC and CD patients (UC vs 
CD), and CD patients (CD vs CD) (top panel, Fig. 3). We modeled the distribution 
of non-IBD vs non-IBD pairwise distances as the baseline, estimated, and tested 
how quantiles of pairwise distance in other five groups are different from the base-
line by using our proposed quantile regression model. Specifically, by denoting 
“non-IBD” as group 0, “UC” as group 1, and “CD” as group 2, we define five 
dummy variables: x01,ij , x02,ij , x11,ij , x12,ij , x22,ij indicating membership of the five 
comparison groups. x01,ij = 1 if ith sample is in group 0 and jth sample is in group 1; 
and x01,ij = 0 , otherwise. The other four dummy variables are similarly defined. yij is 
the pairwise distance between the ith and jth microbiome profiles. The conditional 
� th quantile of yij is modeled by 
Q�(yij|xij) = �0 + �1(�)x01,ij + �2(�)x02,ij + �3(�)x11,ij + �4(�)x12,ij + �5(�)x22,ij . Here, 
x∗
ij
= �1(�)x01,ij + �2(�)x02,ij + �3(�)x11,ij + �4(�)x12,ij + �5(�)x22,ij can be viewed as a 

weighted pairwise distance between subjects i and j. x∗
ij
= �k(�), k = 1, 2,… , 5 if two 

samples are in the kth comparison group that we considered. �k(�), k = 1, 2,… , 5 
are the effect sizes of kth group on � th quantile of yij . We fitted quantile regression 
models at � = (0.1, 0.3, 0.5, 0.7, 0.9) for the Bray-Curtis dissimilarity, UniFrac and 
weighted UniFrac distance. We tested the hypotheses H0 ∶ �k(�) = 0 vs 
Ha ∶ �k(�) ≠ 0 for k = 1,… , 5 , separately, and we compared our results with two 
other commonly used methods in microbiome association studies: the Mantel test 
[28] and PERMANOVA [1]. R functions: partial.mantel.test and adonis were used 
for these two tests.

5.2 � Analysis Results

We observed significant difference in Bray-Curtis, weighted UniFrac, and unweighted 
UniFrac between the comparison groups at week 8. Pairwise Bray-Curtis dissimilar-
ities observed between UC samples were found to be significantly greater than those 
between non-IBD samples ( 𝛽3(0.1) = 0.109, p = 0.003 ; 𝛽3(0.3) = 0.138, p = 0.001 ; 
𝛽3(0.5) = 0.116, p = 0.018 ; 𝛽3(0.7) = 0.100, p = 0.035 ; 𝛽3(0.9) = 0.054, p = 0.091 ). 
All effect sizes are estimated to be positive and p3,max = 0.001 . Bray-Curtis dissimi-
larities between non-IBD and UC samples are also significantly greater than those 
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within non-IBD samples ( 𝛽1(0.1) = 0.066, p = 0.011 ; 𝛽1(0.3) = 0.070, p = 0.014 ; 
𝛽1(0.5) = 0.059, p = 0.069 ; 𝛽1(0.7) = 0.069, p = 0.031 ; 𝛽1(0.9) = 0.034, p = 0.058 ) 
and p1,max = 0.010 . Bray-Curtis dissimilarities between UC samples, which are 
“within-group” measures, are also significantly greater than those between non-IBD 
and UC samples, which are “between-group” measures. This result is consistent 
with the biology of UC – given that week 8 does not represent any real biology in 
IBD subjects, there would be variability in disease severity at that time point among 
IBD subjects, but less so among non-IBD subjects.

A similar pattern was observed when comparing Bray-Curtis dissimilarity in 
non-IBD vs CD and CD vs CD groups with the non-IBD vs non-IBD group. The 
Bray-Curtis dissimilarities between CD samples are the greatest, followed by the 
distances between non-IBD and CD samples, and the distances between non-IBD 
samples are the smallest (Table  3). The estimated effect sizes are about the same 
at all quantile levels. The distribution of UniFrac and weighted UniFrac distances 
tends to have heavier tails in the five groups compared to the baseline group. In 
particular, the upper tail quantiles of these distributions are significantly greater 
than in the baseline distribution. Besides, as the quantile level increases, the esti-
mated effect sizes increase (for example, 𝛽2(𝜏) = (0.007, 0.021, 0.035, 0.056, 0.069) ; 
and 𝛽5 = (0.031, 0.049, 0.070, 0.085, 0.109) for UniFrac dis-
tance, and 𝛽1(𝜏) = (0.004, 0.037, 0.066, 0.121, 0.285) ; and 
𝛽3 = (0.044, 0.079, 0.157, 0.283, 0.411) for weighted UniFrac distance). This finding 
agrees with empirical quantiles (Fig. 3 (middle-right panel) and Fig. II in the Sup-
porting Material).

As we expected, quantiles of pairwise distances are not significantly different at 
week 0 (middle-left panel in Fig.  3 and Fig. II in the online supplementary file). 
Detailed model fitting and test results for week 0 samples are included in supple-
mentary (Table C.7).

To lend additional support to our findings, we examined the dysbiotic status of 
week 0 and week 8 samples using the dysbiosis score defined by Lloyd-Price et al. 
[26].This score was developed by the authors as an independent measure of disease 
severity and is defined by a sample’s median Bray-Curtis dissimilarity to a set of 
non-IBD reference samples. This value was then compared to the respective non-
IBD-to-reference distribution of Bray-Curtis dissimilarities. If the sample-to-refer-
ence value was in the 90th or greater percentile compared to the non-IBD-to-refer-
ence values, it was classified as a dysbiotic sample. Among all week 0 samples, 4 
out of 24 non-IBD, 10 out 43 CD, and 6 out of 24 UC samples are determined to be 
dysbiotic, and there is no significant enrichment of dysbiotic samples in any disease 

Fig. 3   Top: The defined six groups of pairwise distances: non-IBD vs non-IBD (baseline), non-IBD vs 
UC, non-IBD vs CD, UC vs UC, UC vs CD, and UC vs CD. Middle: Empirical quantiles of pairwise 
Bray-Curtis dissimilarity in the six groups. Within non-IBD individuals (black, solid dots), non-IBD vs 
UC (green, triangles), non-IBD vs CD (red, triangles), UC vs UC (blue, stars), UC vs CD (gray, circles), 
and CD vs CD (purple, stars) based on week 0 (left) and 8 (right) samples; Bottom: (left) Empirical 
quantiles of pairwise Bray-Curtis dissimilarity within non-IBD individuals (black, solid dots), non-IBD 
vs UC (green, triangles), and UC vs UC (blue, stars); (right) Empirical quantiles of pairwise Bray-Curtis 
dissimilarity between within-disease category (black, solid dots) and between-disease category (green 
triangles)

▸
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category (Person’s Chi-square test, pvalue = 0.8067 ). There are 2 out of 13 non-
IBD, 10 out 35 CD, and 6 out of 16 UC microbiome profiles are designated as dys-
biotic at week 8. More CD samples are determined to be dysbiotic, though it is not 
statistically significant (Person’s Chi-square test, pvalue = 0.4218 ). We compared 
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the dysbiosis scores of all samples at the two time points using side-by-side box 
plots and observed that the dysbiosis score of non-IBD samples are much lower than 
that of UC and CD samples at week 8 than at week 0 (Supplementary, Fig. III).

Table 3   Estimate and testing p value of coefficients in � = (0.1, 0.3, 0.5, 0.7, 0.9) th quantile regression 
models for three pairwise distance measures: Bray-Curtis (Bray-Curtis), UniFrac distance (UniFrac), and 
weighted UniFrac distance (wUniFrac) based on 8-th week samples ( n = 64).  p values by the Mantle test 
and PERMANOVA are also include

Method � p
max

0.1 0.3 0.5 0.7 0.9

𝛽(𝜏) p 𝛽(𝜏) p 𝛽(𝜏) p 𝛽(𝜏) p 𝛽(𝜏) p

Bray-Curtis (BC)
x01 0.066 0.011 0.070 0.014 0.059 0.069 0.069 0.031 0.034 0.058 0.010
x02 0.047 0.030 0.045 0.057 0.061 0.031 0.074 0.005 0.066 0.001 0.009
x11 0.109 0.003 0.138 0.001 0.116 0.018 0.100 0.035 0.054 0.091 0.001
x12 0.113 0.001 0.114 0.001 0.103 0.001 0.107 0.001 0.085 0.001 0.001
x22 0.071 0.001 0.098 0.001 0.119 0.001 0.135 0.001 0.094 0.001 0.055
Mantel non-IBD vs UC, p = 0.707

non-IBD vs CD, p = 0.193

PERMANOVA non-IBD vs UC, p = 0.108

non-IBD vs CD, p = 0.133

UniFrac Distance
x01 −0.020 0.361 0.012 0.564 0.042 0.031 0.078 0.001 0.120 0.001 0.001
x02 0.007 0.728 0.021 0.216 0.035 0.034 0.056 0.001 0.069 0.001 0.001
x11 −0.011 0.671 0.049 0.088 0.085 0.003 0.143 0.001 0.157 0.001 0.001
x12 0.003 0.852 0.044 0.005 0.076 0.001 0.098 0.001 0.128 0.001 0.001
x22 0.031 0.158 0.049 0.010 0.070 0.001 0.085 0.001 0.109 0.001 0.001
Mantel non-IBD vs UC, p = 0.563

non-IBD vs CD, p = 0.089

PERMANOVA non-IBD vs UC, p = 0.225

non-IBD vs CD, p = 0.203

wUniFrac Distance
x01 0.004 0.809 0.037 0.326 0.066 0.252 0.121 0.113 0.285 0.001 0.001
x02 − 

0.005
0.688 0.015 0.601 0.062 0.230 0.138 0.058 0.288 0.001 0.002

x11 0.044 0.150 0.079 0.132 0.157 0.057 0.283 0.004 0.411 0.002 0.001
x12 0.027 0.057 0.076 0.010 0.156 0.001 0.254 0.001 0.371 0.001 0.001
x22 0.010 0.546 0.074 0.060 0.183 0.004 0.250 0.002 0.341 0.001 0.001
Mantel non-IBD vs UC, p = 0.299

non-IBD vs CD, p = 0.023

PERMANOVA non-IBD vs UC, p = 0.205

non-IBD vs CD, p = 0.196
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However, both Mantel test and PERMANOVA fail to detect significant differ-
ences, possibly because these methods assume that the distances between individu-
als from a same disease category (for example, non-IBD vs non-IBD, UC vs UC, 
CD vs CD) have a similar underlying distribution, which is an assumption that obvi-
ously does not hold in these data. The bottom-left panel of Fig. 3 shows percentiles 
of Bray-Curtis dissimilarities in the UC vs UC group are the greatest (blue stars), 
followed by that in the non-IBD vs UC group (green triangles), percentiles of Bray-
Curtis dissimilarities in the non-IBD vs non-IBD group are the smallest (black solid 
dots). If we ignore this underlying difference and exam the within- and between-dis-
ease category pairwise dissimilarities by merging Bray-Curtis dissimilarities in UC 
vs UC group to the non-IBD vs non-IBD group, the difference is completely masked 
(bottom-right panel, Fig. 3).

To sum up, our DBQR is more flexible in modeling and can provide detailed 
information about the association of a pairwise distance matrix with covariates of 
interest by providing estimates of effect sizes and comparisons across multiple quan-
tile levels. In spite of the interesting findings, we acknowledge that only samples at 
two time points were used in our analysis to study the association and, therefore, 
illustrate the utility of our method in microbiome association studies. However, 
given that for the IBD cohort, the second time point likely reflected a mixture of 
more severe and less severe cases, the fact that our method could detect a signifi-
cant difference among non-IBD and both UC and CD cohorts when a classic PER-
MANOVA could not is promising. For a complete understanding of the relation-
ship between gut microbiome and IBD, a more in-depth analysis of the full dataset 
is warranted. Ideally, additional analyses would include relevant clinical metadata 
regarding clinically evaluated disease status at each time point, as both Crohn’s dis-
ease and ulcerative colitis are chronic, and cyclical, conditions. A comprehensive 
listing of these types of clinical variables in this dataset is missing or highly sparse, 
and therefore, such an analysis was not possible. An additional algorithmic develop-
ment could possibly to take into account the temporal structure of the samples in 
this study in addition to disease status.

6 � Discussion

The association of environmental and disease covariates with pairwise distance 
matrices appears frequently in some fields of study—traditionally in ecology, where 
scientists have long used diversity metrics to summarize high-dimensional species 
abundance data, and more recently in studies of the microbiome, where scientists 
have adopted many of these ecological approaches to compare samples which con-
tain information on hundreds and potentially thousands of species. While in some 
cases, this approach has been driven by necessity to reduce high-dimensional data, 
from a biological perspective the community structure of an ecosystem as a whole 
may hold answers that presence or abundance of individual species may not. The 
biological need for methods which can adequately model such associations is clear, 
and several methods have been adopted by the community, most of which are based 
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on permutation testing. However, as the amount of data grows and the questions 
asked expand, the need for additional methods still stands.

In this work, we propose a quantile regression model for distance matrices, 
which uses pairwise distances between the original observations to study the 
association between these distances and other factors of interest, whether they be 
environmental variables, such as spatial distance between samples to each other, 
or clinical variables such as disease status. We derive asymptotic consistency and 
normality of the proposed estimator by incorporating the theories for U-statistics 
into the framework of a classical quantile regression model. We also propose a 
procedure to estimate the asymptotic covariance matrix for statistical inference. 
Results of numerical simulations under various settings suggest satisfactory per-
formance of our proposed method, especially with a median to large sample size: 
empirical coverage probability is close to the true level, the empirical type I error 
rate is well controlled at around the nominal level, and empirical power is also 
comparable to that of the permutation-based approach. Importantly, in the case 
of heteroscedasticity where the empirical type I error rate of permutation test 
inflated severely, our approach still maintains the error rate around the nominal 
level.

The proposed method is computationally faster than a permutation-based 
approach. The simpler bootstrap used for the estimation of the covariance matrix 
in our method only requires [n/2] data points to fit the quantile regression model 
while the permutation approach requires 

(
n

2

)
 data points. Further, the linear pro-

gramming used for fitting quantile regression can be very slow and memory 
intensive when the number of data points reaches the thousands. This shows the 
merits of our approach in large-scale studies with decent sample sizes.

Although the paper considers distances that measure dissimilarity, the concept 
of distance can be relaxed to a more general non-negative symmetric kernel func-
tion, yij = s(yi, yj) = yji . For example, in our application example, incorporating 
multiple dummy variables indexing group membership can be viewed as a 
“weighted” distance x∗

ij
= �1xij,1 + �2xij,2 + �3xij,3 + �4xij,4 + �5xij,5 in a way that 

each individual effect �k can be estimated and tested.
There are a few additional notes worth mentioning. Although the choice of 

distance measurement generally depends on the nature of the data as well as the 
objective of the study, it is possible that an optimal metric exists. We provide an 
overall conclusion that as long as the selected pairwise distance measure satis-
fies the fundamental assumptions for the large sample properties of U-statistics, 
the asymptotic results are valid. The selection of the optimal distance measure is 
beyond the scope of this work, but it certainly is an important concept we con-
tinue to pursue. Meanwhile, a drawback of distance-based analysis for microbi-
ome analysis is that they cannot identify the individual contribution of species, 
which could be of great interest in real studies. While permutation tests seem 
straightforward and work well when sample sizes are small, they cannot account 
for heteroscedasticity, and indeed popular tests such as the PERMANOVA often 
suffer from the inability to distinguish significance due to differences in mean and 
significances due to differences in variance among samples being compared.
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