
Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube
(IceCube Collaboration)

R. Abbasi,17 M. Ackermann,57 J. Adams,18 J. A. Aguilar,12 M. Ahlers,22 M. Ahrens,48 C. Alispach,28 A. A. Alves
Jr.,31 N. M. Amin,41 K. Andeen,39 T. Anderson,54 I. Ansseau,12 G. Anton,26 C. Argüelles,14 S. Axani,15 X. Bai,45 A.
Balagopal V.,37 A. Barbano,28 S. W. Barwick,30 B. Bastian,57 V. Basu,37 V. Baum,38 S. Baur,12 R. Bay,8 J. J.
Beatty,20, 21 K.-H. Becker,56 J. Becker Tjus,11 C. Bellenghi,27 S. BenZvi,47 D. Berley,19 E. Bernardini,57, ∗ D. Z.

Besson,32, † G. Binder,8, 9 D. Bindig,56 E. Blaufuss,19 S. Blot,57 S. Böser,38 O. Botner,55 J. Böttcher,1 E. Bourbeau,22

J. Bourbeau,37 F. Bradascio,57 J. Braun,37 S. Bron,28 J. Brostean-Kaiser,57 A. Burgman,55 R. S. Busse,40 M. A.
Campana,44 C. Chen,6 D. Chirkin,37 S. Choi,50 B. A. Clark,24 K. Clark,33 L. Classen,40 A. Coleman,41 G. H. Collin,15

J. M. Conrad,15 P. Coppin,13 P. Correa,13 D. F. Cowen,53, 54 R. Cross,47 P. Dave,6 C. De Clercq,13 J. J. DeLaunay,54

H. Dembinski,41 K. Deoskar,48 S. De Ridder,29 A. Desai,37 P. Desiati,37 K. D. de Vries,13 G. de Wasseige,13 M. de
With,10 T. DeYoung,24 S. Dharani,1 A. Diaz,15 J. C. Díaz-Vélez,37 H. Dujmovic,31 M. Dunkman,54 M. A.

DuVernois,37 E. Dvorak,45 T. Ehrhardt,38 P. Eller,27 R. Engel,31 J. Evans,19 P. A. Evenson,41 S. Fahey,37 A. R.
Fazely,7 S. Fiedlschuster,26 A.T. Fienberg,54 K. Filimonov,8 C. Finley,48 L. Fischer,57 D. Fox,53 A. Franckowiak,11, 57

E. Friedman,19 A. Fritz,38 P. Fürst,1 T. K. Gaisser,41 J. Gallagher,36 E. Ganster,1 S. Garrappa,57 L. Gerhardt,9 A.
Ghadimi,52 T. Glauch,27 T. Glüsenkamp,26 A. Goldschmidt,9 J. G. Gonzalez,41 S. Goswami,52 D. Grant,24 T.
Grégoire,54 Z. Griffith,37 S. Griswold,47 M. Gündüz,11 C. Haack,27 A. Hallgren,55 R. Halliday,24 L. Halve,1 F.
Halzen,37 M. Ha Minh,27 K. Hanson,37 J. Hardin,37 A. Haungs,31 S. Hauser,1 D. Hebecker,10 K. Helbing,56 F.

Henningsen,27 S. Hickford,56 J. Hignight,25 C. Hill,16 G. C. Hill,2 K. D. Hoffman,19 R. Hoffmann,56 T. Hoinka,23 B.
Hokanson-Fasig,37 K. Hoshina,37, ‡ F. Huang,54 M. Huber,27 T. Huber,31 K. Hultqvist,48 M. Hünnefeld,23 R.

Hussain,37 S. In,50 N. Iovine,12 A. Ishihara,16 M. Jansson,48 G. S. Japaridze,5 M. Jeong,50 B. J. P. Jones,4 R. Joppe,1

D. Kang,31 W. Kang,50 X. Kang,44 A. Kappes,40 D. Kappesser,38 T. Karg,57 M. Karl,27 A. Karle,37 U. Katz,26 M.
Kauer,37 M. Kellermann,1 J. L. Kelley,37 A. Kheirandish,54 J. Kim,50 K. Kin,16 T. Kintscher,57 J. Kiryluk,49 S. R.
Klein,8, 9 R. Koirala,41 H. Kolanoski,10 L. Köpke,38 C. Kopper,24 S. Kopper,52 D. J. Koskinen,22 P. Koundal,31 M.
Kovacevich,44 M. Kowalski,10, 57 K. Krings,27 G. Krückl,38 N. Kulacz,25 N. Kurahashi,44 A. Kyriacou,2 C. Lagunas
Gualda,57 J. L. Lanfranchi,54 M. J. Larson,19 F. Lauber,56 J. P. Lazar,14, 37 K. Leonard,37 A. Leszczyńska,31 Y. Li,54

Q. R. Liu,37 E. Lohfink,38 C. J. Lozano Mariscal,40 L. Lu,16 F. Lucarelli,28 A. Ludwig,24, 34 W. Luszczak,37 Y. Lyu,8, 9

W. Y. Ma,57 J. Madsen,46 K. B. M. Mahn,24 Y. Makino,37 P. Mallik,1 S. Mancina,37 I. C. Mariş,12 R. Maruyama,42 K.
Mase,16 F. McNally,35 K. Meagher,37 A. Medina,21 M. Meier,16 S. Meighen-Berger,27 J. Merz,1 J. Micallef,24 D.
Mockler,12 G. Momenté,38 T. Montaruli,28 R. W. Moore,25 R. Morse,37 M. Moulai,15 R. Naab,57 R. Nagai,16 U.
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The flux of high-energy neutrinos passing through the Earth is attenuated due to their interactions
with matter. The interaction rate is modulated by the neutrino interaction cross section and affects
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the flux arriving at the IceCube Neutrino Observatory, a cubic-kilometer neutrino detector embedded
in the Antarctic ice sheet. We present a measurement of the neutrino cross section between 60 TeV
and 10 PeV using the high-energy starting events (HESE) sample from IceCube with 7.5 years of
data. The result is binned in neutrino energy and obtained using both Bayesian and frequentist
statistics. We find it compatible with predictions from the Standard Model. Flavor information is
explicitly included through updated morphology classifiers, proxies for the the three neutrino flavors.
This is the first such measurement to use the three morphologies as observables and the first to
account for neutrinos from tau decay.

I. INTRODUCTION

At energies above 40 TeV, the Earth becomes opaque
to neutrinos. For a power-law spectrum ∝ E−γ at Earth’s
surface, the ratio of the flux arriving at IceCube to that
at Earth’s surface, Φ/Φ0, depends on the Earth column
density, neutrino energy, Eν , spectral index γ, and neu-
trino cross section. The Earth column density is defined
as t(θ) =

∫ ymax

0
ρ(y, θ)dy, where θ is the arrival direction

of the neutrino, ymax is its path length through the Earth,
and ρ(y, θ) is the density at a point y along the path.
Figure 1 shows the electron neutrino and antineutrino
Φ/Φ0 assuming a surface flux with γ = 2. The spectral
index affects the arrival flux through secondaries pro-
duced by tau decay in charged-current (CC) interactions
or neutral-current (NC) interactions. In νe and νµ CC
interactions, the neutrino is effectively destroyed, whereas
in ντ CC interactions the outgoing tau-lepton may decay
into lower-energy neutrinos [1]. In NC interactions, the
incoming neutrino is not destroyed but cascades down
in energy [2]. These flavor-dependent processes alter the
neutrino flux as a function of the traversed path length [3],
which allows for probing the neutrino cross section at high
energies. Finally, the dip in the ν̄e flux ratio due to the
Glashow resonance [4] is visible in the right panel of Fig. 1
near Eν = 6.3 PeV. The Glashow resonance occurs from
the interaction of an electron antineutrino with a bound
atomic electron and is independent of the CC and NC
interactions of nucleons.

The IceCube Neutrino Observatory, an in-ice neutrino
detector situated at the South Pole, is capable of detect-
ing high-energy neutrinos originating from both northern
and southern hemispheres [5–8]. IceCube comprises over
5000 Digital Optical Modules (DOM) encompassing ap-
proxiately a cubic-kilometer of ice [9–11]. The ice acts as
a detection medium by which Cherenkov radiation from
charged particles produced in neutrino interactions can
be observed. The high-energy starting events (HESE)
sample selects events that interact within a fiducial region
of the detector across a 4π solid angle [8, 12]. Here, we
report a new cross-section measurement using information
from all three neutrino flavors with 7.5 years of data.
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In the Standard Model (SM), neutrino interactions are
mediated by W± and Z0 bosons for CC and NC channels,
respectively. At energies above a few GeV, the dominant
process is deep inelastic scattering (DIS) off of individual
partons within the nucleon. Calculations in the perturba-
tive QCD formalism rely on parton distribution functions
(PDFs) obtained mostly from DIS experiments [13–15].
Uncertainties on the PDFs lead to uncertainties on the
cross section. An alternative approach [16] based on an
empirical color dipole model of the nucleon along with the
assumption that all cross sections increase at high energies
as ln2 s results in good agreement with the latest pQCD
calculations. Proposed extensions of the SM based on
large extra dimensions opening up above the Fermi scale
predict a sharp rise in the neutrino-nucleon cross section
above the SM value. One such model [17] which was mo-
tivated by the claimed detection of cosmic rays above the
GZK bound, assumes that neutrino-nucleon interaction
is mediated by a massive spin-2 boson. This allows the
neutrino-nucleon cross section to climb above 10−27 cm2

at Eν > 1019 eV. Another possibility if spacetime has
greater than four dimensions allows for the production
of microscopic black holes in high-energy particle inter-
actions and also leads to an increased neutrino-nucleon
cross section above ∼ 1 PeV [18]. Such scenarios where
the cross section increases steeply with energy could also
be due to the existence of exotic particles such as lepto-
quarks [19] or sphalerons [20], both of which have been
discussed in the context of neutrino telescopes and could
be probed via measurements of the high-energy neutrino
cross section.
While SM calculations are generally consistent in the

TeV-PeV energy range, few experimental measurements
exist and none have been performed with all three neutrino
flavors [21, 22]. Recently, an IceCube measurement of the
neutrino DIS cross section using up-going, muon neutri-
nos gave a result consistent with the Standard Model [21].
The measurement in [22] used showers in publicly avail-
able HESE data with six years of data-taking. This result,
using the latest HESE sample with 7.5 years of data, in-
cludes classifiers for all three neutrino flavors and accounts
for neutrinos from NC interactions and tau regeneration.
Out of a total of 60 events above 60 TeV, 33 are also
used in [22]. However, several updates described in [12],
including the ice model [23, 24], atmospheric neutrino
passing fractions [25], likelihood construction [26], and
systematics treatment [27], affect their interpretation.
As the sample updates are detailed in [12], this paper

focuses on the results of the neutrino-nucleon cross section
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FIG. 1. Ratio of the arrival flux to surface flux for both electron neutrinos and antineutrinos as a function of Eν and zenith angle
in IceCube detector coordinates. The flux at the surface is assumed to have a spectral index of γ = 2. The core-mantle boundary
is visible as a discontinuity near a zenith angle of 147°, and the enhanced suppression due to Glashow resonance is visible near
6.3 PeV in the electron antineutrino channel. Flux ratios for the other flavors are similar to that of electron neutrinos.

measurement. A brief description of the event selection
is given in Sec. II. Section III details the analysis proce-
dure. Section IV presents our Bayesian and frequentist
results and compares them to existing measurements. We
conclude in Sec. V.

II. EVENT SELECTION

The measurements presented here rely on a sample
of high-energy events that start within a fiducial region
of the IceCube detector [8, 12]. In this context, events
are taken to be the interaction by-products of neutrino
interactions, or background muons from cosmic-ray in-
teractions in the atmosphere. The 90 m of the top and
outer side layers of the detector, 10 m of the bottom of the
detector, and a 60 m horizontal region near the highest
concentration of dust in the ice are used as an active
veto. Only events with fewer than 3 photoelectrons (PE)
and fewer than 3 hit DOMs in the veto region within a
predefined time window are kept. In addition, the total
charge must exceed 6000 PE [12]. This removes almost
all of the background due to atmospheric muons from the
southern sky. Neutrinos arriving from above and below
the detector are included in the sample, thus allowing for
constraints across the full allowed region in zenith.

Events are classified into three observable morphologies:
cascades, tracks and double cascades. These classifiers
are related to the true interaction channel of the neutrino.
Electromagnetic and hadronic showers appear cascade-
like, stochastic energy losses from high-energy muons
appear track-like and the production and subsequent de-
cay of a tau can appear as double cascades (in addition
to the other two morphologies) [12, 28]. Since a NC in-

teraction produces a hadronic shower, it is not directly
distinguishable from a CC interaction. In addition, mis-
classifications can occur and as such, the mapping from
true to reconstructed observables is imperfect. To model
such effects, detailed Monte-Carlo (MC) simulations are
performed, taking into account systematic variations in
the ice model. The MC is then processed in an identical
manner as the data. It thus provides the connection from
the physics parameters of interest to the observed data
events.

III. ANALYSIS METHOD

Figure 2 illustrates the effect of scaling the DIS cross
section up or down on the survival probability as a func-
tion of energy for a neutrino traveling through the full
diameter of the Earth. It is plotted for each flavor indi-
vidually as a function of the neutrino energy, Eν , at a
zenith angle of 180◦, and for a surface flux with spectral
index of γ = 2. The dependence on the spectrum arises
from secondary neutrinos, which cascade down in energy,
and are produced in NC interactions and tau decay [1].
As the cross section increases, Φ/Φ0 decreases since the
neutrinos are more likely to interact on their way through
the Earth. The reason there is a slight flavor-dependence
is due to the fact that CC

(−)

ν e and
(−)

ν µ interactions are
destructive, while a CC

(−)

ν τ interaction produces a tau
lepton which, unlike muons that lose most of their energy
in the Earth before decaying due to their much longer
lifetimes, can quickly decay to a lower-energy ντ . Neutral
current interactions have a similar effect, and these effects
are taken into account [3, 21]. Furthermore, the dip in



5

the ν̄e flux ratio due to the Glashow resonance is again
visible. This effect, taken over the full 2D energy-zenith
distribution, allows us to place constraints on the cross
section itself.
In this paper, we report the neutrino DIS cross sec-

tion as a function of energy under a single-power-law
astrophysical flux assumption. Four scaling parameters,
x = (x0, x1, x2, x3), are applied to the cross section given
in [14] (CSMS) across four energy bins with edges fixed at
60 TeV, 100 TeV, 200 TeV, 500 TeV, and 10 PeV, where the
indexes correspond to the ordering of the energy bins from
lowest to highest energies. Each parameter linearly scales
the neutrino and antineutrino DIS cross section in each
bin, while keeping the ratio of CC-to-NC contributions
fixed. The fixed CC-to-NC ratio implies that this analysis
should not be interpreted as a direct test of the large
extra dimensions model [17], which only applies to NC in-
teractions. At energies above 1 TeV, the neutrino-nucleon
cross sections for all three neutrino flavors converge. The
cross section is therefore assumed to not depend on flavor
in this measurement, but any differences in the arrival
flux of νe, νµ, ντ are taken into account. As the cross
section is not flat in each bin, the effect of these four pa-
rameters is to convert it into a piece-wise function where
each piece is independently rescaled. Such an approach
introduces discontinuities due to binning, but allows for a
measurement of the total neutrino-nucleon cross section
as a function of energy. It also relaxes constraints based
on the overall shape of the CSMS cross section and re-
sults in a more model-independent measurement. As the
fit proceeds over all four bins simultaneously, bin-to-bin
correlations can be examined, though no regularization is
applied.
The CSMS cross section is computed for free nucleon

targets and does not correct for nuclear shadowing. The
shadowing effect modifies nuclear parton densities and
is stronger for heavier nuclei. At energies below 100 TeV
antishadowing can increase the cross section by 1–2% ,
while above 100 TeV shadowing can decrease the cross
section by 3–4% [29]. As this is a subdominant effect,
we do not include it in this analysis. We do, however,
consider the Glashow resonance in which an incident ν̄e
creates an on-shell W− by scattering off an electron in
the detector.
The effect on the expected arrival flux at the detec-

tor due to a modified cross section is calculated with
nuSQuIDS, which properly takes into account destruc-
tive CC interactions, cascading NC interactions, and tau-
regeneration effects [30]. For each x, neutrino events in
MC are reweighted by xiΦ(Eν , θν ,x)/Φ(Eν , θν ,1), where
Φ is the arrival flux as calculated by nuSQuIDS, Eν is the
true neutrino energy, θν the true neutrino zenith angle,
and xi the cross section scaling factor at Eν . A forward-
folded fit is then performed, relying on MC to map each
neutrino flavor to the experimental particle identification
(PID) of tracks, cascades and double cascades [28], in the
reconstructed zenith vs reconstructed energy distribution
for tracks and cascades, and in the reconstructed energy

vs cascade length separation distribution for double cas-
cades [12]. The fit uses the Poisson-like likelihood, LEff ,
which accounts for statistical uncertainties in the MC and
is constructed by comparing the binned MC to data [26].
The ternary PID of tracks, cascades, and double cascades
is an additional constraint to the fit which allows this
measurement to incorporate interaction characteristics of
all three neutrino flavors [28]. Using MC simulations, we
can account for deviations between the true flavor and
the PID, and also estimate its accuracy. Under best-fit
expectations, true νe are classified as cascades ∼ 57% of
the time, true νµ as tracks ∼ 73% of the time, and true
ντ as double cascades ∼ 65% of the time [12].
Systematic uncertainties on the atmospheric neutrino

flux normalization where the neutrinos are produced by
π or K decay [31], Φconv, atmospheric neutrino flux nor-
malization where the neutrinos are produced by charm
meson decay [32], Φprompt, astrophysical spectral index,
γ, astrophysical flux normalization, Φastro, atmospheric
muon flux normalization, Φµ, π/K ratio, atmospheric
ν/ν̄ ratio, and the cosmic ray spectral index [33], δγCR,
are taken into account. Detector systematic studies were
performed using Asimov data but had a negligible im-
pact on the result. Priors on the nuisance parameters
are given in Table I. The prior on γastro is driven by the
usual Fermi acceleration mechanism, allowing for a large
uncertainty that covers those reported in a previous and
independent IceCube measurement of the diffuse neutrino
flux [34]. Such a large uncertainty minimizes the impact
of changing the central value on the measured cross sec-
tion. None of the xi parameters shifted by more than 1 %
in post-unblinding checks where γastro = 3.0± 1.0.

Out of all the nuisance parameters, γastro and Φastro
exhibited the largest correlation with the cross section
parameters. They are most strongly correlated with x0,
the cross section in the lowest-energy bin. This is believed
to be related to the fact that lower-energy neutrinos
are subject to less Earth-absorption so the main effect
of varying the low-energy cross section is a near-linear
scaling at the detector. This makes x0 essentially inversely
proportional to the astrophysical flux. By allowing the
cross section to float the data seems to prefer the softer
index, as given in Table I.

The interaction rate of high-energy neutrinos traveling
through the Earth is also dependent on the Earth density.
Here, we fix the density to the preliminary reference Earth
model (PREM) [35]. This is a parametric description of
the density as a function of radial distance from the center
of the Earth, evaluated using several sources of surface
and body seismic wave data. Since the density uncertainty
is at the few percent level, it is negligible in comparison
to the flux uncertainty and is fixed for the purposes of
this measurement [36].

Note that the Glashow resonance occurs for an incident
ν̄e with an energy around 6.3 PeV and is not varied in
the fit as it is calculable from first principles, using the
known decay width of the W boson. However, unlike
high-energy neutrino-nucleon scattering, the expected
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FIG. 2. Ratio of the arrival flux to surface flux for both neutrinos and antineutrinos as a function of Eν for three realizations
of the cross section. The flux at the surface is assumed to have a spectral index of γ = 2. The scaling is applied to the cross
section given in [14].

Parameter Constr./Prior Range Shape Best fit
Astro. ν:
Φastro - [0,∞) Uniform 6.94
γastro 2.0± 1.0 (−∞,∞) Gaussian 3.15

Atmos. ν:
Φconv 1.0± 0.4 [0,∞) Truncated 0.96
Φprompt 1.0± 3.0 [0,∞) Truncated 0.00
π/K 1.0± 0.1 [0,∞) Truncated 1.00
2ν/ (ν + ν̄)atmo 1.0± 0.1 [0, 2] Truncated 1.00

Cosmic-ray:
∆γCR −0.05± 0.05 (−∞,∞) Gaussian -0.05
Φµ 1.0± 0.5 [0,∞) Truncated 1.22

TABLE I. Central values and uncertainties on the nuisance
parameters included in the fit. Truncated Gaussians are set
to zero outside the range. These modify the likelihood used in
both the Bayesian and frequentist constructions. Their best-fit
values over the likelihood space are also given.

number of events due to the Glashow resonance is strongly
dependent on the ratio of neutrinos and antineutrinos in
the incident flux. We therefore performed a test that
varied the astrophysical flux from a pure neutrino flux
to a pure antineutrino flux. It was found only to have
a minimal effect in the highest energy bin, where the
measurement uncertainty is largest. This is due in part
to the steeply falling spectrum, which causes the flux at
6.3 PeV to be much smaller than that at lower energies. As
the effect on the cross section is minimal, we keep the ratio

of the flux of astrophysical neutrinos and antineutrinos
fixed to unity.
We report both Bayesian highest posterior density

(HPD) credible intervals and frequentist confidence in-
tervals (CI). In the Bayesian construction, the poste-
rior on the four scaling parameters are obtained with
a MCMC sampler, emcee, marginalizing over nuisance
parameters [37]. A uniform prior from 0 to 50 is assumed
for all four cross section scaling parameters. Such a prior
gives more weight to parameter values greater than one.
To test its effect, the MCMC was also run assuming a
log-uniform prior which gives a results consistent with
those assuming a uniform prior. The MCMC is sampled
with 60 walkers over 5000 total steps, the first 1000 of
which are treated as part of the initialization stage and
discarded.
The frequentist confidence regions are obtained from

a grid scan of the likelihood across four dimensions, pro-
filing over the nuisance parameters and assuming Wilks’
theorem. For x0, x1, and x2, 15 equal-distant points are
used from 0.1–5. For x3, 29 equal-distant points are used
from 0.1–9.9. For each x on the mesh of these points, the
likelihood is minimized over all other nuisance parameters.
Confidence regions in two or one dimension are then evalu-
ated by profiling across the other cross-section parameters
followed by application of Wilks’ theorem. Though the
best-fit Φprompt = 0, the prompt component is expected to
be a small contribution to the overall distribution. Thus
we expect Wilks’ theorem to hold asymptotically in the
high statistics limit.
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The zenith-dependent effect of the cross section on
the event rate is shown in Fig. 3, assuming the best-fit,
single-power-law flux reported in [12], which is obtained
using the CSMS cross section σ = σCSMS [14]. The
degeneracy in the measurements of flux and cross section
is broken by the different amounts of matter traversed
by neutrinos arriving from different directions. In order
to illustrate the effect of a modified cross section, two
alternative expectations are shown for σ = 0.2σCSMS and
σ = 5σCSMS under the same best-fit flux assumption.
In the southern sky (cos θ > 0) the Earth absorption is
negligible and the event rate is simply proportional to the
cross section. In the northern sky (cos θ < 0) the strength
of Earth absorption is dependent on the zenith angle and
Eν , as shown in Fig. 1, as well as the cross section, shown
for a single zenith angle in Fig. 2. Absorption alters the
shape of the event-rate zenith distribution in the northern
sky. For example, with σ = 5σCSMS and near cos θ =
−0.5, the attenuation of the arriving flux counteracts the
increased neutrino interaction probability, so that the
event rate falls back to that expected from the CSMS
cross section. Modifications of the neutrino cross section
are thus constrained by the non-observation of energy-
dependent distortions in the zenith angle distribution.

FIG. 3. The zenith distribution of data and the best-fit, single-
power-law flux expectation assuming σCSMS (orange) [14]. Pre-
dictions from two alternative cross sections are shown as well,
assuming the same flux. In the southern sky, cos θ > 0, the
Earth absorption is negligible so the effect of rescaling the
cross section is linear. In the northern sky, cos θ < 0, the
strength of Earth absorption is dependent on the cross section,
as well as the neutrino energy and zenith angle.

IV. RESULTS

The CC cross section, averaged over ν and ν, are shown
in black in Fig. 4 and Fig. 5 for the Bayesian 68.3% HPD
and frequentist one sigma intervals assuming Wilks’ theo-
rem, respectively. As the scale factor is applied across the
entire interval within an energy bin on the CSMS calcula-
tions, the shape is preserved within each bin. The central
point in each energy bin corresponds to the expected,
most-probable energy in dNMC/d logE, the distribution
of events in the MC along the x-axis. This is chosen
in lieu of the linear or logarithmic bin center to better
represent where most of the statistical power lies in each
bin. Since we assume a fixed CC-NC cross-section ratio,
the NC cross section is the same result relative to the
CSMS prediction and so is not shown here.

FIG. 4. The charged-current, high-energy neutrino cross sec-
tion as a function of energy, averaged over ν and ν̄. The
Bayesian 68.3% HPD credible interval is shown along with
two cross section calculations [14, 16]. The credible intervals
from a previous analysis [22] are also shown for comparison.

In addition, the measurement based on HESE showers
with six years of data is shown as orange crosses [22] in
Fig. 4 and the previously published IceCube measurement,
using upgoing muon-neutrinos, is shown as the shaded
gray region [21] in Fig. 5. Since credible intervals and
confidence intervals have different interpretations, we do
not plot them on the same figure. Note that both previous
measurements extend below 60 TeV and are truncated in
this comparison. Predictions from [14] and [16] are shown
as the dashed and solid lines, respectively.

A corner plot of the posterior density, marginalized over
all except two or one of the cross-section parameters, is
shown in Fig. 6. Similarly, two-dimensional profile likeli-
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FIG. 5. The charged-current, high-energy neutrino cross sec-
tion as a function of energy, averaged over ν and ν̄. The
Wilks’ 1-sigma CI is shown along with two cross section cal-
culations [14, 16]. The confidence intervals from [21] are also
shown for comparison

FIG. 6. The full posterior distribution of x as evaluated with
emcee [37]. In the two-dimensional distributions, the 68.3%
and 95.4% HPD regions are shown. In the one-dimensional
distribution, the 68.3% HPD interval is indicated by the dashed
lines.

Parameter Energy range 68.3% HPD 68.3% CI
x0 60 TeV to 100 TeV 0.21+0.52

−0.21 0.48+0.49
−0.37

x1 100 TeV to 200 TeV 1.65+1.49
−0.84 1.50+1.03

−0.60

x2 200 TeV to 500 TeV 0.68+1.11
−0.43 0.54+0.60

−0.35

x3 500 TeV to 10 PeV 4.31+13.26
−3.32 2.44+5.10

−1.47

TABLE II. Measured 68.3% HPD (Bayesian) and CI (frequen-
tist) for the four cross section parameters.

hoods are shown in Fig. 7. Both exhibit little correlation
between the various cross-section parameters. The largest
uncertainty arises for x3, which has the widest posterior
distribution and flattest profile likelihood.

FIG. 7. The profile likelihood of x as evaluated with the grid
scan over x. In the two-dimensional figures, the Wilks’ 68.3%
and 95.4% confidence regions are shown as dashed and solid
lines, respectively. In the one-dimensional plots of ∆ logL, the
68.3% confidence interval is indicated by the dashed lines.

The Bayesian and frequentist results are consistent with
each other, though again we caution that their intervals
cannot be interpreted in the same manner. The results are
compatible with the Standard Model and are summarized
in Table II.

V. CONCLUSIONS

We have described a measurement of the neutrino DIS
cross section using the IceCube detector. Variations in the
neutrino cross section from Standard Model predictions
modify the expected flux and event rate at our detec-
tor, and a sample of high-energy events starting within
the fiducial volume of IceCube has been utilized to thus
measure the neutrino cross section. Previous TeV-PeV
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scale neutrino cross sections have been measured by Ice-
Cube [21] using a sample of throughgoing muons, and
with cascades in the HESE sample [22]. This result, how-
ever, is the first measurement of the neutrino DIS cross
section to combine information from all three neutrino
flavors.
Our results are compatible with Standard Model pre-

dictions, though the data seems to prefer smaller values
at the lowest-energy bin, and higher values at the highest-
energy bin. There does not seem to be strong correlations
between the cross section bins, though large uncertain-
ties due to a dearth of data statistics make it difficult
to draw strong conclusions. With additional data, or
with a combined fit across multiple samples, more precise
measurements are foreseen in the near future [38].
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