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A competitive and reversible deactivation approach
to catalysis-based quantitative assays
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Catalysis-based signal amplification makes optical assays highly sensitive and widely useful in
chemical and biochemical research. However, assays must be fine-tuned to avoid signal
saturation, substrate depletion and nonlinear performance. Furthermore, once stopped, such
assays cannot be restarted, limiting the dynamic range to two orders of magnitude with
respect to analyte concentrations. In addition, abundant analytes are difficult to quantify
under catalytic conditions due to rapid signal saturation. Herein, we report an approach in
which a catalytic reaction competes with a concomitant inactivation of the catalyst or
consumption of a reagent required for signal generation. As such, signal generation proceeds
for a limited time, then autonomously and reversibly stalls. In two catalysis-based assays, we
demonstrate restarting autonomously stalled reactions, enabling accurate measurement over
five orders of magnitude, including analyte levels above substrate concentration. This
indicates that the dynamic range of catalysis-based assays can be significantly broadened
through competitive and reversible deactivation.
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evelopment of optical assays for facile quantification of

trace analytes is an ever-expanding field. Target analytes

range from trace metals’ and biological signalling
agents®> to chemical weapons®. Tailored chemosensors interact
specifically with an analyte to produce an optically decoded
signal, which can manifest itself as a wavelength shift or intensity
change in either absorbance or emission. These signals are
measured by simple instrumentation, such as a plate reader, or
visualized with the naked eye.

Quantitative optical assays exploit either a catalytic or a non-
catalytic reaction. Non-catalytic assays rely on a single turnover
from the analyte for a chemical conversion or a reversible binding
and have the benefit of time-independence; in other words, the
signal does not change over time once the reaction or binding
event is complete. A major drawback of these systems is the
higher limits of quantification due to this limited turnover,
rendering these non-catalytic assays undesirable for detection of
trace analytes. A more sensitive approach for trace analytes uses
catalysis-based assays, where the substrate continues to react over
time, amplifying signals.

The continuity of catalysis-based signal amplification presents
some practical challenges to assay development. In metal
catalysis-based assays, once the metal has entered into the
catalytic cycle, the resulting fluorescence signal is dependent on
the concentration of the analyte as well as the time elapsed, with
the reaction continuing until the fluorogenic substrate is
consumed. In enzyme and enzyme-linked immunosorbent
assays, the reaction continues until the substrate is consumed
or a terminating reagent is added®. In either case, if an analyte is
abundant, the assay substrate will be rapidly consumed,
preventing accurate quantitation. In addition, if a reaction with
a low concentration of analyte is allowed to continue unchecked,
the signal can increase to the point where the detector becomes
saturated, again preventing accurate quantification. Finally, when
a catalysis-based assay is externally stopped, it cannot be
restarted® and premature termination requires the assay to be
repeated to obtain quantitative data. As such, a significant
drawback associated with catalysis-based assays is the far
narrower dynamic range (one to two orders of magnitude)
compared with more labour-intensive methods, such as
inductively coupled plasma mass spectrometry (ICP-MS), which
has a detection range is up to five orders of magnitude. New
methodologies that overcome these limitations to enable
controlled activity of catalytic assays would be broadly useful in
chemical and biochemical research.

Herein, we present a new approach to catalysis-based assays in
which a catalytic chromogenic reaction competes with the
deactivation of the catalyst or depletion of an essential reagent.
Under these conditions, a signal-producing reaction proceeds for
a limited time, then autonomously stalls, but can be reactivated by
reagent addition, generating a graph reminiscent of a staircase
function in mathematics. This approach is exemplified by both a
new colorimetric method for quantifying palladium (Pd) and a
horseradish peroxidase assay system. In the analysis of Pd,
multiple cycles of reaction stalling and restarting allow accurate
measurement with a detection range of over five orders of
magnitude. Moreover, analyte levels significantly above the
substrate concentration can be quantified.

Results

Resorufin allyl ether as a chemodosimeter for palladium. We
previously reported a fluorescence method for quantifying Pd in
pharmaceuticals based on the Pd-catalysed fluorogenic conver-
sion of allyl Pittsburgh Green ether (APE) to Pittsburgh Green
(Fig. 1a)”~10. Although this method showed excellent sensitivity
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and an ability to accurately quantify low-level Pd in real-world
samples, we realized that a colorimetric version of
the assay could allow even simpler, instrument-free access to
low-level Pd measurements, a goal previously attempted by
several other researchers with limited success'!"12,

Investigation of a number of candidate chromogenic substrates
led to the preparation of yellow-coloured resorufin allyl ether
(RAE) in one step in 85% yield from commercially available
purple-coloured resorufin (Fig. 1b,c, Supplementary Figs 13 and
14). Attempts at Pd-catalysed deallylation of RAE using the
optimized conditions for APE (tris(2-furyl)phosphine (TFP)),
NaBH,, dimethyl sulphoxide (DMSO)/1.23 M phosphate pH 7
buffer (1:9)) were unsuccessful. However, screening a variety of
commercially available phosphines and additives (Supplementary
Table S1 and Supplementary Figs 1-3) led to the identification of
suitable conditions for carrying out the transformation. Opti-
mized conditions for the Pd-dependent deallylation of RAE used
TFP, NH,OAc and NaBH, in an EtOH solvent. Further
optimization of RAE as a substrate can be found in the
Supplementary Methods and Supplementary Figs 2-4.

We found that RAE was selectively responsive to Pd over other
metals tested (Ag, Au, Cd, Co, Cr, Fe, Hg, Mn, Ni. Pt, Rh, Ru, Zn,
Sr, Ir, Cu; Supplementary Fig. 4a,b) and could detect Pd without
interference from these metals, with the exception of Hg, where a
small level of interference was observed (Supplementary Fig. 4c).
When selectivity was tested by absorbance, higher values were
observed in the presence of Au, Ag, and Hg owing to turbidity of
the solution, although fluorescence measurement revealed that
these were merely false positives (that is, these metals did not
convert RAE to resorufin; Supplementary Fig. 4a,b). When
exposed to Pd, the fluorescence signal increased linearly with
respect to Pd concentration (Fig. 1d), indicating a first-order
relationship suitable for convenient quantification.

The Pd-catalysed deallylation of APE in phosphate buffer was
more effective in the presence of NaBH,, which reduces Pd(II) and
PA(IV) to catalytically active Pd(0), but did not require this
reducing agent as a critical component®. In contrast, Pd(II) species
did not catalyse the deallylation of RAE in NH,OAc-containing
EtOH without the reducing agent, with the amount of NaBH,
dictating the duration of reaction (Fig. 2a). This novel NaBH,-
dependence boded well with our aim at competitively and
reversibly deactivating catalysis-based assays, as detailed below.
Lower concentrations of NaBH,, ranging from 5-25mM, led to
stalling of the colour-forming reaction within 30s, presumably
because of rapid consumption of the reductant, NaBH,, combined
with ongoing air-oxidation of catalytically active Pd(0) to higher
valent, inactive Pd species. In contrast, NaBH, concentrations in
excess of 50mM allowed the reaction to continue for several
minutes. Importantly, the addition of more NaBH, could restart a
stalled deallylation reaction (Fig. 2b), affording a convenient way to
trigger signal generation on demand.

Subsequently, we sought to gain insights into the reaction
stalling to rationally expand this developing methodology. The
Pd-catalysed deallylation of APE stalled in the presence of
NH,OAc but continued in a phosphate buffer (Supplementary
Fig. 6). With 200, 400, 600 and 800 mM NH,OAc followed by pH
adjustment, the reactions stalled nearly at the same time
(Supplementary Fig. 7). The Pd-catalysed deallylation reaction
of RAE under a nitrogen atmosphere were found to stall more
slowly than those carried out in open air (Supplementary Fig. 8),
suggesting that aerobic oxidation of Pd(0) to higher order Pd
species may account for the observed reaction stalling.

Demonstration of stop-and-go methodology with RAE. In
an effort to develop a simple, user-friendly colorimetric Pd
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Figure 1 | Palladium chemodosimeters based on change in optical properties. (a) Structures of previously developed fluorogenic chemodosimeter APE
and its conversion to Pittsburgh Green. (b) Chromogenic chemodosimeter RAE and its conversion to resorufin. (¢) Absorption spectra of resorufin and RAE
in 800 MM NH4OAc in EtOH. The data are normalized to 20 uM of each compound. (d) Correlation between Pd concentrations and fluorescence signal
using RAE. r2=0.97, y = (208 + 7.38)x + (15,910 * 2,765). Conditions: 29 uM RAE, 0, 8,16, 32, 64, 128, 256, 512, 1,024 nM Pd(ll). 50 mM NaBH,, 200 M

TFP, 800 MM NH4OAc, EtOH, 24 °C, 60 min; n=3.
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Figure 2 | Influence of NaBH, on deallylation of RAE. (a) Reaction lifetime dictated by NaBH, concentration. Conditions: 29 uM RAE, 10 p.p.b. Pd(lI),
200 pM TFP, 800 mM NH4OAc, 0-125 mM NaBH,, EtOH, 25°C. (b) Stalled deallylation reaction can be restarted by NaBH, addition. Conditions: 29 uM
RAE, 0.3 p.p.m. Pd(ll), 200 uM TFP, 800 mM NH4O0Ac, 0. 0.6, 1.2, 1.8, 2.4 mM NaBH,, added as 2.5M aliquots at indicated time points.

quantification assay, we prepared a reagent cocktail combining all
reaction components except NaBH, in a single solution. This
cocktail, which is stable for over 2 weeks when stored at 5 °C, can
be dispensed as needed, simplifying application of the colori-
metric method. The addition of either 20l of a solution or
2-5mg of a solid sample containing trace Pd to 1ml of the
reaction cocktail, followed by the addition of a NaBH, solution,
generated colour and fluorescence within 1min. The colour
intensity was linearly correlated with Pd concentration, and the
dynamic range and reaction time of the assay were tailored by
adjusting the NaBH, concentration.

The power of this method is shown in Fig. 3. Known
concentrations of Pd afford widely different colours with a

single concentration of NaBH,, with the colour persisting
for 24h (Fig. 3a). If a sample contains 1p.p.b. Pd, then
100mM NaBH, is required to observe a colour change
(Fig. 3b). If a sample contains 10 p.p.m. Pd, then no NaBH, is
added to observe a colour change. Thus, Pd concentrations
ranging from 1 p.p.b. to 10 p.p.m. (five orders of magnitude) can
be distinguished in one reaction solution with NaBH, titration.
Alternatively, a user may prepare multiple wells with variable
NaBH, amounts and count a number of coloured wells to
estimate the Pd concentrations.

To confirm that the stop-and-go assay approach is providing
quantitative data, we analysed real-world samples. We first tested
intermediates used in the preparation of active pharmaceutical
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Figure 3 | Visual quantification of palladium with RAE. (a) The
appearance of distinguishable colour correlating to Pd concentration occurs
in less than Tmin using a set of Pd standards. Conditions: 29 pM RAE,
0-4.0 p.p.m. Pd, 200 uM TFP, 800 mM NH4OAc, 1.0 mM NaBHj,, EtOH,
25°C. (b) Colorimetric plate showing dependence of colour formation

on Pd and NaBH, concentration; 29 uM RAE, 200 pM TFP, 0-50 p.p.m.
Pd, 0-100 mM NaBH,4, 800 mM NH;0Ac 25 °C, EtOH, 10 min, n=3.

(¢) Conditions: colorimetric analysis as reported in Fig. 4a; ICP-MS analysis
as reported in the ‘Methods’ section.
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ingredients. In pharmaceutical synthesis, reactions may leave
behind residual Pd in the products, which is often difficult to
remove!®. Various samples were tested from active projects in the
Process and Analytical Chemistry Department at Merck Research
Laboratories in which residual Pd removal has proven difficult.
Quantification of Pd was initially performed by ICP-MS followed
by analysis using RAE. Compared with the ICP-MS analysis, the
stop-and-go approach with RAE provided accuracy from 70 to
120%, with residual Pd concentrations ranging from 62 to
800 p.p.m. (Fig. 3c). These results were satisfactory for this assay
approach to be used for screening dozens of routine Pd
remediation protocols.

Microscale screening of process adsorbents is often used to
identify resins or activated carbons that can be used for selective
adsorption of metal impurities in pharmaceutical process
research and development!®!®, Traditionally, this approach
requires close coordination with ICP-MS specialists to allow for
quick turnaround time. However, often because of instrument
calibration, the vast number of samples, and preparation time,
this can be time consuming. As such, the pharmaceutical industry
has been interested in a faster technology for trace metal
analysis!®.

The application of the colorimetric method enables rapid
determination of Pd concentrations ‘on the spot, in the
same laboratory where the process development studies are being
carried out. Figure 4 shows the results of a high throughput
screen of Pd impurity remediation treatments of a pharmaceutical
intermediate with 48 metal-scavenging adsorbents, using the
stop-and-go assay with RAE to visualize relative Pd levels. An
aliquot from each well is treated with the reaction cocktail
(Fig. 4a), then with NaBH,. In less than 5 min, gross differences
in Pd concentration are readily apparent to the naked eye by
distinguishable colours (Fig. 4b). At this point, the reaction had
stalled, and too many hits were identified. Accordingly, more
NaBH, was added to restart the reaction, accentuating the
differences between wells and enabling rapid determination of the
potential most-effective treatments for residual Pd remediation
(Fig. 4c). A high-throughput mapping of relative Pd
concentration was obtained by plotting the ratio of absorbance
at 580 and 460 nm using a ultraviolet-visible plate reader (read
time for 48 samples <30s; Fig. 4d). These results quantitatively
confirm the most effective Pd removal treatments to be
wells A5, C4, E6, F3 and F5. Spot-checking several adsorbent
treatment samples using conventional ICP-MS showed a good
correlation with the colorimetric method, with the selection of the
most-effective adsorbent treatments (A5, E6) being identical in
both cases. These results demonstrate the utility of a stop-and-go
approach in trace metal quantification, providing an important
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Figure 4 | Case study of a streamlined process combining adsorbent screening for Pd removal with high-throughput colorimetric Pd detection.

(@) Screening kits containing 48 commercial adsorbents'® are exposed to a solution of a Pd-containing intermediate. (b) Aliquots from screening kits are
evaluated for Pd content using the colorimetric method, as described in protocol. (¢) Finding the best potential hits visually by adding more NaBH.
(d) High-throughput mapping of relative Pd concentration by measurement of ultraviolet-visible 570 nm/460 nm using ultraviolet-visible plate reader.
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advance for process chemists dealing with remediation of Pd
impurity problems using point-of-use high-throughput analysis.

We previously applied APE for quantifying Pd in ore samples
without requiring acidic sample digestion!”, a significant
improvement over standard analytical methods such as ICP-
MS, but still requiring the use of a blue light source to check
fluorescence intensity. This requirement associated with the
fluorometric method was not ideal for turbid samples such as
ores. Therefore, we applied our colorimetric method for more
convenient visualization. We found that the reaction was stalled
before effective Pd extraction from the ores, leading to a need to
add a large excess of NaBH,. However, a 1-min pre-incubation in
a DMSO solution of TFP with sonication, followed by the
addition of RAE, NH,OAc, EtOH and NaBH, afforded subpar
semi-quantitative data. A second addition of NaBH, after the
reaction had stalled provided good colorimetric agreement with
previous semi-quantitative analysis!” (Supplementary Fig. 9)
within 20 min.

Trace Pd is also a significant concern in materials science
Our colorimetric method could be used to successfully detect
trace Pd in polymer materials, as shown in Supplementary
Figs 10-12, Supplementary Table 2 and Supplementary Notes 1
and 2.

18,19

Competitive and reversible deactivation in enzymatic assay.
Horseradish peroxidase (HRP) is a common enzxéme for
detection and quantification in biological assays*®?!. This
enzyme catalytically converts Amplex Red (10-acetyl-3,7-
dihydroxyphenoxazine) and H,O, to resorufin, acetic acid and

H,0. (Fig. 5a)22. The reaction continues indefinitely until
either Amplex Red or H,O, is consumed, at which point, signal
generation is stopped.

To illustrate the discontinuous catalysis approach in a different
assay, we designed a system in which PhB(OH), would
competitively reduce H,O, (Fig. 5a ‘Deactivation of reagent’)
while the H,0,-mediated oxidation of Amplex Red occurs
(‘Conventional HRP assay’). Figure 5b shows that PhB(OH),
was able to do so in a concentration-dependent manner, affording
lower signals. Reactions halted by consumption of H,0O, could be
restarted by an addition of a fresh aliquot of H,O, (Fig. 5¢). With
a further addition of H,0,, signal saturation occurred (Fig. 5d).
With the inclusion of the competitive scavenger, PhB(OH), to
remove H,0, from the system, the discontinuous catalysis
alleviated the problem of overshooting signals, as well as allowed
us to restart the reaction without problematic increases in
fluorescence (Fig. 5d). Although the protocol has not been fully
optimized in an HRP system, these data indicate a great potential
for the applications of discontinuous catalysis in other enzyme
assays.

Discussion

We have developed a competitive and reversible deactivation
approach for catalytic quantification assays (Fig. 6). Conversion
of RAE to resorufin via a Pd-catalysed Tsuji-Trost reaction is
autonomously stalled by the oxidation of reactive Pd(0) to
non-reactive species. The addition of NaBH, as a reducing agent
is able to restart the reaction, enabling accurate measurements
over five orders of magnitude. Notably, even in cases where the
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Figure 5 | Stop-and-go approach in a horseradish peroxidase system. (a) Conversion of Amplex Red to resorufin. (b) Effect of PAB(OH), on horseradish
peroxidase assay. Conditions: 50 uyM Amplex Red, 0.1U ml~ " horseradish peroxidase, 25 uM H,0,, O, 25, 50, 250 mM PhB(OH),, PBS pH 7.4.

() Restarting a stopped enzymatic reaction in the presence of an inhibitor. Conditions: 50 uM Amplex Red, 0.05U ml~" horseradish peroxidase, O M
H,0O, (0-20 min) for the circle and triangle. For others, 10 uM H,0, at O min, 20 uM H,0, at 10 min, PBS pH 7.4. (d) Restarting a stopped enzymatic
reaction in the presence of an inhibitor with uninhibited saturation. Conditions: 50 uM Amplex Red, TUml~" horseradish peroxidase, O uM H,0,
(0-20min) for the circle and triangle. For others, 10 uM H,0, at O min, 30 uM H,0, at 10 min, PBS pH 7.4. After the addition of H,O, at 10 min, the
PhB(OH),-free sample (square) showed a signal above the upper limit of the instrument (above 2 x 10° units).
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Figure 6 | Continuous reaction and competitively and reversibly deactivated reaction. (a) Widely used catalytic assays continuously convert a substrate
to a reporter molecule. (b) This work presents a stop-and-go paradigm, in which there is a competition between the catalytic reaction and autonomous
deactivation of the catalyst (that is, analyte) or the essential reagent. The addition of an activator or a reactant restores the system.

amount of Pd far exceeds the amount of RAE, the data remain
quantitative. We have also demonstrated the utility of the same
concept in a widely used HRP assay system, where competitive
destruction of H,O, by PhB(OH), leads to reaction stalling,
broadening the dynamic range of the assay. These approaches
should be compatible with automation and may find further
applicable arenas to broaden the dynamic ranges of catalysis-
based assays.

Methods

Ultraviolet-visible spectroscopy. The ultraviolet-visible spectra of RAE and
resorufin solutions were acquired using a diode array spectrophotometer
(Agilent Technologies, Santa Clara, CA) in a quartz cuvette. Other absorbance
measurements were recorded in either a 96-well plate using a Modulus II
Microplate Multimode reader (Promega, Madison, WI) measuring absorbance at
560 nm or in a clear, round bottom 96-well plates on a Spectra Max M5
spectrometer (Molecular Devices, Sunnyvale, CA) under the control of a
Windows-based PC running software pro V5. The samples were analysed at
/=580nm for the resorufin, and at 4 =525nm for RAE.

Fluorescence measurement. Fluorescence measurements were read on a
Modulus II Microplate Multimode Reader (excitation 525 nm, emission
580-640 nm) or using a HoribaMax Fluorometer (excitation 578 nm, emission
350-700 nm).

Metal analysis by ICP-MS. The samples were either diluted or suspended directly
in concentrated nitric acid or evaporated with a rotary evaporator first and then
re-dissolved in concentrated nitric acid for ICP-MS analysis. Depending on the
concentration range of the element, either a Perkin-Elmer Elan 6000 quadrupole
ICP-MS spectrometer (Perkin-Elmer, Norwalk, CT) or a Thermo Finnigan
Element 2 high-resolution ICP-MS spectrometer (Finnigan, Bremen, Germany)
was used for the analysis.

General protocol for deallylation of RAE. A reaction cocktail was prepared by
mixing 800 mM NH,OAc in EtOH (10 ml) with 800 uM RAE in EtOH (400 ul) and
3mM TFP in DMSO, with 250 p.p.m. BHT (800 pl). The reaction cocktail (1 ml)
was added to individual 2-ml Eppendorf tubes. To half of the samples was added
5% TraceMetal HNO; (20 pl) as a control. To the other half of the samples was
added a Pd** solution in 5% TraceMetal HNO; (20 pl). To all the samples was

6

added NaBH, in 10N NaOH (20 pl). The samples were mixed and transferred
(200 pl) to a 96-well black fluorescence well plate. Fluorescence

(excitation 525 nm, emission 570-640 nm) was measured every 2 min for 60 min
using a Modulus II Microplate Multimode Reader.
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