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ABSTRACT Hydrologic shifts due to climate change will affect the cycling of carbon (C)
stored in boreal peatlands. Carbon cycling in these systems is carried out by microorgan-
isms and plants in close association. This study investigated the effects of experimentally
manipulated water tables (lowered and raised) and plant functional groups on the peat
and root microbiomes in a boreal rich fen. All samples were sequenced and processed
for bacterial, archaeal (16S DNA genes; V4), and fungal (internal transcribed spacer
2 [ITS2]) DNA. Depth had a strong effect on microbial and fungal communities
across all water table treatments. Bacterial and archaeal communities were most
sensitive to the water table treatments, particularly at the 10- to 20-cm depth; this
area coincides with the rhizosphere or rooting zone. Iron cyclers, particularly members
of the family Geobacteraceae, were enriched around the roots of sedges, horsetails,
and grasses. The fungal community was affected largely by plant functional group,
especially cinquefoils. Fungal endophytes (particularly Acephala spp.) were enriched in
sedge and grass roots, which may have underappreciated implications for organic mat-
ter breakdown and cycling. Fungal lignocellulose degraders were enriched in the lowered
water table treatment. Our results were indicative of two main methanogen communities, a
rooting zone community dominated by the archaeal family Methanobacteriaceae and a
deep peat community dominated by the family Methanomicrobiaceae.

IMPORTANCE This study demonstrated that roots and the rooting zone in boreal fens
support organisms likely capable of methanogenesis, iron cycling, and fungal endo-
phytic association and are directly or indirectly affecting carbon cycling in these eco-
systems. These taxa, which react to changes in the water table and associate with
roots and, particularly, graminoids, may gain greater biogeochemical influence, as
projected higher precipitation rates could lead to an increased abundance of sedges
and grasses in boreal fens.

KEYWORDS peatland, carbon cycling, methanogen, bacteria, fungi, archaea, in situ,
trace gas, vegetation, boreal ecosystems, climate change, hydrology, iron, plant
functional group, plant functional type, root, subarctic

Northern high latitude ecosystems are disproportionately affected by climate
change; precipitation and temperature regime shifts are occurring at a higher rate

there than in other areas of the world (1, 2). Peatlands, which store over 500 gigatons
of soil carbon (C) (3), are particularly susceptible to climate-induced alterations in water
table and vegetation (4–8)—both of which drive C cycling, including the production
and emission of the greenhouse gases carbon dioxide and methane (9–19). Of the
peatland types, carbon cycling in rich fens is especially sensitive to plant community
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shifts (20), which are often driven by the water table position (6). One of the many reasons
that plants are effective drivers of biogeochemistry is their intimate and complex relation-
ship with microorganisms, which are understudied in northern rich fens (21–24) and are
directly involved in carbon transformation processes, including methanogenesis.

Bacteria, archaea, and fungi comprise the microbial communities that reside in
northern fens and soils worldwide. Bacterial and archaeal phyla commonly present
include the Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Planctomycetes,
Bacteroidetes, Verrucomicrobia, and Euryarchaeota (25, 26), whereas fungi are generally
enriched in the Ascomycota, especially the order Helotiales (27). Fungal dynamics are
largely driven by plant functional groups in other peatland ecosystems (28, 29), but
there are few studies describing plant-microbial relationships in subarctic rich fens.

Dominant vascular plant functional groups in subarctic rich fens include sedges,
grasses, horsetails, and marsh cinquefoil. Sedges have sparse but deep roots, with spongy
aerenchymatous tissue capable of transporting air between the atmosphere and rhizo-
sphere. Grasses can form large, dense root balls and may contain facultative aerenchyma-
tous tissue, although it is not well documented if grasses in our study area (such as
Calamagrostis spp.) have this trait (30). Both sedges and grasses are known to produce root
exudates, a trait which can stimulate microbial productivity (31). Horsetails are opportunistic,
hardy, and ancient plants containing hollow, segmented stems and rhizomes that run below
the peat surface. Previous work suggests gases are transported between the peat and the
atmosphere via these hollow stems (32), likely via diffusion (33). Marsh cinquefoil is a shal-
low-rooting (generally 5 to 10cm deep), laterally spreading rhizomatous shrub with no evi-
dence of aerenchyma. The diversity of root structure, aeration, and inputs to the soil of these
four distinct fen plants (32) could drive differences in root-associated microbial communities.
For instance, the enrichment of methanogens via the addition of readily degradable carbon
around graminoid roots (34) or an enrichment of microbes associated with the redox cycling
of elements such as iron via the plant-mediated aeration of peat could be expected.

In this study, our broad objective was to describe the microbial community of a
subarctic rich fen and its dominant plant rhizospheres. Our experimental objectives
were to identify how plant functional groups and water table dynamics (i) independ-
ently affect the microbial community and (ii) interact to influence microbial activity in
boreal rich fens and to describe the collective impacts on carbon cycling, particularly
methane production.

To address aspects of the water table-plant functional group effect in tandem, we
isolated microbial DNA from peat and plant fine root systems from a long-term experi-
ment composed of three water table treatments (raised, lowered, and control) in a rich fen
in interior Alaska, which was initiated in 2004. The in situ water table experiment had al-
ready caused plant community shifts over time, resulting in fewer sedges in the lowered
water table (drought) treatment (6) and less leaf area in general, specifically in relative
abundance of sedges, in the lowered water table treatment (35). This provided an oppor-
tunity to study the long-term consequences of climate-driven changes on microbial com-
munities in a field setting. We hypothesized that the bulk peat from each of the three
water table treatments would contain distinct microbial community compositions, influ-
enced by depth (0 to 10cm, 10 to 20 cm, 30 to 40 cm, and 60 to 70 cm). Specifically, the
oxidative nature of the lowered water table and roots capable of aerating the rhizosphere
were hypothesized to enrich biogeochemical cyclers of redox-active elements such as iron.
We additionally hypothesized that the microbial communities associated with the roots of
four dominant rich fen plants—sedges (Carex atherodes Spreng.), grasses (Calamagrostis
sp. Michx), horsetail (Equisetum fluviatile L.), and cinquefoil (Comarum palustre L.)—would
differ by plant functional group and long-term water table manipulation.

RESULTS
Community response to water table treatment, plant functional group, and

depth. The microbial community structure for bulk peat and plant functional group dif-
fered by water table treatment, depth, and plant functional group (Tables 1 and 2, Fig. 1).
Diversity was largely influenced by depth (see Table S1 in the supplemental material).
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Both the prokaryote and fungal community compositions in the bulk peat were
affected by water table treatment and depth, but not their interaction (Table 1). The
compositions of plant functional group root prokaryote and fungal communities varied
by plant functional group and water table treatment. However, there was no plant
functional group � water table treatment interaction in the prokaryote community,
whereas fungal composition did exhibit an interaction (Table 1). The greatest numbers
of significantly different operational taxonomic units (OTUs) between treatments were
found at the 10- to 20-cm depth between water table treatments and between bulk
rooting zone peat (0- to 10-cm and 10- to 20-cm depth), cinquefoil, and the other plant
functional groups (P, 0.01, differential abundance) (Tables S2a and S2c).

Community change included a decrease of the Proteobacteria and an increase in the
Chloroflexi relative abundances with depth. Many Betaproteobacteria taxa had greater rel-
ative abundances in the raised water table treatment, including Nitrosomonadaceae,

TABLE 1 PERMANOVA results of community composition responses to water table
treatment, depth, and plant functional group (roots) on prokaryote and fungal communitiesa

F (df) and P

Model WT Depth WT× depth Core (WT)
Prokaryote bulk peat 2.96 (2, 9.17),

0.001
26.89 (3, 26),
0.001

1.31 (6, 26),
0.138

0.72 (9, 26),
0.943

Fungi bulk peat 1.60 (2, 9.9),
0.025

3.27 (3, 14),
<0.001

0.99 (6, 14),
0.500

1.15 (9, 14),
0.192

Prokaryote roots 1.80 (2, 23),
0.031

6.12 (3, 23),
<0.001

1.19 (6, 23),
0.210

Fungi roots 2.50 (2, 23),
<0.001

5.45 (3, 23),
<0.001

1.96 (6, 23),
<0.001

aWT, water table treatment; roots, plant functional group roots; core, random effect of core replicates;
P, probability; df, degrees of freedom (between-group value, within-group value); F, F-statistic. Boldface
indicates significant differences.

TABLE 2 Pairwise community composition (PERMANOVA) results for 16S and ITS across
water table treatments and plant functional groupsa

Pair tested

Community composition

16S ITS

t P df t P df
Bulk peat - water table treatment
Control - lowered 1.62 0.02 6.14 0.99 0.46 6
Control - raised 2.03 0.03 6 1.20 0.03 7.48
Lowered - raised 1.42 0.05 6.22 1.37 0.05 7.94
Bulk peat - depth
0–10 cm to 10–20 cm 3.48 <0.01 8 1.07 0.38 3
0–10 cm to 30–40 cm 3.84 <0.01 8 1.97 0.05 3
0–10 cm to 60–70 cm 6.62 <0.01 8 1.90 0.06 3
10–20 cm to 30–40 cm 3.76 <0.01 9 1.17 0.35 2
10–20 cm to 60–70 cm 8.39 <0.01 9 2.14 0.02 4
30–40 cm to 60–70 cm 4.78 <0.01 9 Insufficient data

Root communities - water table treatment
Control - lowered 1.57 0.03 15 1.47 <0.01 15
Control - raised 1.28 0.08 16 1.61 <0.01 16
Lowered - raised 1.25 0.15 15 1.63 <0.01 15

Root communities - plant functional group
Grass - sedge 2.18 <0.01 11 1.15 0.02 11
Grass - horsetail 2.19 <0.01 12 2.12 <0.01 12
Grass - cinquefoil 2.50 <0.01 12 2.46 <0.01 12
Sedge - horsetail 2.09 <0.01 11 2.54 <0.01 11
Sedge - cinquefoil 2.59 <0.01 11 2.77 <0.01 11
Horsetail - cinquefoil 2.81 <0.01 12 2.55 <0.01 12

at, Student’s t test value; P, probability; df, degrees of freedom. Boldface indicates significant results.
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Comamonadaceae, Methylophilaceae, Neisseriales, Rhodocyclales, and Uliginosibacterium.
(Fig. 2, Table S3). Fungal communities in the bulk peat showed fewer differences with
depth than prokaryotes but tended to be most affected by the raised treatment relative
to the other two treatments (Table 2). Pairwise analyses show that fungal community

FIG 1 Canonical analysis of principal coordinates (CAP) using Bray-Curtis dissimilarity. (a to f) Ordinations are constrained by the interaction of
water table treatment and either depth (a and d) or plant functional group (b and e) and together (c and f) in prokaryote and fungal communities.
We acknowledge an arch effect (98) in the prokaryote bulk peat ordinations driven by depth and have left it as is for visualization only.
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composition was the most distinct between the 10- to 20-cm and the 60- to 70-cm
depths. Between these depths, the main differences included the increase in relative
abundance of Thelebolales with depth as the Helotiales decreased (Fig. 2). Of the fungi,
five taxa were significantly different at the 0- to 10-cm depth between the lowered and
raised water table treatments (P, 0.01, differential abundance) (Table S2c). These taxa
included the order Polyporales of the Basidiomycota, containing saprotrophs able to

FIG 2 Top summed OTUs of like taxonomic groups that comprise at least 1% (prokaryotes) or 2% (fungi) relative abundance in one or more
experimental treatments. This arbitrary cutoff accounts for the top 19 to 24% of prokaryote reads and the top 81 to 96% of fungal reads per
bulk peat treatment category and the top 34 to 39% and 81 to 91% of prokaryote and fungal root sample reads, respectively. Relative
abundances correspond to the most specific taxa to which they were classified. For example, if several OTUs were identified to order but not
finer resolution (family, genus), these were grouped in one line/dot labeled with that order (Helotiales, for example). That line/dot does not
include those OTUs that are of the same order but identified to a finer resolution (OTUs of the genus Acephala of the order Helotiales, for
example, are included on a different line). If an OTU was identified to the genus, everything of that genus appears on the same line/dot but
is not included in the line mapped only to the corresponding order. *, phyla names unable to fit in the figure: T, Tenericutes; VM,
Verrucomicrobia; EA, Euryarchaeota.
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FIG 2 (Continued)
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degrade lignocellulosic organic matter (white rot fungi), which was enriched in the low-
ered water table treatment compared with the raised treatment. A similar pattern was
seen in other white rot fungi, particularly the genus Hypholoma.

Several taxa of key biogeochemical and functional importance, many associated with iron
or methane cycling, appeared to have an affinity for specific plant functional groups. The bac-
terial genera Geobacter (organic compound oxidizing/iron reducing) andMethylomonas (meth-
anotrophy) and the family Gallionellaceae (iron oxidizing, organic compound cycling) had
greater relative abundance in the rhizosphere communities of horsetail, sedge, and grass roots
than in cinquefoil roots or bulk peat. The iron-reducing genus Albidiferax was more abundant
in horsetail, cinquefoil, and sedge roots than in grass roots and bulk peat. Of these, Geobacter
presence correlated with the relative abundance of rhizosphere-dwelling methanogens in the
root samples but not in the bulk peat (Fig. 3).

Hydrogenotrophic methanogen taxa dominated over acetrophic methanogens in
the fen. One of two main methanogenic genera, Methanobacterium, was found around
the roots of sedge, grass, and horsetail but not cinquefoil. Cinquefoil roots had a
smaller relative abundance of the genus Methanobacterium than even the deeper-root-
ing-zone bulk peat (10 to 20 cm, P = 0.01; 0 to 10 cm, P = 0.42). The absolute abundance
of the class Methanobacteria was greatest at the 10- to 20-cm depth interval (average of
3766 91 reads at 10 to 20 cm versus 556 37 reads at 60 to 70 cm, control water table
treatment). The other most abundant methanogenic taxon, the order Methanomicrobiales
(Rice Cluster II), had a higher relative abundance, and absolute abundance of its class
Methanomicrobia, at the 60- to 70-cm depth (Fig. 2 and Fig. 4) (1966 95 reads at 10 to
20 cm versus 8646 123 reads at the 60- to 70-cm interval, control water table treatment).
The greatest average relative abundance of methanogens was found in the raised water
table treatment at 10 to 20cm (Fig. 5).

Methanotroph-containing generaMethylosinus,Methylomonas, Roseiarcus (all Alphaproteo-
bacteria) (36, 37), and “Candidatus Methylacidiphilum” (Verrucomicrobia) (38) were found.
Methylomonaswas enriched in sedge, grass, and horsetail roots (P, 0.01) (Table S3).

Dominant taxa in a boreal rich fen. The top 10 prokaryote phyla in the bulk peat
were Acidobacteria, Actinobacteria, Aminicinantes, Bacteroidetes, Chloroflexi, Euryarchaeota,
Ignavibacteriae, Proteobacteria, and Verrucomicrobia (Fig. S1). The fungal samples in general

FIG 3 Cooccurrence between relative abundances of methanogens and family Geobacteraceae in the rhizosphere versus the lower
rooting zone (rhizosphere) bulk peat (10- to 20-cm depth).
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were dominated by the Ascomycota, specifically order Helotiales. Other dominant orders
included Thelebolales, Pleosporales, Agaricales, and Tremellales (Fig. 2, Fig. S2).

The top 10 prokaryote phyla in the plant functional group rhizospheres were
Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Euryarchaeota, Planctomycetes,
Proteobacteria, Tenericutes, and Verrucomicrobia (Fig. S1, Fig. 2). The rhizosphere fungal
samples, as in the bulk peat, were dominated by the Ascomycota order Helotiales.
Other dominant orders included Thelebolales, Agaricales, Tremellales, and Cantharellales (in
the rhizosphere of cinquefoil) (Fig. S2). Particularly abundant in the root samples were the
bacterial genera Bradyrhizobium of the Alphaproteobacteria and Geobacter of the
Deltaproteobacteria, together often making up .10% of the total fine root reads.
Tenericutes, which was classified as “Candidatus phytoplasma,” or Brinjal little leaf phyto-
plasma—a possible bacterial pathogen—dominated several of the cinquefoil samples. The
genus Acephala and species Pezoloma ciliifera were particularly abundant in the root sam-
ples in general. Possible fungal pathogens/saprobes Filosporella exilis, family Tremellaceae,
and family Ceratobasidiaceae (39) were also enriched in cinquefoil roots. In the lab, attempts
were made to sterilize the root surface on several specimens to distinguish microorganisms
(specifically fungi) living inside the roots from those associated with the root surface. The
one successfully sequenced surface-sterilized grass root sample was dominated by Acephala
and Mollisia spp., together accounting for 61% of reads. Arbuscular mycorrhizal fungi (AMF),
mainly associated with the grass and cinquefoil roots, were dominated by Archaeosporales
of the phylum Glomeromycota. Reads of the AMF genus Glomus (40) were also present in
cinquefoil roots. AMF were unaffected by water table treatment in both the cinquefoil and
grass roots.

DISCUSSION

This study demonstrated that water table treatment and plant functional groups
structure the microbial community in a subarctic rich fen. Additionally, the results

FIG 4 Methanogen community composition by family in bulk peat by depth and the root-associated or rhizosphere community (control water table
treatment).
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provided insights into the community composition and microbial interactions related
to carbon cycling in this ecosystem.

The effects of the water table treatments are most evident in the lower rooting
zone (10- to 20-cm interval) of the bulk peat. This zone is likely most directly affected
by hydrologic shifts, as has been suggested by others (41) and is represented in an
overview with associated plant functional groups and major microbial community
components of interest (Fig. 6). Here, there is an apparent relationship between plant
functional group rhizospheres, bacterial communities associated with both iron cycling
and methanogenesis, and possible fungal endophytes—all of which appear to react to
water table changes.

Rhizosphere iron reducers and methanogens appear to be occupying similar eco-
logical niches around the plant roots in this fen (Fig. 3). The microorganisms likely asso-
ciated with iron cycling made up anywhere from roughly 1 to 20% of the amplicons
from plant functional group roots, compared with 2% or less of the reads associated
with bulk peat. The study fen is iron rich, supporting iron-mediated biogeochemical
processes (42). Geobacter has been associated with the rhizospheres of rice plants and
other freshwater and marine plants, due to the consumption of root exudates.
Aerenchymatous roots also provide an environment with fluctuating redox potential
via oxygen delivery to the rhizosphere, which is helpful for continual iron oxidation
and reduction by microorganisms (43, 44). The 10- to 20-cm zone also boasts the great-
est relative abundance of the methanogenic Methanobacteria, which were additionally
enriched around the roots of sedges, grasses, and horsetail. The greatest average rela-
tive abundance of all methanogens was found in the raised water table treatment at
10 to 20 cm, consistent with long-term methane (CH4) efflux data at this experimental
site, which showed the highest efflux rates from the raised water table treatment (45).

FIG 5 Relative abundances (%) of methanogens and methanotrophs in the water table treatments for
bulk peat (n= 4 peat cores). The box plot shows the 25th and 75th percentiles and 95% confidence
interval, with letters indicating pairwise differences (P, 0.05).
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FIG 6 Generalized summary of findings in the rooting zone and lower rhizosphere by relative abundance (functional groupings of the top 20 OTUs plus
taxa of statistical interest mentioned in Results). The top row represents the control, the middle row represents the lowered water table treatment, and

(Continued on next page)
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Stimulation of methanogenesis by root exudates, including those from sedges, is sub-
stantial in fens (46–48). It is possible that both methanogens and iron cycling organ-
isms cooccur in the niche environment associated with roots due to the specific condi-
tions there; it is unknown if these two groups interact with each other in this
environment. Previous research suggests that methanogens sometimes use Fe(III) as
an electron acceptor (49) but also demonstrates the ability to develop symbiotic rela-
tionships with iron reducers, using semiconductive iron to transfer electrons between
organisms (50–52). Direct interspecies electron transfer has recently been identified as
a syntrophic metabolism between Geobacter metallireducens and a species of
Methanobacterium (53), both families of which are enriched around roots in this experi-
ment (Fig. 3 and 4). Additionally, iron reducers have been documented to use CH4-
derived carbon in sub-Arctic Alaskan lakes (54). Further study would be needed to
explore if syntrophic or other complex relationships between iron cyclers and metha-
nogens, facilitated by the plant rhizosphere environment, occur in this iron-rich fen.

Interestingly, there were two distinct groups of archaeal methanogens, one “deep
peat” community (class Methanomicrobia), of greatest amplicon abundance at the 60- to
70-cm depth and one previously mentioned “rhizosphere” community (classMethanobacteria).
Both of these classes of archaea are among the dominant methanogens found across a
wide range of Alaskan wetlands (55). The stark difference in habitat preference could
allude to differences in obligate living conditions, metabolic pathways, or capability of or
preference for biological relationships. For example, syntrophic hydrogenotrophic meth-
anogenesis involving propionate reduction around roots occurs in rice paddies, demon-
strating that the rhizosphere provides energetically favorable opportunities for some
methanogens (34, 56).

Another partnership of possible importance in this rich fen is between fungal root
endophytes and graminoids (sedges and grasses), which both decline in relative abun-
dance with a lowered water table (6). Mollisia, Acephala, and Mortierella were signifi-
cantly enriched in the sedge, grass, and surface-sterilized grass root samples. Mollisia
has previously been reported to be associated with grass roots (57). All three of these
genera have also been documented to act as root endophytes (58–60). Some endo-
phytes have the ability to foster disease resistance for their hosts, including members
of the Mortierella (61). Furthermore, Acephala spp. isolated from peat—with 98% simi-
larity to one of the dominant OTUs in this study (including surface-sterilized root sam-
ples)—have been shown capable of Fenton chemistry/quinone redox cycling as a bio-
degradation tool. Fenton chemistry is a biochemical process which utilizes iron cycling
to ultimately create powerful oxidants and carbon dioxide (CO2) (62). Given the appa-
rent biological importance of iron cycling in this fen, there could hypothetically be
both chemical and biological resources (redox-active environment, high concentration
of iron, and bacteria actively transforming/cycling iron) available to support organisms
performing these biochemical pathways. Further research would be needed to under-
stand whether fungal endophytes performing Fenton chemistry/quinone redox cycling
are present. Understanding the effect of this pathway could significantly improve our
understanding of decomposition dynamics and net CO2 emissions at this rich fen.
Additional effects of water table treatment on fungal decomposition include enriched
lignin-degrading (white rot) fungi in the lowered water table treatment. A fungal-mediated
increase in the capacity for lignin oxidation could suggest additional pathways for carbon

FIG 6 Legend (Continued)
the bottom row represents the raised water table treatment, which is true to the spatial placement of the treatments. The plant representations from left
to right are as follows: sedges, horsetail, grasses, cinquefoil, and bulk peat (10 to 20 cm). Represented genera for iron associates are Geobacter
(Geobacteraceae), Albidiferax (Comamonadaceae), Sideroxydans (Gallionellaceae), Geothrix (Holophagaceae), and Ferribacterium (Rhodocyclaceae); for
methanogens are Methanobacterium; and for methanotrophs are Methylomonas, Methylosinus, Roseiarcus, and “Candidatus Methylacidiphilum.” Bacterial
disease, Brinjal little leaf phytoplasma (Tenericutes). Fungal functional groups (saprotroph, saprotroph-symbiotroph-pathotroph, likely endophyte) are
derived from literature mentioned in the text and assignments by FUNGuild. All binned relative abundance (rel. ab.) categories are true to each
replicate6 5% of the value (rel. ab. % · 0.05; n=3 for plant roots, n= 4 for peat cores) except for the bacterial disease category in cinquefoil, which either
occupied .70% of total reads (2 of 3 replicates in lowered water table treatment and 1 of 3 in raised water table treatment) or ,0.01%.
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loss with a lowered water table (63), though interactive effects with changes in vegetation
community would also have to be explored to verify this in the field (64, 65).

Finally, the microbial community around the marsh cinquefoil rhizosphere may be
inhospitable to certain bacterial and archaeal taxa—inferred from the low relative
abundances of certain taxa found there. This could be due to a lack of attractive root
exudates, a lack of aerenchyma or gas transport to the rhizosphere, a shallower rooting
zone, antagonistic biochemical outputs, or disease. This observation is supported by
previous work demonstrating slower decomposition rates in cinquefoil-only meso-
cosms in comparison to the same plant functional groups (grass, horsetail, sedge) (19).
Cinquefoil was, in this study, likely under pressure from bacterial and possibly fungal
disease, which could skew read relative abundance. Plant parasites and diseases in
northern latitudes are expected to intensify due to climate and associated landscape
change (66, 67); it could be possible that we observed a simulated (by long-term
experiment) or actual (climate change) response to a shifting environment (68).

Conclusion. Taken together, these findings suggest that the rhizosphere is argu-
ably the most important and dynamic biogeochemical zone in carbon and iron cycling,
which appear to be linked in this rich fen ecosystem. Hydrology and the water table do
play an important role, governing oxic versus anoxic environments in peatlands, but
also governing which species of plants live in an ecosystem (6). The number of OTUs
significantly affected by the water table treatments was greatest at the 10- to 20-cm
depth, which coincides with the deep rhizosphere. These organisms included the white
rot fungi and lignocellulose degraders, suggesting a higher rate of fungal decomposi-
tion in the lowered water table treatment. Conversely, fungal endophytes were associ-
ated with grass and sedge roots and were enriched in the raised water table treatment.
Iron-cycling bacteria and methanogens of the Methanobacteria were enriched around
the roots of horsetail, sedges, and grasses. These taxa may gain greater biogeochemi-
cal influence, as projected higher precipitation rates could lead to an increased abun-
dance of sedges and grasses in boreal fens (see also reference 69). A distinct, deep
peat-dwelling methanogen population, largely of the Methanomicrobia, was most
enriched at the 60- to 70-cm peat depth. Future research should examine (i) specific
rhizosphere interactions of iron reducers and methanogens in iron-rich fens and (ii) in-
depth interactions of root endophytes with iron and carbon cycling, with a focus on
greenhouse gas production.

MATERIALS ANDMETHODS
Field site. The Alaska Peatland Experiment (APEX) rich fen (pH 5.6 to 5.9) is located southwest of

Fairbanks, Alaska, in the floodplain of the Tanana River. APEX is a long-term wetland monitoring and research
project examining how climate change will affect carbon cycling via water table and plant community shifts
(45). As such, experimental water table manipulation treatments (lowered, raised, and control) have been in
place since the initiation of the project in 2005 and have been maintained every year since, except for years in
which the fen has flooded. The fen is a dynamic ecosystem, experiencing years in which the water table
remains below the surface of the peat and years of heavy flooding, with the water table persisting up to a me-
ter above the peat surface. Since the initiation of the project in 2005, the fen has experienced heavy flooding
during 5 seasons (2008, 2014, post-July 2016, 2017, and 2018) (68). During the time of sample collection (June
2016), the experimental water table treatments had been maintained for an entire growing season the year
prior (2015) and the first half of the growing season of 2016. For context, the order of the water table treat-
ments in space is control, lowered, and raised, separated by approximately 50 m in between each. Therefore,
some of the differences in the results (i.e., differences between control and raised) may be influenced more by
spatial location/distance than by water table treatment if little variation is seen between the lowered versus
raised treatments, which are located next to each other. The site is rich in calcium (;14mg/liter pore water)
(70) and iron (Fe), concentrations of which are dominated by organically bound Fe (2,700 to 6,200mg/kg peat)
(42). Previous work has described in detail changes in soil properties (42) and vegetation (6, 35) and their result-
ant effects on biogeochemical processes and trace gas effluxes in response to the water table treatment effects
over time (45, 70–72). Dominant plant species include Carex atherodes Spreng. (a sedge), Calamagrostis sp.
Michx (a grass), Equisetum fluviatile L. (a horsetail), and Comarum palustre L. (marsh cinquefoil) (6) and were tar-
gets of the plant functional group analysis.

Peat core collection. In June of 2016, four peat cores were taken from each of the three water table
treatment plots using a sharpened 6-cm-diameter stainless steel corer fitted with an adapter to a power
drill (73). In the field, cores were placed on a fresh sheet of aluminum foil for further processing. Each
core was subsampled at four depth intervals—1 to 10 cm, 10 to 20 cm, 30 to 40 cm, and 60 to 70 cm.
Nitrile gloves were replaced with fresh gloves between cores, and the distinct depth segments were
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only touched using the inside of a prelabeled Whirl-Pak bag. Samples were immediately transferred to a
cooler and stored on ice until transportation to the lab on the same day. All samples were immediately
frozen at 220°C and shipped frozen to the Northern Research Station in Houghton, MI, where they were
stored at220°C until laboratory processing.

Fine root collection. To test for differences among plant functional groups, three replicates of each
dominant plant species (horsetail, sedge, cinquefoil, and grass; see above) were collected from each of
the three water table treatment plots. To avoid disturbance of the long-term experimental plots, plants
were collected outside the main long-term study area, where the cores were taken, but still in the area
influenced by the water table treatments. Collection was performed as follows: a 10-cmby 10-cm square
was cut around the desired plant to a depth of 20 cm. The resulting volume of peat was removed from
the wetland with gloved hands, and the peat was removed as best as possible from the roots. No rinsing
was performed in the field. The above-ground portion of the plant was severed, and the remaining root
system was placed in a Whirl-Pak bag and then in a cooler for transport back to the lab. Roots were refri-
gerated and then shipped on ice to the Northern Research Station in Houghton, MI, where they were
stored at 220°C until laboratory processing. In the lab, each frozen root sample was removed from the
freezer and placed between freezer packs in an insulated box. Using flame-sterilized scissors and gloved
hands, sections of the fine root system were snipped from the root mass and placed immediately in 95%
ethanol in a petri dish. Fine roots were manually cleaned of peat using a dissecting microscope and
flame-sterilized forceps and sorted into a second “clean roots” petri dish with 95% ethanol. Only fine
roots that had been living at the time of collection were selected for further processing, based on color
and turgor.

Molecular methods for sampling bacteria, archaea, and fungi. (i) Peat cores. Approximately
10ml of peat from a sample was placed in a 50-ml tube, followed by 20 3.2-mm chrome-steel beads,
and pulverized with a modified Mini-BeadBeater-96 (BioSpec Products, Bartlesville, OK, USA) for 2 min.
DNA was then extracted from a 0.5-g subsample of the pulverized peat using a PowerSoil DNA (MoBio
Laboratories, Inc., Carlsbad, CA, USA) isolation kit following the manufacturer’s instructions, with the
inclusion of a 30-min incubation at 65°C following the addition of the C1 lysis buffer and 10 min of vor-
texing. DNA was cleaned with a MoBio PowerClean Pro DNA cleanup kit and quantified with a Qubit flu-
orometer (Invitrogen, Life Technologies, Carlsbad, CA, USA). DNA was then subjected to a test PCR to
ensure that it could be amplified, and products from the PCR were examined on an agarose gel.

(ii) Fine roots. Depending on the species and size of the root system, three to nine 2- to 3-cm
lengths of fine root from different parts of the fine root system were isolated into 2-ml centrifuge tubes
with 0.5ml 95% ethanol. An additional small subset of sedge and grass roots was surface sterilized using
30% H2O2 for 1 min and then rinsed thrice with Nanopure autoclaved water and transferred to 0.5ml
95% ethanol.

Ethanol was evaporated from the samples using a CentriVap and then immediately freeze-dried for
72 h. After drying, 10 3.2-mm chrome-steel beads (BioSpec Products, Bartlesville, OK, USA) were added
to each tube, and samples were subjected to bead beating for 45 s. DNA was extracted and purified
from the pulverized roots using the Qiagen DNeasy plant minikit and MoBio PowerClean DNA cleanup
kits, respectively, following the manufacturer’s protocol. The following methods were the same as for
those of the peat cores, described above.

(iii) Sequencing. Community amplicon sequencing was conducted at the U.S. Department of
Energy Joint Genome Institute (JGI, Walnut Creek, CA, USA). Sample and library prep were performed
according to the methods of Caporaso et al. (99), Tremblay et al. (74), Coleman-Derr (75), and Lamit et al.
(29). The fungal internal transcribed spacer 2 (ITS2) region was targeted using the forward primer fITS9
(76) and the reverse primer ITS4 (77), and the V4 region of the prokaryote (bacteria and archaea) 16S
DNA gene was targeted using the forward primer 515f and reverse primer 806r (78). A peptide nucleic
acid (PNA) clamp was used to exclude plastids and mitochondria in the root samples (79). Primers were
fitted with Illumina sequencing adaptors, and the reverse primer contained an 11-bp index unique to
each sample. Samples were pooled into equimolar aliquots and sequenced on an Illumina MiSeq plat-
form (Illumina, Inc., San Diego, CA) using 2� 300-bp chemistry. Data are available through the JGI ge-
nome portal (project IDs 1141768 and 1127271, http://genome.jgi.doe.gov/).

Bioinformatic processing. Bioinformatic processing of the resulting microbial sequence data was
conducted with the JGI BBtools suite and the Quantitative Insights into Microbial Ecology pipeline
(QIIME1) (80). BBMap 37.58 (https://sourceforge.net/projects/bbmap/) was used to perform adapter trim-
ming and to filter PhiX 174 from raw interleaved fastq files using bbduk.sh. Primers were trimmed using
Cutadapt 1.14 (81). Primer-trimmed sequences were merged using BBMerge (bbduk.sh, minimum
overlap = 30 bp, max error rate 0.3). Merged sequences were quality-filtered in QIIME 1.9.1 with
VSEARCH 2.4.2 using a minimum bp length of 100, maximum expected errors of 0.5, and maximum
number of Ns (i.e., ambiguous bases) of 0. After barcode extraction, demultiplexing was completed with
a quality parameter set, so there was no filtering at this step.

V4 region of 16S rRNA genes (bacteria and archaea). Reference-based chimera detection was
completed with USEARCH61 (82) trained to the SILVA 128 (83) database at 97% sequence similarity.
Open reference OTU picking was performed using the UCLUST (82) clustering tool at 97% sequence sim-
ilarity. Representative sequences were assigned taxonomy with the Ribosomal Database Project (RDP)
Classifier 2.2 (84) with confidence set at 0.8 (85) trained against the SILVA 128 QIIME release reference
data set. Mitochondria, chloroplasts, unclassified sequences, and underrepresented sequences (,0.005%
across the entire data set) were filtered from the final OTU table. The final OTU table was rarefied to 25,037
sequences per sample, the size of the smallest sample, using the phyloseq package in R 3.5.1 (86), where the

The Rhizosphere Responds Applied and Environmental Microbiology

June 2021 Volume 87 Issue 12 e00241-21 aem.asm.org 13

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/a
em

 o
n 

04
 A

ug
us

t 2
02

1 
by

 1
28

.1
38

.6
5.

87
.

http://genome.jgi.doe.gov/
https://sourceforge.net/projects/bbmap/
https://aem.asm.org


rest of the analyses were completed. Functional groups for prokaryotes were assigned to the most abundant
taxa via literature review.

ITS2 (fungi). The ITS region of the sequences was extracted using ITSx 1.1 (87). Additional nonfungal
sequences were identified using a closed-reference OTU picking method at 100% similarity against a
hand-curated NCBI data set of nonfungal ITS2 adapted (script and data set available at https://github
.com/gzahn/Format_NCBI_QIIME) and filtered from the data set. OTU clustering was completed using an
open reference approach (88) using UCLUST with 97% sequence similarity (89). Taxonomy was assigned using
the RDP Classifier trained with the UNITE 7.2 species hypothesis dynamic clustering data set (released 1
December 2017). Any additional OTUs classified as nonfungal and unidentified were filtered from the data set,
and sequences classified only to a fungal phylum were put through BLASTn searches in the NCBI nucleotide
database. If tested OTUs were clearly of fungal origin with an E valueof #1� 10220, they were retained. Low-
occurrence OTUs (,10 reads) were filtered from the data set, and tentative functional group assignment was
completed using FUNGuild (90). The final OTU table was rarefied to 4,098 sequences per sample, the size of
the smallest sample, in R using the phyloseq 1.24.2 package (91). Percentage similarities between sequences in
this study and published or documented species hypotheses of interest to further elucidate functionality were
aligned and compared with the MUSCLE (92) plugin in UGENE 1.32 (93).

Statistical analysis. Statistical analysis was completed in R statistical software (86) and PRIMER (94).
Statistical significance for all tests was accepted at P, 0.05. Reports and comparisons regarding overall commu-
nity abundance are reported as relative abundance values. The DESeq 1.34.1 package (95) was used to calculate
differential abundances of OTUs between treatments, with threshold cutoffs of log2 fold change of .2 and
adjusted P, 0.01. A log2 fold change of 1 indicates that an OTU is two times as abundant in one treatment com-
pared to another. For example, if treatment A contains 50 reads of OTU A and treatment B contains 25 reads, the
log2 fold change would be log2 (50/25)=1, i.e., one 2-fold change. Conversely, if treatment A contained 10 reads
and treatment B contained 20, the log2 fold change would be log2 (10/20) = 21. One-way analysis of variance
(aov function) was used to compare specific microbial taxa between treatments at specific depths, using Tukey’s
honest significance difference post hoc test. Canonical analysis of principal coordinates (CAP) was performed with
the Bray-Curtis dissimilarity metric in phyloseq to visualize differences in community structure and composition.
For bulk peat, PERMANOVA models included water table treatment, peat depth, and their two-way interaction as
fixed effects, with core as a random effect. For rhizosphere communities, PERMANOVA included water table treat-
ment, plant species, and their two-way interaction. These more complex PERMANOVA analyses were run with
Bray-Curtis dissimilarity in Primer 6.1.15 with PERMANOVA1 1.0.5 (PRIMER-E, Plymouth, UK) (96), using type III
sums of squares and P values obtained by permuting reduced models lacking the specific factor being tested
(96). Between-taxa correlations and P values at the same phylogenetic level (i.e., genus, class, family) were
obtained from a correlation matrix created using the package Hmisc 4.2-0 (97).
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