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Abstract: In this paper, subtidal responses of Barataria Bay to an atmospheric cold front in 2014 and
Hurricane Barry of 2019 are studied. The cold fronts had shorter influencing periods (1 to 3 days),
while Hurricane Barry had a much longer influencing period (about 1 week). Wind direction usually
changes from southern quadrants to northern quadrants before and after a cold front’s passage. For a
hurricane making its landfall at the norther Gulf of Mexico coast, wind variation is dependent on
the location relative to the location of landfall. Consequently, water level usually reaches a trough
after the maximum cold front wind usually; while after the maximum wind during a hurricane,
water level mostly has a surge, especially on the right-hand side of the hurricane. Water level variation
induced by Hurricane Barry is about 3 times of that induced by a cold front event. Water volume
flux also shows differences under these two weather types: the volume transport during Hurricane
Barry was 4 times of that during a cold front. On the other hand, cold front events are much more
frequent (30–40 times a year), and they lead to more frequent exchange between Barataria Bay and
the coastal ocean.

Keywords: cold front; Hurricane Barry; numerical simulation; subtidal hydrodynamics; multi-inlet;
volume flux

1. Introduction

The coast of Louisiana in the northern Gulf of Mexico (NGOM) is characterized by semi-enclosed
bays with exchange flows of water through multiple inlets, such as Lake Pontchartrain, Calcasieu Lake,
Vermillion Bay, and Barataria Bay. They have limited connections with the coastal ocean except
through narrow inlets. These are, however, different from inland freshwater lakes or general coastal
plain estuaries connected to the coastal ocean through multiple inlets. The NGOM has several major
environmental processes that are determined by hydrodynamics, particularly those related to the
exchange of water and sediment between estuaries and shelf water, e.g., the significant land loss
around lower Mississippi River basin associated with processes that cause erosion and sediment
transport [1–6]. Along the NGOM coast, the most regular hydrodynamic motions are the relatively
weak tides, which are mainly diurnal oscillations with a maximum tidal range of about 0.6 m [7,8].
Because of weak tides, the effect of weather [9–14] becomes more prominent in moving the sediment
through inundation and erosion [15]. As a result, the less predictable weather-induced bay oscillations
may cause more significant flood and drain of the micro-tidal system [16–20]. Synoptic weather
systems and hurricanes can produce responses in these water bodies affecting the water exchange,
which is important to the ecosystem [21–23]. However, there is a lack of in-depth analysis of weather
conditions characterizing different weather patterns.
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Among the weather influences, hurricane impact can be most dramatic. Because of the low
gradient of land and relatively shallow and broad shelf along NGOM, hurricanes can cause significant
damages to the micro-tidal coast zone [24–28]. For instance, severe storm surge caused damages in 2005
by Hurricanes Katrina and Rita [29–33], in 2008 by Hurricanes Gustav and Ike [34–37], and in 2017 by
Hurricanes Harvey and Irma [38]. Compared with hurricanes, cold front-associated winds can be more
frequent, and have a more accumulative effect in driving the hydrodynamics. The length of influence
of a cold front can reach ~2000–3000 km, much larger [39] than the region of strong wind within a
typical hurricane. Previous studies have covered various aspects of weather impact to coastal ocean.
For example, Keen [40] used numerical models to predict the waves and currents under cold front
passage over Mississippi bight. Keen and Stavn [41] later used observations and numerical models
with interaction of atmospheric forcing and hydrodynamics to investigate the optical environment at
Santa Rosa Island, Florida during two cold front passages. Water exchange and circulations in the bays
and estuaries under meso-scale weather systems like winter storms and cold fronts can be related not
only to the circulations in the coastal regions but also to the sediment transport [42] and ecosystems.
Sediment transport and distributions on the shallow shelf and in the estuaries of Gulf of Mexico under
the influence of cold front passages in winter time are investigated by, e.g., Perez et al. [43] and Kineke
et al. [44]. Siadatmousavi et al. [45] studied the wave energy during a cold front and skill assessed a
phase-averaged spectral wave model.

There have been many studies on subtidal flow in estuaries [46–48]. In these studies, the wind
effects are often discussed as a time series forcing without examining the spatial structure of the weather
systems. The subtidal energy in the estuarine circulations caused by cold fronts may be comparable
if not larger than that of tides in the area [49]. A recent study [50] investigated the weather-induced
exchange flows through multiple inlets of the Barataria Bay in a few months period in 2013, 2014,
and 2015 with 51 atmospheric cold fronts passing the Louisiana coast. These events are apparently
very common: an analysis [51] covering a period of 40 years identified more than 1600 atmospheric
frontal events, with an average of ~41.2 ± 4.7 per year excluding the months between May and August
for much weaker activities of this kind. However, no quantitative comparisons are made between the
hydrodynamic responses induced by cold fronts and that from hurricanes. Therefore, it is of interest
for a comparison between the hydrodynamic responses to these two different weather systems with
different scales.

This work will use a calibrated three-dimensional finite volume community model (FVCOM) to
simulate water level and flows in Barataria Bay under multi-scale weather systems including cold front
and hurricane events. The goals are to (1) compare the hydrodynamic responses to different weather
systems (cold front and hurricane), (2) examine water exchange between Barataria Bay and coastal
ocean through multiple inlets under the different weather systems, and (3) assess the quasi-steady
state balance under different weather systems.

2. Study Site and Data

Barataria Bay (Figure 1) is a shallow estuary in southeast Louisiana and south of the City of
New Orleans. It is bounded by several barrier islands and irregular-shaped wetlands with multiple
tidal inlets connecting to the open ocean. The main axis from north to south and from east to west is
about 30–40 km. The tidal inlets include Barataria Pass with a width of ~800 m and a maximum depth
of 20 m at the mouth, Caminada Pass with ~800 m width, 9 m depth, and a 90 degree turn in channel
orientation near the mouth, and the 15 m deep Pass Abel with a width of about 1.9 km. Freshwater is
mainly from the manmade Davis Pond Diversion facility with a capacity of about 250 m3/s of flux.
Water inside the Barataria Bay is very shallow (average depth of 2 m). Erosions in the bay appear to be
significant, e.g., there is a 50 m hole [50] northwest of the Barataria Pass, which is the deepest point
among all Louisiana lagoons, bays, and estuaries, revealing the significant contribution of non-tidal
forcing to the micro-tidal system.
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Figure 1. Study site (b) and model grid (a) for FVCOM simulation. Star represents the location of wind
observations (NDBC station GISL1); red dot represents the location of ADCP deployment for water
level and velocity observations.

Observational data of water level and velocity were obtained from 5 Sontek Argonaut DP SL
500-KHz horizontal acoustic Doppler current profilers (ADCPs, manufacture: SonTek/Xylem Inc.,
San Diego, USA). Information about the measurements can be found in Li et al. [50]. Wind data are
from the National Ocean Service station at Grand Isle (29.265◦ N, 89.958◦ W, Figure 1). The atmospheric
forcing for the upper boundary of the hydrodynamic numerical model was obtained from the global
Climate Forecast System Reanalysis (CFSR) data (https://climatedataguide.ucar.edu/climate-data/

climate-forecast-system-reanalysis-cfsr).

3. Model Setup and Validation

3.1. Model Description

A finite volume community ocean model (FVCOM) was applied in this study. FVCOM is widely
used for investigating coastal ocean hydrodynamics with complicated topography [52]. The governing
equations are [52]:
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where x, y, z are the three axes in the east, north, and vertical directions, respectively; u, v, w are the x,
y, z velocities, respectively, ρ0 is the density; P is the total pressure of air and water; f is the Coriolis
parameter; g is the gravitational acceleration; Km is the vertical eddy diffusion coefficient, determined by
the Mellor and Yamada [53] level-2.5 (MY-2.5) turbulent closure scheme; Fw is the diffusion term of the
vertical momentum; and Fu, Fv are the diffusion terms for the horizontal momentums.
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The surface and bottom boundary conditions are:
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are the surface wind stress and bottom stress vectors, respectively. H is

the water depth and ζ is the surface elevation.
(
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wind at 10 m height, ρa is the air density (1.29 kg/m3), and Cd is the surface wind drag coefficient and
is calculated by the following equations:
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where k is the von Karman constant (0.4), z0 is the bottom roughness parameter, and zab is the height
above the bottom.

3.2. Model Setup

The model mesh covers the entire Gulf of Mexico, horizontally from 80.7◦W to 97.9◦W, and zonally
from 18.1◦ N to 30.7◦ N (Figure 1). There are two open boundaries. One is located in the Caribbean
Sea, connecting the east border of the Mexico and the west edge of Cuba. The other open boundary
is located at the North Atlantic Ocean with the north point in the edge of Florida and the south
point at the border of Cuba. The mesh contains 119,566 nodes and 214,297 elements. The finest
resolution is about 50 m. There are 40 sigma layers. The model is three-dimensional barotropic,
so salinity and temperature are not simulated nor discussed. The model is cold started with a time
step of 1 s. The output time interval is set to be 30 min. The time periods for cold fronts and
Hurricane Barry are from 20 December 2013 to 30 January 2014 and 20 June to 30 July 2019, respectively.
Open boundary is only forced by tides, a combination of 10 tidal constituents (M2, S2, N2, K2, K1, O1,
P1, Q1, MF, and MM). It is predicted by a tide model called TMD [54]. Wind stress and air pressure at
mean sea level forcing at surface are obtained from the global Climate Forecast System Reanalysis
(CFSR: https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr) data
with horizontal resolution of 0.5 degree by 0.5 degree.

3.3. Model Validation

The skill scores of FVCOM in simulating water elevation and along-channel velocity are 0.7
and 0.67 (Figure 2), which shows “excellent” performance based on Wu et al. [55]. The low-pass
filtered water elevation and velocity are also in line with the observed data, which are categorized as
“very good” with the skill scores of 0.51 and 0.60 (Figure 2). Discrepancies between the modeled and
observed low-pass filtered water levels and along channel velocities may be caused by the uncertainty
of bathymetry of these highly active tidal inlets. As mentioned earlier, tidal passes of Barataria bay are
severely eroded. The model bathymetry may therefore have errors, leading to larger uncertainties in

https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
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model results. Since our focus is on the weather-induced hydrodynamics, variables to be examined
below are all low-pass filtered with a cut off frequency of 0.6 cycles per day.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 5 of 13 
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for water level and along channel simulation are 0.7 and 0.67, which are categorized as “excellent”. 
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around 1800 UTC, 06 January 2014. As shown in Figure 3a,b, the cold front developed from a low-
pressure center (1003 hPa), which was located in Indiana. Southwesterly wind was dominating in our 
study site. As the front moved to the east, air pressure continued to drop to a minimum of 992 hPa. 
When the front was passing Barataria Bay, the southwesterly wind abruptly changed to northwesterly 
wind. After the cold front’s passage, wind was from the northern quadrants for about two days with a 
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passages [50]. 

Figure 2. Validation of water level and along-channel velocity using observation in January 2014 at
Caminada Pass, (a,c) are validations of water elevation and surface flow at Caminada Pass, (b,d) are
validations of low-pass filtered water elevation and along channel velocity at Caminada Pass. Skill score
for water level and along channel simulation are 0.7 and 0.67, which are categorized as “excellent”.

3.4. Atmospheric Background

Here, we examine two types of atmospheric systems with different scales and influence regions.
One is a cold front that entered the study area around 0000 UTC, 6 January 2014 and left the region
around 1800 UTC, 6 January 2014. As shown in Figure 3a,b, the cold front developed from a
low-pressure center (1003 hPa), which was located in Indiana. Southwesterly wind was dominating in
our study site. As the front moved to the east, air pressure continued to drop to a minimum of 992 hPa.
When the front was passing Barataria Bay, the southwesterly wind abruptly changed to northwesterly
wind. After the cold front’s passage, wind was from the northern quadrants for about two days with a
maximum magnitude of 13.5 m/s (Figure 4a). This cold front passage is a typical weather phenomenon
between late fall and the following spring ( mostly October to April). During each of the frontal
events, wind changes its direction from southern quadrants to northern quadrants when the cold front
passages [50].

The other type of weather system studied here is Hurricane Barry. Hurricane Barry was first
originated from a mesoscale convective vortex on 2 July 2019. It went into Gulf of Mexico on 10 July
and developed into a tropical depression, before being upgraded to Tropical Storm Barry. It made its
landfall on 13 July on Marsh Island, Louisiana, 190 km west of Barataria Bay as a Category 1 hurricane
with a minimum sea-level pressure of 993 hPa and a maximum wind speed of 33 m/s (Figure 3c,d).
The maximum wind speed measured at the Grand Isle station near Barataria Bay reached 14.5 m/s.
Before Barry’s landfall, northerly wind was dominating, and after the landfall of Barry, wind changed
its direction to southerly wind and persisted for at least 4 days. From Figure 4b, one can see that
Hurricane Barry had longer influencing period than the cold front mentioned above. Wind magnitude
was also larger than that during the cold front.



J. Mar. Sci. Eng. 2020, 8, 979 6 of 13
J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 6 of 13 

 
Figure 3. Weather maps during the cold front at 0000 UTC, 01/06 and 1800 UTC, 01/06, and during 
Hurricane Barry at 0600, 07/11 and 1800, 07/14. (a,b) are the weather maps before and after the cold front 
passage in January 2014, and (c,d) are weather maps before and after the landfall of Hurricane Barry. 
Blue lines are contours of air pressure. 

 
Figure 4. Wind vectors during cold front event in January 2014 and Hurricane Barry in July 2019. 
(max wind magnitude: 13.5 m/s and 14.5 m/s). 

Figure 3. Weather maps during the cold front at 0000 UTC, 01/06 and 1800 UTC, 01/06, and during
Hurricane Barry at 0600, 07/11 and 1800, 07/14. (a,b) are the weather maps before and after the cold
front passage in January 2014, and (c,d) are weather maps before and after the landfall of Hurricane
Barry. Blue lines are contours of air pressure.
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4. Results

4.1. Hydrodynamic Response

Low-pass filtered water level variations during cold front and hurricane are shown in Figure 5a,b,
respectively. Water level dropped about 15 cm after the cold front passage during northerly wind,
so that one can see an obvious trough at 1500 UTC on 6 January. This is because northerly wind after
the cold front passage continuously blew the water out of the bay, leading to the water level minimum.
As northerly wind weakened, water level begun to rise. On the other hand, when the water level was
under the influence of Hurricane Barry, it is found that there was a surge of 40 cm after the hurricane’s
landfall, when wind also reached the maximum of 14.5 m/s. The surge resulted from the southerly
wind after Barry’s landfall, which blew the water from the coastal ocean into the bay. Compared with
the trough induced by the cold front, the surge caused by Hurricane Barry is about 3 times larger in
terms of magnitude.
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Figure 5. Water level variation during different weather types. (a) a cold front event and (b) Hurricane Barry.

Figure 6 shows the surface (Figure 6a) and bottom (Figure 6b) flows at 1200 UTC on 5 January 2014
before cold front passage when southerly wind dominated (with maximum magnitude of about 3 m/s).
Flows inside the bay were in the wind’s direction, flowing from south to north. Shallower and surface
water had a larger magnitude of flows. Surface and bottom flows were unidirectional, while surface
flow had a larger magnitude. After the cold front’s passage (Figure 6c,d), when northerly wind
dominated (maximum magnitude of 13.5 m/s), flows inside the bay were also in the direction of the
wind, flowing from north to south. However, there existed a strong return flow in the middle of the
bay where it had a greater water depth, which is consistent with previous studies in many systems:
currents for shallower water tends to move in the direction of wind, whereas against the wind’s
direction for the region with a greater water depth (e.g., [49,56]). Again, surface and bottom flows
were mostly uniform, except that surface flow had a larger magnitude. This is because bottom flow is
decreased by bottom friction.

Figure 7 shows the surface (Figure 7a,c) and bottom (Figure 7b,d) flows prior (Figure 7a,b) and
after (Figure 7c,d) Hurricane Barry’s landfall. During Hurricane Barry, wind was rotating clockwise.
Before Hurricane Barry’s landfall, wind in the northern quadrant was dominating (with magnitude of
10 m/s). As a consequence, both surface and bottom currents were flowing in the direction of wind,
from north to south in the shallow water region. An apparent returning flow against the wind’s
direction occurred in the deeper water region. After the landfall of Hurricane Barry, southerly wind
dominated with the magnitude reaching 14.5 m/s. The surface and bottom flow in shallower water
were flowing in the direction of the wind, moving from south to north, while in the deeper water region,
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they were flowing against the direction of wind, moving from north to south. Similarly, surface and
bottom flows were mostly unidirectional, except that the surface flow had a larger magnitude.
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4.2. Water Volume Transport

To examine the water transport through multiple inlets, water volume fluxes are calculated using
the following equation [50]:

V(t)|Γ =

∫ ς

−H
(

L∫
0

Vn(x, y, z, t)|Γdξ)dz, (9)

where V is the water volume flux in cubic meters per second. Γ is the transect perpendicular to the
along-channel direction, H is the water depth, and ζ is the surface elevation. Vn(x,y,z,t) is the low-pass
filtered along-channel velocity in different water depths. A positive sign means water is transported
into Barataria Bay.

Figure 8 shows the volume flux through Caminada Pass, Barataria Pass, Pass Abel, and Quatre
Bayou. Positive value means water is flowing into the bay, while negative values means water is
flowing out of the bay. During the cold front event in January 2014, the results indicate that water
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volume flux through Barataria Pass was the largest. Before cold front passage at 0000 on 6 January,
water was flowing inside the bay through Caminada Pass and Quatre Bayou, while it was transported
out of the bay through Barataria Pass and Pass Abel, which is consistent with mode 2a in Li et al. [50]
under southerly wind. After the cold front’s passage, as wind changed its direction from the south
quadrants to north quadrants, volume flux through the four inlets began to decrease, then started to
flow into the bay. Interestingly, volume flux changed the sign at different time stages: volume flux
through Barataria Pass changed its sign first, followed by Pass Abel, Caminada Pass, and Quatre Bayou
at last, which means there was a period (from 2000 UTC on 6 January to 0000 UTC on 7 January) when
water was flowing out of the bay through Barataria Pass, while flowing inside of the bay through the
other three inlets. From 0000 UTC on 7 January, water was transported into the bay through both
Barataria Pass and Pass Abel, but it transported out of the bay through the other inlets, which is
consistent with mode 2b in Li et al. [50] under northerly wind.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 9 of 13 
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During Hurricane Barry, wind changed direction from the northern quadrants to southern
quadrants. Therefore, the volume flux changed its sign after Barry’s landfall on 13 July 2019, flowing into
the bay through Barataria Pass, Pass Abel, and Quatre Bayou at first, then flowing out of the bay
through these inlets afterwards. Note that Caminada Pass had the opposite condition: water was
flowing out of the bay and then into the bay after Barry’s landfall. This pattern is not included in
any mode in cold front-induced flows [50]. Obviously, the mode of hurricane-induced flows can be
different from that due to cold fronts. Before Barry’s landfall, Pass Abel had the largest inward flux
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under northerly wind, and after Barry’s landfall, Barataria Pass had the largest outward flux with a
magnitude reaching 2500 m3/s, which was about 4 times of that induced by the cold front.
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5. Conclusions

Cold fronts and hurricanes have different wind patterns, and temporal and spatial characteristics:
cold fronts usually have abrupt changes in wind direction (from southern quadrants to northern
quadrants) before and after the frontal passage, with several hours to 3 days in duration, and 2000–3000 km
length of front and a narrow width (less than 10 km) of the front. However, a hurricane has a radius of
maximum wind (30–50 km) larger than the width of the frontal zone, and with a longer impact period
of about a few days to a week, stronger maximum wind, and a rotating wind. Due to these differences,
a cold front is more likely to result in a trough in water level post front, while hurricane tends to
produce a more significant storm surge even severe inundation. The maximum of the variation in
water level caused by Hurricane Barry was about 3 times of that caused by a cold front. The ratio is
variable at different locations relative to the location of landfall.

Surface and bottom flows inside the Barataria bay have unidirectional movement except that
surface flow has a larger magnitude. Currents tend to flow in the direction of wind in the shallower
water region, but against the direction of wind in the deeper water region, resulting in a returning
flow in the middle of bay. Water is transported out of the bay after a cold front passage. However, it is
transported into the bay after Hurricane Barry’s landfall. Volume flux through four inlets of Barataria
Pass follows two EOF modes found by Li et al. [50] under a cold front event, in which water tends to
be transported out of (into) the bay through Barataria Pass and Pass Abel during southerly (northerly)
wind and into (out of) the bay through Caminada Pass and Quatre Bayou under southerly (northerly)
wind. However, the volume flux through the four inlets of Barataria Bay shows different pattern under
Hurricane Barry: water is flowing into (out of) the bay through Barataria Pass, Pass Abel, and Quatre
Bayou under northerly (southerly) wind. The flux is the opposite through Caminada Pass, which is
flowing out of (into) the bay during southerly (northerly) wind. The maximum water volume flux
induced by hurricane is about 4 times that induced by a cold front event, indicating that the influence
of four cold fronts is comparable with one hurricane event.
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