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We propose an Euler transformation that transforms a given d-dimensional cell complex

K for d = 2, 3 into a new d-complex K̂ in which every vertex is part of the same even

number of edges. Hence every vertex in the graph Ĝ that is the 1-skeleton of K̂ has an
even degree, which makes Ĝ Eulerian, i.e., it is guaranteed to contain an Eulerian tour.

Meshes whose edges admit Eulerian tours are crucial in coverage problems arising in

several applications including 3D printing and robotics.
For 2-complexes in R2 (d = 2) under mild assumptions (that no two adjacent edges

of a 2-cell in K are boundary edges), we show that the Euler transformed 2-complex K̂
has a geometric realization in R2, and that each vertex in its 1-skeleton has degree 4.

We bound the numbers of vertices, edges, and 2-cells in K̂ as small scalar multiples of

the corresponding numbers in K.
We prove corresponding results for 3-complexes in R3 under an additional assump-

tion that the degree of a vertex in each 3-cell containing it is 3. In this setting, every

vertex in Ĝ is shown to have a degree of 6.
We also present bounds on parameters measuring geometric quality (aspect ratios,

minimum edge length, and maximum angle of cells) of K̂ in terms of the corresponding

parameters of K for d = 2, 3. Finally, we illustrate a direct application of the proposed
Euler transformation in additive manufacturing.

Keywords: Eulerian tour; polyhedral complex; degree-constrained tessellation; coverage

problems; 3D printing.
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1. Introduction

An Eulerian circuit, or Eulerian tour, in a finite graph G = (V,E) is a closed walk

that traverses every edge in E exactly once. In other words, the walk starts and

ends at the same node while possibly visiting some nodes in V multiple times while

covering all edges. The classical result attributed to Euler1,2 states that G has an

Eulerian tour if and only if G is connected and every node in V has an even degree.

We are interested in Eulerian circuits in the context of coverage problems arising in

additive manufacturing (3D printing), robotics, and other areas. The domain to be

covered is usually modeled by a cell complex, i.e., a tessellation. Triangulations or

hexagonal meshes in 2D, and cubical meshes or tetrahedralizations in 3D are typical

examples. Complete coverage of the domain is ensured by traversing all edges (and

hence all vertices) in the mesh. Efficient traversal of all edges in a contiguous fashion

becomes critical in this context.

In additive manufacturing, we first print the outer “shell” or boundary of the 3D

object in each layer. We then cover the interior space by printing an infill lattice,3,4

which is typically a standard mesh where any two edges meet at most at a vertex. In

large scale additive manufacturing, printing most, if not all, edges of the infill lattice

in a contiguous manner is critical to decrease non-print motions of the printer-

head. The problem of coverage path planning in robotics seeks to find a path that

passes through all points while avoiding obstacles.5 Standard approaches for such

coverage problems employ graph-based algorithms.6 A robot is typically required

to cover all vertices and edges of the graph, while using the edges sequentially

without repetition.7 Traversing the edges along an Eulerian tour is required to

address these challenges. But the graph made of the vertices and edges in a cell

complex is not always guaranteed to contain an Eulerian tour. On the other hand,

any cell complex that guarantees the existence of an Eulerian tour covering its edges

would be expected to also offer reasonable bounds on the quality of elements, e.g.,

as measured by the aspect ratios of its cells.

1.1. Our contributions

We propose a method that transforms a given d-dimensional cell complex K (or d-

complex, in short) for d = 2, 3 into a new d-complex K̂ in which every vertex is part

of the same even number of edges. Hence every vertex in the graph Ĝ that is the

1-skeleton of K̂ has an even degree, which makes Ĝ Eulerian, i.e., it is guaranteed

to contain an Eulerian tour. We refer to this method as an Euler transformation

of a polyhedral mesh (or cell complex). We first describe the Euler transformation

of a d-complex for d = 2, 3 abstractly, i.e., without specifying details of a geometric

realization.

For 2-complexes in R2 (d = 2) under mild assumptions (that no two adjacent

edges of a 2-cell in K are boundary edges), we show that the Euler transformed 2-

complex K̂ has a geometric realization in R2, and that each vertex in its 1-skeleton

has degree 4. We bound the numbers of vertices, edges, and polygons in K̂ as small
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scalar multiples of the corresponding numbers in K. We prove corresponding results

for 3-complexes in R3 under an additional assumption that each vertex in K is

connected to three edges in a 3-cell that contains the vertex, i.e., the degree of

each vertex in the 1-skeleton of each 3-cell in K containing the vertex is 3. In this

setting, every vertex in Ĝ is shown to have a degree of 6. We show another nice

geometric property of the Euler transformed 3-complex: every edge in K̂ is shared

by exactly four polygons (i.e., faces). As a result, if we slice K̂ by a plane that cuts

across only edges but does not intersect any vertices in K̂, the resulting 2-complex

is guaranteed to be Euler, with each vertex having degree 4.

Next, we present bounds on parameters measuring geometric quality (aspect

ratios) of K̂ in terms of the corresponding parameters of K (for d = 2, 3). One can

control these quality measures by choosing user-defined offset parameters appropri-

ately. Finally, we illustrate a direct application of the proposed Euler transformation

in additive manufacturing. We present a complete algorithmic framework for contin-

uous toolpath planning in additive manufacturing using our Euler transformation

in a separate paper.8

We illustrate the Euler transformation for d = 2 in Fig. 1. Given a 2-dimensional

cell complex K tessellating a rectangular region in R2, the Euler transformation

produces the 2-complex K̂ tessellating the same region with every vertex having

degree 4.

1.2. Related work

In one of the earliest works on degree-constrained triangulations, Jansen9 proved

that it is NP-complete to decide whether a plane geometric graph can be

triangulated with degree at most 7. Hoffmann and Kriegel showed that a 2-

connected, bipartite, planar graph can be triangulated such that the resulting graph

is 3-colorable,10 implying all vertices have even degrees. Aichholzer et al. studied

Fig. 1. A 2-complex K in the plane (left) and its Euler transformation K̂ (right). Every vertex
in K̂ has degree 4.
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plane graphs with parity constraints on the vertices,11,12 and showed that we can

always find a plane tree, two-connected outerplanar graph, or a pointed pseudo-

triangulation that satisfies all but at most three parity constraints. For triangula-

tions, they showed that about 2/3 of the constraints can be satisfied. But in the

worst case, there is a linear number of constraints that cannot be fulfilled. Peláez

et al.13 improved the lower bound on the number of even degree vertices in a tri-

angulation to around 4/5 of the total number. Aichholzer et al.12 showed that it is

NP-complete to decide whether there exists a triangulation of a simple polygon with

polygonal holes that satisfies all parity constraints. Recently, Gewali and Gurung14

have proposed a heuristic algorithm for triangulating a planar annular region with

increased number of even degree vertices.

Alvarez15 studied parity-constrained triangulations with Steiner points. For a

given set of points P , Alvarez showed how to construct a set of Steiner points S

such that a triangulation of P ∪ S can be always constructed such that all vertices

in the triangulation are even (or odd). At the same time, one might have to choose

two of these Steiner points outside the convex hull of P . Further, this result does

not apply to input polygons with polygonal holes.

We consider polyhedral complexes, which are more general than simplicial

complexes, and are increasingly used in computational mathematics16–18 and in

robotics.5,19 At the same time, degree constrained polyhedral complexes have not

received much attention.

Comparisons of our Euler transformation to other subdivision schemes such

as Catmull–Clark20 and Doo-Sabin21 were presented in a separate paper.8 While

not related, Edelsbrunner’s work on deformable smooth surfaces22 indicated some

coincidental similarities to our work. In particular, all interior vertices of the mixed

cells graph shown in Figure 10 of this paper22 have degree 4, just as in the case of

our Fig. 1.

2. Notations, Definitions on Polyhedral Complexes

We present definitions that we use to specify properties of the input complex K

as well as the Euler transformed complex K̂. See standard books on algebraic

topology23,24 for details. For quick reference, we collect important notation used

throughout the paper in Table 1.

Definition 1 (Polyhedral complex). A polyhedral complex (also called poly-

topal complex) K is a collection of polyhedra (polytopes) in some Euclidean space Rd
such that every face of a polyhedron in K is also included in K, and the nonempty

intersection of any two polyhedra in K is a face of both. The polyhedra in K are

referred to as its cells. The dimension d of a polyhedral complex K is the largest

dimension of any cell in K. In this case, we refer to K as a d-complex.

We will work with finite polyhedral complexes, i.e., when the set of cells in K

is finite. While some of our definitions and results apply in arbitrary dimensions,
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Table 1. Notations used in the paper, and their explanations.

Notation Definition/Interpretation

K, K̂ Input complex and its transformed complex

|K| Underlying space of complex K

CO, ĈO Single d-cell defining the outside, before and after transformation

CH , ĈH Collection of d-cells defining holes, before and after transformation

vi, ei, fi, ti (generic) vertex, edge, polygon (2-cell), and 3-cell in K

v̂i, êi, f̂i, t̂i (generic) cells of dimensions 0–3 in K̂

f̂ , f̂e, f̂v Class-1, 2, 3 cells in K̂ in 2D

t̂, t̂f , t̂e, t̂v Class-1, 2, 3, 4 cells in K̂ in 3D

V,E, F, T Set of vertices, edges, polygon (2-cells), and 3-cells in K

V̂ , Ê, F̂ , T̂ Sets of vertices, edges, polygon (2-cells), and 3-cells in K̂

ρ, D Inradius and diameter of a cell in K

ρ̂, D̂ Inradius and diameter of a cell in K̂

γ(f), γ(f̂) Aspect ratios of cells f ∈ K, f̂ ∈ K̂
λ, µ Aspect ratio parameters for a particular edge K̂

λ∗, µ∗ Parameters over all edges in K̂

|emin|, |emax| Minimum and maximum edge length in a 2-cell in K

|êmin|, |êmax| Minimum and maximum edge length in a 2-cell in K̂

θmin Minimum interior angle of a 2-cell in K

α, β Maximum and minimum angles formed by edges of f̂v on vertex v

we concentrate mostly on full-dimensional polyhedral complexes of dimensions 2

and 3, i.e., in R2 and R3, respectively. We will follow the convention that cells up to

dimension 3 are referred to as polyhedra (higher dimensional versions are termed

polytopes). Formally, a d-dimensional polyhedron (a d-cell) is homeomorphic to the

closed d-dimensional Euclidean ball. The d-cells of interest in this work are vertices

(d = 0), edges (d = 1), polygons (d = 2), and polyhedra or 3-cells (d = 3).

Our definition of Euler transformation (in Sec. 3) as well as geometric realization

results in d = 2, 3 (in Sec. 4) do not require the polyhedra in K to be convex.

Note that vertices and edges are always convex, but polygons and 3-cells could

be nonconvex in our general setting. Further, some cells in the Euler transformed

complex K̂ may not to be convex. But if we assume cells in K are convex, then we

can guarantee a large majority of cells in K̂ are so as well. We assume cells in K are

convex when describing results on the geometric quality of cells in K̂ (in Sec. 5).

Definition 2 (Pure complex). A polyhedral d-complex is pure if every p-cell in

K for p < d is a face of some d-cell in K.

Being pure means that all top-dimensional cells in K have dimension d. A pure

2-complex has no “isolated” edges or vertices, for instance. In other words, every

edge is a face of some polygon in the complex.

We assume the input mesh K is a finite, connected, pure d-complex in Rd for

d = 2 or d = 3. Along with K, we assume we are given a collection CH of d-cells that

capture d-dimensional holes, and a singleton set CO that contains a d-cell capturing

the outside. To be precise, CH =
⋃
i ci where each ci is a d-cell that is not part of



June 1, 2021 1:32 110-IJCGA 2050009

6 P. Gupta and B. Krishnamoorthy

K but all (d− 1)-cells that constitute its d-boundary, which is homeomorphic to a

(d−1)-sphere, are present in K. Note that p-cells for p < d in the intersection of a d-

cell in K and a d-cell in CH or CO are precisely the boundary cells of K. For technical

reasons that we explain later, we make the following assumptions about intersections

of full-dimensional cells in K, CH , and CO. We denote the underlying spaces of these

objects as |K|, |CH |, and |CO|, respectively. Note that |CH | =
⋃
ci∈CH |ci|.

Assumption 3. The following conditions hold for the input complex K, the col-

lection of holes CH , and the outside cell CO.

(1) |K| ∪ |CH | ∪ |CO| = Rd.
(2) d-cells in CH are pairwise disjoint, and are also disjoint from the d-cell that

is CO.

(3) Any d-cell in K and a d-cell in CH intersect in at most one (d−1)-facet of both.

See Remark 8 for an explanation of the need for this assumption.

(4) No two (d− 1)-cells that are adjacent facets of a d-cell in K, i.e., they intersect

in a common (d − 2) cell, intersect the d-cell that is CO. Again, see Remark 8

for an explanation.

Intuitively, the d-cells in K, CH , and CO cover all of Rd, and each d-cell in CH
captures a separate hole that is also separate from the outside.

We point out that articulation (or cut) vertices are allowed in K, i.e., vertices

whose removal disconnects the complex (we assume K is connected to start with).

Conditions specified in Assumption 3 ensure such vertices are boundary vertices of

K. For instance, K could consist of two copies of the complex shown on the left in

Fig. 1 that meet at one of the four corner points.

3. Definition of Euler Transformation

We define the Euler transformation K̂ of the input d-complex K by explicitly listing

the d-cells that are included in K̂. Since we are working with cells (rather than

simplices), we specify each d-cell by explicitly listing all (d − 1)-cells that are its

facets. We denote vertices as v (or u, vi), edges as e (or ei), polygons or 2-cells as f

(or fi), and 3-cells as t (or ti). The corresponding cells in K̂ are denoted v̂, ê, f̂ , t̂,

and so on. We first define the cells in K̂ abstractly, and discuss aspects of geometric

realization in Sec. 4.

3.1. Euler transformation for d = 2

We start by duplicating every polygon (2-cell) in K ∪ CH ∪ CO. Since we do not

want to alter the domain in Rd captured by K, we set ĈH = CH and ĈO = CO.

But we “shrink” each polygon in K when duplicating (see Sec. 4 for details). By

the definition of K and Assumption 3, this duplication results in each edge e ∈ K
being represented by two copies in K̂.
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Fig. 2. A polygon f , edge e, and a vertex v highlighted in an input complex K (left), an inter-

mediate complex showing only the copies of original polygons in K that are included in K̂, i.e., of

Class (1) (middle), and the final Euler transformation K̂ (right).

The polygons (2-cells) in K̂ belong to three classes, and correspond to the poly-

gons, edges, and vertices in K as described below. See Fig. 2 for illustrations of each

class.

(1) For each polygon f ∈ K, we include f̂ ∈ K̂ as the copy of f .

(2) Each edge e ∈ K generates the 4-gon (4-sided polygon) f̂e in K̂ specified as

follows. Let e = {u, v} ∈ f, f ′, where f ∈ K and f ′ ∈ K∪CH∪CO. Then f̂e is the

polygon whose facets are the four edges {û, v̂}, {v̂, v̂′}, {û′, v̂′}, and {û, û′}. Here,

v̂, v̂′ are the two copies of v in K̂. Note that the edges ê = {û, v̂} and ê′ = {û′, v̂′}
are facets of the Class (1) polygons f̂ added to K̂ (as described above) or of

the polygons f̂ ′ in ĈH or ĈO. Edges {û, û′} and {v̂, v̂′} are added new.

(3) Each vertex v ∈ K that is part of p polygons in K generates a p-gon (polygon

with p sides) f̂v in K̂ whose vertices and edges are specified as follows. Let

v ∈ fk for k = 1, . . . , p in K. Then f̂v has vertices v̂k, k = 1, . . . , p, where v̂k
is the copy of v in f̂k (in K̂). For every pair of polygons fi, fj ∈ {fk}p1 that

intersect in an edge eij ∈ K, the edge êij = {v̂i, v̂j} is included as a facet of f̂v.

Note that edges êij are precisely the edges added new as facets of the Class (2)

polygons described above.

3.2. Euler transformation for d = 3

We start by duplicating every polyhedron (3-cell) in K ∪ CH ∪ CO. Similar to the

case of d = 2, we set ĈH = CH and ĈO = CO, but “shrink” each 3-cell in K when

duplicating. This duplication results in each polygon f ∈ K being represented by

two copies in K̂.
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The 3-cells in K̂ belong to four classes, and correspond to the 3-cells, polygons,

edges, and vertices in K as described below.

(1) For each 3-cell t ∈ K, we include t̂ ∈ K̂ as the copy of t.

(2) Each p-sided polygon f ∈ K generates a 3-cell t̂f in K̂ with p + 2 polygons

as facets specified as follows. Let f be a facet of 3-cells t, t′ where t ∈ K and

t′ ∈ K∪CH∪CO. Also, let f consist of vertices {vi}pi=1 and edges ei = {vi, vj} for

i = 1, . . . , p− 1, j = i+ 1 and i = p, j = 1. Then the polygons that are facets of

t̂f include f̂ , f̂ ′, and the p 4-gons f̂i whose edges consist of êi, ê
′
i, {v̂i, v̂′i}, {v̂j , v̂′j}

for i = 1, . . . , p − 1, j = i + 1 and i = p, j = 1. Here, v̂′i, ê
′
i are the vertex

and edge in f̂ ′ generated by vi, ei for each i, where f̂ ′ is the polygonal facet

of t̂′ corresponding to f . And t̂′ is the Class (1) 3-cell in K̂ (as defined above)

corresponding to t′.

We also note that the polygons f̂ , f̂ ′ are already included as facets of t̂, t̂′, which

are added to K̂ as Class (1) cells. The vertices v̂i, v̂
′
i are included already as

part of t̂, t̂′ as well. The p 4-gons f̂i are added new, and so are the edges {v̂i, v̂′i}
for i = 1, . . . , p. See Fig. 3 for an illustration with p = 5.

(3) Each edge e ∈ K that is part of q 3-cells generates a 3-cell t̂e in K̂ with q + 2

polygons as facets specified as follows. Let {ti}qi=1 be the q 3-cells that have

e = {u, v} as an edge, and let êi = {ûi, v̂i}, i = 1, . . . , q be the q copies of the

edge e in t̂i. We add a 4-gon f̂i as a facet of t̂e for every pair of adjacent 3-cells

ti, tj from this collection, i.e., when ti ∩ tj = fij is a polygon that contains e

as an edge, for i = 1, . . . , q − 1, j = i + 1 and i = q, j = 1. The edges of this

4-gon f̂i are êi, êj , {ûi, ûj}, and {v̂i, v̂j}. Note that there are q such 4-gons f̂i
that are facets of t̂e. Also note that these 4-gons are already included as faces

of the Class (2) 3-cells t̂fij described above.

Finally, we add two new q-gons as facets of t̂e whose q edges are {ûi, ûj} and

{v̂i, v̂j}, respectively, for i = 1, . . . , q − 1, j = i + 1 and i = q, j = 1. Figure 4

illustrates a q = 5 instance. At the same time, these q-gons cannot be guaranteed

to be planar in all geometric realizations of K̂ (see Remark 16).

Fig. 3. Illustration of a Class (2) 3-cell t̂f (right) generated by the pentagon f ∈ K (left). The
p = 5 4-gons are not shaded for clarity.
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Fig. 4. Illustration of a Class (3) 3-cell t̂e (right) generated by the edge e ∈ K shared by 5 cells

(left). The q = 5 4-gons are not shaded for clarity.

(4) Each vertex v ∈ K generates a 3-cell t̂v in K̂ specified as follows. Let v be a

vertex in r 3-cells {tk}rk=1, and let v̂k be the corresponding copy of v in t̂k (in K̂)

for k = 1, . . . , r. Then the vertices of t̂v are precisely v̂1, . . . , v̂r. For every pair

of adjacent 3-cells ti, tj ∈ {tk}rk=1, i.e., when ti ∩ tj is a polygon that contains

v as a vertex, we add the edge {v̂i, v̂j} to t̂v.

We then consider every subset T ⊂ {tk}rk=1 of 3-cells that intersect in an edge

that has v as one vertex. We add a polygon as a facet of t̂v that has as edges

{v̂i, v̂j} where ti, tj ∈ T intersect in a polygon. We repeat this process for every

such T ⊂ {tk}rk=1 with 3 ≤ |T | < r. Note that each such polygon has already

been added as a facet of the Class (3) 3-cell generated by the edge common to

the 3-cells in collection T (these are the q-gons described above).

Remark 4. Based on our definition of K̂, any two cells in K̂ intersect in a face of

both cells, and all faces of cells are included in K̂. Hence K̂ is a polyhedral complex.

Remark 5. Theorem 7, Lemma 9, Theorem 14, and Lemma 17 hold independent

of the geometric realization of the Euler transformed complex.

4. Geometric Properties of the Euler Transformed Complex

As Euler transformation adds new full-dimensional cells corresponding to polyg-

onal facets, edges, and vertices, we offset the cells added to K̂ as copies of the

full-dimensional cells in K in order to generate enough space to add the extra cells.

Intuitively, we “shrink” each of the full-dimensional cells in K in order to produce

cells in K̂ that are geometrically similar to the input cells. We use standard tech-

niques for producing offset polygons in 2D, e.g., mitered offset generated using the

straight skeleton (SK) of the input polygon.25

Definition 6 (Mitered offset25). The mitered offset of a polyhedron P with

offset distance b is the polyhedron obtained by moving each facet of P toward its
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interior in the direction of the normal to the supporting plane of the facet and where

the resulting facet has a supporting plane at a distance b along the normal.

For the d = 2 case, we define the cell offset as a mitered offset of the poly-

gon (i.e., choice of b in Definition 6) that creates no combinatorial or topological

changes — i.e., no edges are shrunk to points, and the polygon is not split into

multiple polygons. On the other hand, we have studied the case of mitered offset

with combinatorial or topological changes in d = 2 separately.8

Unlike for polygons, parallel offsetting of a polyhedron (d = 3) is not defined

uniquely in general.26 Although a unique offset polyhedron could be constructed

for orthogonal polyhedra or for convex polyhedra,26,27 shrinking a generic polyhe-

dron goes through continuous geometrical changes, combinatorial changes, as well

as topological changes (e.g., breaking into multiple polyhedra). In fact, offsetting

vertices with degree 4 or more in the 1-skeleton of the polyhedron can produce

multiple vertices even with an infinitesimal shrinkage.28,29 Hence we assume in the

case of d = 3 that each vertex in the input cell complex K has degree 3 in the

1-skeleton of each cell that it is part of, on top of the requirements in Assumption 3

(see Remark 21 for how one may deal with a complex where this assumption does

not hold). Under this assumption, we define the cell offset of a polyhedron as a

mitered offset that creates no combinatorial or topological changes (similar to the

case of polygons in d = 2).

Naturally, we do not want to alter the domain modeled by the cell complex K,

i.e., its underlying space |K|. Hence we maintain the cells in CH and CO, i.e., these

cells are included in K̂ without any changes. Since every top-dimensional cell is

offset, the new cells in K̂ are fit within the extra space created by offsetting each

top-dimensional cell.

4.1. Geometric realization in d = 2

We state and prove several properties of the geometric realization of the Euler

transformed polygon complex K̂ in d = 2. We restrict our discussion to the cases

where 2-cells in K̂ are planar and edges are straight lines. We start with the main

result—every vertex in K̂ has degree 4 in its 1-skeleton.

Theorem 7. Every vertex in K̂, the Euler transformation of the 2-complex K, has

degree 4 in the 1-skeleton of K̂.

Proof. Consider a vertex v shared by adjacent edges e1, e2 ∈ f , where f ∈ K ∪
CH ∪ CO is a polygon. Following Assumption 3, the edges e1 and e2 are shared by

exactly two cells each from the input complex, holes, or the outside cell. Let f ′1, f
′
2

be the other polygons containing edges e1, e2, respectively (with f being the first

polygon).

Consider the vertex v̂ ∈ K̂ generated as part of f̂ , as specified in the Euler

transformation (Sec. 3.1). f̂ is a mitered offset of f when f ∈ K, or is identical to f
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when it belongs to CH ∪CO. Hence f̂ is a simple polygon in both cases, and v̂ is part

of two edges ê1, ê2 ∈ f̂ . Further, v̂ will be part of two more edges {v̂, v̂′1} and {v̂, v̂′2}
added as facets of the Class (2) polygons generated by e1, e2. Here v̂′i ∈ ê′i ∈ f̂ ′i for

i = 1, 2. Hence v̂ has degree 4 in the 1-skeleton of K̂.

Remark 8. We show why we require the input complex to satisfy Conditions (3)

and (4) in Assumption 3, which require that no two adjacent edges of a polygon

in K can be boundary edges. Consider the input complex K consisting of a sin-

gle square, whose four edges are shared with the outside cell CO. If we apply the

Euler transformation as specified in Sec. 3.1, every vertex in the output complex

K̃ will have the odd degree of 3, as shown in Fig. 5. But if we apply the Euler

transformation once more to K̃, we do get a valid complex K̂ with each vertex

having degree 4. Note that K̃ does satisfy Condition (4), and hence becomes a

valid input.

Lemma 9. Let V,E, F denote the sets of vertices, edges, and polygons (faces) in

K, and let V̂ , Ê, F̂ denote the corresponding sets in K̂. The following relations hold

for the cardinalities of these sets : |V̂ | = 2|E|, |Ê| = 4|E|, and |F̂ | = |V |+ |E|+ |F |.

Proof. Let δ(v) denote the degree of vertex v ∈ K, and let f̂v be the polygon

generated by v in K̂. This is a polygon of Class (3) specified in the definition of

Euler transformation for d = 2 (Sec. 3.1). Following Assumption 3 about K, CH , CO,

it is clear that when v belongs to p polygons in K, we must have δ(v) = p and f̂v
has p vertices. Since each cell f̂ corresponding to polygon f ∈ K is a mitered offset,

and since each vertex v̂ is part of one such offset polygon, it follows that f̂u∩ f̂v = ∅
for any two vertices u, v ∈ K. Hence we get

|V̂ | =
∑
v∈K

δ(v) = 2|E|.

Fig. 5. Applying the Euler transformation to the square K whose more than one adjacent edge
is shared with the outside (left) produces a complex K̃ in which every vertex has odd degree

(middle). Applying the Euler transformation again to K̃ produces a valid complex K̂ where every

vertex has degree 4 (right).
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By Theorem 7, each vertex v̂ ∈ K̂ has degree δ̂(v̂) = 4 in K̂. Combined with the

result above on |V̂ |, we get that

|Ê| = 1

2

∑
v̂∈K̂

δ̂(v̂) =
1

2
· 2|E| · 4 = 4|E|.

Following the definition of Euler transformation (Sec. 3.1), each polygon, edge, and

vertex in K generate corresponding unique polygons in K̂ belonging to three classes.

Hence we get |F̂ | = |F |+ |E|+ |V |.

Lemma 10. Let Ĝ denote the graph that is the 1-skeleton of K̂. Then Ĝ is planar.

Proof. By the definition of Euler transformation (Sec. 3.1), and since each polygon

f̂ ∈ K̂ generated by the polygon f ∈ K is a mitered offset and hence a simple closed

polygon, any two polygons f̂ , f̂ ′ ∈ K̂ of Class (1) generated by polygons f, f ′ ∈ K
satisfy f̂ ∩ f̂ ′ = ∅.

Consider two polygons f̂e, f̂e′ ∈ K̂ of Class (2) generated by edges e, e′ ∈ K. By

the way we construct these polygons, f̂e and f̂e′ intersect at a vertex v̂ if and only

if e and e′ are adjacent edges of a polygon f ∈ K meeting at the vertex v.

Since each f̂ ∈ K̂ is a mitered offset of some polygon f ∈ K, at least one of

the two copies ê, ê′ of edges in K̂ corresponding to the edge e ∈ K is shorter in

length than e (see Definition of Class (2) polygons). In particular, if e is not a

boundary edge, then both ê and ê′ are shorter than e. If e is a boundary edge, i.e.,

e ∈ f ∈ CH ∪CO, then one edge out of ê, ê′ has the same length as e while the other

is shorter. Hence each polygon f̂e of Class (2) is a convex 4-gon (trapezium).

Since all edges of the polygon f̂v of Class (3) generated by vertex v ∈ K are

precisely the new edges added to define the Class (2) polygons, each f̂v is a simple

closed polygon. Further, by the properties of Class (2) polygons specified above,

f̂v ∩ f̂v′ = ∅ for any two vertices v, v′ ∈ K.

Thus every polygon in K̂ is simple and closed. Any two such polygons intersect

at most in an edge or a vertex, and any two edges in K̂ intersect at most in a vertex.

Hence Ĝ, the 1-skeleton of K̂, is a planar graph.

We do not alter the holes or the outside cell. Hence ĈH = CH and ĈO = CO,

by definition, and |K̂| ∪ |ĈH | ∪ |ĈO| = R2 as expected. Further, using the counts of

cells in K̂ specified in Lemma 9, we get

|V̂ | − |Ê|+ |F̂ | = 2|E| − 4|E|+ |V |+ |E|+ |F | = |V | − |E|+ |F |,

confirming that the Euler characteristic remains unchanged by the transformation.

Since the input complex is assumed to be planar, this result reconfirms the planarity

of the output complex.

Remark 11. We illustrate why we require holes in the domain to be disjoint (Con-

dition (2) in Assumption 3). Consider the input complex K with two holes h, h̄ ∈ CH



June 1, 2021 1:32 110-IJCGA 2050009

Euler Transformation of Polyhedral Complexes 13

Fig. 6. Two holes touching at a vertex (left), and the result of applying Euler transformation

(right). Vertices with odd degree in the resulting complex are circled. The four cells shaded in blue
are polygons of Class (3) generated by vertices in the input complex (see Sec. 3.1). These cells

could be nonconvex.

that intersect at a vertex v. The corresponding vertex v̂ in the transformed complex

K̂ will not have a degree of 4. There will also be other vertices in K̂ that have

odd degree, which are circled in Fig. 6. Let these odd-degree vertices be labeled

v̂′, v̂′′. Technically, there are two identical copies of the edge {v̂, v̂′} and similarly of

{v̂, v̂′′}. But such duplicate edges make the graph Ĝ (1-skeleton of K̂) non-planar. If

we include only one copy of each pair of duplicate edges, we get odd degree vertices

in Ĝ.

We pointed out in the Proof of Lemma 10 that the polygons of Class (2) in

K̂ generated by edges are convex 4-gons. Each polygon f̂ ∈ K̂ of Class (1) is

geometrically similar to the polygon f ∈ K generating it. Hence if f is convex,

so is f̂ . But polygons of Class (3) generated by vertices are not guaranteed to be

convex. In fact, when v ∈ K is a boundary vertex where K has a notch, or an “incut

corner”, f̂v ∈ K̂ could be nonconvex — see Fig. 6 for illustrations.

We finish this section with a result that guarantees K̂ remains connected.

Proposition 12. Assuming the input complex K in d = 2 is connected, its Euler

transformation K̂ is also connected.

Proof. We noted in the proof of Lemma 10 that the mitered offset polygons in K̂

are pairwise disjoint. But we show that when polygons f, f ′ ∈ K are connected,

so are the corresponding offset polygons f̂ , f̂ ′ ∈ K̂. By Assumption 3 on the input

complex, when polygons f, f ′ ∈ K intersect, they do so either in an edge e or in

a vertex v. If f ∩ f ′ = e, then by the definition of Euler transformation (Sec. 3.1),

the corresponding offset polygons f̂ , f̂ ′ ∈ K̂ are connected by the pair of new edges

defining f̂e, the 4-gon of Class (2) generated by edge e. If f ∩ f ′ = v and v is not an

articulation vertex, then the corresponding offset polygons f̂ , f̂ ′ ∈ K̂ are similarly

connected by the Class (3) polygon f̂v generated by v, with the corresponding

copies v̂, v̂′ of v in f̂ , f̂ ′, respectively, being vertices of f̂v. If f ∩ f ′ = v that is an
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articulation vertex, then v̂ = v is the identical copy of this vertex in K̂. There will

be two Class (3) polygons f̂v, f̂
′
v generated by v in the two biconnected components

joined at v, with f̂v ∩ f̂ ′v = v̂. Further, f̂v is connected to f̂ and f̂ ′v to f̂ ′, ensuring

that f̂ and f̂ ′ are connected. It follows that K̂ is connected, since we assume the

input complex K is connected.

4.2. Geometric realization in d = 3

We restrict discussion of geometric realization in 3D to the case where 3-cells in

K̂ are homeomorphic to a 3-ball and edges are straight lines, but 2-cells can be

non-planar. For the sake of completeness, we relist the assumptions on the input

complex K in d = 3 here.

Assumption 13. In dimension d = 3, the input complex K, holes CH , and the

outside cell CO are assumed to satisfy the conditions specified in Assumption 3. In

addition, we assume that the degree of each vertex v in each 3-cell t ∈ K containing

v is 3. In other words, each vertex v ∈ t is connected to exactly three other vertices

v′ ∈ t.

It follows from Assumption 13 that a vertex v in a 3-cell t ∈ K is shared by

exactly three polygons that are facets of t. Tetrahedral, cubical, and rectangular

cuboid meshes are examples of polyhedral complexes satisfying the degree 3 condi-

tion.

We first present the main result on the same even degree of vertices in the Euler

transformation.

Theorem 14. Every vertex in K̂, the Euler transformation of the 3-complex K,

has degree 6 in the 1-skeleton of K̂.

Proof. Consider a vertex v̂ ∈ K̂ that is part of the 3-cell t̂, added as a Class (1)

mitered offset copy of the 3-cell t ∈ K (see Sec. 3.2). Let v be the corresponding

vertex in t. Since Assumption 13 holds for K, vertex v has degree 3 in t and is part

of three polygons {fi}3i=1 that are facets of t. As t̂ is a mitered offset of t, vertex

v̂ has the identical degree of 3 in t̂. Further, each fi generates a Class (2) 3-cell

t̂fi in K̂ (see Sec. 3.2) for i = 1, 2, 3. Vertex v̂ is connected to one new edge of the

form {v̂, v̂′i} in t̂fi (disjoint from t̂) for i = 1, 2, 3. These three edges bring the total

degree of v̂ in the 1-skeleton of K̂ to 6.

Proposition 15. Homology of K̂ does not change.

Since K̂ and K always have same underlying space.

Remark 16. While 3-cells of each Class has a guaranteed geometric realization in

R3 but some facets for 3-cells belonging to Classes (3) and (4) can be non planar.

In particular, if the cells in K are assumed to be convex, then all Class (1) cells are
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Fig. 7. Input edge e ∈ K shared by 5 cells (left), just as shown shown in Fig. 4. But here, the

pentagon on top in the Class (3) 3-cell t̂e (middle) is not planar as originally set. This pentagon

is replaced by the best fit plane (right, in pink) where one vertex is pushed up and another one
down (red dots) while other vertices remain at their original positions.

also convex, since they are mitered offsets of the convex cells in K. In this case, the

Class (2) cell t̂f generated by the convex polygon f is also guaranteed to be convex,

as each of the p 4-gon added is planar (see Fig. 3).

The problem arises for the two q-gons added as part of each Class (3) cell—they

may not be planar even if all edges êj are identical in length. Instead of the depiction

in Fig. 4, we might have the q-gon(s) as shown in Fig. 7. We will find the best fit

plane through all the vertices in question, and project the vertices up or down to

the plane as needed by extending or shrinking edges as shown in the Fig. 7

If the input complex is highly regular, e.g., a cubical complex with nearly identi-

cal cell sizes, it might be possible to choose the mitered offsets of each cell such that

these polygons are indeed planar. But if such choices do not exist, we can project

these points to a plane as discussed.

At the same time, for our motivating applications including infill lattice printing

in additive manufacturing and coverage problems in robotics, we are concerned only

with the 1-skeleton of K̂. And the 1-skeleton on K̂ is completely determined by the

3-cells of Classes (1) and (2). Hence we could just not include 3-cells of Classes (3)

and (4) in K̂. Naturally, the underlying space |K̂| will not be homeomorphic to |K|
because of the missing 3-cells (we can show that |K|/|K̂| is a single enclosed void).

But the 1-skeletons cover the same domain.

We now present bounds on the numbers of each class of cells in K̂ as multiples

of corresponding numbers in K. The counts would be lower if we do not include

3-cells of Classes (3) and (4).

Lemma 17. Let V,E, F, T denote the sets of vertices, edges, polygons (faces), and

3-cells in K, and let V̂ , Ê, F̂ , T̂ denote the corresponding sets in K̂. Let ν denote

the maximum number of vertices in any 3-cell in K, and let π denote the maximum
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number of edges in any polygon (face) in K. The following bounds hold for the

cardinalities of the sets of cells in K̂.

|T̂ | = |T |+ |F |+ |E|+ |V | (1)

|V̂ | ≤ ν|T | (2)

|Ê| ≤ 3ν|T | (3)

|F̂ | ≤ (π + 2)|F |+ 2|E|. (4)

Proof. Equation (1) follows from the definition of Euler transformation in d = 3 in

Sec. 3.2, where we get a unique 3-cell in K̂ corresponding to each 3-cell (Class (1)),

face or polygon (Class (2)), edge (Class (3)), and vertex (Class (4)) in K. The count

will be equal to |T |+ |F | if we do not include 3-cells of Classes (3) and (4).

Any two 3-cells of Class (1) (mitered offsets) in K̂ are disjoint, and all vertices

in K̂ belong to one of these 3-cells. Hence the total number of vertices in K̂ is the

sum of the number of vertices in each t̂ ∈ V̂ . The bound in Eq. (2) results from the

fact that each 3-cell t ∈ T generates a unique mitered offset 3-cell t̂ ∈ T̂ , and the

maximum number of vertices in any t is ν.

Theorem 14 specifies that the degree of each vertex v̂ ∈ V̂ is 6. Hence we get

that 2|Ê| = 6|V̂ |, the sum of all degrees in K̂. Combining this result with the bound

in Eq. (2) gives the bound in Eq. (3) (assuming we add all Class (3) cells).

Every facet or polygon f ∈ F with p edges generates a Class (2) 3-cell with p+2

polygons as facets. Note that this set includes the two copies of f that are facets

of mitered offset 3-cells in K which share f . We get two new polygons from the

Class (3) 3-cells generated by each edge e ∈ E. The bound in Eq. (4) now follows

since the number of edges of any f ∈ F is π.

We point out that the bounds in Eqs. (2)–(4) are tight when K is a cell complex

with same type of cells. For instance, if K is a tetrahedral complex, these bounds

are tight with ν = 4, π = 3. If K is a cubical complex, we get tight bounds with

ν = 8, π = 4.

We now show that K̂ remains connected even if we do not add 3-cells of

Classes (3) and (4).

Proposition 18. Assuming the input complex K is connected in d = 3, its Euler

transformation K̂ is also connected even without including Classes 3 and 4.

Proof. Observe that any pair of mitered offset 3-cells K̂ (Class (1) cells specified

in Sec. 3.2) are disjoint by definition. But we show that if K is connected, then so is

K̂ even if we do not include 3-cells of Classes (3) and (4). By Assumption 13, when

3-cells t, t′ ∈ K intersect in a polygon t ∩ t′ = f , then by the definition of Euler

transformation (Sec. 3.2), the corresponding offset polygons t̂, t̂′ ∈ K̂ are connected

by a new Class (2) 3-cell t̂f generated by the polygon f . Also, by Assumption 13,

for any two 3-cells t, t′ in a biconnected component of K with t∩ t′ = ∅, there exists
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a finite sequence of 3-cells t1 = t, t2, . . . , tr−1, tr = t′ such that ti ∩ ti+1 = fi, a

polygon, for i = 1, . . . , r − 1. Following the previous observation, each pair t̂i, t̂i+1

is connected in K̂ by a Class (2) 3-cell t̂fi . Hence t̂, t̂′ are connected in the same

biconnected component in K̂. Finally, articulation vertices are preserved by the

Euler transformation, ensuring that biconnected components of K remain connected

in K̂. Hence it follows that K̂ is connected as well, since we assume the input

complex K is connected.

We end this section with an additional nice property of the Euler transformed

complex K̂: every edge is shared by exactly four polygons, i.e., faces. As a result, the

2-complex resulting from the intersection of K̂ with a plane in 3D that intersects

only the edges but not any vertices in K̂ is guaranteed to be Euler. This result

could have implications in 3D printing where one may consider slicing the Euler

transformed 3-complex so as to print 2D layers.

Lemma 19. Each edge in K̂ is connected to 4 faces in K̂.

Proof. We consider two cases for an edge ê in K̂: ê is part of some Class (1) 3-cell t̂

and ê is not part of any 3-cell. The two cases are illustrated on a cubical 3-complex

in Fig. 8.

In the first case, ê is the mitered offset of edge e in 3-cell t ∈ K. Let e be shared

by polygons f ′, f ′′ that are faces of t. Then ê in t̂, the mitered offset of t, is shared

by faces f̂ ′, f̂ ′′ of t̂, the mitered offset polygons of f ′ and f ′′, respectively. Edge ê is

also shared by one polygon each from the two Class (2) 3-cells t̂f ′ and t̂f ′′ , generated

Fig. 8. Illustration of two cases for edge ê in Lemma 19 on a cubical complex. In the first case
(left), the 3-cell t is the cube is shown in white, and its corresponding Class (1) 3-cell t̂ ∈ K̂ is
shown in blue. In the right figure showing the second case, the two 4-gons of the Class (2) 3-cell
t̂f are shown in yellow, and the polygons from two Class (3) 3-cells are shown in green.
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by f ′ and f ′′, respectively. These two polygons are also faces of a Class (3) 3-cell t̂e
generated by e. Hence ê is shared by exactly four polygons in K̂.

In the second case, let edge ê = (v̂, v̂′) be not contained in any Class (1) 3-cell.

By construction (see Sec. 3.2), edge ê is contained in one Class (2) and two Class (3)

3-cells, and also one Class (4) 3-cell separating these two Class (3) 3-cells. Observe

that no two 3-cells of the same class in K̂ can share a polygon as a face. Let edges

e′, e′′ meet at vertex v in polygon f in the input 3-cell t ∈ K. Let the corresponding

cells in the mitered offset t̂ ∈ K̂ be ê′, ê′′ meeting at vertex v̂ in polygon f̂ . Then

edge ê is contained in two 4-gons that are faces of the Class (2) 3-cell t̂f . It is also

contained in one polygon each from two Class (3) 3-cells t̂e′ and t̂e′′ . Note that the

last two polygons are also faces of the Class (4) 3-cell t̂v generated by vertex v.

Overall, ê is shared by exactly four polygons in K̂. Note that We could, equivalently,

describe the four polygons with respect to t̂′ ∈ K̂, where the polygon f is shared

by 3-cells t, t′ ∈ K.

Proposition 20. Let P be a plane in R3 such that σ 6∈ P for every simplex σ ∈ K̂,
the Euler transformed 3-complex. Then the 1-skeleton of the 2-complex that is P∩K̂
is Euler.

Proof. Since the plane P does not contain any simplex of K̂, vertices in the result-

ing 2-complex P ∩ K̂ are created by P intersecting edges in K̂. Lemma 19 says each

edge e ∈ K̂ is a face of exactly four polygons. Hence the vertex generated by P ∩ e
will have degree 4, with four edges generated by P intersecting each of the four

polygons that share e.

Finally, we consider what happens if the restriction that each vertex has

degree 3 in each 3-cell that contains the vertex in the input complex K is not

satisfied.

Remark 21. As an example where the assumption of vertices with degree 3 in

each cell does not hold, consider a 3-cell t that is a pyramid with a trapezium

at the base, as shown in Fig. 9. Let vertex v be the one on top with degree 4 in

the 1-skeleton of t. Then the mitered offset t̃ created after even an infinitesimal

shrinkage will replace v in K with a face f̃ in the resulting complex K̃, instead

of a corresponding single vertex v̂.28,29 But since v has degree 4 in t, Theorem 14

is not valid, and we could get vertices with odd degrees. For instance, ṽ in Fig. 9

has degree 5. Nevertheless, every vertex in the 1-skeleton of t̃ will now have degree

3. More generally, every vertex in the 1-skeleton of K̃ obtained in this fashion has

degree 3, and it satisfies all requirements of Assumption 3 of an input complex. If we

apply Euler transformation again on K̃, we are guaranteed to obtain a 3-complex K̂

that satisfies all previous results presented in this Section. This situation is similar

to the one in 2D described in Remark 8.
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Fig. 9. A pyramid (3-cell) t (black edges) in K, where vertex v has degree 4. The mitered offset

of t with infinite shrinkage t̃ (blue edges) has vertices with degree 5 in t̃, e.g., ṽ. But any vertex
ṽ in t̃ has degree 3 in its 1-skeleton, and hence satisfies the input assumption for applying Euler

transformation.

5. Measures of Geometric Quality

We inspect measures of geometric quality of the cells in the Euler transformation,

and study how they compare with corresponding measures for the input complex.

We show that the user can choose a small set of parameters for each top-dimensional

cell (2- or 3-cells) in order to control these measures of quality.

Several measures of element quality are used in various domains ranging from

numerical analysis, to finite element methods, to computer graphics.17,30–32 We

concentrate mostly on an aspect ratio as defined below, but also present results on

minimum edge lengths and angles in the 2D case.

Definition 22. For a given d-cell g, let D(g) denote its diameter, i.e., the largest

Euclidean distance between any two points in g. Also, let ρ(g) denote its inradius,

i.e., the radius of the largest d-ball inscribed in g. The aspect ratio of the cell is

defined as

γ(g) =
D(g)

ρ(g)
. (5)

5.1. Geometric quality in d = 2

We consider the three classes of polygons generated in the Euler transformation K̂

corresponding to polygons, edges, and vertices in K (Sec. 3.1). Since a Class (1)
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Fig. 10. Offset polygon f̂ ∈ K̂ (in green) and input polygon f ∈ K (in black), with associated

offset parameters.

polygon f̂ is a mitered offset of the corresponding polygon f ∈ K, the user can

choose parameters that control how f̂ is scaled with respect to f . We consider two

parameters (λ, µ) that control how edge lengths scale, and the offset parameter b,

which is the perpendicular distance that each edge is pushed in when offsetting.

We define λ, µ such that λ|e| ≤ |ê| ≤ µ|e| holds for each edge e ⊂ f ∈ K. We

first choose λ and µ based on conditions given in Eqs. (6) and (7). We denote

by |emin|, |emax| the minimum and maximum edge lengths in f . These conditions

ensure that a feasible value for b can be chosen. Based on λ and µ chosen, Eq. (8)

specifies a range of feasible values for b. See Fig. 10 for illustration of the angles

used. Choosing a b in this range guarantees there are no topological or combinatorial

changes in the polygon when offsetting. We specify these ranges for each polygon

in terms of measures associated with f , i.e., input data. The user could choose a

uniform set of values over the entire complex, but the individual ranges afford more

flexible choices.

These parameters are specific to f , but we do not use λf , µf and so on in order

to keep notation simpler. We illustrate the constructions in Fig. 10. Intuitively,

the user may want to choose λ not too large and µ not too small in order to get

good quality measures (bounded aspect ratio, minimum edge length, or maximum

interior angle). Let b denote the offset distance for edge e = {u, v}, and let ru, rv
the corresponding distances for u, v. By properties of mitered offset, choosing an

edge length ratio (in (λ, µ)) and b determines ru and rv. We denote by p, q the

projection lengths of ru, rv, respectively, on edge e. Note that p = b/ tan(θu/2) and

q = b/ tan(θv/2).

0 < λ < µ < 1, and (6)

|emax|
|emin|

<
1− λ
1− µ

. (7)
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max{1, tan(θu/2), tan(θv/2)} (1− µ)|e|
2

< b

< min{1, tan(θu/2), tan(θv/2)} (1− λ)|e|
2

. (8)

Note that Eqs. (6)–(8) guide the choices of λ, µ and b that the user can pick.

Once λ, µ, b are chosen, we obtain certain bounds that are implied by these choices.

Equation (8) gives that (1 − µ)|e| ≤ p + q ≤ (1 − λ)|e|. We have µ|e| ≥ ê ≥ λ|e|,
where ê = |e| − (p+ q). Hence we get the tightest bounds on b, p, q as

(1− µ)|emax|
2

< b, p, q <
(1− λ)|emin|

2
. (9)

Equation (9) implies the following bounds on ru, rv:

(1− µ)|emax|√
2

< ru, rv <
(1− λ)|emin|√

2
. (10)

We now specify bounds on quality measures for polygons in each of the three

classes.

5.1.1. Class (1) cells

Let f be a Class (1) polygon, and b the edge offset distance for f̂ . Let D, D̂ be the

diameters and ρ, ρ̂ the inradii of f ∈ K and f̂ ∈ K̂, respectively. See Fig. 11 for

details.

Bounded Aspect Ratio We know that D ≥ D̂ and ρ̂ ≥ ρ− b, and hence we get

2 < γ(f̂) ≤ D

ρ
(
1− b

ρ

) =
γ(f)(
1− b

ρ

) . (11)

Since offset distance b cannot be more than the inradius ρ, we have b
ρ < 1.

Fig. 11. Quality measures for a Class (1) polygon f̂ .
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Minimum Edge Length

Since |ê| ≥ λ|e| ∀e ∈ K, we get |êmin| ≥ λ|emin| . (12)

Maximum Interior Angle Since we are using mitered offsets, any interior angle

θ̂ in f̂ is same as the corresponding angle θ in f . Hence the maximum interior

angle in f̂ is same as that in f .

5.1.2. Class (2) cells

Let r, r′ be the offset distances for vertices v̂, v̂′ generated by v ∈ e ∈ f, f ′ ∈ K, and

let ê, ê′ be the corresponding edges in f̂ , f̂ ′, respectively. Let d be a diagonal in the

Class (2) polygon f̂e. As in the previous Section, we let D, D̂ be the diameters and

ρ, ρ̂ the inradii of f, f̂e, respectively. We refer to Fig. 12 for details.

Bounded Aspect Ratio By triangle inequality, we get |ê′| + r′ + r ≥ d. Since

|e| ≥ |ê′|, we get

|e|+ r′ + r ≥ d.

Assume without loss of generality that λ > λ′ , µ > µ′ and |ê′| < |ê|. Then by

Eq. (10), we get

((1− λ′)
√

2 + 1)|e| > d. (13)

And since diameter of f̂e is not smaller than the maximum edge length and

maximum diagonal length of a trapezium, we have D̂ < ((1 − λ′)
√

2 + 1)|e|.
Using Eq. (8), and since µ > µ′ and |ê′| < |ê| we get

b, b′ > 0.5(1− µ)|ê′|. (14)

Fig. 12. Quality aspects of a Class (2) cell f̂e.
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Then area of f̂e satisfies A(f̂e) ≥ (1− µ)|ê′|2. As we know that |ê′| ≥ λ′|e|, we

get

A(f̂e) ≥ (1− µ)(λ′)2|e|2. (15)

We know that the perimeter of f̂e satisfies P(f̂e) ≤ 4|e|. Since A(f̂e) ≤ P(f̂e)ρ̂

as f̂e is a trapezium,33 we get

ρ̂ >
(1− µ)(λ′)2|e|

4
. (16)

Hence

2 < γ(f̂e) <
4((1− λ′)

√
2 + 1)

(1− µ)(λ′)2
. (17)

Minimum Edge Length Based on our assumption that |ê′| < |ê|, we have λ′ < µ.

The other two non-parallel edges of f̂e have lengths at least b + b′. Hence the

minimum edge length of f̂e is at least min{|ê′|, b + b′}, which, by Eq. (14), is

at least min{λ′|e|, (1− µ)λ′|e|} = (1− µ)λ′|e|. If e is a boundary edge of f , the

result remains same except λ′ = λ since e is shared between f and CH ∪ CO.

Maximum Interior Angle Assume without loss of generality that the minimum

interior angle of f is smaller than that of f ′. If θmin is the minimum interior

angle of f, then the maximum interior angle f̂e is strictly less than φ = π−θmin/2

since sum of adjacent interior angles formed by the non-parallel lines with the

parallel lines of a trapezium is π, and in the case of a mitered offset any line

segment uû shown in Fig. 10 is an angle bisector for the interior angle at u

of the input cell. This result is valid in both cases when e is an interior or a

boundary edge.

5.1.3. Class (3) cells

Let r,R′ be the minimum and maximum offset distances for vertices v̂, v̂′, which

correspond to vertex v ∈ f, f ′, two specific polygons among all that share v. See

Fig. 13 for details. Let |ẽmin|, |ẽmax| be the minimum and maximum edge lengths for

edges in all 2-cells sharing vertex v, and let the edges belong to f ′, f , respectively.

Let α, β are maximum and minimum angles formed by edges of f̂v on vertex v.

Also, let λ, µ and λ′, µ′ be the user-defined parameters for f, f ′, respectively.

Bounded Aspect Ratio We first consider the case where v is an interior vertex,

i.e., it is not on the boundary of K. Since ρ̂ ≥ r cos α2 and D̂ ≤ 2R′, using

Eq. (10) gives

2 < γ(f̂v) ≤
2R′

r cos α2
< C

(
1− λ′

1− µ

)
(18)

where C = 2|ẽmin|/(|ẽmax| cos α2 ).
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Fig. 13. Quality measures for a Class (3) cell f̂v .

When v is on the boundary, we consider applying the same offset r to every 2-

cell sharing vertex v. Under this setting, ∆uvw is an isosceles triangle (third image

in Fig. 13), and hence its inradius is r sin(β2 )
√

(1− sin(β2 ))/(1 + sin(β2 )).

Denoting L = sin

(
β

2

)√(
1− sin

(
β

2

))/(
1 + sin

(
β

2

))
,

we get γ(f̂v) < C̄

(
1− λ′

1− µ

)
(19)

where, C̄ = 2|ẽmin|/(|ẽmax|L).

Minimum Edge Length If v is not on the boundary, we get

|ê| ≥ 2r sin

(
β

2

)
>
√

2(1− µ)|ẽmax| sin
(
β

2

)
. (20)

If v is on the boundary, we get

|ê| ≥ min

{
r, 2r sin

β

2

}
. (21)

Then we get by Eq. (10) that

|ê| >
√

2(1− µ)|ẽmax|min

{
1

2
, sin

β

2

}
. (22)

Maximum Interior Angle As shown in the Fig. 13, φ < π − (θmin/2), where

θmin is minimum interior angle of the 2-cells sharing vertex v. Hence maximum

interior angle of f̂v is strictly less than 2φ < 2π − θmin.

The results in Secs. 5.1.1–5.1.3 show that the user could choose parameters

λf , µf , bf for each cell f ∈ K so that all measures of geometric quality of cells in

K̂ are within desired bounds. In order to make K̂ as uniform as possible, the user

could choose a single, or a few, set(s) of values for these parameters that are applied

for all cells. For instance, one could choose a λ∗ ≥ λf and µ∗ ≤ µf with λ∗ < µ∗

for all f ∈ K. But such choices may not exist for all input complexes K.
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Fig. 14. 4-gons (green) is a class-2 2-cell in K̂ created around the edge e of input complex K.

5.1.4. Euclidean bound on length after Euler transformation

Based on geometric quality parameter discussed in Sec. 5.1. Let λ∗, µ∗ are the

parameters for input complex K such that λ∗|e| ≤ |ê| ≤ µ∗|e| ∀e ∈ E . b, p, q <
|e|(1−λ∗)

2 =⇒ r, s < |e|(1−λ∗)
2 as shown in Fig. 14. ê =

√
s2 + b2 < (1 − λ∗)|e|

√
5
2 .

For each edge e we have unique ê, ê′ edges in K̂, hence total length of these types

of edges is <
∑
e∈E(1 − λ∗)|e|

√
5. Sum of all the edges of class 1 in complex K̂

is ≤ 2
∑
e∈E µ

∗|e|. Hence total euclidean length(L̂) of edges in K̂ is 2L < L̂ <√
5
∑
e∈E |e|+(2µ∗−

√
5λ∗)

∑
e∈E |e| = (

√
5+(2µ∗−

√
5λ∗))L, where L =

∑
e∈E |e|

L̂ is at least going to be double as compared to euclidean length of edges of original

complex K, but it also depends upon value of µ∗, λ∗. We can control density with

parameters µ∗, λ∗ to some extent.

5.2. Geometric quality in d = 3

We specify how the aspect ratios of 3-cells of Classes (1) and (2) compare with those

of cells in K. Deriving similar bounds for quality measures of Class (3) and (4) cells

appears more challenging, and is left as part of future work. In d = 3, we let the

user specify the mitered offset distance b by which each facet (polygon) of a 3-cell

t ∈ K is moved in to create the corresponding offset cell t̂ ∈ K̂.

5.2.1. Class (1) cell

Let D, D̂ denote the diameters, and ρ, ρ̂ the inradii of cells t, t̂, respectively. Since

the Class (1) 3-cell t̂ is created as a mitered offset of 3-cell t ∈ K, we have D̂ ≤ D
and ρ̂ ≥ ρ− b. Hence we get that

γ(t̂) =
D̂

ρ̂
<

D

ρ− b
=

γ(t)(
1− b

ρ

) , with
b

ρ
< 1.
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Fig. 15. The oblique cylinder we could fit within a Class (2) cell t̂f , and the parameters that

determine its aspect ratio.

Note that this is the same bound satisfied by the aspect ratio of a Class (1) polygon

specified in Eq. (11).

5.2.2. Class (2) cell

In general, the Class (2) t̂f generated by facet f ∈ t ∈ K could have the shape

of an “oblique” truncated cone with f̂ , f̂ ′ as the bases (unlike the “orthogonal”

truncated cone that Fig. 3 might indicate). let D̄ = D + D′ be the diameter of a

ball that contains both 3-cells t, t′ that share f as a facet. Let r̂, r̂′, r be the inradii

of facets f̂ , f̂ ′, f , respectively, and let b, b′ be the offset distance for f, f ′. Assume

without loss of generality that r̂ < r̂′. We can fit an oblique cylinder of radius r̂

and height b + b′, as shown in Fig. 15, inside t̂f . Then we can fit a ball of radius

R = min{ b+b
′

2 , r̂} cos θ, where θ is the skew angle of the oblique cylinder. Note that

θ = 0 if t̂f is an “orthogonal” truncated cone, in which case the cylinder will be

normal as well. We get

γ(t̂f ) =
D̂

ρ̂
≤ D̄

R
.

6. Application: Additive Manufacturing

We have been using the Euler transformation for tool-path planning in large scale

additive manufacturing (3D printing) with our collaborators in Oak Ridge National

Laboratory (ORNL). The system ORNL is developing is termed Big Area Additive

Manufacturing (BAAM), and its goal is to be able to efficiently print 3D objects

that are much larger than the ones that typical 3D-printers in the market today are

able to handle (think a few to several feet in each dimension). Being able to print

all edges in a contiguous manner is critical for efficiency.

We present brief details of a proof-of-concept print of a pyramid, which was

represented as a collection of planar layers stacked from the ground up (see the left

image in Fig. 16). The dimensions of the pyramid were 609.6 mm × 609.6 mm ×
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Fig. 16. Visualization of the design of a pyramid-shaped object (left), and a view of the partially
3D-printed object (right).

609.6 mm, and each layer had a height of 4.26 mm, resulting in a total of 143 layers.

We started with a standard triangulation K0 of the bottom layer, and obtained the

Euler transformation K̂0. Given the geometry of this object, we took the intersection

of K̂0 with the domain of each subsequent layer i > 0, trimming any vertices and

edges of K̂0 that were outside the layer’s domain to create K̂i. This process created

some odd-degree nodes at the boundary in K̂i. But we can show that the number

of odd degree nodes in K̂i is even, and hence we added a set of edges along the

perimeter of the layer connecting pairs of odd-degree nodes. With this modification,

K̂i is guaranteed to be Euler again.

For printing each layer, we used a blossom algorithm to identify an Eulerian

tour. Starting from any vertex, we choose edges at each step that minimize sharp

turns in a greedy manner to identify the tool path.

The method outlined above naturally handles voids in the print domain. We are

developing various classes of efficient algorithms for additive manufacturing in this

fashion that are capable of incorporating several physical and material constraints.

One such framework has been presented in a separate manuscript.8

7. Discussion

The bottleneck for computational complexity of the Euler transformation is deter-

mined by the mitered offsets it creates for each cell in K. The number of cells in

K̂ are clearly linear in the number of cells in K (Lemma 9 and 17). For d = 2, 3, if

K in Rd has m d-cells, each of which has at most p facets, the time complexity of

Euler transformation is O(mpd).28,29

Not all cells in the Euler transformation K̂ are guaranteed to be convex, even

when all cells in K are (see Fig. 6). We presented various results on the measures of

geometric quality of each class of cell in K̂ (in Sec. 5). At the same time, choosing an

optimal set of parameters (λ, µ, b) that maximizes the overall quality of all classes

of cells in K̂ simultaneously could be modeled as an optimization problem.
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We pointed out in Remark 16 that Class (3) or (4) cells in K̂ might have non-

planar facets (in d = 3). We suggested not including these 3-cells in K̂ when we are

more interested in its 1-skeleton.
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Notes in Computer Science, Vol. 5664 (Springer, 2009), pp. 13–24.

12. O. Aichholzer, T. Hackl, M. Hoffmann, A. Pilz, G. Rote, B. Speckmann and B. Vogten-
huber, Plane graphs with parity constraints, Graphs and Combinatorics 30(1) (2014)
47–69.
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