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Abstract—A recent paper [1] claims to classify brain processing evoked in subjects watching ImageNet stimuli asmeasured with EEG

and to employ a representation derived from this processing to construct a novel object classifier. That paper, together with a series of

subsequent papers [2], [3], [4], [5], [6], [7], [8], claims to achieve successful results on a wide variety of computer-vision tasks, including

object classification, transfer learning, and generation of images depicting human perception and thought using brain-derived

representationsmeasured through EEG.Our novel experiments and analyses demonstrate that their results crucially depend on the

block design that they employ, where all stimuli of a given class are presented together, and fail with a rapid-event design, where stimuli of

different classes are randomly intermixed. The block design leads to classification of arbitrary brain states based on block-level temporal

correlations that are known to exist in all EEG data, rather than stimulus-related activity. Because every trial in their test sets comes from

the same block asmany trials in the corresponding training sets, their block design thus leads to classifying arbitrary temporal artifacts of

the data instead of stimulus-related activity. This invalidates all subsequent analyses performed on this data in multiple published papers

and calls into question all of the reported results.We further show that a novel object classifier constructed with a random codebook

performs as well as or better than a novel object classifier constructed with the representation extracted fromEEG data, suggesting that

the performance of their classifier constructed with a representation extracted fromEEG data does not benefit from the brain-derived

representation. Together, our results illustrate the far-reaching implications of the temporal autocorrelations that exist in all neuroimaging

data for classification experiments. Further, our results calibrate the underlying difficulty of the tasks involved and caution against overly

optimistic, but incorrect, claims to the contrary.

Index Terms—Object classification, EEG, neuroimaging
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1 INTRODUCTION

IT is well known in the neuroimaging community that both
fMRI and EEG time series exhibit temporal autocorrela-

tions both in the short and long range regardless of experi-
mental stimuli [9], [10]. Accordingly, to avoid confounding
block-level effects with experimental effects, neuroscience
studies employ designs that distribute each experimental
condition across multiple blocks, or use temporally jittered
stimuli to break the correlation structure, and/or use rapid-
event designs where stimuli are randomized at a single-trial
level [11], [12]. However, despite the explosion of studies
using machine learning techniques applied to neuroimaging
data [13], [14], to our knowledge, the effects of EEG/fMRI
temporal correlations on classification problems have not
been examined by the machine-learning community. Here,

we illustrate the far-reaching implications of such temporal
correlations in EEG data and the importance of adherence to
rigorous experiment design considerations by comprehen-
sively analyzing the seemingly impressive claims made by a
recent paper [1] and through a series of additional experi-
ments carefully designed to elucidate the issues.

A recent paper [1] claims to (learn to) classify EEG data
recorded from human subjects observing images from
ImageNet [15] and use the learned classifier to train a pure
computer-vision model. In that paper, images from Image-
Net are presented as stimuli to human subjects undergoing
EEG and a long short-term memory (LSTM [16]), combined
with a fully connected layer and a ReLU layer, is trained to
predict the class of the stimulus from the recorded EEG sig-
nal. The output of the ReLU layer is taken to reflect human
neural encoding of the percept. The output of existing object
classifiers is then regressed to this purported human neural
encoding of the percept in an attempt to have computer-
vision systems produce the same encoding of the percept.

That paper makes three specific claims [1, Section 1
p. 6810]:

1. We propose a deep learning approach to classify EEG data
evoked by visual object stimuli outperforming state-of-the-
art methods both in the number of tackled object classes
and in classification accuracy.

2. We propose the first computer vision approach driven by
brain signals, i.e., the first automated classification approach
employing visual descriptors extracted directly from human
neural processes involved in visual scene analysis.
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3. We will publicly release the largest EEG dataset for visual
object analysis, with related source code and trained
models.

In particular, regarding claim 1, that paper further claims:

i. Their method can classify a far larger number (40) of
distinct object classes than prior work (at most 12
[17], typically 2) on classifying EEG signals.

ii. Their method achieves far higher accuracy
(82.9 percent) than prior work [17] (29 percent) on
classifying EEG signals.

That paper further couches its purported results in
superlatives:

In this paper, we want to take a great leap forward with
respect to classic BCI approaches, i.e., we aim at exploring
a new and direct form of human involvement (a new vision
of the “human-based computation” strategy) for auto-
mated visual classification. The underlying idea is to learn
a brain signal discriminative manifold of visual categories
by classifying EEG signals—reading the mind–and then
to project images into such manifold to allow machines to
perform automatic visual categorization—transfer human
visual capabilities to machines. The impact of decoding
object category-related EEG signals for inclusion into
computer vision methods is tremendous. First, identifying
EEG-based discriminative features for visual categoriza-
tion might provide meaningful insight about the human
visual perception systems. As a consequence, it will
greatly advance performance of BCI-based applications as
well as enable a new form of brain-based image labeling.
Second, effectively projecting images into a new biologi-
cally based manifold will change radically the way object
classifiers are developed (mainly in terms of feature extrac-
tion). [1, Section 1 pp. 6809–6810].

Here, we report a number of experiments and analyses
that call these results and claims into question. Specifically,
we find that the classifier employed makes extensive, if not
sole, use of long-term static brain activity that persists much
longer than the duration of individual stimuli. Since the
paper employs a block design, where all stimuli of a given
class are presented to a subject in succession, the classifiers
employed tend to classify the brain activity during that block,
which appears to be largely uncorrelatedwith stimulus class.
This is exacerbated by the reliance of the classifier on DC and
very-low frequency (VLF) components in the EEG signal that
reflect arbitrary long-term static mental states during a block
rather than dynamic brain activity. Since each trial in the test
sets employed comes from the same block as many trials in
the corresponding training sets, the reported high classifica-
tion accuracy results from classifying arbitrary temporal arti-
facts of the data instead of stimulus-related activity. When
the experiment is repeated with a rapid-event design, where
stimuli of different classes are randomly intermixed, classifi-
cation accuracy drops to chance. As a result, this renders sus-
pect all of the results and claims advanced in multiple
published papers [1], [2], [3], [4], [5], [6], [7], [8]. Our experi-
ments suggest that the underlying tasks are far more difficult
than they appear on the surface and are far beyond the cur-
rent state of the art. This suggests caution in light of widely
published [1], [2], [3], [4], [5], [6], [7], [8] sensational claims

that are overly optimistic but incorrect. Finally, in Section 6,
we scrutinize 122 recent papers that classify EEG data and
find that a significant fraction are problematic in ways
described here.

2 OVERVIEW

In Section 3, we report a comprehensive set of experiments
and analyses to fully understand the results and claims
reported by Spampinato et al. [1] (henceforth OP1, “original
paper”). We first summarize our findings:

a. In Section 3.3, we reanalyze the EEG data collected
by OP1 using a number of different classifiers in
addition to the one based on an LSTM that was
employed by OP1. We show that one can obtain
good, if not better, results with other classifiers, par-
ticularly ones that are sensitive to temporal align-
ment, unlike LSTMs. When we further reanalyze the
EEG data collected by OP1 with shorter temporal
windows (as short as a single temporal sample),
with random temporal offset, and with a reduced set
of channels, we obtain even better results with these
different classifiers. This suggests that the data col-
lected by OP1 lacks temporal and detailed spatial
information reflective of perceptual processes that
would benefit classification.

b. In Section 3.4, we replicate the data collection effort of
OP1 using the same stimuli, presentation order, and
timing, recording 96 channels with finer quantization
(24 versus 16 bits) and higher temporal sampling rate
(4096Hz versus 1 kHz).1We do this bothwith the orig-
inal block design employed byOP1, where all stimuli
of a given class are presented together, and with a
rapid-event design, where stimuli of different classes
are randomly intermixed. We also collect data with
both the block and rapid-event designs, both for the
original still-image stimuli depicting objects from
ImageNet and short video clips depicting activity
classes fromHollywood 2 [18].

c. In Section 3.5, we replicate all of the analyses of
Section 3.3 on our new data. For data collected with
the block design, we obtain moderately good classifi-
cation accuracy on both image and video stimuli with
one classifier, long windows, and a large set of chan-
nels. However, we obtain poor classification accuracy
with all of the other classifiers, shorter windows, and
a small set of channels. We further find that all classi-
fiers yield chance performance on data collected with
a rapid-event design.

d. OP1 state that their data analysis included band-
pass and notch filtering. Thus the analyses in Sec-
tion 3.5 employed such filtering, which removes
the DC and VLF components. Since the authors of
OP1 indicated to us in email (Section 4.1) that they
did not perform bandpass filtering, in Section 3.6,
we repeat the analysis of our data without band-
pass filtering as well. Retaining the DC and VLF

1. For compatibility with the analyses of OP1, we downsample our
data to 1024 Hz. Nonetheless, we release our raw data with the 4096 Hz
sample rate for future use.
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component allows us to replicate the results
obtained on the data released by OP1 with our
data collected with a block design. However, we
still obtain chance for our data collected with a
rapid-event design.

e. The block design employed by OP1, together with
their splits, has the property that every trial in each
test set comes from a block that contains many trials
in the corresponding training set. In Section 3.7, we
conduct four new analyses. In the first new analysis,
we repeat the analysis on the data released by OP1

using new splits where the trials in each test set
come from blocks that do not contain trials in the cor-
responding training set. Classification accuracy
drops to chance. In the second new analysis, we
attempt within-subject cross-block classification on
our data collected with a block design. Since we
recorded three separate runs with a block design for
both image and video stimuli, from the same subject,
two with the same stimulus presentation order and
one with a different stimulus presentation order, we
are able to conduct cross-block analyses where the
trials in the test set come from different blocks than
those in the corresponding training set. We first
attempt cross-block classification between block
runs with the same stimulus presentation order.
Classification accuracy drops precipitously when the
data is not preprocessed with a bandpass filter. Fur-
ther, when the data has been preprocessed with a
bandpass filter, classification accuracy drops to
chance. Finally, when attempting cross-block classifi-
cation between block runs with different stimulus
presentation orders, classification accuracy drops to
chance even when the data is not preprocessed with
a bandpass filter. In the third new analysis, we
repeat the analysis on our new data collected with a
rapid-event design, where the labels are replaced
with arbitrary labels that are correlated with the
block instead of the stimulus. Classification accuracy
rises from chance to levels far above chance, reach-
ing those obtained on the data collected by OP1. In
the fourth new analysis, we rerun the code released
by OP1 on the data released by OP1 after first apply-
ing various highpass filters to the data. Classification
accuracy drops from roughly 93 percent to roughly
32 percent. Collectively these demonstrate that the
high classification accuracies reported by OP1 result
from classifying the long-term brain activity associ-
ated with a block, even when that block contains
stimuli of different classes, not the brain activity
associated with perception of the class of the stimuli.
They further demonstrate that this is exacerbated by
the presence of DC and VLF components of the sig-
nal that remain due to lack of bandpass filtering.
This refutes claims 1 and 3.

f. In Sections 3.8 and 3.9, we replicate the regression and
transfer-learning analyses performed by Spampinato
et al. [1, Sections 3.3, 4.2, and 4.3] but with a twist. We
replace the EEG encodings with a random codebook
and achieve equivalent, if not better, results. This
demonstrates that the regression and transfer-

learning analyses performed by OP1 are not benefit-
ing from a brain-inspired or brain-derived representa-
tion in anyway, refuting claim 2.

3 EXPERIMENTS

Our findings in Sections 5 and 7 are supported by the fol-
lowing experiments and analyses performed.

3.1 TheOP1 Data Collection

OP1 adopted the following experimental protocol. They
selected 40 object classes from ImageNet [1, footnote 1]
along with 50 images for each class. These were presented
as stimuli to 6 human subjects undergoing EEG. A block
design was employed. Each subject saw 40 blocks, each
containing 50 image stimuli. Each image was presented
exactly once. All 50 stimuli in a block were images of the
same class. All subjects saw exactly the same 2,000
images. We do not know whether different subjects saw
the classes, or the images in a class, in different orders.
The image presentation order for one subject was pro-
vided to us by the authors. Each image was presented for
0.5 s. Blocks were separated by 10 s of blanking. Approxi-
mately 40� ð50� 0.5 sþ 10 sÞ ¼ 1400 s of EEG data
were collected from 128 channels at 1 kHz with 16 bit
resolution.

3.2 TheOP1 Data Analysis

OP1 report that the EEG data was preprocessed by appli-
cation of a second-order bandpass Butterworth filter (low
cut-off frequency 14 Hz, high cut-off frequency 71 Hz)
and a notch filter (49–51 Hz). The pass band was selected
to include the Beta (15–31 Hz) and Gamma (32–70 Hz)
bands, as they convey information about the cognitive processes
involved in the visual perception [1, Section 3.1 p. 6812]. The
data for all 6 subjects was pooled, segmented into trials
of approximately 0.5 s duration, and divided into six
training/validation/test-set splits. Each portion of each
split contained data from all 6 subjects and all classes for
all subjects. The data was z-scored prior to training and
classification. An LSTM, combined with a fully connected
layer and a ReLU layer, was applied to a 440 ms window
of each trial starting 40 ms from stimulus onset. A variety
of different architectural parameters were evaluated, the
best of which achieved 85.4 percent validation accuracy
and 82.9 percent test accuracy. OP1 claim that this is sig-
nificantly higher classification accuracy for a significantly
larger number of classes than all prior reported classifica-
tion experiments on EEG data [17], [19], [20], [21], [22],
[23], [24], [25], [26].

3.3 Reanalysis of theOP1 Data

We asked whether the significant improvement in classifica-
tion ability was due to the classifier architecture employed
by OP1 or whether it was due to some aspect of their experi-
mental protocol and data collection procedure. OP1 have
publicly released their code2 and data.3 This allowed us to

2. http://perceive.dieei.unict.it/files/cvpr_2017_eeg_encoder.py
3. http://perceive.dieei.unict.it/index-dataset.php?

name=EEG_Data
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verify their published results and to reanalyze their data
with different classifiers to investigate this question. The
released code yields (slightly better than) the published
accuracy on the released data.

OP1 have released their data in both Python and Matlab
formats. Both formats are subsequent to segmentation. All
results reported here were produced with the Python format
data which was z-scored before processing. See Section 4 for
details.

We reanalyzed the OP1 data with four different classi-
fiers (Table 1): a k-nearest neighbor classifier (k-NN), a
support vector machine (SVM [27]), a multilayer percep-
tron (MLP), and a 1D convolutional neural network
(CNN).4 The k-nearest-neighbor classifier used k ¼ 7 with
a Euclidean distance on the 128� 440 ¼ 56320 element
vector associated with each trial. The SVM employed a
linear kernel applied to data that was temporally down-
sampled to 500 Hz, i.e., 128� 220 ¼ 28160 element vec-
tors. The MLP employed two fully connected layers with
a sigmoid activation function after the first fully con-
nected layer, and no dropout, trained with a cross-
entropy loss, applied to 128� 440 ¼ 56320 element vec-
tors, with 128 hidden units. The 1D CNN (Fig. 1) proc-
essed each of the 128 channels independently with eight
1D CNNs of length 32 and stride 1. The 128 applications
of each of the eight 1D CNNs shared the same parame-
ters. The output of each was processed by an ELU, fol-
lowed by dropout with probability of 0.5. This yielded a
temporal feature stream of length 440� 32þ 1 ¼ 409 with
128� 8 ¼ 1024 features per time point. This was then
processed by a fully connected layer mapping each time
point to a 40 element vector. The parameters were shared
across all time points. This was then processed by average
pooling along the time axis, independently for each of the
40 channels, with a kernel of length 128 and a stride
of 64. This produced a feature map with 40 features for
5 time points. Dropout with probability 0.5 was then
applied, followed by a fully connected layer with 40 out-
puts. Training was performed with a cross-entropy loss.
For the LSTM, temporal EEG samples for a trial were pro-
vided one-by-one as input to the classifier. For the
1D CNN, a matrix whose rows were channels and whose
columns were temporal EEG samples for a trial was pre-
sented as input to the classifier. For the other classifiers,
all temporal EEG samples for a trial were concatenated
and presented as a single input vector.

The results in Table 1 suggest that there is nothing spe-
cific about the classifier architecture employed by OP1 that
yields high results. The same results can be obtained not
only with an LSTM-based classifier or a 1D CNN that
attempts to model the temporal nature of the signal, but
also with an SVM that has no particular temporal struc-
ture. Moreover, while other methods such as k-NN and
MLP that also lack temporal structure do not yield as high
accuracy, they nonetheless yield accuracy far higher than
chance and far higher than any of the results reported in
the literature cited by OP1: [17], [19], [20], [21], [22], [23],
[24], [25], [26].

Given that high accuracy was achieved with classifiers
that should be sensitive to temporal translation of the sig-
nal, we asked whether the classification accuracy
depended on this. To this end, we trained and tested all
5 classifiers, varying the length of the trial window
between 200 ms, 100 ms, 50 ms, and 1 ms (Table 2).5 In all
cases, the trial window was started at a random offset
from the stimulus onset, on a trial-by-trial basis. Note
that high accuracy can even be obtained with a single
temporal sample randomly selected within the stimulus
interval. This suggests that no temporal brain processing
is reflected in the classification accuracy.

An earlier report [2] conducted a similar data collec-
tion effort to that of OP1 with 32 channels instead of 128.
That effort yielded considerably lower classification accu-
racy (about 40 percent) on the same classes, stimuli,
experimental protocol, and classification architecture.
Given that the classifiers analyzed here appear not to rely
on the temporal nature of brain processing, we asked

TABLE 1
Classification Accuracy Averaged Across Validation Sets,

Test Sets, and All Six Splits Used by OP1 on Their Released
Data With Their Software (an LSTM Combined With
A Fully Connected Layer and a ReLU Layer) and Four
New Classifiers: A Nearest Neighbor Classifier (k-NN),

an SVM, an MLP, and a 1D CNN

Here, and in all tables, starred values indicate above chance (p < 0:005) by a
binomial cmf.

Fig. 1. Our 1D CNN used to process EEG data.

4. All code and raw data needed to replicate the results in this paper
are available at http://dx.doi.org/10.21227/x2gf-5324

5. Several relevant architectural parameters of some of the classifiers
vary from those presented in Section 3.3 for different window lengths.
Due to the nature of its design, the 1D CNNmodel was never applied to
windows shorter than 200ms. Further, when running the SVM on 440 ms
windows, the datawas downsampled to 500 Hz, as per Section 3.3, but on
all otherwindow sizes, the datawas processed at 1 kHz.
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how much they rely on the number of channels. To this
end, we performed feature, i.e., channel selection on the
dataset to train and test with various subsets of channels
of different sizes. The Fisher score [28] of a channel v for
a classification task with C classes where each class c
has nc examples was computed as

XC

c¼1

ncðmc;v � mvÞ2

XC

c¼1

ncs
2
c;v

; (1)

where mc;v and sc;v were the per-class per-channel means
and variances and mv was the per-channel mean. We
selected the m channels with highest Fisher score on the
training set, for varying m, and repeated the training and
testing on this subset of channels for varying window
lengths (Table 3).6 We observe that the full 128 channels are
not necessary to achieve high accuracy. While the accuracy
degrades somewhat when using fewer than 32 channels,
one can obtain far greater accuracy than chance and far
greater accuracy than all prior reported classification experi-
ments cited by OP1: [17], [19], [20], [21], [22], [23], [24], [25],
[26] on EEG data with as few as 8 channels. Moreover, one
can obtain far greater accuracy than Spampinato et al. [2]
with the same number (32) of channels and the same accu-
racy with far fewer (8) channels. While the spatial layout of
channel selection might not coincide with the electrode
placement of a cap with fewer electrodes, we next discuss
why we consider it important that one can accurately clas-
sify the OP1 data with such extreme spatial and temporal
downsampling.

3.4 New Data Collection

The above analyses suggest that the accuracy achieved by
OP1 was not due to the analysis architecture but rather
due to either the experimental protocol (block design,
stimuli, and stimulus timing and presentation order) or
the data collection effort (their laboratory apparatus—caps
and acquisition hardware—used). We asked whether the
accuracy was due to the former or the latter. To this end,
we repeated the data collection effort. We collected data
from six subjects. For each, we collected four kinds of
data. The first two used the same 40 object classes and
2,000 image stimuli as OP1. The second two used the
12 activity classes and a subset of the video clips from Hol-
lywood 2 as described in Siskind [29]. The subset of clips

was selected to be counterbalanced, with 32 clips per class,
temporally cropped to a uniform 4 s duration centered
around the activity class depicted, and transcoded to a
uniform spatial and temporal resolution. We repeat all of
our experiments and analyses on both image and video
stimuli to investigate whether the issues that arise are par-
ticular to the task of classifying object perception (nouns)
or whether they also arise in the task of classifying activity
perception (verbs).

Data was collected with two different paradigms for
each set of stimuli. One paradigm used a block design,
where all stimuli of a given class were shown together
in a single block. The other paradigm used a rapid-event
design, where the stimuli were presented in randomized
order.

For subject 1, we collected the block data once, thus col-
lecting four recordings: one image block, one image rapid
event, one video block, and one video rapid event. For sub-
jects 2–5, we collected the block data twice, both with the
same stimulus presentation order, thus collecting six
recordings per subject: two image block, two video block,
one image rapid event, and one video rapid event. For sub-
ject 6, we collected the block data three times, the first two
with the same stimulus presentation order and the third
with a different order. This alternate order varied both the
order in which the classes were presented as blocks and the
order in which the stimuli within a class were presented
within a block. Thus for subject 6, we collected eight record-
ings: three image block, three video block, one image rapid
event, and one video rapid event. The data for subject 1 was
collected in two sessions (one capping for each), one for

TABLE 3
Classification Accuracy for Varying Numbers of Channels,

Averaged Across Validation Sets, Test Sets, and All Six Splits
Used byOP1 on Their DataWith All Five Classifiers and Varying

Trial Window LengthsWith RandomTemporal
Offset From the Stimulus Onset

TABLE 2
Classification Accuracy for Varying Trial Window Lengths With
Random Temporal Offset From the Stimulus Onset, Averaged
Across Validation Sets, Test Sets, and All Six Splits Used by

OP1 on Their Data With All Five Classifiers

6. Several relevant architectural parameters of some of the classifiers
vary from those presented in Section 3.3 for different numbers of
channels.
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image stimuli and one for video stimuli. The data for each
remaining subject was collected in a single session with a
single capping. Since all analyses on our data are within
subject and just on images or just on video, no alignment
was necessary.

The block design for the image stimuli employed the
same design as OP1: 40 blocks, each consisting of 50 stimuli,
each presented for 0.5 s with 10 s of blanking after each
block. For all but the third block run for subject 6, the pre-
sentation order of the classes and stimuli within each class
were the same as in the data collected by OP1.

The rapid-event design for the image stimuli also
employed 40 blocks, each consisting of 50 stimuli, each pre-
sented for 0.5 s with 10 s of blanking after each block, just
that each block contained a random selection of images
from different classes. In the latter, different blocks could
contain different numbers of images for different classes,
subject to the constraint that, over the entire experiment,
each of the 2,000 images was shown exactly once.

The block design for the video stimuli began with 8 s of
fixation blanking, followed by 12 blocks, during each of
which 32 clips were presented in succession, each lasting
4 s, with 10 s of fixation blanking after each block. Approxi-
mately 12� ð32� 4 sþ 10 sÞ ¼ 1656 s of EEG data were
collected. For the block design, all stimuli within the block
were of the same class. For all but the third block run for
subject 6, the presentation order of the classes and stimuli
within each class were the same.

The rapid-event design for the video stimuli also
employed 12 blocks, each consisting of 32 stimuli, each pre-
sented for 4 s with 10 s of blanking after each block, just that
each block contained a random selection of clips from dif-
ferent classes. In the latter, different blocks could contain
different numbers of clips for different classes, subject to the
constraint that, over the entire experiment, each of the
384 clips was shown exactly once.

Unlike the data collection effort of OP1, which divided
each recording into four 350 s sessions, each of our
36 recordings was collected in a single session. EEG data
was recorded from 96 channels at 4,096 Hz with 24 bit reso-
lution using a BioSemi ActiveTwo recorder7 and a BioSemi
gel electrode cap. Two additional channels were used to
record the signal from the earlobes for rereferencing. A trig-
ger was recorded in the EEG data to indicate stimulus onset.
We downsampled the data to 1.024 kHz, rereferenced the
data to the earlobes, and employed the same preprocessing
as reported by OP1: a bandpass filter (low cut-off frequency
14 Hz, high cut-off frequency 71 Hz), a notch filter
(49–51 Hz), and z-scoring.8

3.5 Analysis of Our New Data

We applied the analysis from Table 3 to our new data col-
lected with the block design for the image (Table 4 left)

and video (Table 4 right) stimuli.9 This subsumes all anal-
yses performed on the OP1 data. Note that we are not
able to replicate the results of OP1. While the 1D CNN
achieves moderately good performance on both image
and video stimuli, the other classifiers perform poorly.
Moreover, for shorter analysis windows, random offsets,
and reduced numbers of channels, the other classifiers
perform largely at chance. We analyze the source of this
difference below.

We then applied all of the classifiers from Table 1 to the
data collected with a rapid-event design for the image
(Table 5 left) and video (Table 5 right) stimuli. Note that all
classifiers yield chance performance.

3.6 Spectral Analysis

We asked why it is possible to achieve high accuracy with
short analysis windows on the OP1 data but not with our
data. The authors of OP1 indicated to us in email that
their report of preprocessing was a misprint and that
they performed notch filtering (during acquisition) and z-
scoring but not bandpass filtering. See Section 4.1 for
details. Since their released code performs z-scoring, this
indicates that their released data reflects notch filtering
but neither bandpass filtering nor z-scoring. We thus
reanalyzed our data with a notch filter and z-scoring but
no bandpass filter (Tables 6 and 7). Note that we now
obtain better results for the data collected with the block
design, similar to that obtained with the data released by
OP1, but still obtain chance for data collected with the
rapid-event design.

3.7 Block Versus Rapid-Event Design

We asked why we (and OP1) are able to obtain high classifi-
cation accuracy with a block design but not a rapid-event
design. To this end, we performed four reanalyses.

First, we repeated the analysis from Tables 1, 2, and 3,
where instead of using the training/test set splits provided
by OP1, we conducted a leave-one-subject-out round-robin
cross validation, training on all data from five of the subjects
and testing on all data from the sixth, rotating among all six
subjects as test (Table 8). Note that classification accuracy is
now at chance.

Second, we performed cross-block analyses on our new
data, whereby we trained models on one block run from a

7. The ActiveTwo recorder employs 64� oversampling and a sigma-
delta A/D converter, yielding less quantization noise than 24 bit uni-
form sampling.

8. OP1 presumably applied a notch filter to remove 50 Hz line noise.
Being in the US, we should nominally remove 60 Hz line noise instead
of 50 Hz. However, after rereferencing, our data contains no line noise
so notch filtering is unnecessary. We employ a 50 Hz notch filter just to
replicate OP1.

9. We present here and elsewhere in this paper the results for subject 6,
often just for a subset of the block runs. The Appendix in the supplemen-
tarymaterial, which can be found on theComputer SocietyDigital Library
at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.2973153,
contains the results for all other block runs for subject 6 and for all block
runs for all other subjects. All subjects and all block runs for all subjects
exhibit the same broad pattern of results. Unlike the analyses of OP1

which pool data from all six subjects into both the training and test sets,
we do not pool data. Further, unlike the lone cross-subject reanalysis of
the OP1 data in Section 3.7, we do perform cross-subject train and test on
our data. All analyses on our data train and test on data from the same
subject. For purposes of calculating window lengths for our new data, we
treat 1,024 Hz as 1 kHz. Several relevant architectural parameters of some
of the classifiers vary from those presented in Section 3.3 when applied to
video data, particularly with different window lengths and/or numbers
of channels. Due to the nature of its design, the 1D CNNmodel was never
applied to video data withwindows shorter than 1,000 ms. Further, when
running the SVM on video data, the data was downsampled to 500 Hz
irrespective ofwindow length.
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given subject and then tested the models on a different
block run for that same subject. Since we had three block
runs for subject 6, two collected with the same stimulus pre-
sentation order and one collected with a different order, this

allowed determining both the degree to which classification
accuracy observed with a block design depended on having
training and test samples from the same block and how
much depended on stimulus presentation order. All of these

TABLE 4
Application of the Analysis From Table 3 to the First Block Run of Subject 6 on (left) Image and (right) Video Stimuli,

Where the Data has been Preprocessed With Bandpass Filtering

Tables 11 and 12 in the appendix in the supplementary material, available online, contain data for the other block runs for subject 6 while Tables 21, 22, 23, 24,
and 25 and 51, 52, 53, and 54 contain data for all block runs of all other subjects.

TABLE 5
Application of the Analysis From Table 3 to the Rapid-Event Run of Subject 6 on (left) Image and (right) Video Stimuli,

Where the Data has been Preprocessed With Bandpass Filtering

Tables 26, 27, 28, 29, and 30 in the appendix in the supplementary material, available online, contain data for all other subjects.
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analyses between two different block runs average across
training on each block run and testing on the other. Table 15
in the Appendix in the supplementary material, available
online, illustrates cross-block accuracy when both block

runs have the same stimulus presentation order and the
data has not been preprocessed with bandpass filtering.
Note that classification accuracy drops precipitously from
the results in Table 6, though still above chance. Table 18 in

TABLE 7
Application of the Analysis From Table 3 to the Rapid-Event Run of Subject 6 on (left) Image and (right) Video Stimuli,

Where the Data has not been Preprocessed With Bandpass Filtering

Tables 36, 37, 38, 39, and 40 in the Appendix in the supplementary material, available online, contain data for all other subjects.

TABLE 6
Application of the Analysis From Table 3 to the First Block Run of Subject 6 on (left) Image and (right) Video Stimuli,

Where the Data has not been Preprocessed With Bandpass Filtering

Tables 13 and 14 in the Appendix in the supplementary material, available online, contain data for the other block runs for subject 6 while Tables 31, 32, 32, 34,
and 35 and 55, 56, 57, and 58 contain data for all block runs of all other subjects.
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the Appendix in the supplementary material, available
online, repeats the analysis from Table 15 in the Appendix
in the supplementary material, available online, where the
data has been preprocessed with bandpass filtering. Classi-
fication accuracy drops to chance. Table 16 in the Appendix
in the supplementary material, available online, illustrates
cross-block accuracy when the two block runs have differ-
ent stimulus presentation order but the data has been pre-
processed with bandpass filtering. Classification accuracy
again drops to chance.

Third, we reran all of the analyses from Table 6 on our
new data collected with a rapid-event design, both with and
without bandpass filtering, but with a twist. Instead of using
correct labels, which varied on a stimulus-by-stimulus basis,
we used arbitrary labels, which varied on a block-by-block
basis: each block was given a distinct label but all stimuli
within a block were given the same label. Thus while the
stimuli are changing in each block, they are given the wrong
unchanging label and, like the block design employed by
OP1, each trial in the test set comes from a block with many
trials in the training set. The results with and without band-
pass filtering are shown in Tables 9 and 10 respectively and
mirror the results in Tables 4 and 6 respectively. Note that
with bandpass filtering, we obtain classification accuracies
far higher than chance with the 1D CNN, while without
bandpass filtering, we obtain near perfect classification accu-
racies, similar to those obtained in Tables 1, 2, and 3.

Fourth, we reran the code released by OP1 (an LSTM
combined with a fully connected layer and a ReLU layer)
on the data released by OP1 but first applied various
highpass filters with 14 Hz, 10 Hz, and 5 Hz cut-offs to
the data. Recall, from Table 1, that we obtain a classifica-
tion accuracy of 93 percent without such highpass filter-
ing. With the highpass filtering, classification accuracy
drops to 32.4 percent (14 Hz), 29.8 percent (10 Hz), and
29.7 percent (5 Hz).

3.8 Regression

In support of claim 2, Spampinato et al. [1, Sections 3.3 and
4.2] report an analysis whereby they use the LSTM, com-
bined with a fully connected layer and a ReLU layer, that
was trained on EEG data as an encoder to produce a 128-ele-
ment encoding vector for each image in their dataset. They
then regress the 1,000-element output representation from a
number of existing deep-learning object classifiers that have
been pretrained on ImageNet to produce the same encoding
vectors. When training this regressor, in some instances,
they freeze the parameters of the existing deep-learning
object classifiers, while in other instances they fine tune
them while learning the regressor. They report a mean
square error (MSE) between 0.62 and 7.63 on the test set
depending on the particulars of the model and training regi-
men [1, Table 4]. They claim that this result supports the
conclusion that this is the first human brain–driven automated
visual classification method and thus enables automated visual
classification in a “brain-based visual object manifold” [1, Sec-
tion 5 p. 6816].

Note that OP1 use the same LSTM combined with a
fully connected layer and a ReLU layer both as a classifier
and as an encoder. During training as a classifier, the out-
put of the last layer of the classifier, namely the ReLU, is
trained to match the class label. Thus using such a trained
classifier as an encoder would tend to encode EEG data in
a representation that is close to class labels. Crucially, the
output of the classifier taken as an encoder contains
mostly, if not exclusively, class information and little or
no reflection of other non-class-related visual information.
Further, since the output of their classifier is a 128-ele-
ment vector, since they have 40 classes, and since they
train with a cross-entropy loss that combines log softmax
with a negative log likelihood loss, the classifier tends to
produce an output representation whose first 40 elements
contain an approximately one-hot-encoded representation
of the class label, leaving the remaining elements at zero.
Indeed, we observe this property of the encodings pro-
duced by the code released by OP1 on the data released
by OP1 (Fig. 3 in the Appendix in the supplementary
material), available online. Note that the diagonal nature
of Fig. 3 in the Appendix in the supplementary material,
available online, reflects an approximate one-hot class
encoding. Any use of a classifier trained in this fashion as
an encoder would have this property. Spampinato et al.
[1, Sections 3.3, 4.2, and 4.4] use such an encoder to train
an object classifier with EEG data, Palazzo et al. [3], Kava-
sidis et al. [4], and Tirupattur et al. [7] use such
an encoder to train a variational autoencoder (VAE) [30]
or a generative adversarial network (GAN) [31] to pro-
duce images of human perception and thought, and

TABLE 8
Reanalysis of the Data Released by OP1 With Classification

Accuracy Averaged Over Leave-One-Subject-Out Round-Robin
Cross Validation Instead of the Provided Splits
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Palazzo et al. [8] use such an encoder to produce saliency
maps, EEG activation maps, and to measure association
between EEG activity and layers in an object detector.
Thus all this work is essentially driven by encodings of
class information that lack any visual information or any
representation of brain processing.

We ask whether there is merit in the regression algorithm
proposed by OP1 to create a novel object classifier driven by
brain signals. We analyze their algorithm under the assump-
tion that it is applied to EEG data that supports classification
of visually perceived objects and does not suffer from con-
tamination. Under this assumption, the EEG response of two

TABLE 9
Reanalysis of the Rapid-Event Run for Subject 6 on (left) Image and (right) Video Stimuli With Incorrect Block-Level Labels,

Where the Data has Been Preprocessed With Bandpass Filtering

Tables 41, 42, 43, 44, and 45 in the Appendix in the supplementary material, available online, contain data for all other subjects.

TABLE 10
Reanalysis of the Rapid-Event Run for Subject 6 on (left) Image and (right) Video Stimuli With Incorrect Block-Level Labels,

Where the Data has not been Preprocessed With Bandpass Filtering

Tables 46, 47, 48, 49, and 50 in the Appendix in the supplementary material, available online, contain data for all other subjects.
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images of the same class would be closer than for two images
of different classes. An encoder like the one employed by
OP1 would produce encodings that are more similar for
images of the same class than images of different classes.
(For their actual encoder, Fig. 3 in the Appendix in the sup-
plementary material, available online, shows that they are
indeed little more than class encodings.) Moreover, deep-
learning object classifiers presumably produce closer repre-
sentations for images in the same object class than for images
of different classes. After all, that is what object classifiers do.
Thus all the regressor does is preserve the property that two
images of the same class regress to closer representations
than two images of different classes. In other words, all the
regressor does is map a 1,000-dimension representation of
class to a 128-dimension representation of class. It should not
matter whether the actual target representation is a reflection
of brain processing or not.

We asked whether the putative success of this regression
analysis depended on a representation derived from neuro-
imaging. To this end, we generated a random codebook
with random codewords that simulate the EEG response of
all six subjects to all 2,000 image stimuli. This was done
with the following procedure. We first generated 40 random
codewords, one for each class, by uniformly sampling ele-
ments i.i.d. in [0, 2]. We then generated 50� 6 ¼ 300 ran-
dom codewords for each class, one for each subject and
image, by adding univariate Gaussian noise with s2 ¼ 4
i.i.d. to the elements of the class codewords, and clipped the
elements to be nonnegative. This generated a codebook of
12,000 random codewords for each simulated subject
response that has the property that encodings for images in
the same class are closer than entries for images in different
classes. These codewords carry no brain-inspired meaning
whatsoever. Like OP1, we then averaged the codewords
across subject for each image. We then applied the PyTorch
VGG-16 [32] pretrained on ImageNet, without any fine tun-
ing, to each of the images in the OP1 dataset. Finally, we
trained a linear regressor with MSE loss and L2 regulariza-
tion from the output of VGG-16 on each image to the aver-
age random codeword for that image on the training set for
the first split provided by OP1. We then measured an aver-
age MSE of 0.55 on the validation and test sets of that split.
The fact that it is possible to regress the output of an off-the-
shelf pretrained object classifier to random class encodings
as well as one can regress that output to class encodings
derived from an EEG encoder demonstrates that the ability
to do so does not depend on anything other than class infor-
mation in the source and target representations.

3.9 Transfer Learning

In further support of claim 2, Spampinato et al. [1, Section 4.4]
report an analysis that purports to demonstrate that the
learned combination of regressor and object classifier gener-
alizes to other datasets with disjoint sets of classes. To this
end, they first apply VGG-16, pretrained on ImageNet, to a
subset of the Caltech 101 [33] dataset with 30 classes, not fine
tuned, to produce a 1,000-element representation of each
image. They then map this with their regressor trained as
described above to 128-element encodings. Finally, they train
and test an SVM classifier on the resulting encodings. They
compare this with an SVM classifier trained and tested on

the 1,000-element outputs from pretrained deep-learning
object classifiers that have not been mapped with their
regressor and achieve comparable performance (92.6 percent
on the 1,000-element output of GoogLeNet [36] and 89.7 per-
cent on the 128-element encodings regressed from GoogLe-
Net). They claim that their approach enables automated visual
classification in a “brain-based visual object manifold” and show
[s] competitive performance, especially as concerns learning EEG
representation of object classes [1, Section 5 p. 6816].

We conjecture that the putative success of this transfer-
learning analysis is not surprising and demonstrates noth-
ing about the quality of the representation nor whether it
reflects brain processing. As discussed above, the deep-
learning object classifiers produce closer output representa-
tions for images in the same object class than for images of
different classes. Further, as discussed above, all the regres-
sor does is preserve the property that two images of the
same class regress to closer encodings than two images of
different classes. The choice of regressor or regressed repre-
sentation should have no impact on the SVM classifier so
long as these properties hold.

We thus asked whether the putative success of this trans-
fer-learning analysis depended on a representation derived
from neuroimaging. To this end, we used VGG-16, pre-
trained on ImageNet without any fine tuning, to map the
images in Caltech 101 to 1,000-element encodings and
applied the regressor that we trained on random represen-
tations to map these 1000-element encodings to 128-element
encodings. This composite mapping exhibited the above
properties. This, again, generated a codebook of random
codewords for each image in this subset of Caltech 101 that
has the property that entries for images in the same class
are closer than entries for images in different classes. As
before, the codewords carry no brain-inspired meaning. We
split our subset of Caltech 101 into disjoint training and test
sets, trained a linear SVM on the training set, and achieved
an accuracy of 95.9 percent on the test set when classified on
the 128-element encodings regressed from VGG-16 as com-
pared with 94.9 percent on the test set when classified on
the 1,000-element output of VGG-16.

4 RECONCILING DISCREPANCIES

A number of papers, e.g., Spampinato et al. [2, Figs. 1 and 2
(c)], Palazzo et al. [3, Figs. 1 and 2], and Kavasidis et al. [4,
Figs. 2, 3, and 4], use an encoder that appears to be similar
or identical to that reported in Spampinato et al. [1, Figs. 2
and 3(c)].10 A number of papers [3], [4], [5], [8] use the data-
set reported in OP1.

11OP1 have released the code2 for their
encoder as well as their data.3 They have released their data
in two formats, Python and Matlab. We have observed a
number of discrepancies between the different published
accounts, between the different released variants of the
data, and between the published accounts and the released

10. Palazzo et al. [3] and Tirupattur et al. [7] appear to employ related
but somewhat different encoders. We do not comment on these here
since we do not have access to this code.

11. An earlier but similar dataset was reported in Spampinato et al.
[2]. Tirupattur et al. [7] use a different dataset reported by Kumar et al.
[6]. We do not comment on these here since we do not have access to
these datasets.

LI ET AL.: PERILS AND PITFALLS OF BLOCK DESIGN FOR EEG CLASSIFICATION EXPERIMENTS 11



code and data. We discuss here how we reconciled such for
the purposes of the experiments and analyses reported
here. We do this solely to document precisely what we have
done. We do not believe that anything substantive turns on
these issues, except for the issue of filtering, whether or not
the DC and VLF components are removed from the EEG
data. In the case of filtering, we perform all analyses twice,
with and without such removal. In the case of differences
between the published accounts and released code, we have
repeated all analyses with both the released code and all
reasonable interpretations of the published accounts and
observed no substantive difference. The Appendix in the
supplementary material, available online, reports all these
repeated analyses.

4.1 Filtering

Spampinato et al. [2, Section 3.1 p. 7], Spampinato et al. [1,
Section 3.1 p. 6812], and Palazzo et al. [3, Section 3.1 p. 3412]
claim to preprocess the EEG data with a bandpass filter (14–
70 Hz) and a notch filter (49–51 Hz). Later publications [4],
[7], [8] do not discuss filtering. The code originally released
by OP1 does not contain any bandpass or notch filtering,
but does contain z-scoring. Further, spectral analysis of their
released data suggested that no bandpass filtering was per-
formed. We provided an early draft of this paper to the
authors of OP1 and engaged the authors in email correspon-
dence to clarify the experimental procedure. That corre-
spondence states that

� the original paper(s) did not accurately describe
preprocessing,

� the released dataset comes directly from the record-
ing device and was not preprocessed or filtered,

� notch filtering and z-scoring was performed but no
other preprocessing was performed,

� this filtering was done during training and is not
reflected in the released dataset, and

� all of the reported results were produced with the
released code except that the released code lacks the
notch filtering which was performed by other nonre-
leased code.

The authors have subsequently modified their released
code to include bandpass and notch filtering. We take our
correspondence with the authors to imply that no filtering
was applied during acquisition, no filtering was applied
prior to production of either the Python or Matlab format
released data, the analyses reported in OP1 were performed
using the original released code which did not perform any
filtering, and any filtering code was added subsequent to
our contact with OP1. All analyses reported here were per-
formed with the original released code, modified as dis-
cussed below, on the Python format data, unmodified,
except as discussed below and in the text.

4.2 Quantization

Spampinato et al. [1, Section 3.1 p. 6813] and Palazzo et al. [3,
Section 3.1 p. 3413] report that the EEG data was quantized.
As the released code contains no indication of such, we have
no way of knowing sufficient details of how to replicate this
quantization on our data. We further have no way of know-
ing if the released Python and/or Matlab data reflects this

quantization or not. Thus we do not perform any quantiza-
tion on either the released data or our new data as part of any
analyses reported here.

4.3 Trials Considered

OP1 nominally collected 50 trials for each of 40 stimuli and 6
subjects for a total of 12,000 trials. However, Palazzo et al. [3,
Section 3.1 p. 3413] and Kavasidis et al. [4, Section 3.1
p. 1811] report that certain trials were discarded. The
released data in Python format contains 11,965 trials which
is a superset of the released data in Matlab format that con-
tains 11,466 trials. The 499 trials in the Python format data
that are missing from the Matlab format data come from
Subject 2. Further, the Python format data differs from the
Matlab format data. We have no way of knowing why the
data differs and why the Python and Matlab format data
contain different numbers of trials. Nonetheless, we use all
11,965 trials in the Python format data, including the 499 tri-
als that are missing in the Matlab format data.

4.4 Trial Window

Spampinato et al. [1, Section 3.1 p. 6813], Palazzo et al. [3,
Section 3.1 p. 3413], and Palazzo et al. [8, Section 7.1 p. 7]
report that samples 40–480 were used. Palazzo et al. [3, Sec-
tion 3.1 p. 3413] report that trials shorter than 480 samples
were discarded, those with between 480 and 500 samples
were padded with zeros to be 500 samples long, and trials
longer than 500 samples were tail trimmed. The released
code, however, uses samples 20–450 (i.e., a sequence of
length 430), lacks zero padding and tail trimming, and dis-
cards sequences shorter than 450 samples or longer than
600 samples. No trials are shorter than 480 samples so none
are discarded for this reason and none require zero pad-
ding. The released code, however, discards 25 trials beyond
the 534 mentioned above for being longer than 600 samples.
We have no way of knowing what was actually done to
obtain the results in OP1, Palazzo et al. [3], Kavasidis et al.
[4], and Palazzo et al. [8]. Here, we modified the released
code to not discard (the 25) trials longer than 600 samples
and to use samples 40–480 from each trial instead of 20–450.

4.5 The Encoder Model

When describing the encoder model ([2, Figs. 1 and 2(c)], [3,
Figs. 1 and 2], and [4, Figs. 2, 3, and 4]), Spampinato et al. [2,
Section 3.2 p. 9], Spampinato et al. [1, Section 3.2 p. 6813],
Palazzo et al. [3, Section 3.2 p. 3414], and Kavasidis et al. [4,
Section 3.2 p. 1811] state that the LSTM layer was followed by
a fully connected layer and then a ReLU layer. However, the
released code omits the ReLU layer.Wemodified the released
code to add the ReLU layer for the analyses reported here.

4.6 The Classifier

Spampinato et al. [2, Fig. 1] and Spampinato et al. [1, Fig. 2]
report training the encoder by attaching a classifier to its
output and training against known labels. Spampinato et al.
[2, Section 3.2 p. 8, Section 3.3 p. 10, Section 4.3 p. 14], Spam-
pinato et al. [1, Section 3.2 p. 6813, Section 3.3 p. 6814,
Section 4.3 p. 6816], Palazzo et al. [3, Section 3.2 p. 3414],
Kavasidis et al. [4, Section 3.2 p. 1811, Section 4.3 p. 1815],
Tirupattur et al. [7, Section 4.3 p. 954], and Palazzo et al. [8,
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Section 7.2 p. 8] describe this (40-way) classifier alternately
as a softmax layer, a softmax classification layer, a softmax
classifier, and softmax. Colloquial usage varies as to
whether or not this implies use of a fully connected layer
prior to the softmax layer.

The released code appears to use PyTorch torch.nn.

functional.cross_entropy, which internally uses
torch.nn.functional.log_softmax directly applied
to the 128-element output of the encoder, without an interven-
ing fully connected layer. Training a 40-way classifier this
way, appended to an encoder, with an implicit one-hot
representation of class labels, will tend to train the encoder to
produce 128-element EEG encodings where all but the
first 40 elements are zero (Fig. 3 in the Appendix in the supple-
mentary material, available online). Indeed, we have observed
this behaviorwith the released code.Wehave nowayof know-
ing what was actually intended and used to generate the
reported results. Here, like the released code, we train the
encoders with the same cross-entropy loss, which internally
contains a log softmax operation, but use the output of the
encoder, prior to any softmax operation, for classification.
(Note that had the output of the softmax layer been taken as
the EEG encodings, they would have been one-hot.)
Nothing turns on this. In the Appendix in the supple-
mentary material, available online, we perform all analy-
ses with both the original unmodified code and four
variants that cover all possible reasonable interpretations
of what was reported in the published papers. All
exhibit the same broad pattern of results.

5 DISCUSSION

The analyses in Section 3.3 demonstrate that the results
reported by OP1 do not depend on the within-stimulus tem-
poral or spatial structure of the EEG signal. In particular, the
fact that both the data released byOP1 and our new data col-
lected with a block design can be classified with extremely
short temporal windows demonstrates that the classification
performance does not depend on the temporal nature of
brain processing. This is exacerbated by the fact that the tem-
poral position of the window can vary randomly between
samples in both the training and test sets. The fact that both
datasets can be classified with an extremely small number of
channels demonstrates that the classification performance
does not depend on the spatial nature of brain processing.
The new data collection effort in Section 3.4 demonstrates
that the results reported by OP1 crucially depend on their
experimental protocol, which can be easily replicated by
others, and not on any unique aspect of their data collection
effort and laboratory facilities. The analyses in Section 3.5
demonstrate that the results reported by OP1 crucially
depend on a block design and cannot be replicated with a
rapid-event design. The analyses in Section 3.7 demonstrate
that the results reported byOP1 crucially depend on contam-
inated data. The block design of OP1, together with their
training/test-set splits, leads to data contamination, because
every trial in each test set comes from a block that has many
trials in the corresponding training set.

The first analysis in Section 3.7 shows that if one adopts
splits that separate trials from a block so that the test sets
never contain trials from blocks that have any trials in the

corresponding training sets, classification accuracy drops to
chance. This strongly suggests that the high classification
accuracy obtained by OP1 crucially depends on such con-
tamination, which constituted classifying arbitrary temporal
artifacts of the data instead of stimulus-related activity.

The second analysis in Section 3.7 shows that the results
reported byOP1 crucially depend not only on a block design,
but on shared stimulus-class presentation order. This,
together with the fact that the accuracy degrades to chance
when the data is preprocessed by bandpass filtering, strongly
suggests that even a cross-block analysis of data collected
with a block design is classifying long-term temporal charac-
teristics of the EEG signal, not short-term perceptual charac-
teristics of the stimuli. Further, the severe accuracy
degradation between a within-block analysis and a cross-
block analysis strongly suggests that the high classification
accuracy obtained byOP1 crucially depends on data contam-
ination, which constituted classifying arbitrary temporal arti-
facts of the data instead of stimulus-related activity.

This is further corroborated by the third analysis in
Section 3.7 that shows that one can obtain near perfect clas-
sification accuracy with an experiment design where labels
vary only by block but where the class of the stimuli within
the block are uncorrelated with the labels. If the methods of
OP1 were indeed classifying brain activity due to perception
of the class of the stimuli, one would expect to obtain chance
performance with this analysis. The fact that near perfect
performance was obtained strongly suggests that these
methods are indeed classifying the long-term static brain
activity that persists during a block that is uncorrelated
with the perceptual activity.

Finally, the fourth analysis in Section 3.7 shows that this
finding is exacerbated by the presence of DC and VLF com-
ponents of the recorded EEG signal that are present due to
the omission of bandpass filtering.

Simply stated, any EEG experiment with a block design
will be contaminated if

� the test set contains trials collected in the same block
or in close temporal proximity to trials of the same
class in the training set or

� the training and test sets were collected with the
same stimulus-class presentation order.

The data collected, used, and released by OP1 irreparably
suffers from contamination. It is impossible to remove the
inherent data contamination that results from the fact that
every trial in their test sets comes from the same block as
many trials in the corresponding training set. This is a prop-
erty of their experiment design, the block design combined
with their training and test set splits. Since only a single block
was recorded from each subject, it is impossible to construct
splits that decontaminate their data. It is further impossible to
decontaminate their data because all block runswere recorded
with the same stimulus-class presentation order. Since the
data released by OP1 irreparably suffers from contamination,
it renders this dataset unsuitable for its intended purpose of
decoding perceptual and conceptual processing and further
invalidates all subsequent analyses and claims that use this
data for those purposes [3], [4], [5], [8]. We propose that all
future classification experiments performed on EEG data
employ a design that controls for such contamination.
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5.1 Consequences of Flawed Filtering

While OP1 and two related papers [2], [3] suggest that the
reported results were obtained with a process that
included bandpass and notch filtering, subsequent analy-
sis and communication with the authors now suggest that
this was not the case (Section 4.1). This analysis and com-
munication with the authors has led them to modify their
code (Section 4.1). This is important for two reasons. First,
no amount of filtering can remove the inherent contamina-
tion in their data or the inherent flaws in their experiment
design. Second, the fact that the authors omitted the band-
pass filter exacerbated the issue, leading to egregious over-
estimation of the classification accuracy. This has led to
their results and data receiving considerable attention and
enthusiasm, possibly contributing to the sheer number
of papers that use this dataset and/or pursue similar
approaches. Had the stated filtering been performed, per-
haps the resulting more modest (but still invalid) results
would have tempered the rapid proliferation of follow-up
work that also suffers from similar methodological short-
comings. We stress that the root issue is data contamination.
Lack of filtering is not the root issue; it only exacerbates the
root issue.

5.2 Consequences of Flawed Block Design on
Subsequent Papers

The above strongly suggests that the output of the LSTM-
based encoder trained by OP1 does not constitute a “brain-
based visual object manifold” [1, Section 5 p. 6816]. Further,
the analyses in Sections 3.8 and 3.9 strongly suggest that
the object classifiers constructed by Spampinato et al. [1,
Sections 3.3, 4.2, and 4.3] are not making use of any informa-
tion in the output of the trained LSTM-based encoder,
whether or not it contains a representation of human brain
processing. Since these flaws are orthogonal to those of the
data contamination issue, these methods are irreparably
flawed and their shortcomings would not be remedied by
correction of the contamination issue.

Kumar et al. [6] report a different EEG dataset that also
appears to have been collected with a block design. Data
was recorded from a single 10 s block for a single stimulus
from each of 30 classes for each of 23 subjects. Each 10 s
block was divided into either 40 or 200 segments. Ten-way
cross validation was performed during analysis. We have
no way of knowing whether the test sets contained seg-
ments from the same blocks that had segments in the corre-
sponding training sets. But since a single block was
recorded for each stimulus for each subject, the only way to
avoid such would have been to conduct cross-subject analy-
ses. The first analysis in Section 3.7 suggests that such cross-
subject EEG analysis is difficult and far beyond the current
state of the art.

Tirupattur et al. [7] report using the dataset from
Kumar et al. [6] to drive a generative adversarial network
(GAN) in a fashion similar to Palazzo et al. [3]. Thatwork per-
forms five-way cross validation during analysis. Again, we
have no way of knowing whether the test sets contained seg-
ments from the same blocks that had segments in the corre-
sponding training sets, and avoiding such would have
required cross-subject analyses that our experiments suggest
are far beyond the current state of the art.

5.3 Consequences of Using Flawed EEG Encodings
as Input to Image Synthesis

Palazzo et al. [3], Kavasidis et al. [4], and Tirupattur et al. [7]
all purport to use the EEG encodings to generate images
using a GAN that depict human perception and thought.
Since we lack access to the code for any of these papers, we
are unable to perform the kind of random data analysis that
we perform in Sections 3.8 and 3.9 to evaluate these meth-
ods. Instead, here we analyze the result in Tirupattur et al.
[7], using only the published synthesized images. We select
this paper because it has the most extensive set of generated
examples. Tirupattur et al. [7, abstract p. 950] state:

While extracting spatio-temporal cues from brain signals
for classifying state of human mind is an explored path,
decoding and visualizing brain states is new and futuristic.
Following this latter direction, in this paper, we propose an
approach that is able not only to read the mind, but also to
decode and visualize human thoughts. More specifically,
we analyze brain activity, recorded by an ElectroEncephalo-
Gram (EEG), of a subject while thinking about a digit, char-
acter or an object and synthesize visually the thought item.
To accomplish this, we leverage the recent progress of adver-
sarial learning by devising a conditional Generative Adver-
sarial Network (GAN), which takes, as input, encoded EEG
signals and generates corresponding images.

Tirupattur et al. [7, Section 1 p. 950] further state:

Our goal is to extract some cues from the brain activity,
recorded using low-cost EEG devices1, and use them to
visualize the thoughts of a person. More specifically, we
attempt to visualize the thoughts of a person by generating
an image of an object that the person is thinking about.
EEG data of the person is captured while he is thinking of
that object and is used for image generation. We use a pub-
licly available EEG dataset [16] for our experiments and
propose a generative adversarial model for image genera-
tion. We make the following contributions in this work: 1)
we introduce the problem of interpreting and visualizing
human thoughts, 2) we propose a novel conditional GAN
architecture, which generates class-specific images accord-
ing to specific brain activities; 3) finally, we also show that
our proposed GAN architecture is well suited for small-
sized datasets and can generate class-specific images even
when trained on limited training data.

We demonstrate the feasibility and the effectiveness of
the proposed method on three different object categories,
i.e., digits, characters, and photo objects, and show that
our proposed method is, indeed, capable of reading and
visualizing human thoughts.

Conditional GANs are not intended to output exact copies
of the training set because the input that leads to synthesized
images contains noise in addition to class information.
GANs in their true spirit are supposed to learn visual fea-
tures that are indicative of different instances of objects
within a class and synthesize novel images for instances of a
class by selecting and combining those features in a semanti-
cally and visually coherent fashion. However, essentially all
of the example images illustrated in Tirupattur et al. [7,
Fig. 6] are nearly exact copies of images in ImageNet (Fig. 2).
This indicates mode collapse. Moreover, in order for them to
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generate the same image twice, they must be provided with
the same conditioning input, which in this case comprises
both an EEG encoding and noise. It would be highly unlikely
for the same EEG encoding and the same noise to be pro-
vided at each training iteration. Thus it would be highly
unlikely for a proper conditional GAN to be able to memo-
rize the training set. Moreover, it would be highly unlikely
for the same EEG encoding and the same noise to be pro-
vided both during training and test. Thus it would be highly
unlikely for a proper conditional GAN to output near exact
copies of the training set during test. Without their code and
data, it is impossible for us to precisely determine the cause
of this highly unlikely circumstance. Nonetheless, this calls
into question their claim that their proposed method is, indeed,
capable of reading and visualizing human thoughts.

5.4 Consequences for Flawed Joint Training of EEG
and Image Encoders to Analyze Brain
Processing of Images

Palazzo et al. [8, Fig. 1] jointly train an EEG encoder and an
image encoder to produce similar encoded representations
and then purport to use the trained encoders for several pur-
poses: producing saliency maps [8, Sections 4 and 7.3, and
Figs. 3 and 5], producing EEG activation maps [8, Sections 5
and 7.4, and Fig. 6], and associating EEG activity with layers
in a synthetic object detector [8, Sections 6 and 7.4, and Fig. 9].
Since these results were all produced with the same contami-
nated dataset, these results are all suspect. Moreover, Tables 5
and 7 suggest that using the proposed methods to produce
legitimate results from uncontaminated data collected with a
rapid-event design is unlikely to succeed. Beyond this, how-
ever, the methods themselves appear to be fundamentally
flawed and unlikely to demonstrate anything, even if they
could be made to work on uncontaminated data. The loss
function employed in the joint training regimen simply con-
strains the two encoded representations to be similar. A per-
fectly trained image encoder, trained against class labels,
would simply encode image class, nomore and no less. A per-
fectly trained EEG encoder, trained against class labels, would
simply encode stimulus class, no more and no less. During
joint training of the EEG encoder, the image encoder serves
simply as a surrogate for class labels, no more and no less.
Similarly during joint training of the image encoder, the EEG
encoder serves simply as a surrogate for class labels, no more
and no less. Thus joint training accomplishes nothing that
could not be accomplished by training the components indi-
vidually against class labels. The resulting encoded represen-
tations would contain no information beyond class labels.
With this, the saliency map [8, Eqs. (3) and (4), and Fig. 5]
measures nothing more than the degree to which image
regions impact classification accuracy of an object detector
trained against class labels. Brain activity, whether encoded in
EEG data or not, plays no role in constructing these saliency
maps. The importance Ic of an EEG channel c as rendered in
activation maps [8, Eqs. (5–7) and Fig. 6] measures nothing
more than the degree to which removing the information in c
decreases the classification accuracy, averaged over trials for
a class and/or subjects. While this nominally is a valid
approach, with the contaminated data collected with a block
design, all these maps illustrate is the degree to which a
given channel encodes the arbitrary long-term brain states

associated with the block, not any class-specific information.
Moreover, Tables 2, 3, and 8, suggest that any purported tem-
poral information in Palazzo et al. [8, Figs. 7 and 9] is artifac-
tual. Tables 5 and 7 suggest that activation maps computed
with uncontaminateddata collectedwith a rapid-event design
would simply be blank, as accuracy would be at chance levels
both prior and subsequent to removing the information in
any particular EEG channel. Finally, association Ac;l between
an EEG channel c and any component l of an object detector is
simply a linear combination of the class-average activation
maps [8, Fig. 6] weighted by the degree to which removing
the portion l of an object detector causesmisclassifications to a
given class. This holds whether l is a portion of a feature map,
an entire feature map, or all feature maps in a given layer, as
computed by Palazzo et al. [8, Eqs. (8–10)] and rendered in
Palazzo et al. [8, Fig. 9]. The fact that the activation maps in
Palazzo et al. [8, Fig. 9] become more diffuse for later layers in
an object detector says nothingmore than the fact that remov-
ing later layers in an object detector leads to higher entropy in
the output distribution, a property solely due to the image
classifier and completely independent of any brain process-
ing, whethermeasured by EEG or not.

5.5 Summary

In summary, our results call into question not only the results
ofOP1 but other published results as well [2], [3], [4], [5], [6],
[7], [8]. They do so in four distinct ways. First, they raise
doubts about all claims that depend directly or indirectly on
the ability to use the kinds of classification algorithms
reported here, including the particular classification algo-
rithm ofOP1, to extract class information from the particular
data of OP1. That alone raises doubts about all of the above
cited papers. Second, they raise doubts about the ability of
the kinds of classification algorithms reported here, includ-
ing the particular classification algorithm of OP1, to extract
class information from any EEG data collected with a block
design. It places the burden of proof that there is no data con-
tamination on any use of a block design. This raises doubts
not just about the particular dataset collected byOP1, but fur-
ther about the experimental protocol proposed by OP1.
Third, they demonstrate that a whole spectrum of classifica-
tion algorithms do not work on a dataset collected with a
rapid-event design that does not suffer from data contamina-
tion. This raises doubts about not just the dataset and proto-
col, but further about the analysis methods and algorithms.
Fourth, Sections 3.8 and 3.9 raise doubts about the general
approach underlying the proposed methods and algorithms
for using EEG data to advance computer vision. While we
have employed the random-data attack to the particular
methods of OP1, we believe that it also can be applied to
all of the methods in Palazzo et al. [3], Kavasidis et al. [4],
Tirupattur et al. [7], and Palazzo et al. [8] as well. We are hin-
dered in our attempt to conduct this analysis by the fact that
the authors have declined to release their code to us, despite
requests, and the fact that the published papers lack suffi-
cient detail to replicate their models.

6 RELATED WORK

To assess the degree to which the issues raised here impact
otherwork in the field, we scrutinized the experiment designs
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in the 306 distinct papers thatwere either cited by a recent sur-
vey paper on deep-learning applied to EEG data [13] or that
cited work critiqued here [1], [3], [4], [7] on Google Scholar at
the time of writing. Of these, 180 appeared unrelated to the
issue at hand as they do not collect or use EEG data for the
purpose of classification. A further 4 were self citations
already discussed. For the remaining 122, we attempted to
determine the degree to which their results could be affected
by the points we raise here. In particular, for each paper, we
attempted to assesswhether

� samples in the test set were recorded in close prox-
imity to samples in the training set or

� the classes in the test trials appeared in the same
order as classes in the training trials.

Unfortunately, many of the papers that we scrutinized
lacked sufficient details of the experimental procedure to
allow us to unequivocally answer the above two questions.
About a third of the papers scrutinized appeared to be clear
of the concerns raised here. About another third appeared
to suffer from the concerns raised here. It was not possible
to assess the remaining third. In the second category, we
found ten papers that used the OP1 data and are thus irrev-
ocably flawed.

We further found a repeated and deeply concerning phe-
nomenon. It is common today for authors to make neuroim-
aging datasets available to other researchers. We found
about a dozen papers performed on such shared data,
where the initial study that collected the data employed a
block design that was carefully constructed to avoid data
contamination. However, the subsequent study misused the
data in ways that were not anticipated in the initial study
that introduced data contamination.

We would be remiss if we did not mention additional
design and method concerns that must be remedied in the

field going forward. These include: using stimuli (images,
video) that are not appropriately counterbalanced; using
datasets to answer questions for which they were not
designed; failure of those making datasets available to pro-
vide sufficient information for subsequent users to deter-
mine whether the dataset is appropriate for use with new
applications; and failure to provide sufficient details of the
procedure and method for transparency that would enable
reproducibility of the study in accordance with the Open
Science Framework [34].

7 CONCLUSION

The results in Tables 5 and 7 suggest that the ability to
classify 40 object classes in image stimuli and 12 activity
classes in video stimuli from an EEG signal is extremely
difficult and well beyond the current state of the art. More-
over, the enterprise of using neuroimaging data to train
better computer-vision systems, proposed by [35, Section 8
p. 625] and [29, Fig. 2 and Section 3 last paragraph
p. 4068], requires more sophisticated methods than simply
attaching a regressor to a pretrained object classifier and is
also likely to be difficult and beyond the current state of
the art. Both of these enterprises are the subject of substan-
tial ongoing effort. When widely published [1], [2], [3], [4],
[5], [6], [7], [8], inordinately optimistic claims can lead to
misallocation of valuable resources and can sideline more
modest but legitimate and important advances in the field.
Thus, when the sensational claims are recognized as incor-
rect, it is imperative that the refutation be widely publi-
cized to appropriately caution the community. Further,
when the community as a whole appears to suffer from
widespread but problematic practices, it is even more
imperative that this warning be widely publicized to
appropriately caution the community.

Fig. 2. (left) Fig. 6 from Tirupattur et al. [7] illustrating sample images purportedly generated by a GAN model from EEG encodings (except for the
right column in red that illustrates a random image of the given class from the training data). (right) Corresponding identical ImageNet images for
almost all of the generated images. Note that some, but not all, of the purportedly synthesized images on the left are horizontal mirrors of ImageNet
images on the right. Also note that all of the purportedly synthesized images contain the same precise fine-grained detail as the corresponding
ImageNet images. In particular, each image not only depicts the corresponding class but also depicts the exact non-class-specific background as
the ImageNet counterpart.
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