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Abstract

This paper reviews technologies and algorithms for decoding volitional movement in-
tent using bioelectrical signals recorded from the human body. Such signals include elec-
tromyograms, electroencephalograms, electrocorticograms, intracortical recordings and elec-
troneurograms. After reviewing signal features commonly used for interpreting movement
intent, this paper describes traditional movement decoders based on Kalman filters and
machine learning. A number of deficiencies of the current state of the art in this field are
described, and three approaches that mitigate some of these deficiencies are reviewed. They
include data aggregation-based training to improve decoder performance when only limited
amounts of training data are available, a shared controller that incorporates estimates of
movement goals, and an adaptive decoder designed to compensate for time-variations in the
relationships between the human body and the prosthesis. Also included are experimental

results that illustrate some of the concepts discussed in the paper.

I. INTRODUCTION

More than one million limb amputations occur worldwide each year. The loss of a limb
profoundly changes one’s ability to perform activities of daily living. However, individuals
with limb deficiency often retain the underlying neural circuitry and much of the ability to
control movements of their deficient limb. Those with upper-limb amputation lack an end

effector (i.e., a hand) to produce the desired movements that are still being transmitted along
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the peripheral nervous system. Neuroprostheses aim to restore function to the deficient limb
by utilizing intact neural circuitry [1].

Prosthetic limbs have progressed from cable-driven systems with only a few degrees of
freedom (DoFs) that are controlled by shoulder movements to highly dexterous systems
that simultaneously control multiple DoFs with native biological signals [1]. Prostheses have
also been sensorized to evoke meaningful artificial percepts for closed-loop control of their
movements [2]. Naturalistic control of prostheses is facilitated by interpreting (decoding)
movement intent from signals generated by the neuro-muscular system. This paper reviews

modern approaches to movement intent decoding.

A. Physiology of Movement Generation

The nervous system consists of the central nervous system (CNS) composed of the brain
and spinal cord, and the peripheral nervous system (PNS) composed of nerves and ganglia.
The neuron is the basic unit of the nervous system and contains a cell body, dendrites, and
an axon. Neurons are interconnected, with dendrites receiving information from upstream
neurons and axons relaying information to downstream neurons, muscles, and organs. Neu-
rons propagate information via electrochemical processes called action potentials, which,
in mammals, last for approximately 1 ms and result in an approximately 100 mV change
in the electrical potential across the neuron’s cell membrane [3]. The PNS innervates all
skeletal musculature involved in volitional movement. An action potential propagated by a
motoneuron (a neuron of the motor system) will cause a twitch in a downstream muscle fiber.
Musculoskeletal movements are evoked by multiple twitches resulting from action potentials

transmitted from the CNS to the PNS motorneurons.

B. Natural Control Signals for Movement Decoding

Electrodes placed near neurons can record individual action potentials, and those located
further away record population signals representing the aggregate activity of many neurons.
Table I lists commonly-used neuromuscular signals for movement intent decoding [3].

In the CNS, population activity can be measured at the surface of the skull via elec-
troencephalography (EEG). Although EEG is distorted by the skull and underlying tissue and

requires complex signal enhancement algorithms, it has received renewed interest in recent



TABLE I
COMMONLY USED BIOELECTRICAL SIGNALS FOR MOVEMENT INTENT DECODING

Name Signal Source Amplitude | Frequency
Range (Hz)
Electroencephalography (EEG) Neuron Population 5-300 pV dc-150

Over the Cranium
Electrocorticography (ECoG) Intracranial Neuron Population | 10-5000 uV dc-150

Intra-cortical Recordings Single Neurons in Cortex 50-800 pV | 100-20,000

Electroneurography (ENG) Single Axons 20-800 uV | 500-7,000
in Peripheral Nerves

Electromyography (EMG) Population of Muscle Fibers 0.1-5 mV dc-500

years for brain-computer interfaces because it is noninvasive. Electrocorticography (ECoG),
which measures population activity under the skull on the surface of cerebral cortex provides
improved signal quality at the expense of invasiveness. The highest resolution is provided by
intra-cortical recordings using electrodes that penetrate the cortical region of interest.

In the PNS, single unit spikes can be detected using penetrating electrodes and recorded via
electroneurography (ENG). Motoneuron activity is amplified by muscle fibers and recorded
via electromyography (EMG) with electrodes embedded in muscles or placed on skin. EMG
signals are currently the most utilized for movement decoding and are a robust signal source

for providing simultaneous, multi-DOF control [1], [4], [5].

C. Overview of the Paper

A typical pipeline for decoding movement intent from bioelectrical signals is shown in
Fig. 1. Features derived from different bioelectrical signals and used as input to the decoders
are reviewed in Section II along with signal enhancement techniques. Section III discusses
early work in this field, the most commonly used decoder algorithms, and briefly discusses
post-processing algorithms. Section IV describes a number of challenges that have prevented
wider adoption of high-end, high-DoF prosthetic systems, and reviews three recent algorith-
mic approaches for mitigating some of these challenges. This section also contains illustrative
experimental results obtained from amputee and non-amputee subjects. The results provided
herein were acquired with human subjects under University of Utah IRB Protocols 55621 and
98851 with expiration dates of 27-Apr-2021 and 10-Feb-2022, respectively. The concluding

remarks are provided in Section V.
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Fig. 1. A generic block diagram of the components of a movement intent decoder in a neuroprosthesis system.
In general, the decoder must be trained before the prosthesis can be used for normal activities. The training
process is usually supervised, where the prosthesis users are instructed to move their limb to follow specific
trajectories, and the evoked bioelectrical signals are recorded along with the desired trajectories. These signals
are processed to remove interference and other sources of noise. The decoders are trained using features extracted
from the signals and the intended trajectories. The movement intent decoder designed in this manner is used
to interpret the movements during normal activity. The control signal for the prosthesis is a processed version
of the movement trajectory estimated by the decoder. The goal of the post processing system is to remove jitter
and other estimation artifacts from the decoder output.

II. SIGNAL FEATURES USED FOR MOVEMENT INTERPRETATION

The success of biological signals as sources for movement intent decoders is dependent
on the extraction of signal features that contain information about the intended movement.
In general, the decoder algorithms work in similar ways once the features are computed.
Although most of the experimental results presented herein use EMG-derived features, nearly

any other feature source could have been employed in the illustrative examples.

A. Signal Features

Electroencephalogram: EEG is often split into features based on frequency bands including
the delta (<4 Hz), theta (4-7 Hz), alpha (8-15 Hz), and beta (>15 Hz) bands. For movement
intent decoders, the most useful of these is the alpha band, where signal power decreases
during movement execution [6]. Coefficients of an autoregressive model that fits the signal
in the alpha band have also found use as features for movement intent decoders [6].

Electrocorticogram: Two features of ECoGs are most used for movement decoding [6]. The first
is low-frequency amplitude modulations which are generally correlated with the direction of
limb movements, but not to the degree seen with intra-cortical recordings. The second major
feature is changes in signal energy above 75 Hz, contrasting with the low-frequency features
useful in EEG decoding. Recording beneath the skull for ECoG lessens signal distortion, thus

facilitating the value of these high-frequency features.



Intraneural Recordings: Intraneural recordings in the CNS and PNS (e.g. intra-cortical record-
ing and ENG, respectively) have analogous features to one another based on action potential
spike detection. Detection of these spikes is generally accomplished with a voltage threshold.
Once detected, spikes can be sorted in order to infer single-unit activity, under the presump-
tion that each unit provides unique information about the intended movement [6]. However,
the potential value of single-unit activity versus the computational cost of extracting single-
units remains an open question. The resulting features include firing rate and power and
phase information in discrete frequency bands [1]. Besides their application in movement
intent decoding, such techniques have also been explored to restore communication for those
with assistive needs beyond motor control [7].

Electromyogram: More than three dozen EMG features have been described in the literature
for movement intent decoding [8]. Redundancies exist among them, and only the most
commonly-used features are discussed here. The most common time-domain features used
as input to movement decoders include mean absolute value (MAV), zero crossing rate, rate
of slope sign changes, and waveform length [9]. Time-frequency domain features as well as

signal energy in different frequency bands have also found use as EMG features [10].

B. Signal and Feature Enhancement

Biological signal quality is greatly influenced by circuit design and choices regarding
amplifier architecture, preprocessing algorithms, and sampling rate, among others. These
nuances are beyond the scope of this paper, and we recommend Northrop [11] as a good
source of information on such issues. Regardless of the design choice, the resulting signals
for movement intent decoding can be distorted due to various factors. Noise and redundant
information between recording sites motivate the need for signal enhancement in tandem
with feature extraction. Interference from external sources such as line voltage are reduced
using differential amplification and appropriate filtering. Artifacts in the sensor signal caused
by body movements and other activities of the human body such as breathing may affect
all the sensors in the same way. The common average reference (CAR) method, in which a
virtual reference obtained by averaging the sensor signals across all electrodes is subtracted

from each sensor signal, is useful to remove such artifacts [1]. Further, redundant feature



information is typically managed with well-known dimensionality reduction techniques such
as principal component analysis and linear discriminant analysis. These methods are also
useful in mitigating the effects of broadband noise in the signals [4]. Finally, the best choices
of signal features may be different for decoding intended position, intended velocity, or

intended force [12], [13]

III. A REVIEW OF CLASSICAL DECODER ALGORITHMS

A variety of algorithms have been employed to infer motor intent from bioelectrical signals,
with most studies initially being performed in animal models followed by first-in-human
demonstrations. Here, we provide an overview of the research in this field, and summa-
rize the most commonly encountered mature algorithms. Generally, the algorithms can be
separated into continuous controllers that can estimate the movement intent continuously,
and classifier-based controllers that estimate a specific movement goal over a finite set of
possibilities. To achieve the same goal, say a pencil grip, the continuous controller must
individually and simultaneously control the thumb, index, and middle fingers to the correct
positions to hold a pencil whereas the classifier only must decide that the intent for a pencil
grip is more probable than any other movement in the set. Although classification approaches
potentially reduce the cognitive load needed to perform a movement, their value to the user
is greatly reduced due to their inability to go beyond the limited set of movements they
were trained for. Consequently, this paper focusses primarily on continuous controllers. For

a more comprehensive list of algorithms, see [1], [13].

A. Early Work

Perhaps the earliest demonstration of the feasibility of neural decoding of motor intent
resulted from Fetz’s research in non-human primates in the late 1960s and 1970s [14]. Fetz
demonstrated that animals could be trained to modulate the activity of individual neurons
in motor cortices in response to a behavioral task and that these neurons could be used
to control an external device. Their decoder was a simple linear classifier operating on the
firing rates of multiple neurons recorded using an electrode implanted in the animal’s brain.

Georgopoulos showed in the 1980s and 1990s [15] that some neurons in motor cortices

increase their activity (firing rate) when the intended movement is in a particular direction



(the neuron’s preferred direction) and decrease their activity when moving in the opposite
direction. On average, the relationship (tuning curve) between the movement direction and
the neuron’s activity formed a cosine shape with the maximum activity occurring at the
preferred direction and the minimum occurring when moving in the opposite direction.
Further, they found that they could reliably estimate the direction of the intended movement
with a population vector, defined for a set of monitored neurons that exhibited a wide range
of preferred directions. The population vector is the sum of the measured activity vectors
associated with all the neurons in the set. A neuron’s activity vector is oriented along its
preferred direction and has a magnitude equal to its normalized firing rate. Kennedy [16]
reported in 2000 that a human chronically implanted with a cone electrode could use a
population vector to move a two-dimensional computer cursor.

In the late 1990s, both the electrode technology and the associated recording technology
advanced to allow simultaneous recording of hundreds of neurons. This made it possible to
monitor correlated neuronal activity, which led to the use of a number of linear regression
and multivariate linear regression approaches for decoding. These approaches have a very
simple formulation of X; = BZ;, where Xy is the estimated kinematic state vector of the limb
(joint angle positions, velocities, etc.) at time k, Zy = [Zy, Zx—1,** , Zk—pm] iS @ matrix containing
the most recent m feature data, m represents the memory in the system, and f§ is a matrix of
regression parameters found by training. These methods were inherently non-recursive and
often resulted in jittery estimates. Typically, linear filters with long memory (up to 1 second)

were used to smooth the estimates but this led to lags in the evoked movement.

B. Kalman Filter-Based Movement Decoders

Lack of smoothness (i.e., jitter) is a major drawback of the non-recursive regression algo-
rithms discussed above. Recursive algorithms can mitigate this problem to some extent, and
the Kalman filter (KF), has become popular in neuroprosthesis research. The classic linear
discrete-time Kalman filter [12] is performed by the recursive operations shown in Fig. 2. It
assumes a linear generative model that describes the relationship between the movement
intent vector (states in the KE x) and the features (observations in the KE z). In each iteration,

the state and observation vectors are first predicted through the assumed model and then
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Fig. 2. Assumptions and simplified block diagram of the Kalman filter. The Kalman filter assumes a discrete time
linear model of the plant, and that both the states of the plant (intent kinematic variables) and the observations
of the plant (features) have zero-mean, normally distributed additive noise. For each iteration, the Kalman filter
predicts the new state and observation vector, and then adjusts the state vector based upon the difference between
the predicted observations and the measured observations. This adjustment is done by use of the Kalman Gain
matrix, K, that is calculated to reduce the state estimation error, in a least square sense.

the error between the actual and predicted observations are used to adjust the predicted
state vector via the Kalman gain matrix (K). The value of the Kalman gain matrix is set in
each iteration to minimize the residual error in the estimate of the state vector.

Many variations of the Kalman decoder are available. The steady-state Kalman decoder
uses a fixed Kalman gain matrix and avoids the need to perform matrix inversions in real
time [17]. Assuming a stationary operating environment, this fixed gain matrix is computed
during training by iterating the equations for the Kalman gain until they converge. Alternative
formulations include adding latent variables that affect the performance of the decoder (e.g.,
attentiveness to the task) or movement variables such as the end goal position to the KF’s
plant model [18]. Adaptation of the plant model to address the nonstationarity of the neuronal
data has been explored [19]. Methods that incorporate nonlinear models of the plant in the
KF have also been studied, including the extended Kalman filter that linearizes the plant

during each iteration, and the unscented Kalman filter and particle filter-based methods that

characterize the effects of the nonlinearities using sampling approaches.

C. Machine Learning-Based Decoding Methods

Concurrent with the ability to simultaneously record from large numbers of electrodes and
the initial investigation of regression-based decoders, researchers also investigated how to
approximate the relationship between kinematic states and the feature states using nonlinear
functions. It is common to model the next kinematic states as a function of the current and

past kinematic states and the current and past feature vector as Xy = fg(Zy,Xy), where



f is a nonlinear function fully described by the parameters 6. Artificial neural networks
(ANNs) have been used to learn this relationship. Perhaps the most common example is that
of the multilayer perceptron (MLP) network. In almost all implementations of ANN-based
movement intent decoders, the parameters of the network are determined by training using
a machine learning (ML) algorithm, on a large data set containing features and movement
trajectories that represent activities the prosthesis will normally encounter in everyday use.
The ML algorithms are designed almost always to minimize some non-negative cost function,
e.g., the least-squares error (used with some form of regularization to reduce over-fitting),
between the desired movement trajectory and the estimated trajectory.

Because of the limited availability of real time hardware at the time, early research in
ML-based decoders involved shallow networks, with only one hidden layer, and only a small
number of nodes (5 to 20) in the hidden layer. Interest in more sophisticated ML approaches
for decoding has renewed in recent years. A number of modern approaches for decoding
movement intent have been investigated, such as kernel learning [20], recurrent neural
networks, deep learning, and reinforcement learning [9]. Although ANNs can be implemented
as either continuous controllers or classifiers of movement intent, many researchers in the
field have used ANNs as classifiers that identify which signals patterns are responsible for

certain movements [21], [22].

D. Post-Processing Methods

In general, the decoder outputs contain jitter that adversely affect the quality and comfort
of use, as well as increase the cognitive load necessary to control a prosthesis. Various ad hoc
post-processing steps on the decoder’s outputs have been proposed to reduce the effects of
jitter. A common jitter-reduction approach is to set movement estimates less than a threshold
to zero. Another approach is to apply smoothing methods such as a lowpass filter to the
decoder output, but lowpass filters can exhibit undesirable lags in performing movements.
Nonlinear smoothing filters that can smooth the data without introducing unacceptable
delays are better alternatives than linear lowpass filters for jitter reduction. It is best to
consider the inclusion of post-processing methods in the overall decoder design, instead of

using them as methods for addressing flaws of the decoder.
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IV. RECENT ADVANCES IN MOVEMENT DECODING
A. Improving Learning from Limited Amount of Training Data

Although artificial neural network movement decoders employ more complex models than
those used for Kalman decoders, many researchers have informally reported that machine
learning-based systems do no better than the KE particularly when performing multi-DoF
movements [23]. This observation may be a result of training ANN decoders with incomplete
data sets that do not contain all possible state transitions, resulting in the machine learning
algorithms over-fitting the limited amount of training data available. As a result, the ANN
decoders perform poorly outside the regions for which it was trained, because it has no
assumed model for these regions, whereas the KF decoders perform better as they fill this
space with approximations based upon generative models. Although acquiring additional
training data is an obvious solution, doing such with human subjects, particularly those with
reduced stamina due to a disability such as amputation or paralysis, is not always practical.

A number of solutions to address insufficient training data have been proposed in the ma-
chine learning community. Many of these create new training samples from the original data
set (for example, the SMOTE algorithm [24]). Regret-based reinforcement learning algorithms
[25] are capable of fully modeling the dynamics of the underlying systems, but require very
large amounts of training data. Non-regret-based imitation learning algorithms [26], on the
other hand, often provide adequate performance with much less actual training data.

Here we describe, as an illustrative example, a method known as data set aggregation (DAg-
ger) [26], a non-regret algorithm, and demonstrate its ability to address limited training data
using experimental data. DAgger (Fig. 3) is an iterative algorithm in which the training data
are augmented during each iteration using newly decoded data from the previous iteration.
Let Z represent the features extracted from the training data, and let X be the set of instructed
movements that generated the features Z. In the first iteration of DAgger, the decoder is
trained with a conventional training algorithm using movement data (Xj =X) and feature
data (Z; =Z). The decoder then computes an estimate of the intended movements (Xl) from
the feature set (Z;). The estimated movement data along with a randomly perturbed feature
set are added to the existing training data set to create an augmented training set for the next

iteration. This set for the rth iteration is given by {Zr;Xr} = {Zr_lu(Zl +l“r);Xr_1UXr_1},
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Fig. 3. In DAgger, the decoder is trained initially using the original feature data and the intended movements.
Then the trained decoder is used to decode trajectories in the original training set. The predicted trajectories with
a randomly perturbed version of the feature data are used to expand the training data. The decoder is retrained
with the augmented dataset. This algorithm runs until a convergence criteria is met.

{Zri1; X1}

Fig. 4. Experimental setup used to obtain the results presented herein. The movement intent decoders were
trained and tested in a virtual reality environment (VRE). During training, subjects were instructed to mimic the
movement of a hand displayed in the VRE (left screen) with their phantom limb while EMG and/or PNS signals
were recorded. The signal features calculated from the recordings were used to train the decoder. Once trained,
the algorithm and its parameters were tested by having the volunteer again try to follow instructed movement
presented in the VRE but in the testing phase, the volunteer additionally observed the decoded hand position
in real time in the VRE (right screen). Typically, each subject participated in multiple sessions spanning several
months, and the results presented are averages over a large number of trials conducted in this manner.

where I'; is a random perturbation added to the feature set to avoid over-fitting. The iteration
is repeated until reaching a user-selected end point. DAgger effectively creates a richer
training set during each iteration because the augmented data set contains a larger number
of samples of the kinematic states than there were during the previous iteration.

The experimental method used to acquire training and testing data is summarized in Fig. 4
(see [9] for more details and results). The results presented here were from two volunteers
with a transradial amputation, with feature data arising from 32 chronically implanted EMG
electrodes and the instructed (training) or decoded (testing) movements of the volunteers’
phantom limb displayed in virtual reality. The performance metric used was the normalized

mean-square error (NMSE) between the estimated and instructed movements.

The results of testing both a MultiLayer Perceptron (MLP) network trained with different
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Fig. 5. The performance of an MLP network-based decoder was improved by the DAgger algorithm and reached
marginal improvement after 3 iterations. See [9] for implementation details of both systems. The bars represent
the mean normalized mean-square-error (MSE) and the error bars are the standard error of the mean (SEM).

numbers of DAgger iterations and a trained Kalman filter (KF) are illustrated in Fig. 5. DAgger
enabled a more than 12-fold reduction in NMSE for the MLP decoder from the first iteration
to the third, and quickly converged to this increased performance level in three to five
iterations in this experiment. Interestingly, the KF performs substantially better than the
MLP network after one iteration of DAgger (i.e., with just the original training data), but
the MLP network trained with multiple DAgger iterations performed better than the KE
We postulate that this poor initial performance for the MLP is due to the aforementioned

inadequate training data, but it was remedied by the DAgger algorithm.

B. Interpreting Movement Goals

Nearly all the methods discussed thus far estimate the position or velocity of various DoFs
of the prosthesis at each time. In general, the sensor signals used for these estimates only
contain information about intended movements at the current time, and little information
about the goal of the overall movement. If the prosthesis controller had information about
the end point locations of the various DoFs, the controller could design the trajectory
of movement of each DoE This would reduce the cognitive effort required to perform
movements as the user would only have to attend to errors in the movement, instead of
having to create the entire movement. We discuss two approaches to interpreting movement
goals here, one using native biological sensors and the other using external sensors.

The posterior parietal cortex (PPC) plays a critical role in planning movements. Neural
signals recorded using electrode arrays implanted in the PPC can be used to infer movement
goals and end points of movement trajectories. Mulliken et al. [18] implanted electrode arrays

in the PPC of two rhesus monkeys and showed that a Kalman filter could accurately estimate



13

the goal as well as the trajectory of movement when the animals were controlling a joystick.
Nevertheless, accessing PPC requires complex and invasive neurosurgery, and may not be

appropriate for all limb deficient individuals.

A second approach to interpret movement goals is to use non-biological data acquired
from external sensors such as cameras and proximity sensors to obtain a more complete
understanding of the environment (scene) in which the prosthesis is operating. Movement
goals may be estimated from the scene and knowledge of the motion of the prosthesis. Hotson
et al. [27] added the movement’s goal to the states of a Kalman filter, and continuously
estimated the movement goal and the DoF positions from biological and external sensor
signals. Their experimental results demonstrated substantial improvement in the ability of

the prosthesis to track the desired movements with the inclusion of the goal estimation.

We also have seen improvement in decoding performance by sharing control between
multiple decoders. In one formulation involving goal estimation [28], we find f, the overall
controller output as fs = ffg + (1 — ) fp, where fg is the controller output based on the
goal estimate and f}, is the decoder output based on the biological signals, and 0 < § < 1.
Intuitively, we choose the mixing parameter § close to 1 or 0 based on whether our confidence
in the goal estimation process is high or low, respectively. A formal derivation of this controller

using a Markov decision process formulation is available in [28].

We performed experiments with three intact-arm subjects where the goal was to quickly
reach a target location, and maintain a position within +0.1 of the target location for the
duration of the trial. (All movement data were normalized to the +1 range.) The duration of
time while in the target region for the 7-s trial was used as the performance metric. We used
a KF as the movement intent decoder and used features derived from up to 32 channels of
surface EMG signals. We simulated the goal estimate in each trial by perturbing the known
end position of the virtual hand with an additive, zero-mean, and white Gaussian noise.
During each trial, the subject knew the true goal, and could correct for any observed errors,
but the goal estimator only knew the noisy goal. The magnitude of noise was such that 48%
of the trials would have a noise-perturbed goal outside of the acceptable target region. In

practice, the goal would be estimated from one or more sensors on or near the prosthesis.

The estimated thumb and index finger movements in two trials with one of the subjects
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Fig. 6. Sharing control between a movement intent decoder and an estimated goal improves task performance.
Shown are representative examples of the kinematic output of three different mixing parameters with an intact-
arm subject. The top row depicts movements of the thumb (left panel) and index finger (right panel) when
the subject was instructed to move them in succession to a specified target (target shown as dashed line and
acceptable target region shown as gray rectangles). The bottom row depicts movements of the corresponding
digit that was instructed to remain still. With high machine input (f=1), there is no jitter, but large errors in the
goal estimate can drive the prosthesis outside the target region. No machine input ($=0) markedly increases jitter
in both moving and stationary DoFs. When sharing control ($=0.25), the user can correct for errors introduced
by noise in the goal and achieve better performance.
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Fig. 7. Shared control improved the time in the target region for intact-arm subjects compared to the KF-only
and goal-only cases. Bar height represents the aggregated mean of the performance across all datasets and the
error bars represent the standard error of the mean (SEM). Using the combination of the goal and the KF-based
decoder the subject was able to stay in the target longer than the two component decoders.

are shown in Fig. 6. Three cases are shown in each panel: (1) the KF-only estimate (f = 0);
(2) the shared estimate of the two with §=0.25; and (3) the goal-only estimate (f =1). The
panels on the left corresponded to the command to move the thumb (upper panel) while
keeping all other fingers still (including the index finger shown in the lower panel). The
panels on the right show similar cases but for movement of the index finger. For clarity of
presentation, only the estimates for the thumb and index finger are shown in the figure. As
can be seen in the upper panels, the KF-based decoder is relatively slow to respond, and
exhibits large amounts of jitter after reaching the target zone (gray region). The error in the

KF estimate is sufficient to frequently take the digits out of their target zones. The goal-based

estimate showed a quick transition to a steady-state value of the noise-perturbed goal, but
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this position may be outside the target zone (e.g., for the index finger in the upper right
panel). The shared controller gains the advantages of each of its parts. Like the goal-based
estimate, it rapidly jumps to a steady state value, but, like the KF, it allows the user to correct
for any observed errors. The bottom panels displays the movements of the fingers instructed
to remain still at the rest position. These results demonstrate that the shared controller
exhibits lower cross talk (movement of the digits instructed to be still) than the KF alone.
Summaries of the performance averaged across all trials and the three subjects are shown in
Fig. 7. These results show that even a small value of § substantially improves the performance
of the KE and that the shared controller outperforms the goal estimator for many values of
B. Of the values of f tested, § = 0.25 resulted in the best performance, with the subjects able
to stay in the target zone for approximately 6 s. on average out of a maximum possible 7
s.; however, the best choice of 8 is dependent on the quality of the goal estimates. If the
goal estimates were worse, lower values of § might be preferable, and vice versa. Additional
work is still needed to replace the synthetic goal estimator with a true goal estimator and

evaluate shared controllers under more realistic use environments.

C. Improving Long-Term Performance Through Adaptive Decoding

In current implementations, the decoders are trained prior to deploying them, and their
parameters are kept frozen during normal operation of prostheses. The performance of such
systems tend to degrade over time, for reasons such as movement of the electrodes, changes
in the muscle-electrode interactions, and physiological changes such as those due to fatigue
and aging. Therefore, it is desirable to adapt the decoders in response to such changes.

The simplest and most common approach to tackle performance degradations over time is
to periodically retrain the decoder using supervised learning. Similar to the acquisition of the
initial training data, the user is directed to perform a set of pre-determined movements, and
the sensor data is recorded simultaneously with the movements. The new training data is used
alone or in combination with the earlier training data to retrain the system. However, frequent
retraining is inconvenient for the user, and it would be ideal to design an online learning
strategy that is continuously performed. Furthermore, since the limb movements during

normal activities are not pre-determined, unsupervised learning algorithms are needed.
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Fig. 8. Conceptual block diagram of an adaptive algorithm for movement intent decoders. At each time step,
the decoder predicts the next position of the limb, and determines if a movement of one or more DoFs occurred
in a small window prior to the current time. If a movement pattern is found for a DoE the decoder output for
that DoF is fit with a movement model. The difference between the decoder output and the movement model is
used to update the parameters of the decoder.

Tadipatri et al. [29] recently developed an adaptive decoder for animal experiments in-
volving 2-D center-out tasks. The animal was trained to use a manipulandum to move a
computer cursor from a center location on a monitor to one of 8 equidistant locations. In
this experiment, the straight line between the center location and the desired end point
was used as the desired trajectory to develop an adaptive system. Although the straight-line
model is not realistic for the movements of the digits and wrists, the concept described above
may be generalized to include different movement models as shown in Fig. 8.

In this approach, we assume that the movement trajectory for each DoF follows a specific
shape with unknown parameters. The system detects movements of each DoF separately and
finds the parameters that best describe the movement trajectory from the decoded position
estimate, including any adjustments provided by the user attending to the movement. Once
the model trajectory parameters are computed, the system uses the model as the supervisory
signal (i. e, the desired trajectory), and updates the parameters of the decoder in an effort
to bring the output of the decoder closer to the modeled trajectory. An implementation of
this concept is the adaptive movement intent decoder reported in [30], where movements of
the digits of a hand was modeled using five piece-wise linear segments as shown in Fig. 9
for full flexion of a finger. The segments are a resting phase, a rising phase corresponding
to the times when the digit is moving from rest to a desired position, a hold phase, a falling
phase when the digit is moving back to the rest position, and finally another resting phase.

The algorithm continuously processes the movement decoder output to first detect move-



17

Rest Rise Fall Rest

0.8F
0.6

0.4F
== Decoded Movement
== Movement Model
== Transition Points

T, T,

2 3

Time

0.2F

Normalized Position

i
Kl

Fig. 9. Sample movement of a full flexion. Desired movement based on the movement model, in green, and the
decoded position of a DoE in blue. This movement model is composed of five sections: (1) A resting phase where
the DoF is stationary. (2) A rising phase, where the DoF is moving to its target position (time is 77 to T2). (3) A
holding phase, where the DoF stationary in the target position (time is 7> to 73). (4) The falling phase, where
the DoF is moving back to the resting zone (time is T3 to T3). (5) The final resting phase.

ments by each DoF by searching for patterns that are similar to the movement model.
(Movements that do not follow the movement model(s) are not used to adapt the decoder
parameters.) Each detected movement is modeled by determining the transition points be-
tween the piece-wise linear segments, the slopes of the rising and falling phases, and the
positions of the rest and hold phases. The decoder parameters for each DoF may be updated
every time a movement of that DoF is detected and modeled, or at specific instances of time.
The algorithm of [30] used a simple gradient update algorithm to reduce the mean-square
difference between the movement model and the decoder output. A comparison of the long-
term (150 day) performance of a fixed-parameter decoder, and the adaptive decoder was
presented in [30]. The results demonstrated that both the adaptive and non-adaptive versions
showed performance degradation with time, but the mean-square error performance of the
adaptive decoders were approximately 25% better than that for the non-adaptive decoder,
demonstrating the promise of this approach. Nevertheless, our ongoing research suggests

that it is possible to substantively improve the performance of the adaptive decoder.

V. CONCLUDING REMARKS

A limb prosthesis can profoundly improve the quality of life of people with limb deficien-
cies, even if the prosthesis is a poor approximation of a native limb. However, limited and
unreliable movement decoding has contributed to high levels of prosthesis abandonment. In
this paper, we reviewed the state of the art in movement intent decoders for application in
prosthetic systems. In the authors’ opinion, the following suggests areas where advances in

signal processing approaches could improve the functionality of prosthetic devices.
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For the most part, the decoders are trained with indirect involvement of the user. That
is, users are requested to attempt to move their phantom limb to follow the movements
presented to them. Since the decoder has not been designed prior to training, the users are
not provided any feedback (for example, visual) on the actual movements of the prosthesis
at this stage. The acquired features are then related to the instructed movements to design
the decoder. Methods that bring the users into the loop by providing feedback on prosthesis
performance during training potentially could result in better decoder designs. There have
been a few efforts in this area but, to date, most approaches have been ad hoc. To make
decoder training with the users in the loop more effective, the problem should be formally

developed and investigated using established signal processing methods.

Although out of the scope of signal processing improvements to decoding motor intent,
substantive improvements in functionality of motor control can be had by providing sensory
feedback to users, particularly percepts similar to those felt prior to the limb disability.
Much of the dexterity of a hand is due to sensory percepts of the limb’s position in space
(proprioception) and how the hand is interacting with objects (tactile sensations). Sensory
restoration for those with limb disabilities is an active area of research. Many researchers
are investigating peripheral nerve and cerebral cortex implants that provide mechanisms to
evoke sensory neural activity. Other researchers are investigating signal processing methods
to provide optimal information transfer of the complex spatiotemporal patterns of neural

activity that occurs during object interaction.

In Section IV-B we discussed sharing control between moment-to-moment and goal esti-
mating decoders, and in the previous paragraph we discussed providing sensory feedback.
For these ideas to become of use to the prosthesis community, environmentally aware
and responsive prostheses need to be developed. Prosthetic vendors are experimenting in
providing sensors that sense contact pressure and cameras to enable object recognition.
There is still much work to be done in using sensor signal processing to identify and use

the “best" environmental measurements to enhance the decoding of movement intent.

The ultimate goal of research in this field is the development of prostheses that act and feel
like natural limbs prior to amputation or paralysis. Recent successes and ongoing research

in the field suggest that the achievement of this goal is imminent.
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