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Abstract

This paper reviews technologies and algorithms for decoding volitional movement in-

tent using bioelectrical signals recorded from the human body. Such signals include elec-

tromyograms, electroencephalograms, electrocorticograms, intracortical recordings and elec-

troneurograms. After reviewing signal features commonly used for interpreting movement

intent, this paper describes traditional movement decoders based on Kalman filters and

machine learning. A number of deficiencies of the current state of the art in this field are

described, and three approaches that mitigate some of these deficiencies are reviewed. They

include data aggregation-based training to improve decoder performance when only limited

amounts of training data are available, a shared controller that incorporates estimates of

movement goals, and an adaptive decoder designed to compensate for time-variations in the

relationships between the human body and the prosthesis. Also included are experimental

results that illustrate some of the concepts discussed in the paper.

I. INTRODUCTION

More than one million limb amputations occur worldwide each year. The loss of a limb

profoundly changes one’s ability to perform activities of daily living. However, individuals

with limb deficiency often retain the underlying neural circuitry and much of the ability to

control movements of their deficient limb. Those with upper-limb amputation lack an end

effector (i.e., a hand) to produce the desired movements that are still being transmitted along
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the peripheral nervous system. Neuroprostheses aim to restore function to the deficient limb

by utilizing intact neural circuitry [1].

Prosthetic limbs have progressed from cable-driven systems with only a few degrees of

freedom (DoFs) that are controlled by shoulder movements to highly dexterous systems

that simultaneously control multiple DoFs with native biological signals [1]. Prostheses have

also been sensorized to evoke meaningful artificial percepts for closed-loop control of their

movements [2]. Naturalistic control of prostheses is facilitated by interpreting (decoding)

movement intent from signals generated by the neuro-muscular system. This paper reviews

modern approaches to movement intent decoding.

A. Physiology of Movement Generation

The nervous system consists of the central nervous system (CNS) composed of the brain

and spinal cord, and the peripheral nervous system (PNS) composed of nerves and ganglia.

The neuron is the basic unit of the nervous system and contains a cell body, dendrites, and

an axon. Neurons are interconnected, with dendrites receiving information from upstream

neurons and axons relaying information to downstream neurons, muscles, and organs. Neu-

rons propagate information via electrochemical processes called action potentials, which,

in mammals, last for approximately 1 ms and result in an approximately 100 mV change

in the electrical potential across the neuron’s cell membrane [3]. The PNS innervates all

skeletal musculature involved in volitional movement. An action potential propagated by a

motoneuron (a neuron of the motor system) will cause a twitch in a downstream muscle fiber.

Musculoskeletal movements are evoked by multiple twitches resulting from action potentials

transmitted from the CNS to the PNS motorneurons.

B. Natural Control Signals for Movement Decoding

Electrodes placed near neurons can record individual action potentials, and those located

further away record population signals representing the aggregate activity of many neurons.

Table I lists commonly-used neuromuscular signals for movement intent decoding [3].

In the CNS, population activity can be measured at the surface of the skull via elec-

troencephalography (EEG). Although EEG is distorted by the skull and underlying tissue and

requires complex signal enhancement algorithms, it has received renewed interest in recent
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TABLE I
COMMONLY USED BIOELECTRICAL SIGNALS FOR MOVEMENT INTENT DECODING

Name Signal Source Amplitude Frequency
Range (Hz)

Electroencephalography (EEG) Neuron Population 5-300 µV dc-150
Over the Cranium

Electrocorticography (ECoG) Intracranial Neuron Population 10-5000 µV dc-150
Intra-cortical Recordings Single Neurons in Cortex 50–800 µV 100-20,000
Electroneurography (ENG) Single Axons 20-800 µV 500-7,000

in Peripheral Nerves
Electromyography (EMG) Population of Muscle Fibers 0.1-5 mV dc-500

years for brain-computer interfaces because it is noninvasive. Electrocorticography (ECoG),

which measures population activity under the skull on the surface of cerebral cortex provides

improved signal quality at the expense of invasiveness. The highest resolution is provided by

intra-cortical recordings using electrodes that penetrate the cortical region of interest.

In the PNS, single unit spikes can be detected using penetrating electrodes and recorded via

electroneurography (ENG). Motoneuron activity is amplified by muscle fibers and recorded

via electromyography (EMG) with electrodes embedded in muscles or placed on skin. EMG

signals are currently the most utilized for movement decoding and are a robust signal source

for providing simultaneous, multi-DOF control [1], [4], [5].

C. Overview of the Paper

A typical pipeline for decoding movement intent from bioelectrical signals is shown in

Fig. 1. Features derived from different bioelectrical signals and used as input to the decoders

are reviewed in Section II along with signal enhancement techniques. Section III discusses

early work in this field, the most commonly used decoder algorithms, and briefly discusses

post-processing algorithms. Section IV describes a number of challenges that have prevented

wider adoption of high-end, high-DoF prosthetic systems, and reviews three recent algorith-

mic approaches for mitigating some of these challenges. This section also contains illustrative

experimental results obtained from amputee and non-amputee subjects. The results provided

herein were acquired with human subjects under University of Utah IRB Protocols 55621 and

98851 with expiration dates of 27-Apr-2021 and 10-Feb-2022, respectively. The concluding

remarks are provided in Section V.
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Fig. 1. A generic block diagram of the components of a movement intent decoder in a neuroprosthesis system.
In general, the decoder must be trained before the prosthesis can be used for normal activities. The training
process is usually supervised, where the prosthesis users are instructed to move their limb to follow specific
trajectories, and the evoked bioelectrical signals are recorded along with the desired trajectories. These signals
are processed to remove interference and other sources of noise. The decoders are trained using features extracted
from the signals and the intended trajectories. The movement intent decoder designed in this manner is used
to interpret the movements during normal activity. The control signal for the prosthesis is a processed version
of the movement trajectory estimated by the decoder. The goal of the post processing system is to remove jitter
and other estimation artifacts from the decoder output.

II. SIGNAL FEATURES USED FOR MOVEMENT INTERPRETATION

The success of biological signals as sources for movement intent decoders is dependent

on the extraction of signal features that contain information about the intended movement.

In general, the decoder algorithms work in similar ways once the features are computed.

Although most of the experimental results presented herein use EMG-derived features, nearly

any other feature source could have been employed in the illustrative examples.

A. Signal Features

Electroencephalogram: EEG is often split into features based on frequency bands including

the delta (<4 Hz), theta (4-7 Hz), alpha (8-15 Hz), and beta (>15 Hz) bands. For movement

intent decoders, the most useful of these is the alpha band, where signal power decreases

during movement execution [6]. Coefficients of an autoregressive model that fits the signal

in the alpha band have also found use as features for movement intent decoders [6].

Electrocorticogram: Two features of ECoGs are most used for movement decoding [6]. The first

is low-frequency amplitude modulations which are generally correlated with the direction of

limb movements, but not to the degree seen with intra-cortical recordings. The second major

feature is changes in signal energy above 75 Hz, contrasting with the low-frequency features

useful in EEG decoding. Recording beneath the skull for ECoG lessens signal distortion, thus

facilitating the value of these high-frequency features.
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Intraneural Recordings: Intraneural recordings in the CNS and PNS (e.g. intra-cortical record-

ing and ENG, respectively) have analogous features to one another based on action potential

spike detection. Detection of these spikes is generally accomplished with a voltage threshold.

Once detected, spikes can be sorted in order to infer single-unit activity, under the presump-

tion that each unit provides unique information about the intended movement [6]. However,

the potential value of single-unit activity versus the computational cost of extracting single-

units remains an open question. The resulting features include firing rate and power and

phase information in discrete frequency bands [1]. Besides their application in movement

intent decoding, such techniques have also been explored to restore communication for those

with assistive needs beyond motor control [7].

Electromyogram: More than three dozen EMG features have been described in the literature

for movement intent decoding [8]. Redundancies exist among them, and only the most

commonly-used features are discussed here. The most common time-domain features used

as input to movement decoders include mean absolute value (MAV), zero crossing rate, rate

of slope sign changes, and waveform length [9]. Time-frequency domain features as well as

signal energy in different frequency bands have also found use as EMG features [10].

B. Signal and Feature Enhancement

Biological signal quality is greatly influenced by circuit design and choices regarding

amplifier architecture, preprocessing algorithms, and sampling rate, among others. These

nuances are beyond the scope of this paper, and we recommend Northrop [11] as a good

source of information on such issues. Regardless of the design choice, the resulting signals

for movement intent decoding can be distorted due to various factors. Noise and redundant

information between recording sites motivate the need for signal enhancement in tandem

with feature extraction. Interference from external sources such as line voltage are reduced

using differential amplification and appropriate filtering. Artifacts in the sensor signal caused

by body movements and other activities of the human body such as breathing may affect

all the sensors in the same way. The common average reference (CAR) method, in which a

virtual reference obtained by averaging the sensor signals across all electrodes is subtracted

from each sensor signal, is useful to remove such artifacts [1]. Further, redundant feature
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information is typically managed with well-known dimensionality reduction techniques such

as principal component analysis and linear discriminant analysis. These methods are also

useful in mitigating the effects of broadband noise in the signals [4]. Finally, the best choices

of signal features may be different for decoding intended position, intended velocity, or

intended force [12], [13]

III. A REVIEW OF CLASSICAL DECODER ALGORITHMS

A variety of algorithms have been employed to infer motor intent from bioelectrical signals,

with most studies initially being performed in animal models followed by first-in-human

demonstrations. Here, we provide an overview of the research in this field, and summa-

rize the most commonly encountered mature algorithms. Generally, the algorithms can be

separated into continuous controllers that can estimate the movement intent continuously,

and classifier-based controllers that estimate a specific movement goal over a finite set of

possibilities. To achieve the same goal, say a pencil grip, the continuous controller must

individually and simultaneously control the thumb, index, and middle fingers to the correct

positions to hold a pencil whereas the classifier only must decide that the intent for a pencil

grip is more probable than any other movement in the set. Although classification approaches

potentially reduce the cognitive load needed to perform a movement, their value to the user

is greatly reduced due to their inability to go beyond the limited set of movements they

were trained for. Consequently, this paper focusses primarily on continuous controllers. For

a more comprehensive list of algorithms, see [1], [13].

A. Early Work

Perhaps the earliest demonstration of the feasibility of neural decoding of motor intent

resulted from Fetz’s research in non-human primates in the late 1960s and 1970s [14]. Fetz

demonstrated that animals could be trained to modulate the activity of individual neurons

in motor cortices in response to a behavioral task and that these neurons could be used

to control an external device. Their decoder was a simple linear classifier operating on the

firing rates of multiple neurons recorded using an electrode implanted in the animal’s brain.

Georgopoulos showed in the 1980s and 1990s [15] that some neurons in motor cortices

increase their activity (firing rate) when the intended movement is in a particular direction
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(the neuron’s preferred direction) and decrease their activity when moving in the opposite

direction. On average, the relationship (tuning curve) between the movement direction and

the neuron’s activity formed a cosine shape with the maximum activity occurring at the

preferred direction and the minimum occurring when moving in the opposite direction.

Further, they found that they could reliably estimate the direction of the intended movement

with a population vector, defined for a set of monitored neurons that exhibited a wide range

of preferred directions. The population vector is the sum of the measured activity vectors

associated with all the neurons in the set. A neuron’s activity vector is oriented along its

preferred direction and has a magnitude equal to its normalized firing rate. Kennedy [16]

reported in 2000 that a human chronically implanted with a cone electrode could use a

population vector to move a two-dimensional computer cursor.

In the late 1990s, both the electrode technology and the associated recording technology

advanced to allow simultaneous recording of hundreds of neurons. This made it possible to

monitor correlated neuronal activity, which led to the use of a number of linear regression

and multivariate linear regression approaches for decoding. These approaches have a very

simple formulation of x̂k =βZk , where x̂k is the estimated kinematic state vector of the limb

(joint angle positions, velocities, etc.) at time k, Zk = [zk , zk−1, · · · , zk−m] is a matrix containing

the most recent m feature data, m represents the memory in the system, and β is a matrix of

regression parameters found by training. These methods were inherently non-recursive and

often resulted in jittery estimates. Typically, linear filters with long memory (up to 1 second)

were used to smooth the estimates but this led to lags in the evoked movement.

B. Kalman Filter-Based Movement Decoders

Lack of smoothness (i.e., jitter) is a major drawback of the non-recursive regression algo-

rithms discussed above. Recursive algorithms can mitigate this problem to some extent, and

the Kalman filter (KF), has become popular in neuroprosthesis research. The classic linear

discrete-time Kalman filter [12] is performed by the recursive operations shown in Fig. 2. It

assumes a linear generative model that describes the relationship between the movement

intent vector (states in the KF, x) and the features (observations in the KF, z). In each iteration,

the state and observation vectors are first predicted through the assumed model and then
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Fig. 2. Assumptions and simplified block diagram of the Kalman filter. The Kalman filter assumes a discrete time
linear model of the plant, and that both the states of the plant (intent kinematic variables) and the observations
of the plant (features) have zero-mean, normally distributed additive noise. For each iteration, the Kalman filter
predicts the new state and observation vector, and then adjusts the state vector based upon the difference between
the predicted observations and the measured observations. This adjustment is done by use of the Kalman Gain
matrix, K , that is calculated to reduce the state estimation error, in a least square sense.

the error between the actual and predicted observations are used to adjust the predicted

state vector via the Kalman gain matrix (K). The value of the Kalman gain matrix is set in

each iteration to minimize the residual error in the estimate of the state vector.

Many variations of the Kalman decoder are available. The steady-state Kalman decoder

uses a fixed Kalman gain matrix and avoids the need to perform matrix inversions in real

time [17]. Assuming a stationary operating environment, this fixed gain matrix is computed

during training by iterating the equations for the Kalman gain until they converge. Alternative

formulations include adding latent variables that affect the performance of the decoder (e.g.,

attentiveness to the task) or movement variables such as the end goal position to the KF’s

plant model [18]. Adaptation of the plant model to address the nonstationarity of the neuronal

data has been explored [19]. Methods that incorporate nonlinear models of the plant in the

KF have also been studied, including the extended Kalman filter that linearizes the plant

during each iteration, and the unscented Kalman filter and particle filter-based methods that

characterize the effects of the nonlinearities using sampling approaches.

C. Machine Learning-Based Decoding Methods

Concurrent with the ability to simultaneously record from large numbers of electrodes and

the initial investigation of regression-based decoders, researchers also investigated how to

approximate the relationship between kinematic states and the feature states using nonlinear

functions. It is common to model the next kinematic states as a function of the current and

past kinematic states and the current and past feature vector as x̂k+1 = fθ(Zk ,xk ), where



9

f is a nonlinear function fully described by the parameters θ. Artificial neural networks

(ANNs) have been used to learn this relationship. Perhaps the most common example is that

of the multilayer perceptron (MLP) network. In almost all implementations of ANN-based

movement intent decoders, the parameters of the network are determined by training using

a machine learning (ML) algorithm, on a large data set containing features and movement

trajectories that represent activities the prosthesis will normally encounter in everyday use.

The ML algorithms are designed almost always to minimize some non-negative cost function,

e.g., the least-squares error (used with some form of regularization to reduce over-fitting),

between the desired movement trajectory and the estimated trajectory.

Because of the limited availability of real time hardware at the time, early research in

ML-based decoders involved shallow networks, with only one hidden layer, and only a small

number of nodes (5 to 20) in the hidden layer. Interest in more sophisticated ML approaches

for decoding has renewed in recent years. A number of modern approaches for decoding

movement intent have been investigated, such as kernel learning [20], recurrent neural

networks, deep learning, and reinforcement learning [9]. Although ANNs can be implemented

as either continuous controllers or classifiers of movement intent, many researchers in the

field have used ANNs as classifiers that identify which signals patterns are responsible for

certain movements [21], [22].

D. Post-Processing Methods

In general, the decoder outputs contain jitter that adversely affect the quality and comfort

of use, as well as increase the cognitive load necessary to control a prosthesis. Various ad hoc

post-processing steps on the decoder’s outputs have been proposed to reduce the effects of

jitter. A common jitter-reduction approach is to set movement estimates less than a threshold

to zero. Another approach is to apply smoothing methods such as a lowpass filter to the

decoder output, but lowpass filters can exhibit undesirable lags in performing movements.

Nonlinear smoothing filters that can smooth the data without introducing unacceptable

delays are better alternatives than linear lowpass filters for jitter reduction. It is best to

consider the inclusion of post-processing methods in the overall decoder design, instead of

using them as methods for addressing flaws of the decoder.
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IV. RECENT ADVANCES IN MOVEMENT DECODING

A. Improving Learning from Limited Amount of Training Data

Although artificial neural network movement decoders employ more complex models than

those used for Kalman decoders, many researchers have informally reported that machine

learning-based systems do no better than the KF, particularly when performing multi-DoF

movements [23]. This observation may be a result of training ANN decoders with incomplete

data sets that do not contain all possible state transitions, resulting in the machine learning

algorithms over-fitting the limited amount of training data available. As a result, the ANN

decoders perform poorly outside the regions for which it was trained, because it has no

assumed model for these regions, whereas the KF decoders perform better as they fill this

space with approximations based upon generative models. Although acquiring additional

training data is an obvious solution, doing such with human subjects, particularly those with

reduced stamina due to a disability such as amputation or paralysis, is not always practical.

A number of solutions to address insufficient training data have been proposed in the ma-

chine learning community. Many of these create new training samples from the original data

set (for example, the SMOTE algorithm [24]). Regret-based reinforcement learning algorithms

[25] are capable of fully modeling the dynamics of the underlying systems, but require very

large amounts of training data. Non-regret-based imitation learning algorithms [26], on the

other hand, often provide adequate performance with much less actual training data.

Here we describe, as an illustrative example, a method known as data set aggregation (DAg-

ger) [26], a non-regret algorithm, and demonstrate its ability to address limited training data

using experimental data. DAgger (Fig. 3) is an iterative algorithm in which the training data

are augmented during each iteration using newly decoded data from the previous iteration.

Let Z represent the features extracted from the training data, and let X be the set of instructed

movements that generated the features Z. In the first iteration of DAgger, the decoder is

trained with a conventional training algorithm using movement data (X1 = X) and feature

data (Z1 = Z). The decoder then computes an estimate of the intended movements (X̂1) from

the feature set (Z1). The estimated movement data along with a randomly perturbed feature

set are added to the existing training data set to create an augmented training set for the next

iteration. This set for the r th iteration is given by
{

Zr ;Xr

}
=

{
Zr−1

⋃(
Z1 +Γr

)
;Xr−1

⋃
X̂r−1

}
,



11

Fig. 3. In DAgger, the decoder is trained initially using the original feature data and the intended movements.
Then the trained decoder is used to decode trajectories in the original training set. The predicted trajectories with
a randomly perturbed version of the feature data are used to expand the training data. The decoder is retrained
with the augmented dataset. This algorithm runs until a convergence criteria is met.

Fig. 4. Experimental setup used to obtain the results presented herein. The movement intent decoders were
trained and tested in a virtual reality environment (VRE). During training, subjects were instructed to mimic the
movement of a hand displayed in the VRE (left screen) with their phantom limb while EMG and/or PNS signals
were recorded. The signal features calculated from the recordings were used to train the decoder. Once trained,
the algorithm and its parameters were tested by having the volunteer again try to follow instructed movement
presented in the VRE but in the testing phase, the volunteer additionally observed the decoded hand position
in real time in the VRE (right screen). Typically, each subject participated in multiple sessions spanning several
months, and the results presented are averages over a large number of trials conducted in this manner.

where Γr is a random perturbation added to the feature set to avoid over-fitting. The iteration

is repeated until reaching a user-selected end point. DAgger effectively creates a richer

training set during each iteration because the augmented data set contains a larger number

of samples of the kinematic states than there were during the previous iteration.

The experimental method used to acquire training and testing data is summarized in Fig. 4

(see [9] for more details and results). The results presented here were from two volunteers

with a transradial amputation, with feature data arising from 32 chronically implanted EMG

electrodes and the instructed (training) or decoded (testing) movements of the volunteers’

phantom limb displayed in virtual reality. The performance metric used was the normalized

mean-square error (NMSE) between the estimated and instructed movements.

The results of testing both a MultiLayer Perceptron (MLP) network trained with different
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Fig. 5. The performance of an MLP network-based decoder was improved by the DAgger algorithm and reached
marginal improvement after 3 iterations. See [9] for implementation details of both systems. The bars represent
the mean normalized mean-square-error (MSE) and the error bars are the standard error of the mean (SEM).

numbers of DAgger iterations and a trained Kalman filter (KF) are illustrated in Fig. 5. DAgger

enabled a more than 12-fold reduction in NMSE for the MLP decoder from the first iteration

to the third, and quickly converged to this increased performance level in three to five

iterations in this experiment. Interestingly, the KF performs substantially better than the

MLP network after one iteration of DAgger (i.e., with just the original training data), but

the MLP network trained with multiple DAgger iterations performed better than the KF.

We postulate that this poor initial performance for the MLP is due to the aforementioned

inadequate training data, but it was remedied by the DAgger algorithm.

B. Interpreting Movement Goals

Nearly all the methods discussed thus far estimate the position or velocity of various DoFs

of the prosthesis at each time. In general, the sensor signals used for these estimates only

contain information about intended movements at the current time, and little information

about the goal of the overall movement. If the prosthesis controller had information about

the end point locations of the various DoFs, the controller could design the trajectory

of movement of each DoF. This would reduce the cognitive effort required to perform

movements as the user would only have to attend to errors in the movement, instead of

having to create the entire movement. We discuss two approaches to interpreting movement

goals here, one using native biological sensors and the other using external sensors.

The posterior parietal cortex (PPC) plays a critical role in planning movements. Neural

signals recorded using electrode arrays implanted in the PPC can be used to infer movement

goals and end points of movement trajectories. Mulliken et al. [18] implanted electrode arrays

in the PPC of two rhesus monkeys and showed that a Kalman filter could accurately estimate
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the goal as well as the trajectory of movement when the animals were controlling a joystick.

Nevertheless, accessing PPC requires complex and invasive neurosurgery, and may not be

appropriate for all limb deficient individuals.

A second approach to interpret movement goals is to use non-biological data acquired

from external sensors such as cameras and proximity sensors to obtain a more complete

understanding of the environment (scene) in which the prosthesis is operating. Movement

goals may be estimated from the scene and knowledge of the motion of the prosthesis. Hotson

et al. [27] added the movement’s goal to the states of a Kalman filter, and continuously

estimated the movement goal and the DoF positions from biological and external sensor

signals. Their experimental results demonstrated substantial improvement in the ability of

the prosthesis to track the desired movements with the inclusion of the goal estimation.

We also have seen improvement in decoding performance by sharing control between

multiple decoders. In one formulation involving goal estimation [28], we find fs , the overall

controller output as fs = β fg + (1−β) fb , where fg is the controller output based on the

goal estimate and fb is the decoder output based on the biological signals, and 0 ≤ β ≤ 1.

Intuitively, we choose the mixing parameter β close to 1 or 0 based on whether our confidence

in the goal estimation process is high or low, respectively. A formal derivation of this controller

using a Markov decision process formulation is available in [28].

We performed experiments with three intact-arm subjects where the goal was to quickly

reach a target location, and maintain a position within ±0.1 of the target location for the

duration of the trial. (All movement data were normalized to the ±1 range.) The duration of

time while in the target region for the 7-s trial was used as the performance metric. We used

a KF as the movement intent decoder and used features derived from up to 32 channels of

surface EMG signals. We simulated the goal estimate in each trial by perturbing the known

end position of the virtual hand with an additive, zero-mean, and white Gaussian noise.

During each trial, the subject knew the true goal, and could correct for any observed errors,

but the goal estimator only knew the noisy goal. The magnitude of noise was such that 48%

of the trials would have a noise-perturbed goal outside of the acceptable target region. In

practice, the goal would be estimated from one or more sensors on or near the prosthesis.

The estimated thumb and index finger movements in two trials with one of the subjects
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Fig. 6. Sharing control between a movement intent decoder and an estimated goal improves task performance.
Shown are representative examples of the kinematic output of three different mixing parameters with an intact-
arm subject. The top row depicts movements of the thumb (left panel) and index finger (right panel) when
the subject was instructed to move them in succession to a specified target (target shown as dashed line and
acceptable target region shown as gray rectangles). The bottom row depicts movements of the corresponding
digit that was instructed to remain still. With high machine input (β=1), there is no jitter, but large errors in the
goal estimate can drive the prosthesis outside the target region. No machine input (β=0) markedly increases jitter
in both moving and stationary DoFs. When sharing control (β=0.25), the user can correct for errors introduced
by noise in the goal and achieve better performance.

Fig. 7. Shared control improved the time in the target region for intact-arm subjects compared to the KF-only
and goal-only cases. Bar height represents the aggregated mean of the performance across all datasets and the
error bars represent the standard error of the mean (SEM). Using the combination of the goal and the KF-based
decoder the subject was able to stay in the target longer than the two component decoders.

are shown in Fig. 6. Three cases are shown in each panel: (1) the KF-only estimate (β= 0);

(2) the shared estimate of the two with β= 0.25; and (3) the goal-only estimate (β= 1). The

panels on the left corresponded to the command to move the thumb (upper panel) while

keeping all other fingers still (including the index finger shown in the lower panel). The

panels on the right show similar cases but for movement of the index finger. For clarity of

presentation, only the estimates for the thumb and index finger are shown in the figure. As

can be seen in the upper panels, the KF-based decoder is relatively slow to respond, and

exhibits large amounts of jitter after reaching the target zone (gray region). The error in the

KF estimate is sufficient to frequently take the digits out of their target zones. The goal-based

estimate showed a quick transition to a steady-state value of the noise-perturbed goal, but
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this position may be outside the target zone (e.g., for the index finger in the upper right

panel). The shared controller gains the advantages of each of its parts. Like the goal-based

estimate, it rapidly jumps to a steady state value, but, like the KF, it allows the user to correct

for any observed errors. The bottom panels displays the movements of the fingers instructed

to remain still at the rest position. These results demonstrate that the shared controller

exhibits lower cross talk (movement of the digits instructed to be still) than the KF alone.

Summaries of the performance averaged across all trials and the three subjects are shown in

Fig. 7. These results show that even a small value of β substantially improves the performance

of the KF, and that the shared controller outperforms the goal estimator for many values of

β. Of the values of β tested, β= 0.25 resulted in the best performance, with the subjects able

to stay in the target zone for approximately 6 s. on average out of a maximum possible 7

s.; however, the best choice of β is dependent on the quality of the goal estimates. If the

goal estimates were worse, lower values of β might be preferable, and vice versa. Additional

work is still needed to replace the synthetic goal estimator with a true goal estimator and

evaluate shared controllers under more realistic use environments.

C. Improving Long-Term Performance Through Adaptive Decoding

In current implementations, the decoders are trained prior to deploying them, and their

parameters are kept frozen during normal operation of prostheses. The performance of such

systems tend to degrade over time, for reasons such as movement of the electrodes, changes

in the muscle-electrode interactions, and physiological changes such as those due to fatigue

and aging. Therefore, it is desirable to adapt the decoders in response to such changes.

The simplest and most common approach to tackle performance degradations over time is

to periodically retrain the decoder using supervised learning. Similar to the acquisition of the

initial training data, the user is directed to perform a set of pre-determined movements, and

the sensor data is recorded simultaneously with the movements. The new training data is used

alone or in combination with the earlier training data to retrain the system. However, frequent

retraining is inconvenient for the user, and it would be ideal to design an online learning

strategy that is continuously performed. Furthermore, since the limb movements during

normal activities are not pre-determined, unsupervised learning algorithms are needed.
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Fig. 8. Conceptual block diagram of an adaptive algorithm for movement intent decoders. At each time step,
the decoder predicts the next position of the limb, and determines if a movement of one or more DoFs occurred
in a small window prior to the current time. If a movement pattern is found for a DoF, the decoder output for
that DoF is fit with a movement model. The difference between the decoder output and the movement model is
used to update the parameters of the decoder.

Tadipatri et al. [29] recently developed an adaptive decoder for animal experiments in-

volving 2-D center-out tasks. The animal was trained to use a manipulandum to move a

computer cursor from a center location on a monitor to one of 8 equidistant locations. In

this experiment, the straight line between the center location and the desired end point

was used as the desired trajectory to develop an adaptive system. Although the straight-line

model is not realistic for the movements of the digits and wrists, the concept described above

may be generalized to include different movement models as shown in Fig. 8.

In this approach, we assume that the movement trajectory for each DoF follows a specific

shape with unknown parameters. The system detects movements of each DoF separately and

finds the parameters that best describe the movement trajectory from the decoded position

estimate, including any adjustments provided by the user attending to the movement. Once

the model trajectory parameters are computed, the system uses the model as the supervisory

signal (i. e., the desired trajectory), and updates the parameters of the decoder in an effort

to bring the output of the decoder closer to the modeled trajectory. An implementation of

this concept is the adaptive movement intent decoder reported in [30], where movements of

the digits of a hand was modeled using five piece-wise linear segments as shown in Fig. 9

for full flexion of a finger. The segments are a resting phase, a rising phase corresponding

to the times when the digit is moving from rest to a desired position, a hold phase, a falling

phase when the digit is moving back to the rest position, and finally another resting phase.

The algorithm continuously processes the movement decoder output to first detect move-
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Fig. 9. Sample movement of a full flexion. Desired movement based on the movement model, in green, and the
decoded position of a DoF, in blue. This movement model is composed of five sections: (1) A resting phase where
the DoF is stationary. (2) A rising phase, where the DoF is moving to its target position (time is T1 to T2). (3) A
holding phase, where the DoF stationary in the target position (time is T2 to T3). (4) The falling phase, where
the DoF is moving back to the resting zone (time is T3 to T4). (5) The final resting phase.

ments by each DoF by searching for patterns that are similar to the movement model.

(Movements that do not follow the movement model(s) are not used to adapt the decoder

parameters.) Each detected movement is modeled by determining the transition points be-

tween the piece-wise linear segments, the slopes of the rising and falling phases, and the

positions of the rest and hold phases. The decoder parameters for each DoF may be updated

every time a movement of that DoF is detected and modeled, or at specific instances of time.

The algorithm of [30] used a simple gradient update algorithm to reduce the mean-square

difference between the movement model and the decoder output. A comparison of the long-

term (150 day) performance of a fixed-parameter decoder, and the adaptive decoder was

presented in [30]. The results demonstrated that both the adaptive and non-adaptive versions

showed performance degradation with time, but the mean-square error performance of the

adaptive decoders were approximately 25% better than that for the non-adaptive decoder,

demonstrating the promise of this approach. Nevertheless, our ongoing research suggests

that it is possible to substantively improve the performance of the adaptive decoder.

V. CONCLUDING REMARKS

A limb prosthesis can profoundly improve the quality of life of people with limb deficien-

cies, even if the prosthesis is a poor approximation of a native limb. However, limited and

unreliable movement decoding has contributed to high levels of prosthesis abandonment. In

this paper, we reviewed the state of the art in movement intent decoders for application in

prosthetic systems. In the authors’ opinion, the following suggests areas where advances in

signal processing approaches could improve the functionality of prosthetic devices.
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For the most part, the decoders are trained with indirect involvement of the user. That

is, users are requested to attempt to move their phantom limb to follow the movements

presented to them. Since the decoder has not been designed prior to training, the users are

not provided any feedback (for example, visual) on the actual movements of the prosthesis

at this stage. The acquired features are then related to the instructed movements to design

the decoder. Methods that bring the users into the loop by providing feedback on prosthesis

performance during training potentially could result in better decoder designs. There have

been a few efforts in this area but, to date, most approaches have been ad hoc. To make

decoder training with the users in the loop more effective, the problem should be formally

developed and investigated using established signal processing methods.

Although out of the scope of signal processing improvements to decoding motor intent,

substantive improvements in functionality of motor control can be had by providing sensory

feedback to users, particularly percepts similar to those felt prior to the limb disability.

Much of the dexterity of a hand is due to sensory percepts of the limb’s position in space

(proprioception) and how the hand is interacting with objects (tactile sensations). Sensory

restoration for those with limb disabilities is an active area of research. Many researchers

are investigating peripheral nerve and cerebral cortex implants that provide mechanisms to

evoke sensory neural activity. Other researchers are investigating signal processing methods

to provide optimal information transfer of the complex spatiotemporal patterns of neural

activity that occurs during object interaction.

In Section IV-B we discussed sharing control between moment-to-moment and goal esti-

mating decoders, and in the previous paragraph we discussed providing sensory feedback.

For these ideas to become of use to the prosthesis community, environmentally aware

and responsive prostheses need to be developed. Prosthetic vendors are experimenting in

providing sensors that sense contact pressure and cameras to enable object recognition.

There is still much work to be done in using sensor signal processing to identify and use

the “best" environmental measurements to enhance the decoding of movement intent.

The ultimate goal of research in this field is the development of prostheses that act and feel

like natural limbs prior to amputation or paralysis. Recent successes and ongoing research

in the field suggest that the achievement of this goal is imminent.
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