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OPTIMIZATION OF THE SHERRINGTON–KIRKPATRICK
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Abstract. Let \bfitA \in \BbbR n\times n be a symmetric random matrix with independent and identically dis-
tributed (i.i.d.) Gaussian entries above the diagonal. We consider the problem of maximizing \langle \bfitsigma ,\bfitA \bfitsigma \rangle 
over binary vectors \bfitsigma \in \{ +1, - 1\} n. In the language of statistical physics, this amounts to finding
the ground state of the Sherrington–Kirkpatrick model of spin glasses. The asymptotic value of this
optimization problem was characterized by Parisi via a celebrated variational principle, subsequently
proved by Talagrand. We give an algorithm that, for any \varepsilon > 0, outputs \bfitsigma \ast \in \{  - 1,+1\} n such that
\langle \bfitsigma \ast ,\bfitA \bfitsigma \ast \rangle is at least (1 - \varepsilon ) of the optimum value, with probability converging to one as n \rightarrow \infty . The
algorithm’s time complexity is C(\varepsilon )n2. We generalize it to matrices with i.i.d., but not necessarily
Gaussian, entries, and obtain an algorithm that computes the MAXCUT of a dense Erdős–Renyi
random graph to within a factor (1  - \varepsilon \cdot n - 1/2). As a side result, we prove that, at (low) non-
zero temperature, the algorithm constructs approximate solutions of the Thouless–Anderson–Palmer
equations.
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1. Introduction and main result. Let \bfitA \in \BbbR n\times n be a random matrix from
the \sansG \sansO \sansE (n) ensemble. Namely, \bfitA = \bfitA \sansT and (Aij)i\leq j\leq n is a collection of independent
random variables with Aii \sim \sansN (0, 2/n) and Aij = \sansN (0, 1/n) for i < j. We are
concerned with the following optimization problem (here \langle \bfitu ,\bfitv \rangle =

\sum 
i\leq n uivi is the

standard scalar product):

maximize \langle \bfitsigma ,\bfitA \bfitsigma \rangle 
subject to \bfitsigma \in \{ +1, - 1\} n .

(1.1)

From a worst-case perspective, this problem is NP-hard and indeed hard to approxi-
mate within a sublogarithmic factor [ABE+05]. For random data \bfitA , the energy func-
tion Hn(\bfitsigma ) = \langle \bfitsigma ,\bfitA \bfitsigma \rangle /2 is also known as the Sherrington–Kirkpatrick model [SK75].
Its properties have been intensely studied in statistical physics and probability theory
for over 40 years as a prototypical example of complex energy landscape and a mean
field model for spin glasses [MPV87, Tal10, Pan13b]. Generalizations of this model
have been used to understand structural glasses, random combinatorial problems, neu-
ral networks, and a number of other systems [EVdB01, MPZ02, WL12, Nis01, MM09].

In this paper we consider the computational problem of finding a vector \bfitsigma \ast \in 
\{ +1, - 1\} n that is a near optimum, namely such that Hn(\bfitsigma \ast ) \geq (1 - \varepsilon )\mathrm{m}\mathrm{a}\mathrm{x}\bfitsigma \in \{ +1, - 1\} n
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FOCS19-2 ANDREA MONTANARI

Hn(\bfitsigma ). Under a widely believed assumption about the structure of the associated
Gibbs measure (more precisely, on the support of the asymptotic overlap distribution)
we prove that, for any \varepsilon > 0 there exists an algorithm with complexity O(n2) that—
with high probability—outputs such a vector.

In order to state our assumption, we need to take a detour and introduce Parisi’s
variational formula for the value of the optimization problem (1.1). Let P([0, 1]) be
the space of probability measures on the interval [0, 1] endowed with the topology of
weak convergence. For \mu \in P([0, 1]), we will write (with a slight abuse of notation)
\mu (t) = \mu ([0, t]) for its distribution function. For \beta \in \BbbR \geq 0, consider the following
parabolic partial differential equation (PDE) on (t, x) \in [0, 1]\times \BbbR :

\partial t\Phi (t, x) +
1

2
\beta 2\partial 2x\Phi (t, x) +

1

2
\beta 2\mu (t)

\bigl( 
\partial x\Phi (t, x)

\bigr) 2
= 0 ,

\Phi (1, x) = \mathrm{l}\mathrm{o}\mathrm{g} 2 \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}x .
(1.2)

It is understood that this is to be solved backward in time with the given final condi-
tion at t = 1. Existence and uniqueness were proved in [JT16]. We will also write \Phi \mu 

to emphasize the dependence of the solution on the measure \mu . The Parisi functional
is then defined as

\sansP \beta (\mu ) \equiv \Phi \mu (0, 0) - 
1

2
\beta 2

\int 1

0

t \mu (t) \mathrm{d}t .(1.3)

The relation between this functional and the original optimization problem is given
by a remarkable variational principle, first proposed by Parisi [Par79] and established
rigorously more than twenty-five years later by Talagrand [Tal06b] and Panchenko
[Pan13a].

Theorem 1 (Talagrand [Tal06b]). Consider the partition function Zn(\beta ) =\sum 
\bfitsigma \in \{ +1, - 1\} n \mathrm{e}\mathrm{x}\mathrm{p}\{ \beta Hn(\bfitsigma )\} . Then we have, almost surely (and in L1),

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n
\mathrm{l}\mathrm{o}\mathrm{g}Zn(\beta ) = \mathrm{m}\mathrm{i}\mathrm{n}

\mu \in P([0,1])
\sansP \beta (\mu ) .(1.4)

The following consequence for the optimization problem (1.1) is elementary; see,
e.g., [DMS17].

Corollary 1.1. We have, almost surely,

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

2n
\mathrm{m}\mathrm{a}\mathrm{x}

\bfitsigma \in \{ +1, - 1\} n
\langle \bfitsigma ,\bfitA \bfitsigma \rangle = \mathrm{l}\mathrm{i}\mathrm{m}

\beta \rightarrow \infty 

1

\beta 
\mathrm{m}\mathrm{i}\mathrm{n}

\mu \in P([0,1])
\sansP \beta (\mu ) .(1.5)

Remark 1.1. The limit \beta \rightarrow \infty on the right-hand side of (1.5) can be removed
by defining a new variational principle directly “at \beta = \infty .” Namely, the right-hand
side of (1.5) can be replaced by \mathrm{m}\mathrm{i}\mathrm{n}\gamma \^\sansP (\gamma ) where \^\sansP is a modification of \sansP and the
minimum is taken over a suitable functional space [AC17]. In this paper we use the
\beta <\infty formulation. Follow up work [AMS20] showed that it is also possible to work
directly at \beta =\infty , at the expense of some additional technical work.

We also note that while we stated Theorem 1 and Corollary 1.1 for simplicity in
the case of \bfitA \sim \sansG \sansO \sansE (n), these results holds more generally for symmetric matrices \bfitA 
with independent entries above the diagonal, provided \BbbE \{ Aij\} = 0, \BbbE \{ A2

ij\} = 1/n, and
\BbbE \{ | Aij | 3\} \leq C/n3/2 [CH06]. (Indeed, even weaker conditions are sufficient [DMS17].)
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OPTIMIZATION OF THE SK HAMILTONIAN FOCS19-3

Existence and uniqueness of the minimizer of \sansP \beta ( \cdot ) were proved in [AC15] and
[JT16], which also proved that \mu \mapsto \rightarrow \sansP \beta (\mu ) is strongly convex. We will denote by \mu \beta 

the unique minimizer, and refer to it as the “Parisi measure” or “overlap distribution”
at inverse temperature \beta . Our key assumption will be that—at large enough \beta —the
support of \mu \beta is an interval [0, q\ast (\beta )].

Assumption 1 (no overlap gap). There exist \beta 0 <\infty such that, for any \beta > \beta 0,
the function t \mapsto \rightarrow \mu \beta ([0, t]) is strictly increasing on [0, q\ast ], where q\ast = q\ast (\beta ) and
\mu \beta ([0, q\ast ]) = 1.

This assumption is sometimes referred to as “continuous replica symmetry break-
ing” or “full replica symmetry breaking” and is widely believed to be true (with \beta 0 = 1)
within statistical physics [MPV87]. In particular, this conjecture is supported by high
precision numerical solutions of the variational problem for \sansP \beta [CR02, OSS07, SO08].
Rigorous evidence was recently obtained in [ACZ17]. Addressing this conjecture goes
beyond the scope of the present paper.

Let us emphasize that the expression “no overlap gap” captures the content of this
assumption better than “continuous” or “full replica symmetry breaking.” Indeed,
the latter are generally used whenever the support of the probability measure \mu \beta ,
\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu \beta ), has infinite cardinality. In contrast, here we are requiring the stronger
condition \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu \beta ) = [0, q\ast ] (which implies q\ast > 0 for all \beta > 1 [Ton02]).

We are now in position to state our main result. The reader interested in a
compact description of the algorithm used in this proof may consult Appendix B.

Theorem 2. Under Assumption 1, for any \varepsilon > 0 there exists an algorithm that
takes as input the matrix \bfitA \in \BbbR n\times n, and outputs \bfitsigma \ast = \bfitsigma \ast (\bfitA ) \in \{ +1, - 1\} n, such
that the following hold:

(i) The complexity (floating point operations) of the algorithm is at most C(\varepsilon )n2.
(ii) We have \langle \bfitsigma \ast ,\bfitA \bfitsigma \ast \rangle \geq (1  - \varepsilon )\mathrm{m}\mathrm{a}\mathrm{x}\bfitsigma \in \{ +1, - 1\} n\langle \bfitsigma ,\bfitA \bfitsigma \rangle , with high probability

(with respect to \bfitA \sim \sansG \sansO \sansE (n)).

The same result holds when \bfitA = \bfitA (n) is symmetric with Aii = 0 and (Aij)1\leq i<j\leq n,
a collection of independent random variables satisfying \BbbE \{ Aij\} = 0, \BbbE \{ A2

ij\} = 1/n,
and \BbbE \{ \mathrm{e}\mathrm{x}\mathrm{p}(\lambda Aij)\} \leq \mathrm{e}\mathrm{x}\mathrm{p}(C\ast \lambda 

2/2n) for some constant C\ast and all i < j \leq n (in other
words, entries are subgaussian with common subgaussian parameter C\ast /n).

In other words, on average, the optimization problem (1.1) is much easier than in
the worst case. Of course, this is far from being the only example of this phenomenon
(a gap between worst case and average case complexity). However, it is a rather
surprising example given the complexity of the energy landscape Hn(\bfitsigma ). Its proof
uses in a crucial way a fine property of the associated Gibbs measure, namely the
support overlap distribution, which is encoded in Assumption 1.

Remark 1.2 (role of the no-overlap-gap assumption). The proof of Theorem 2
proceeds in two steps. We first develop a characterization of the value achieved by a
general class of algorithms, which are parametrized by two functions g, v : \BbbR \times \BbbR \geq 0 \rightarrow 
\BbbR . This analysis does not really depend on the specific structure of problem (1.1),
apart from making use of the data matrix \bfitA \sim \sansG \sansO \sansE (n). In particular, it does not
use the structure of the constraint \bfitsigma \in \{ +1, - 1\} n. The results of this analysis are
summarized in Theorem 4.

We then specialize this analysis to problem (1.1), by choosing functions g, v as
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FOCS19-4 ANDREA MONTANARI

to match the prediction of the Parisi formula. This step is, of course, dependent on
the structure of the constraint set, and makes use of Assumption 1 in a very specific
passage. Namely, we use the assumption in checking that our proposal for g, v satisfies
condition (a) of Lemma 2.8. This is done at the beginning of the proof of Theorem 4.

Remark 1.3 (computation model). For the sake of simplicity, we measure com-
plexity in floating point operations. However, all operations in our algorithm appear
to be stable, and it should be possible to translate this result to weaker computation
models.

We also assume that we can choose one value of the inverse temperature \beta , and
query the distribution \mu \beta (t) and the PDE solution \Phi (t, x) as well as its derivatives
\partial x\Phi (t, x), \partial 2x\Phi (t, x) at specified points (t, x), with each query costing O(1) operations.

This is a reasonable model for two reasons: (i) The PDE (1.2) is independent of the
instance, and can be solved to a desired degree of accuracy only once. This solution can
be used every time a new instance of the problem is presented. (ii) The function \mu \mapsto \rightarrow 
\sansP \beta (\mu ) is uniformly continuous [Gue03] and strongly convex [AC15, JT16]. Further,
the PDE solution \Phi is continuous in \mu and can be characterized as a fixed point of
a certain contraction [JT16]. Because of these reasons we expect that an oracle to
compute \Phi (t, x), \partial x\Phi (t, x), \partial 2x\Phi (t, x) to accuracy \eta can be implemented efficiently.
We defer to future work a more detailed study of the complexity of this oracle.

Beyond Theorem 2, our general analysis allows us to prove an additional fact that
is of independent interest. Namely, for any \beta > \beta 0, our message passing iteration
constructs an approximate solution of the celebrated Thouless, Anderson, Palmer
(TAP) equations [MPV87, Tal10].

In order to avoid inessential technical complications, the bulk of this paper is
devoted to proving Theorem 2 for the case of Gaussian matrices \bfitA . However, the
class of algorithms we use enjoys certain universality properties, first established in
[BLM15]. These properties can be used to establish the last part of Theorem 2
which addresses the case of symmetric matrices with independent subgaussian entries.
Section 5 contains such a generalization.

As a special case of random matrices \bfitA with independent subgaussian entries, we
can consider (centered) adjacency matrices of dense Erdős–Renyi random graphs. As
a consequence of Theorem 2 we obtain an algorithm to approximate the MAXCUT
of such a graph.

Let Gn = ([n], En) \sim \scrG (n, p) be an Erdős–Renyi random graph with edge proba-
bility \BbbP 

\bigl\{ 
(i, j) \in En

\bigr\} 
= p = \Omega (1). A random balanced partition of the vertices (which

we encode as a vector \bfitsigma \in \{ +1, - 1\} n) achieves a cut \sansC \sansU \sansT G(\bfitsigma ) = | En| /2 + O(n) =
n2p/4 + O(n), and a simple concentration argument implies that the MAXCUT has
size \mathrm{m}\mathrm{a}\mathrm{x}\bfitsigma \in \{ +1, - 1\} \sansC \sansU \sansT G(\bfitsigma ) = | En| /2+O(n3/2p1/2). In fact, it follows from [DMS17]
that1

\mathrm{m}\mathrm{a}\mathrm{x}
\bfitsigma \in \{ +1, - 1\} n

\sansC \sansU \sansT G(\bfitsigma ) = | En| /2 + (n3p(1 - p)/2)1/2\sansP \ast + o(n3/2) ,

\sansP \ast := \mathrm{l}\mathrm{i}\mathrm{m}
\beta \rightarrow \infty 

1

\beta 
\mathrm{m}\mathrm{i}\mathrm{n}

\mu \in P([0,1])
\sansP \beta (\mu ) .

1In [DMS17], the same result is shown to hold for sparser graphs, as long as the average degree
diverges: npn \rightarrow \infty .
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OPTIMIZATION OF THE SK HAMILTONIAN FOCS19-5

In other words, MAXCUT on dense Erdős–Renyi random graphs is nontrivial only
once we subtract the baseline value | En| /2. Once this baseline is subtracted, the
problem lies in the universality class of the Sherrington–Kirkpatrick model. As a
corollary of Theorem 2 we can approximate this subtracted value arbitrarily well.

Corollary 1.2. Under Assumption 1, for any \varepsilon > 0 there exists an algorithm
(with complexity at most C(\varepsilon )n2), that takes as input an Erdős–Renyi random graph
Gn = ([n], En) \sim \scrG (n, p) (with p bounded away from 0 and 1 as n\rightarrow \infty ), and outputs
a balanced cut \bfitsigma \ast = \bfitsigma \ast (G) \in \{ +1, - 1\} n (with \langle \bfitsigma \ast ,\bfone \rangle | \leq 1), such that\biggl( 

\sansC \sansU \sansT G(\bfitsigma \ast ) - 
| En| 
2

\biggr) 
\geq (1 - \varepsilon ) \mathrm{m}\mathrm{a}\mathrm{x}

\bfitsigma \in \{ +1, - 1\} n

\biggl( 
\sansC \sansU \sansT G(\bfitsigma \ast ) - 

| En| 
2

\biggr) 
.(1.6)

The rest of this section provides further background. In section 2 we describe and
analyze a general message passing algorithm, which we call incremental approximate
message passing (IAMP). We believe this algorithm is of independent interest and
can be applied beyond the Sherrington–Kirkpatrick model. In section 3 we use this
approach to prove Theorem 2. In section 4 we show that the same message passing
algorithm of section 2 produces approximate solutions of the TAP equations. Finally,
section 5 discusses a generalization of Theorem 2 using universality. The reader
interested in a succinct description of the algorithm (with some technical bells and
whistles removed), is urged to read Appendix B.

1.1. Further background. As mentioned above—under suitable complexity
theory assumptions—there is no polynomial-time algorithm that approximates the
quadratic program (1.1) better than within a factor O((\mathrm{l}\mathrm{o}\mathrm{g} n)c), for some c > 0
[ABE+05]. Little is known on average-case hardness, when \bfitA is drawn from one of
the random matrix distributions considered here. As an exception, Gamarnik [Gam18]
proved that exact computation of the partition function Zn(\beta ) is hard on average.

A natural approach to the quadratic program (1.1) would be to use a convex
relaxation. A spectral relaxation yields \mathrm{m}\mathrm{a}\mathrm{x}\bfitsigma \in \{ +1, - 1\} Hn(\bfitsigma )/n \leq \lambda 1(\bfitA )/2 = 1 +
on(1), and hence is not tight for large n. This can be compared to a numerical
evaluation of Parisi’s formula which yields \sansP \ast \approx 0.763166 [CR02, Sch08]. Rounding
the spectral solution yieldsHn(\bfitsigma sp) = 2/\pi +on(1) \approx 0.636619. Somewhat surprisingly,
the simplest semidefinite programming relaxation (degree 2 of the sum-of-squares
hierarchy), does not yield any improvement (for large n) over the spectral one [MS16].
After a preprint of this paper was posted, two groups [KB19, MRX19] proved that
the degree 4 sum-of-squares relaxation has asymptotically the same value as well.
Theorem 2 was conjectured by the author in 2016 [Mon16], based on insights from
statistical physics [CK94, BCKM98]. The same presentation also outlined the basic
strategy followed in the present paper, which uses an iterative approximate message
passing (AMP) algorithm. These types of algorithms were first proposed in the context
of signal processing and compressed sensing [Kab03, DMM09]. Their rigorous analysis
was developed by Bolthausen [Bol14] and subsequently generalized in several papers
[BM11, JM13, BLM15, BMN19]. In this paper we introduce a specific class of AMP
algorithms (incremental AMP) whose specific properties allow us to match the result
predicted by Parisi’s formula.

The fundamental phenomenon studied here is expected to be quite general. Namely,
objective functions with overlap distribution having support of the form [0, q\ast ] are ex-
pected to be easy to optimize. In contrast, if the support has a gap (for instance,
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FOCS19-6 ANDREA MONTANARI

has the form [0, q1] \cup [q2, q\ast ] for some q1 < q2), this is considered as an indication of
average case hardness. This intuition originates within spin glass theory [MPV87].
Roughly speaking, the structure of the overlap distribution should reflect the con-
nectivity properties of the level sets \scrL n(\varepsilon ) \equiv \{ \bfitsigma : Hn(\bfitsigma ) \geq (1  - \varepsilon )\mathrm{m}\mathrm{a}\mathrm{x}\bfitsigma \prime Hn(\bfitsigma 

\prime )\} .
This intuition was exploited in some cases to prove the failure of certain classes of
algorithms in problems with a gap in the overlap distribution; see, e.g., [GS14].

Important progress towards clarifying this connection was achieved recently in
two remarkable papers [ABM18, Sub18].

Addario-Berry and Maillard [ABM18] study an abstract optimization problem
that is thought to capture some key features of the energy landscape of the Sherrington–
Kirkpatrick model, the so-called “continuous random energy model.” They prove that
an approximate optimum can be found in polynomial time in the problem dimensions.
From an optimization perspective, the random energy model is somewhat unnatural,
in that specifying an instance requires memory that is exponential in the problem
dimensions.

Subag [Sub18] considers the p-spin spherical spin glass. Roughly speaking, this
can be described as the problem of optimizing a random smooth function (which
can be taken to be a low-degree polynomial) over the unit sphere. Subag relaxes
this problem by extending the optimization over the unit ball, and proves that this
objective function can be optimized efficiently by following the positive directions of
the Hessian. The solution thus constructed lies on the unit sphere and thus solves the
unrelaxed problem. The mathematical insight of [Sub18] is beautifully simple, but
uses in a crucial way the spherical geometry. While it might be possible to generalize
the same argument to the hypercube case (e.g., using the generalized TAP free energy
of [MV85, CPS18]) this extension is far from obvious. In particular, uniform control
of the Hessian is not as straightforward as in [Sub18].

The algorithm presented here is partially inspired by [Sub18] (in particular, a key
role is played by approximate orthogonality of the updates), but its specific structure
is dictated by the message passing viewpoint. Thanks to the technique of [Bol14,
BM11, JM13, BMN19], its analysis does not require uniform control and is relatively
simple.

Finally, a conference version of this work was presented at FOCS 2019. The
present version of the manuscript analyzes a simpler version of the algorithm, at the
cost of some additional technical work in the proofs. The previous version introduced
some truncation steps in the algorithm, which were unnecessary but simplified the
proofs.

1.2. Notations. Given vectors \bfitx ,\bfity \in \BbbR n, we denote by \langle \bfitx ,\bfity \rangle their scalar
product and by \| \bfitx \| \equiv \langle \bfitx ,\bfitx \rangle 1/2 the associated \ell 2 norm. Further, we denote by
\bfitx \odot \bfity \in \BbbR n their entrywise product. Given a function f : \BbbR k \rightarrow \BbbR , and k vec-
tors \bfitx 1, . . . ,\bfitx k \in \BbbR n, we write f(\bfitx 1, . . . ,\bfitx k) for the vector in \BbbR n with components
f(\bfitx 1, . . . ,\bfitx k)i = f(x1,i, . . . , xk,i). The empirical distribution of the coordinates of a
vector of vectors (\bfitx 1, . . . ,\bfitx k) \in (\BbbR n)k is the probability measure on \BbbR k defined by

\^p\bfitx 1,...,\bfitx k
\equiv 1

n

n\sum 
i=1

\delta (x1,i,...,xk,i) .(1.7)

In other words, if we arrange the vectors \bfitx 1, . . . ,\bfitx k in a matrix in \bfitX = [\bfitx 1, . . . ,\bfitx k] \in 
\BbbR n\times k, \^p\bfitx 1,...,\bfitx k

denotes the probability distribution of a uniformly random row of \bfitX .
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OPTIMIZATION OF THE SK HAMILTONIAN FOCS19-7

In the case of a single vector \bfitx \in \BbbR n (i.e., for k = 1), this reduces to the standard
empirical distribution of the entries of \bfitx . We say that a function f : \BbbR d \rightarrow \BbbR is
pseudo-Lipschitz of order \ell (and we write f \in \mathrm{P}\mathrm{L}(\ell )) if | f(\bfitx )  - f(\bfity )| \leq C(1 +
\| \bfitx \| \ell  - 1 + \| \bfity \| \ell  - 1)\| \bfitx  - \bfity \| . Notice that \mathrm{P}\mathrm{L}(1) is the class of Lipschitz functions, and
f \in \mathrm{P}\mathrm{L}(\ell ), g \in \mathrm{P}\mathrm{L}(\ell \prime ) implies fg \in \mathrm{P}\mathrm{L}(\ell + \ell \prime ).

Given two probability measures \mu , \nu on \BbbR d, we recall that their Wasserstein W\ell 

distance is defined as

W\ell (\mu , \nu ) \equiv 
\biggl\{ 

\mathrm{i}\mathrm{n}\mathrm{f}
\gamma \in \scrC (\mu ,\nu )

\int 
\| \bfitx  - \bfity \| \ell 2\gamma (\mathrm{d}\bfitx ,\mathrm{d}\bfity )

\biggr\} 1/\ell 

,(1.8)

where the infimum is taken over all the couplings of \mu and \nu (i.e., joint distributions on
\BbbR d\times \BbbR d whose first marginal coincides with \mu , and second with \nu ). For a sequence of
probability measures (\mu n)n\geq 1, and \mu on \BbbR d, we say that \mu n converges in Wasserstein
distance to \mu (and write \mu n

W\ell  - \rightarrow \mu ) if \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty W\ell (\mu n, \mu ) = 0. It is well known that
\mu n

W\ell  - \rightarrow \mu if and only if \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty 
\int 
\psi (\bfitx )\mu n(\mathrm{d}\bfitx ) =

\int 
\psi (\bfitx )\mu (\mathrm{d}\bfitx ) for all \psi \in \mathrm{P}\mathrm{L}(\ell ). In

turn, this happens if the convergence holds for all bounded Lipschitz functions \psi , and
for \psi (\bfitx ) = \| \bfitx \| \ell 2 [Vil08, Theorem 6.9]. Given a sequence of random variables Xn, we
write Xn

p - \rightarrow X\infty or \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty Xn = X\infty to state that Xn converge in probability to
X\infty .

2. A general message passing algorithm.

2.1. Approximate message passing (AMP) iteration. Our algorithm is
based on the general approximate message passing (AMP) iteration. Consider a
sequence of (weakly differentiable) functions fk : \BbbR k+2 \rightarrow \BbbR , and an initialization
\bfitu 0 \in \BbbR n and additional vector \bfity \in \BbbR n independent of \bfitA . The AMP iteration is
defined by letting, for k \geq 0,

\bfitz k+1 = \bfitA fk(\bfitz 
0, . . . ,\bfitz k;\bfity ) - 

k\sum 
j=1

\sansb k,jfj - 1(\bfitz 
0, . . . ,\bfitz j - 1;\bfity ) ,

\sansb k,j =
1

n

n\sum 
i=1

\partial fk

\partial zji
(z0i , . . . , z

k
i ; yi) .

(2.1)

It will be understood throughout that fj = 0 for j < 0.

Proposition 2.1. Consider the AMP iteration (2.1), and assume fk : \BbbR k+2 \rightarrow \BbbR 
to be pseudo-Lipschitz functions of order m. Further assume that for each \ell , \^p\bfitz 0,\bfity 

W\ell  - \rightarrow 
pZ0,Y where pZ0,Y is a probability distribution on \BbbR 2 with finite moments of all orders
(
\int 
(| z0| + | y| )\ell pZ0,Y (\mathrm{d}z0,\mathrm{d}y) < \infty ), and pZ0,Y = pZ0

\otimes pY , where each of pZ0
, pY is

either deterministic or has a Lebesgue density.

Let (Zj)j\geq 1 be a centered Gaussian process independent of (Z0, Y ) with covariance
\bfitQ = (Qkj)k,j\geq 1 determined recursively via

(2.2) Qk+1,j+1 = \BbbE 
\bigl\{ 
fk(Z0, . . . , Zk;Y )fj(Z0, . . . , Zj ;Y )

\bigr\} 
, k, j \geq 0 .

Assume that \bfitQ \leq k := (Qij)1\leq i,j\leq k is strictly positive definite for each k \leq T .

Then for any k, \ell \in \BbbN , k \leq T , and any function \psi : \BbbR k+2 \rightarrow \BbbR pseudo-Lipschitz
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FOCS19-8 ANDREA MONTANARI

of order \ell , we have

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

n\sum 
i=1

\psi (z0i , . . . , z
k
i ; yi) = \BbbE \psi (Z0, . . . , Zk;Y ) .(2.3)

This proposition follows immediately from the general analysis of AMP algorithms
developed in [JM13, BMN19]. The only difference with respect to earlier results is in
the fact that we assume fk to be pseudo-Lipschitz rather than Lipschitz continuous.
This generalization is established in Appendix A.

2.2. Incremental approximate message passing (IAMP). We next con-
sider a special case of the general AMP setting. Fix two parameters \delta > 0, s \geq 0, and
functions \widehat gk : \BbbR \rightarrow \BbbR , k \in \BbbN , for k \in \BbbZ , v : \BbbR \times \BbbR \geq 0 \rightarrow \BbbR . We consider the general
iteration (2.1), with the following choice of functions fk:

fk(z0, . . . , zk; y) :=

k\sum 
\ell =1

\widehat g\ell (x\ell  - 1) \cdot (z\ell  - z\ell  - 1) + y ,(2.4)

xk = xk - 1 + v(xk - 1, k\delta ) \delta + s (zk  - zk - 1) , x0 = 0 .(2.5)

Recall our convention fj = 0 for j < 0. We further set \widehat gj = 0 for j < 1. We
further set pZ0,Y = \delta 0 \otimes \sansN (0, \delta ). In other words, we set the initialization \bfitz 0 = \bfzero ,
and the additional randomness \bfity with independent and identically distributed (i.i.d.)
Gaussian coordinate with variance \delta . We note that, by (2.5), xk is indeed a function
of z0, . . . , zk, and therefore, fk is a function of z0, . . . , zk as stated.

Lemma 2.2 (state evolution for IAMP). Consider the incremental AMP itera-
tion, and assume v : \BbbR \times \BbbR \geq 0 \rightarrow \BbbR and \widehat gk : \BbbR \rightarrow \BbbR to be such that, for each k,
v( \cdot , k\delta ), \widehat gk : \BbbR \rightarrow \BbbR are Lipschitz continuous.

Let (Z\delta 
j )j\geq 0 be a Gaussian martingale with Z\delta 

0 = 0, and variance \mathrm{V}\mathrm{a}\mathrm{r}(Z\delta 
k) =

\BbbE \{ (Z\delta 
k)

2\} = qk defined recursively by setting X\delta 
0 = 0, q0 = 0, q1 = \delta , and for k \geq 1,

qk+1 = qk + \BbbE \{ \widehat gk(X\delta 
k - 1)

2\} \cdot (qk  - qk - 1) ,

X\delta 
k = X\delta 

k - 1 + v(X\delta 
k - 1; k\delta ) \delta + s (Z\delta 

k  - Z\delta 
k - 1) .

(2.6)

Assume that, for any k \leq T , \BbbE \{ \widehat gk(X\delta 
k - 1)

2\} > 0 strictly.

Then for any k \in \BbbN , k \leq T , and any pseudo-Lipschitz function \psi : \BbbR k+2 \rightarrow \BbbR ,
we have

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

n\sum 
i=1

\psi (z0i , . . . , z
k
i , yi) = \BbbE \psi (Z\delta 

0 , . . . , Z
\delta 
k , Y ) .(2.7)

Before passing to the proof of this lemma, we notice that (2.6) provides a recur-
sive definition of the joint distribution of (X\delta 

\ell , Z
\delta 
\ell )\ell \geq 0. Namely, assume the joint

distribution of (X\delta 
\ell , Z

\delta 
\ell )0\leq \ell \leq k - 1 is given, with (Z\delta 

\ell )0\leq \ell \leq k - 1 a (centered) Gaussian
martingale with \BbbE \{ (Z\delta 

\ell )
2\} = q\ell . In order to extend this distribution, we set qk =

qk - 1+\BbbE \{ \widehat gk - 1(X
\delta 
k - 2)

2\} \cdot (qk - 1 - qk - 2), define Z\delta 
k by letting Z\delta 

k - Z\delta 
k - 1 \sim \sansN (0, qk - qk - 1)

independent of (X\delta 
\ell , Z

\delta 
\ell )0\leq \ell \leq k - 1, and then define X\delta 

k using (2.6).

Proof of Lemma 2.2. Consider (2.4), (2.5), and note that, for any k, xk is a Lip-
schitz function of z0, . . . , zk. Hence fk defined in (2.4) is pseudo-Lipschitz continuous,
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OPTIMIZATION OF THE SK HAMILTONIAN FOCS19-9

and we can therefore apply Proposition 2.1. Note that (Z\delta 
j )j\geq 1 is a Gaussian process

with covariance (Qjk)j,k\geq 1 determined by (2.2). Setting Z\delta = Z0 = 0 with proba-
bility one, (Z\delta 

j )j\geq 0 is also a Gaussian process with covariance \bfitQ = (Qjk)j,k\geq 0 which
extends the previous one with Qk,0 = Q0,k = 0 for all k \geq 0. For any k \in \BbbN such that
\bfitQ \leq k := (Qjl)1\leq j,l\leq k is strictly positive definite (see Proposition 2.1),

1

n

n\sum 
i=1

\psi (z0i , . . . , z
k
i )

p - \rightarrow \BbbE \psi (Z\delta 
0 , . . . , Z

\delta 
k) .(2.8)

We next set qk = Qkk. We will prove that for all k \geq 0, the following claim,
denoted by \scrC (k), holds: for all 0 \leq j \leq k we have Qk,j = Qj,k = Qj,j . We prove this
claim by induction over k. As a preliminary remark notice that \scrC (k) is equivalent to
the claim that, defining U \delta 

j = Z\delta 
j  - Z\delta 

j - 1, the (U\delta 
j )1\leq j\leq k are independent Gaussian

random variables. This can be easily checked by computing the correlation coefficient
(for j < l \leq k)

\BbbE \{ U\delta 
j U

\delta 
l \} = Qjl  - Qj - 1,l  - Qj,l - 1 +Qj - 1,l - 1 .(2.9)

This vanishes for all 1 \leq j < l \leq k if and only if \scrC (k) holds. Note that \scrC (k) is also
equivalent to the claim that (Z\delta 

j )0\leq j\leq k is a Gaussian martingale.

We next proceed to prove the claim by induction. For k = 0 there is nothing to
prove. We assume next that \scrC (k) holds, and prove \scrC (k + 1). We need to prove that
Ql,k+1 = Qll for all 0 \leq l \leq k. For l = 0 this is immediate since Qk+1,0 = 0 by
Proposition 2.1.

Next consider l = j + 1, 0 \leq j \leq k. By (2.2) we have (recalling that U\delta 
j :=

Z\delta 
j  - Z\delta 

j - 1)

Qj+1,k+1 = \BbbE 

\Biggl\{ \Biggl( 
Y +

j\sum 
i=1

\widehat gi(X\delta 
i - 1)U

\delta 
i

\Biggr) \Biggl( 
Y +

k\sum 
m=1

\widehat gm(X\delta 
m - 1)U

\delta 
m

\Biggr) \Biggr\} 

= \delta +

j\sum 
i=1

k\sum 
m=1

\BbbE 
\bigl\{ \widehat gi(X\delta 

i - 1)U
\delta 
i \widehat gm(X\delta 

m - 1)U
\delta 
m

\bigr\} 
.

Recall that by the induction hypothesis U \delta 
1 , . . . , U

\delta 
k are independent, and further that

X\delta 
q is a function of U\delta 

1 , . . . , U
\delta 
q . It follows that the last expectation is nonvanishing

only if i = m, and therefore, we get

Qj+1,k+1 = \delta +

j\sum 
l=1

\BbbE 
\bigl\{ \widehat gl(X\delta 

l - 1)
2(U \delta 

l )
2
\bigr\} 

= \delta +

j\sum 
l=1

\BbbE 
\bigl\{ \widehat gl(X\delta 

l - 1)
2
\bigr\} 
\BbbE \{ (U\delta 

l )
2\} = Qj+1,j+1 .

This concludes the proof of claim \scrC (k + 1), and therefore the induction.

Also note that the last equation, applied to j = k, yields, for k \geq 1

qk+1 = \delta +

k\sum 
l=1

\BbbE 
\bigl\{ \widehat gl(X\delta 

l - 1)
2\} (ql  - ql - 1)

= qk + \BbbE 
\bigl\{ \widehat gk(X\delta 

k - 1)
2\} (qk  - qk - 1) .

D
ow

nl
oa

de
d 

08
/0

3/
21

 to
 1

71
.6

6.
16

0.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FOCS19-10 ANDREA MONTANARI

Further, the first equality here holds for k = 0 as well, implying q1 = \delta .

Finally notice that, under the assumption \BbbE \{ \widehat gk(X\delta 
k - 1)

2\} > 0, (qk)\geq 0 is a strictly
increasing sequence, and therefore, \bfitQ \leq k := (Qjl)1\leq j,l\leq k is strictly positive definite
for all k \leq T , thus checking the assumptions of Proposition 2.1. This concludes the
proof.

We are now in position to define the output of the message passing algorithm (this
will be our candidate for a near optimum of problem (1.1), after suitable rounding).
We fix q > 0 and define (recalling the definition of fk in (2.4), (2.5))

\bfitm k := fk(\bfitz 
0, . . . ,\bfitz k;\bfzero ) =

k\sum 
j=1

\widehat gj\bigl( \bfitx j - 1
\bigr) 
\odot (\bfitz j  - \bfitz j - 1) ,(2.10)

\bfitm := \bfitm \lfloor q/\delta \rfloor .(2.11)

Note that the vector \bfitm \in \BbbR n depends on parameters \delta , q, s, and on the functions\widehat gk, v, for k \geq 0. Parameter \delta will be taken small enough but independent of n. The
next section will be devoted to choosing q and the functions \widehat gk, v. In this section we
will establish some general properties of \bfitm .

Lemma 2.3. Consider the IAMP iteration, and assume v : \BbbR \times \BbbR \geq 0 \rightarrow \BbbR and\widehat gk : \BbbR \rightarrow \BbbR to satisfy the assumptions of Lemma 2.2. Further, assume \partial x\widehat gk(x) to
exist and be Lipschitz continuous.

Define the random variables

M\delta 
k :=

k\sum 
j=1

\widehat gj(X\delta 
j - 1) (Z

\delta 
j  - Z\delta 

j - 1) , M\delta :=M\delta 
\lfloor q/\delta \rfloor .(2.12)

Then we have, for any \ell , and any pseudo-Lipschitz function of order \ell , \psi : \BbbR \rightarrow \BbbR ,
and any k \leq \lfloor q/\delta \rfloor ,

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

n\sum 
i=1

\psi (mk
i ) = \BbbE \{ \psi (M\delta 

k )\} ,(2.13)

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

2n
\langle \bfitm ,\bfitA \bfitm \rangle =

\lfloor q/\delta \rfloor  - 1\sum 
k=1

\BbbE \{ (Z\delta 
k  - Z\delta 

k - 1)
2\} \BbbE \{ \widehat gk+1(X

\delta 
k)\} \BbbE \{ \widehat gk(X\delta 

k - 1)
2\} .(2.14)

Proof. Equation (2.13) follows immediately from Lemma 2.2 upon noticing that
mk

i is a pseudo-Lipschitz function of z0i , . . . , zki (because \widehat gj(xj - 1
i ) and zji  - z

j - 1
i are

both Lipschitz). Hence \psi (mi) is a pseudo-Lipschitz function of z0,i, . . . , zk,i.

In order to prove (2.14), we will write \bfitg k = \widehat gk \bigl( \bfitx k - 1
\bigr) 
\odot (\bfitz k  - \bfitz k - 1) and K =

\lfloor q/\delta \rfloor . With these notations, we have

\bfitm =

K\sum 
j=1

\bfitg j , \bfitm \ell =

\ell \sum 
j=1

\bfitg j ,(2.15)

\bfitz k+1 = \bfitA (\bfitm k + \bfity ) - 
k\sum 

j=1

\sansb kj\bfitm 
j - 1 .(2.16)
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OPTIMIZATION OF THE SK HAMILTONIAN FOCS19-11

We further notice that, for j \leq k

\sansb k,j =
1

n

n\sum 
i=1

k\sum 
\ell =1

\biggl\{ 
\partial \widehat g\ell 
\partial zj

(x\ell  - 1
i )(z\ell i  - z\ell  - 1

i ) + \widehat g\ell (x\ell  - 1
i )(\bfone \ell =j  - \bfone \ell =j+1)

\biggr\} 
.

In what follows we will define \sansb k,j = 0 for j > k, and recall that the random variables
X\delta 

k , U
\delta 
k are defined via (2.6) and U \delta 

k := Z\delta 
k  - Z\delta 

k - 1. We thus have

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

(\sansb k,j  - \sansb k - 1,j)

= \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

n\sum 
i=1

\biggl\{ 
\partial \widehat gk
\partial zj

(xk - 1
i )(zki  - zk - 1

i ) + \widehat gk(xk - 1
i )(\bfone k=j  - \bfone k=j+1)

\biggr\} 
P (\mathrm{a})
= \BbbE 

\biggl\{ 
\partial \widehat gk
\partial zj

(X\delta 
k - 1)(Z

\delta 
k  - Z\delta 

k - 1) + \widehat gk(X\delta 
k - 1)(\bfone k=j  - \bfone k=j+1)

\biggr\} 
(\mathrm{b})
= \BbbE 

\bigl\{ \widehat gk(X\delta 
k - 1)

\bigr\} 
(\bfone k=j  - \bfone k=j+1) := \~\sansb k(\bfone k=j  - \bfone k=j+1) ,(2.17)

where in (a) we used the fact that both \partial x\widehat gk and \widehat gk are Lipschitz, and xk - 1
i is a

Lipschitz function of z0i , . . . , z
k - 1
i . In (b) we used the martingale property of (Z\delta 

j )j\geq 0.
Further, the random variables U \delta 

k , X
\delta 
k are defined as in the proof of Lemma 2.2.

Next, notice that, for j < k, since (U \delta 
i )i\geq 0 are martingale differences, and X\delta 

k - 1,
X\delta 

j - 1 are functions of (U \delta 
i )0\leq i\leq k - 1,

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n
\langle \bfitg j , \bfitg k\rangle = \BbbE 

\bigl\{ \widehat gj(X\delta 
j - 1)U

\delta 
j \widehat gk(X\delta 

k - 1)U
\delta 
k

\bigr\} 
= \BbbE 

\bigl\{ \widehat gj(X\delta 
j - 1)U

\delta 
j \widehat gk(X\delta 

k - 1)
\bigr\} 
\BbbE 
\bigl\{ 
U\delta 
k

\bigr\} 
= 0 .

(2.18)

By a similar argument, for j \leq k,

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n
\langle \bfitg j , (\bfitz k+1  - \bfitz k)\rangle = 0 .(2.19)

On the other hand,

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n
\| \bfitg k\| 2 = \BbbE 

\bigl\{ \widehat gk(X\delta 
k - 1)

2 (U\delta 
k )

2
\bigr\} 

= \BbbE 
\bigl\{ \widehat gk(X\delta 

k - 1)
2
\bigr\} 
\BbbE 
\bigl\{ 
(U\delta 

k )
2
\bigr\} 
.

(2.20)

By taking the difference of the AMP iterations (2.16) at two subsequent times,
we get

\bfitA \bfitg k = \bfitz k+1  - \bfitz k +

k\sum 
j=1

(\sansb k,j  - \sansb k - 1,j)\bfitm 
j - 1(2.21)

= \bfitz k+1  - \bfitz k + \~\sansb k\bfitg 
k - 1 + \bfe \bfr \bfr k .(2.22)

Using (2.17) and (2.20), we get \| \bfe \bfr \bfr k\| 2/n p - \rightarrow 0, and therefore, \langle \bfitg j , \bfe \bfr \bfr k\rangle /n p - \rightarrow 0.
Hence, for j \leq k,

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n
\langle \bfitg j ,\bfitA \bfitg k\rangle = \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

1

n
\langle \bfitg j , \bfitz k+1  - \bfitz k\rangle + \~\sansb k \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

1

n
\langle \bfitg j , \bfitg k - 1\rangle + \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

1

n
\langle \bfitg j , \bfe \bfr \bfr k\rangle 

(\mathrm{a})
= \~\sansb k \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

1

n
\langle \bfitg j , \bfitg k - 1\rangle 

(\mathrm{b})
= \bfone \{ k=j+1\} \BbbE \{ \widehat gj+1(X

\delta 
j )\} \BbbE 

\bigl\{ \widehat gj(X\delta 
j - 1)

2
\bigr\} 
\BbbE 
\bigl\{ 
(U \delta 

j )
2
\bigr\} 
,
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FOCS19-12 ANDREA MONTANARI

where (a) follows from (2.19) and (b) from (2.18) and (2.20). We finally can compute
(using the fact that \bfitA is symmetric)

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

2n
\langle \bfitm ,\bfitA \bfitm \rangle =

K\sum 
j=1

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

2n
\langle \bfitg j ,\bfitA \bfitg j\rangle +

\sum 
1\leq j<k\leq K

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n
\langle \bfitg j ,\bfitA \bfitg k\rangle 

=

K - 1\sum 
j=1

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n
\langle \bfitg j ,\bfitA \bfitg j+1\rangle 

=

K - 1\sum 
j=1

\BbbE \{ \widehat gj+1(X
\delta 
j )\} \BbbE 

\bigl\{ \widehat gj(X\delta 
j - 1)

2
\bigr\} 
\BbbE 
\bigl\{ 
(U\delta 

j )
2
\bigr\} 
.

2.3. Small step size limit. In the case of models with no overlap gap, it is
natural to consider the limit of small step size \delta \rightarrow 0. In order to identify this limit,
it is useful to summarize the equations that characterize the state evolution process
at \delta > 0 fixed:

\bullet (Z\delta 
k)k\geq 0 is a centered Gaussian martingale, with variance \BbbE \{ (Z\delta 

k)
2\} = qk

determined by letting q0 = 0, q1 = \delta and, for k \geq 1 (cf. (2.6)),

qk+1 = qk + \BbbE \{ \widehat gk(X\delta 
k - 1)

2\} \cdot (qk  - qk - 1) .(2.23)

\bullet The process \{ (X\delta 
k ,M

\delta 
k )\} k\geq 0 is defined by X\delta 

0 = 0 and (cf. (2.6) and (2.12))

X\delta 
k = X\delta 

k - 1 + v(X\delta 
k - 1; k\delta ) \delta + s (Z\delta 

k  - Z\delta 
k - 1) ,(2.24)

M\delta 
k =

k\sum 
j=1

\widehat gj(X\delta 
j - 1) (Z

\delta 
j  - Z\delta 

j - 1) .(2.25)

We will choose functions \widehat gk so that \BbbE \{ \widehat gk(X\delta 
k - 1)

2\} = 1. It is therefore natural to
imagine that (Z\delta 

k)k\geq 0 converges to Brownian motion. Motivated by this heuristics,
we will introduce a stochastic differential equation (SDE) description.

Definition 2.4. We say that the functions g, v : \BbbR \times \BbbR \geq 0 \rightarrow \BbbR are acceptable if
the following conditions hold, for some constant C0, C1:

| v(x, t)| \vee | g(x, t)| \leq C0(1 + | x| ) ,(2.26)
| v(x1, t) - v(x2, t)| \vee | g(x1, t) - g(x2, t)| \leq C1| x1  - x2| .(2.27)

Given acceptable functions g, v : \BbbR \times \BbbR \geq 0 \rightarrow \BbbR , let (Bt)t\geq 0 be a standard Brownian
motion. We define the process (Xt,Mt)t\geq 0 via

(2.28) \mathrm{d}Xt = v(Xt, t) \mathrm{d}t+ s\mathrm{d}Bt , \mathrm{d}Mt = g(Xt, t) \mathrm{d}Bt ,

with initial condition X0 =M0 = 0. Equivalently,

(2.29) Xt =

\int t

0

v(Xr, r) \mathrm{d}r + sBt , Mt =

\int t

0

g(Xr, r) \mathrm{d}Br ,

where the last integral is understood in Ito’s sense. Existence and uniqueness of strong
solutions of this SDE are proven—for instance—in [Øks03, Theorem 5.2.1].
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OPTIMIZATION OF THE SK HAMILTONIAN FOCS19-13

We will prove that indeed this SDE provides a good approximation on the state
evolution process at \delta > 0. We begin by stating a few properties of the continuous
time process (Xt,Mt). While these properties are standard, we provide proofs for the
reader’s convenience.

Lemma 2.5. Let s \in \BbbR , and g, v : \BbbR \times \BbbR \geq 0 \rightarrow \BbbR be acceptable functions. Then
there exists a constant C depending only on constants C0 C1 of Definition 2.4, such
that the following hold for all t, r \geq 0:

\BbbE (X2
t ) \leq eCt  - 1 ,(2.30)

\BbbE (| Xt  - Xr| 2) \leq eC(t\vee r)| t - r| .(2.31)

Proof. Throughout the proof, C will denote a constant that depends on the
bounds on g, v, and on s but can change from line to line. Consider (2.30). By
Ito’s formula

\mathrm{d}(X2
t ) = 2Xtv(Xt, t)\mathrm{d}t+ 2sXt\mathrm{d}Bt + s2\mathrm{d}t ,(2.32)

whence, using | xv(x, t)| \leq C(1 + x2), we get

\mathrm{d}

\mathrm{d}t
\BbbE (X2

t ) = 2\BbbE \{ Xtv(Xt, t)\} + s2 \leq C
\bigl\{ 
1 + \BbbE (X2

t )
\bigr\} 
.(2.33)

Equation (2.30) follows by Gronwall’s lemma. Equation (2.31) follows by essentially
the same argument (fixing r and differentiating with respect to t > r).

Before stating our approximation result, we recall the definition of functions of
bounded total variation.

Definition 2.6. A function f : [a, b] \rightarrow \BbbR has total variation bounded by B if,
for any m \in \BbbN and any a = s0 \leq s1 \leq \cdot \cdot \cdot \leq sm = b, we have

m\sum 
\ell =1

\bigm| \bigm| f(s\ell ) - f(s\ell  - 1)
\bigm| \bigm| \leq B .(2.34)

The total variation of f (denoted by \| f\| TV) is the least constant B such that this
bound holds for all m and all partitions (sj)j\leq m.

Lemma 2.7. Given s \geq 0 and acceptable functions g, v : \BbbR \times \BbbR \geq 0 \rightarrow \BbbR , let
(Xt,Mt) be the process defined by (2.28), (2.29). Let f : \BbbR \times \BbbR \geq 0 \rightarrow \BbbR be acceptable
and further assume that f(x, t) = f0(t) f1(x, t) where f0 is bounded and has bounded
total variation on [0, T ], and f1 : \BbbR \times [0, T ] \rightarrow \BbbR is Lipschitz continuous. Define
tj = j\delta for j \in \BbbN .

Then there exists a constant C (depending on the constants C0, C1 of Definition
2.4 on T , on \| f0\| TV, \| f0\| \infty , and on the Lipschitz constant of f1) such that

\lfloor T/\delta \rfloor  - 1\sum 
j=0

\int tj+\delta 

tj

\BbbE 
\bigl\{ \bigl[ 
f(Xt, t) - f(Xtj , tj+1)

\bigr] 2\bigr\} 
\mathrm{d}t \leq C\delta .(2.35)

Proof. Note that, for t \in [0, T ], | f(x1, t) - f(x2, t)| \leq \| f0\| \infty | f1(x1, t) - f1(x2, t)| \leq 
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FOCS19-14 ANDREA MONTANARI

C| x1  - x2| . We have

\BbbE 
\bigl\{ \bigl[ 
f(Xt, t) - f(Xtj , tj+1)

\bigr] 2\bigr\} 
\leq 2\BbbE 

\bigl\{ \bigl[ 
f(Xt, t) - f(Xtj , t)

\bigr] 2\bigr\} 
+ 2\BbbE 

\bigl\{ \bigl[ 
f(Xtj , t) - f(Xtj , tj+1)

\bigr] 2\bigr\} 
\leq C \BbbE \{ (Xt  - Xtj )

2\} + 4\BbbE 
\bigl\{ \bigl[ 
f0(t)f1(Xtj , t) - f0(t)f1(Xtj , tj+1)

\bigr] 2\bigr\} 
+ 4\BbbE 

\bigl\{ \bigl[ 
f0(t)f1(Xtj , tj+1) - f0(tj+1)f1(Xtj , tj+1)

\bigr] 2\bigr\} 
.

By Lemma 2.5, we have \BbbE \{ | Xt  - Xs| 2\} \leq C| t  - s| for all t, s \leq T , whence, for
t \in [tj , tj+1],

\BbbE 
\bigl\{ \bigl[ 
f(Xt, t) - f(Xtj , tj+1)

\bigr] 2\bigr\} \leq C\delta + Cf0(t)
2\delta 2 + C[f0(t) - f0(tj+1)]

2\BbbE \{ 1 +X2
tj\} 

\leq C\delta + C\| f0\| \infty [f0(t) - f0(tj+1)]
2

\leq C\delta + C| f0(t) - f0(tj+1)| .

We thus have, letting K := \lfloor T/\delta \rfloor ,

K - 1\sum 
j=0

\int tj+\delta 

tj

\BbbE 
\bigl\{ \bigl[ 
f(Xt, t) - f(Xtj , tj+1)

\bigr] 2\bigr\} 
\mathrm{d}t(2.36)

\leq C
K - 1\sum 
j=0

\int tj+\delta 

tj

\bigl[ 
\delta + | f0(t) - f0(tj+1)| 

\bigr] 
\mathrm{d}t(2.37)

\leq C\delta + C\delta \mathrm{s}\mathrm{u}\mathrm{p}
(t\prime j)j<K

K - 1\sum 
j=0

| f0(t\prime j) - f0(tj+1)| ,(2.38)

where in the last expression, the supremum is over sequences of points t\prime j \in [tj , tj+1].
It is immediate to see that

\sum K - 1
j=0 | f0(t\prime j)  - f0(tj+1)| \leq \| f0\| TV, whence the claim

follows.

Lemma 2.8. Given s \geq 0 and acceptable functions g, v : \BbbR \times \BbbR \geq 0 \rightarrow \BbbR , let
(Xt,Mt) be the process defined by (2.28), (2.29). Further, assume the following:

(a) \BbbE \{ g(Xt, t)
2\} = 1 for all t \geq 0.

(b) For each of f \in \{ g, v\} , we have f(x, t) = f0(t) f1(t, x), where f0 is bounded
and has bounded total variation on [0, q], and f1 : \BbbR \times [0, q]\rightarrow \BbbR is Lipschitz
continuous.

Consider the state evolution iteration of (2.6), whereby q0 = 0, q1 = \delta , and \widehat gk is
defined recursively via

\widehat gk(x) \equiv g(x, k\delta )

\BbbE \{ g(X\delta 
k - 1, k\delta )

2\} 1/2
.(2.39)
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OPTIMIZATION OF THE SK HAMILTONIAN FOCS19-15

Then, there exists a coupling of (X\delta 
k)k\geq 0 and (Xt)t\geq 0 such that

\mathrm{m}\mathrm{a}\mathrm{x}
k\leq \lfloor q/\delta \rfloor 

\BbbE 
\bigl( 
| X\delta 

k  - Xk\delta | 2
\bigr) 
\leq C\delta ,(2.40)

\mathrm{m}\mathrm{a}\mathrm{x}
k\leq \lfloor q/\delta \rfloor 

\BbbE 
\bigl( 
| M \delta 

k  - Mk\delta | 2
\bigr) 
\leq C

\surd 
\delta ,(2.41)

\BbbE 
\bigl( 
| M\delta 

\lfloor q/\delta \rfloor  - Mq| 2
\bigr) 
\leq C

\surd 
\delta ,(2.42)

\lfloor q/\delta \rfloor  - 1\sum 
k=1

\BbbE \{ (U \delta 
k )

2\} \BbbE \{ \widehat gk+1(X
\delta 
k)\} \BbbE \{ \widehat gk(X\delta 

k - 1)
2\} =

\int q

0

\BbbE \{ g(Xt, t)\} \mathrm{d}t+O(\delta 1/4) .

(2.43)

(Here C is a constant depending only on the constant appearing in the assumptions
on g, v and on q, s. Further, the O(\delta 1/4) error is bounded as | O(\delta 1/4)| \leq C\delta 1/4 for
the same constant.)

Proof. Throughout this proof, we will write tk = k\delta and denote by C a generic
constant that depends on q and on the constants appearing in the assumptions on
g, v, and can change from line to line. Note that, by construction, qj = j\delta for all j.
Hence we can construct the discrete and continuous processes on the same probability
space by letting Z\delta 

j = Btj for all j \geq 0. Recalling that U\delta 
j := Z\delta 

j  - Z\delta 
j - 1, we also have

(U \delta 
j )j\geq 1 \sim iid \sansN (0, \delta ).

We then state the difference between the two processes as

Xk\delta  - X\delta 
k =

k - 1\sum 
j=0

\int tj+\delta 

tj

\bigl[ 
v(Xt, t) - v(X\delta 

j , tj+1)
\bigr] 
\mathrm{d}t .

By taking the second moment, and using the Cauchy–Schwarz inequality, we get

\BbbE 
\bigl\{ \bigl[ 
Xk\delta  - X\delta 

k

\bigr] 2\bigr\} \leq k k - 1\sum 
j=0

\delta 

\int tj+\delta 

tj

\BbbE 
\bigl\{ \bigl[ 
v(Xt, t) - v(X\delta 

j , tj+1)
\bigr] 2\bigr\} 

\mathrm{d}t .(2.44)

By Lemma 2.7, and using k\delta \leq q \leq C,

\BbbE 
\bigl\{ \bigl[ 
Xk\delta  - X\delta 

k

\bigr] 2\bigr\} \leq 2k\delta k - 1\sum 
j=0

\int tj+\delta 

tj

\BbbE 
\bigl\{ \bigl[ 
v(Xtj , tj+1) - v(X\delta 

j , tj+1)
\bigr] 2\bigr\} 

\mathrm{d}t+ C\delta (2.45)

\leq C
k - 1\sum 
j=0

\int tj+\delta 

tj

\BbbE 
\bigl\{ \bigl( 
Xtj  - X\delta 

j

\bigr) 2\bigr\} 
\mathrm{d}t+ C\delta .(2.46)

Letting \Delta k \equiv \BbbE \{ [Xtk  - X\delta 
k ]

2\} , we get

\Delta k \leq C\delta 
k - 1\sum 
j=0

\Delta j + C\delta .(2.47)

By Gronwall’s inequality, this implies the bound \BbbE (| Xtk  - X\delta 
k | 2) \leq C\delta as stated in

(2.40).

D
ow

nl
oa

de
d 

08
/0

3/
21

 to
 1

71
.6

6.
16

0.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FOCS19-16 ANDREA MONTANARI

In order to prove (2.41), note that\bigm| \bigm| \bigm| \BbbE \{ g(X\delta 
k - 1, tk)

2\}  - \BbbE \{ g(Xtk , tk)
2\} 
\bigm| \bigm| \bigm| 

(\mathrm{a})

\leq \BbbE 
\bigl\{ 
[g(X\delta 

k - 1, tk) - g(Xtk , tk)]
2\} 1/2\BbbE \{ [g(X\delta 

k - 1, tk) + g(Xtk , tk)]
2\} 1/2

(\mathrm{b})

\leq C \BbbE 
\bigl\{ 
| X\delta 

k - 1  - Xtk | 2
\bigr\} 1/2\BbbE \{ 1 + (X\delta 

k - 1)
2 +X2

tk
\} 1/2

(\mathrm{c})

\leq C
\surd 
\delta ,

where (a) is Cauchy–Schwarz, (b) follows since | g(x1, t) - g(x2, t)| \leq \| g0\| \infty | g1(x1, t) - 
g(x2, t)| \leq C| x1  - x2| , and therefore, | g(x, t)| \leq | g(0, t)| + C| x| \leq C(1 + | x| ), and (c)
follows by Lemma 2.5 and (2.40). On the other hand,

\BbbE 
\bigl\{ 
| X\delta 

k - 1  - Xtk | 2
\bigr\} 
\leq 2\BbbE 

\bigl\{ 
| X\delta 

k - 1  - Xtk - 1
| 2
\bigr\} 
+ 2\BbbE 

\bigl\{ 
| Xtk - 1

 - Xtk | 2
\bigr\} 
\leq C\delta ,

where we bounded the first term by (2.40), and the second by Lemma 2.5.

Since by assumption \BbbE \{ g(Xtk , tk)
2\} = 1, the last two displays imply 1 - C

\surd 
\delta \leq 

\BbbE \{ g(X\delta 
k - 1, tk)

2\} \leq 1 + C
\surd 
\delta . We thus obtain

\BbbE 
\bigl\{ 
[\widehat gk(X\delta 

k - 1) - g(X\delta 
k - 1, tk)]

2
\bigr\} 
\leq C
\surd 
\delta .(2.48)

We decompose the difference of Mt and M\delta 
k as

Mk\delta  - M \delta 
k =

k - 1\sum 
j=0

\int tj+\delta 

tj

\bigl[ 
g(Xt, t) - \widehat gj+1(X

\delta 
j )
\bigr] 
\mathrm{d}Bt .

Using the fact that Xt is measurable on (Bs)s\leq t and X\delta 
j is measurable on (Bs)s\leq tj ,

we get, by Ito’s isometry,

\BbbE 
\bigl\{ \bigl[ 
Mk\delta  - M\delta 

k

\bigr] 2\bigr\} 
=

k - 1\sum 
j=0

\int tj+\delta 

tj

\BbbE 
\bigl\{ 
[g(Xt, t) - \widehat gj+1(X

\delta 
j )]

2
\bigr\} 
\mathrm{d}t .

Therefore,

\BbbE 
\bigl( 
| Mk\delta  - M \delta 

k | 2
\bigr) 
\leq 2

k - 1\sum 
j=0

\int tj+\delta 

tj

\BbbE 
\bigl\{ 
[g(Xt, t) - g(X\delta 

j , tj+1)]
2
\bigr\} 
\mathrm{d}t

+ 2

k - 1\sum 
j=0

\int tj+\delta 

tj

\BbbE 
\bigl\{ 
[\widehat gj+1(X

\delta 
j ) - g(X\delta 

j , tj+1)]
2
\bigr\} 
\mathrm{d}t

(\mathrm{a})

\leq 4

k - 1\sum 
j=0

\int tj+\delta 

tj

\BbbE 
\bigl\{ 
[g(Xtj , tj+1) - g(X\delta 

j , tj+1)]
2
\bigr\} 
\mathrm{d}t

+ 4

k - 1\sum 
j=0

\int tj+\delta 

tj

\BbbE 
\bigl\{ 
[g(Xt, t) - g(Xtj , tj+1)]

2
\bigr\} 
\mathrm{d}t+ C

\surd 
\delta 

(\mathrm{b})

\leq C\delta 

k - 1\sum 
j=0

\BbbE 
\bigl\{ 
(Xtj  - X\delta 

j )
2
\bigr\} 
\mathrm{d}t+ C

\surd 
\delta + C\delta 

(\mathrm{c})

\leq 
\surd 
\delta ,
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OPTIMIZATION OF THE SK HAMILTONIAN FOCS19-17

where (a) follows from (2.48), (b) from Lemma 2.7 and the Lipschitz assumption on
g, and (c) from (2.40). This proves (2.41). The bound of (2.42) follows since, setting
K := \lfloor q/\delta \rfloor , we have

\BbbE 
\bigl( 
| Mq  - MK\delta | 2) =

\int q

K\delta 

\BbbE 
\bigl\{ 
g(Xt, t)

2\} \mathrm{d}t \leq C
\int q

K\delta 

\BbbE 
\bigl\{ 
1 +X2

t

\bigr\} 
\mathrm{d}t \leq C\delta .(2.49)

Finally, (2.43) follows by the same estimates.

We now collect the main findings of this section in a theorem. This characterizes
the values of the objective function achievable by the above algorithm.

Theorem 3. Let s, q \geq 0 and g, v : \BbbR \times [0, q]\rightarrow \BbbR be acceptable functions. Define
the process (Xt,Mt) using the SDE (2.28) with initial condition X0 = Z0 = 0. Assume
the following:

(a) \BbbE \{ g(Xt, t)
2\} = 1 for all t \geq 0.

(b) For each of f \in \{ g, v\} , we have f(x, t) = f0(t) f1(t, x), where f0 is bounded
and has bounded total variation on [0, q], and f1 : \BbbR \times [0, q]\rightarrow \BbbR is Lipschitz
continuous.

(c) \partial xg(x, t) exists and is Lipschitz continuous.

Define the incremental AMP iteration (\bfitz k)k\geq 0, and let \bfitm be given by (2.10).
Finally, let \psi : \BbbR \rightarrow \BbbR be a pseudo-Lipschitz function of order \ell . Then, for any \varepsilon > 0
there exist \delta \ast (\varepsilon ) > 0 such that if \delta \leq \delta \ast (\varepsilon ), we have

\bigm| \bigm| \bigm| \bigm| \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

2n
\langle \bfitm ,\bfitA \bfitm \rangle  - 

\int q

0

\BbbE \{ g(Xt, t)\} \mathrm{d}t
\bigm| \bigm| \bigm| \bigm| \leq \varepsilon ,(2.50) \bigm| \bigm| \bigm| \bigm| \bigm| \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty 

1

n

n\sum 
i=1

\psi (mi) - \BbbE \{ \psi (Mq)\} 

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \varepsilon .(2.51)

(Further, the above limits in probability are nonrandom quantities.)

Proof. Notice that the condition \BbbE \{ \widehat gk(X\delta 
k - 1)

2\} > 0 of Lemmas 2.2 and 2.3 holds
by construction (indeed, \BbbE \{ \widehat gk(X\delta 

k - 1)
2\} = 1 by (2.39)). The conclusion follows imme-

diately from Lemmas 2.3 and 2.8.

Remark 2.1. Let us emphasize that this theorem does not use in any way As-
sumption 1. Indeed, it does not even refer to the original optimization problem (1.1);
in particular, the constraint \bfitsigma \in \{ +1, - 1\} n does not play any role here. The theorem
simply describes the behavior of a certain class of algorithms parametrized by func-
tions v, g, and by the coefficient s. Depending on the choices of these functions, the
algorithm will produce a good approximate solution of the original problem, or not.

3. Proof of the main theorem.

3.1. Choosing the nonlinearities. In view of Theorem 3, we need to choose
the coefficients g, s, v in the SDE (2.28) to solve the following stochastic optimal
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FOCS19-18 ANDREA MONTANARI

control problem:

maximize
\int q

0

\BbbE \{ g(Xt, t)\} \mathrm{d}t

subject to \BbbP (Mq \in [ - 1, 1]) = 1 ,(3.1)

\mathrm{d}Xt = v(Xt, t) \mathrm{d}t+ s\mathrm{d}Bt , Mt =

\int t

0

g(Xr, r) \mathrm{d}Br ,(3.2)

g, v \in A , s \in \BbbR \geq 0 ,

where A is the class of functions that satisfies the assumptions of Theorem 3. By
that theorem, the value of this problem is the asymptotic optimal value achieved by
the IAMP algoritm for problem (1.1).

For additional context, recall that Parisi formula (1.3) admits a dual formulation
in terms of an optimal control problem. This problem was studied, among others,
in [AC15, JT16], to establish uniqueness of the minimizer \mu \beta . The problem (3.1)
is related but not equivalent to the one studied in [AC15, JT16]. Follow-up work
[AMS20] studied solutions of the problem (3.1) in a broader context, and its relation
with the Parisi formula.

Here we will not attempt to solve directly the problem (3.1), and instead we will
compare it with the structure of the Parisi formula. This will motivate a guess for
the two functions g, v and the constant s, which enables us to prove Theorem 2 (after
taking \beta \rightarrow \infty ). Note that it follows a posteriori that this guess is an optimizer of
the above stochastic optimal control problem (again, for large \beta ).

Unless stated otherwise, in this section we set \beta > \beta 0 as per Assumption 1, and
set q = q\ast = q\ast (\beta ) and \mu = \mu \beta the unique minimizer of the Parisi functional. We also
fix \Phi to be the solution of the PDE (1.2) with \mu = \mu \beta .

There is a natural SDE associated with the Parisi variational principle that was
first introduced in physics [Par80, SD84, MPV87], and recently studied in the proba-
bility theory literature [AC15, JT16]:

(3.3) \mathrm{d}Xt = \beta 2\mu (t)\partial x\Phi (t,Xt) \mathrm{d}t+ \beta \mathrm{d}Bt , X0 = 0 .

Motivated by the comparison of this equation with (2.28), we set the coefficients g, s, v
as follows:

v(x, t) = \beta 2\mu (t)\partial x\Phi (t, x) , s = \beta , g(x, t) = \beta \partial 2x\Phi (t, x) .(3.4)

3.2. Analytical properties of the function \bfPhi . In this section we collect
a few useful properties of the function \Phi that solves the Parisi PDE (1.2). Most of
these properties are reproduced from earlier papers, and we only provide bibliographic
references. For some of the identities, we explain the basic argument, for the reader’s
convenience.

We collect below a few useful regularity properties of \Phi , which have been proved
in the literature.

Lemma 3.1. For any probability distribution \mu \in P([0, 1]), let \Phi = \Phi \mu be the
corresponding solution of the Parisi PDE (1.2). Then the following hold:

(i) \partial jx\Phi (t, x) exists and is continuous for all j \geq 1.
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OPTIMIZATION OF THE SK HAMILTONIAN FOCS19-19

(ii) For all (t, x) \in [0, 1]\times \BbbR ,\bigm| \bigm| \partial x\Phi (t, x)\bigm| \bigm| \leq 1 , 0 < \partial 2x\Phi (t, x) \leq 1 ,
\bigm| \bigm| \partial 3x\Phi (t, x)\bigm| \bigm| \leq 4 .(3.5)

(iii) \partial t\partial jx\Phi (t, x) \in L\infty ([0, 1]\times \BbbR ) for all j \leq 0.
(iv) \partial ix\Phi (t, x) is Lipschitz continuous on [0, 1]\times \BbbR for all j \geq 0.

Proof. Points (i) and (iii) are Theorem 4 in [JT16]. Point (ii) is Proposition 2(ii)
in [AC15]. Finally, point (iv) follows immediately from points (i), (ii), and (iii).

Lemma 3.1 will be used to prove that the choice (3.4) satisfies the regularity
assumptions in Theorem 3. We next have to check the normalization condition and
compute the value achieved by the algorithm.

Lemma 3.2. For \mu \in P([0, 1]), let \Phi = \Phi \mu be the corresponding solution of the
Parisi PDE (1.2). Then we have

Mt =

\int t

0

\beta \partial 2x\Phi (t,Xs) \mathrm{d}Bs = \partial x\Phi (t,Xt) .(3.6)

In particular, \BbbP (Mt \in [ - 1, 1]) = 1 for all t.

Proof. This identity follows, e.g., from Lemma 2 in [AC15]. The basic argument is
as follows: by differentiating the PDE (1.2) with respect to x, we obtain the following
equation for \Phi x = \partial x\Phi :

\partial t\Phi x(t, x) +
1

2
\beta 2\partial 2x\Phi x(t, x) + \beta 2\mu (t)\Phi x(t, c)\partial x\Phi x(t, x) = 0 .(3.7)

Define M t = \partial x\Phi (t,Xt): our objective is to prove that M t = Mt. Notice that
x \mapsto \rightarrow \Phi (t, x) is an even function for all t, and therefore, M0 = \partial x\Phi (0, 0) = 0 = M0.
Further, by Ito’s formula

\mathrm{d}M t = \partial t\Phi x(t,Xt) \mathrm{d}t+ \partial x\Phi x(t,Xt) \mathrm{d}Xt +
1

2
\beta 2\partial 2x\Phi x(t,Xt) \mathrm{d}t

=
\Bigl\{ 
\partial t\Phi x(t,Xt) + \beta 2\mu (t)\Phi x(t, c)\partial x\Phi x(t, x) +

1

2
\beta 2\partial 2x\Phi x(t, x)

\Bigr\} 
+ \beta \partial x\Phi x(t,Xt) \mathrm{d}Bt

= \beta \partial x\Phi x(t,Xt) \mathrm{d}Bt .

Therefore, we have \mathrm{d}M t = \mathrm{d}Mt, which proves our claim. Lemma 3.1(ii) implies
| Mt| \leq 1 almost surely.

Lemma 3.3. Let \mu = \mu \beta and \Phi = \Phi \mu be the solution of the Parisi PDE (1.2).
Then, for all t \in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu \beta ), we have

\BbbE 
\bigl\{ \bigl( 
\partial x\Phi (t,Xt)

\bigr) 2\bigr\} 
= t ,(3.8)

\BbbE 
\bigl\{ \bigl( 
\beta \partial 2x\Phi (t,Xt)

\bigr) 2\bigr\} \leq 1 .(3.9)

Further, under Assumption 1, for all 0 \leq t \leq q\ast , we have

\BbbE 
\bigl\{ \bigl( 
\beta \partial 2x\Phi (t,Xt)

\bigr) 2\bigr\} 
= 1 .(3.10)

Proof. Equations (3.8) and (3.9) are Proposition 1 in [Che17]. For (3.10) note
that by (39) in the same paper, we have, for any t1 < t2 \leq q\ast ,

\BbbE \{ (\partial x\Phi (t2, Xt2))
2\}  - \BbbE \{ (\partial x\Phi (t1, Xt1))

2\} =
\int t2

t1

\BbbE 
\bigl\{ \bigl( 
\beta \partial 2x\Phi (t,Xt)

\bigr) 2\bigr\} 
\mathrm{d}t ,(3.11)

and therefore, the claim follows from (3.8).
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FOCS19-20 ANDREA MONTANARI

Lemma 3.4. Under Assumption 1, let \mu = \mu \beta and let \Phi = \Phi \mu be the solution of
the Parisi PDE (1.2). Then, for all 0 \leq t \leq q\ast , we have

\BbbE \{ \partial 2x\Phi (t,Xt)\} =
\int 1

t

\mu (s) \mathrm{d}s .(3.12)

Proof. Consider t \in [0, q\ast ] a continuity point of \mu . Then the proof of Lemma 16
in [JT16] yields

\partial 2x\Phi (t,Xt) = 1 - \mu (t)
\bigl( 
\partial x\Phi (t,Xt)

\bigr) 2  - \BbbE 
\biggl\{ \int 1

t

\bigl( 
\partial x\Phi (s,Xs)

\bigr) 2
\mu (\mathrm{d}s)

\biggr\} 
.(3.13)

Taking expectation and using Fubini’s theorem alongside (3.8), we get

\BbbE \{ \partial 2x\Phi (t,Xt)\} = 1 - \mu (t)t - 
\int 1

t

s \mu (\mathrm{d}s) =

\int 1

t

\mu (s) \mathrm{d}s.(3.14)

The claim follows also for t not a continuity point because the right-hand side is
obviously continuous in t. The left-hand side is continuous because \partial 2x\Phi is Lipschitz
(cf. Lemma 3.1) and \BbbE \{ | Xt  - Xs| 2\} \leq C| t  - s| because the coefficients of the SDE
are bounded Lipschitz.

We summarize the results of this section in the following theorem. Here and
below, for \bfitx \in \BbbR n, S \subseteq \BbbR n, we let d(\bfitx , S) \equiv \mathrm{i}\mathrm{n}\mathrm{f}\{ \| \bfitx  - \bfity \| : \bfity \in S\} .

Theorem 4. Under Assumption 1 let s \geq 0, and g, v : \BbbR \times \BbbR \geq 0 \rightarrow \BbbR be defined
as per (3.4), and set q = q\ast (\beta ) for \beta > \beta 0. Further, let

\scrE (\beta ) \equiv \beta 

2
[1 - (1 - q\ast (\beta ))2] - 

\beta 

2

\int 1

0

s2 \mu \beta (\mathrm{d}s) .(3.15)

Define the IAMP iteration (\bfitz k)k\geq 0 via (2.1), (2.4), (2.5), with \widehat gk given by (2.39),
and let \bfitm be given by (2.10). Then, for any \varepsilon > 0 there exist \delta \ast (\varepsilon ) > 0, such that for
any \delta \leq \delta \ast (\varepsilon ) we have \bigm| \bigm| \bigm| \bigm| \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

1

2n
\langle \bfitm ,\bfitA \bfitm \rangle  - \scrE (\beta )

\bigm| \bigm| \bigm| \bigm| \leq \varepsilon ,(3.16)

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n
d(\bfitm , [ - 1, 1]n)2 \leq \varepsilon .(3.17)

(Further the above limits in probability are nonrandom quantities.)

Proof. We claim that the choice (3.4) satisfies the regularity assumptions in The-
orem 3. In particular, we have the following:

\bullet v, g : \BbbR \times [0, 1] \rightarrow \BbbR are Lipschitz continuous in x, uniformly in t, because
\partial x\Phi , \partial 

2
x\Phi : [0, 1] \times \BbbR \rightarrow \BbbR are Lipschitz continuous (see Lemma 3.1), and

0 \leq \mu (t) \leq 1 for all t \in [0, 1]. Further, \partial x\Phi , \partial 2x\Phi : [0, 1]\times \BbbR \rightarrow \BbbR are bounded.
Together, these facts imply that g, v are acceptable.
\bullet Condition (a) holds for t \in [0, q\ast (\beta )] by (3.10) in Lemma 3.3. Here, we

crucially use the no-overlap gap assumption.
\bullet Condition (b) holds because g is itself Lipschitz continuous, and v(x, t) =
v0(t)v1(x, t), where v0(t) = \mu (t) has total variation bounded by one, and
v1(x, t) = \beta 2\partial x\Phi (t, x) is Lipschitz, again by Lemma 3.1.
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\bullet Condition (c) is satisfied because \partial 3x\Phi is Lipschitz by Lemma 3.1.

First, notice that d(\bfitz , [ - 1, 1]n)2 =
\sum n

i=1 \psi (zi) with \psi (zi) = d(zi, [ - 1, 1])2 a
pseudo-Lipschitz function. Further, integration by parts yields

\scrE (\beta ) = \beta 

\int q\ast 

0

\int 1

t

\mu (s) \mathrm{d}s\mathrm{d}t .(3.18)

Hence the claims of this theorem follow immediately from Theorem 3 upon checking
those assumptions using the lemmas given in this section.

3.3. Sequential rounding and putting everything together. Theorem 4
constructs a vector \bfitm \in \BbbR n. It is not difficult to round this to a vector with entries
in \{ +1, - 1\} , as detailed in the next lemma.

Lemma 3.5. There exist an algorithm with complexity O(n2) and an absolute con-
stant C > 0 such that the following happens with probability at least 1  - e - n. Given
\bfitA \sim \sansG \sansO \sansE (n) and a vector \bfitz \in \BbbR n such that d(\bfitz , [ - 1, 1]n)2 \leq n \varepsilon 0, the algorithm
returns a vector \bfitsigma \ast \in \{ +1, - 1\} n such that

1

2n
\langle \bfitsigma \ast ,\bfitA \bfitsigma \ast \rangle \geq 

1

2n
\langle \bfitz ,\bfitA \bfitz \rangle  - 20

\Bigl( \surd 
\varepsilon 0 +

1\surd 
n

\Bigr) 
.(3.19)

Proof. Recall the definition of HamiltonianHn(\bfitx ) \equiv \langle \bfitx ,\bfitA \bfitx \rangle /2 (which we view as
a function on \BbbR n). We also define \~Hn(\bfitx ) = Hn(\bfitx ) - 

\sum n
i=1Aiix

2
i /2 =

\sum 
i<j\leq nAijxixj .

We construct \bfitsigma \ast in two steps. First, we let \~\bfitz be the projection of \bfitz onto the
hypercube [ - 1,+1]n (i.e., \~\bfitz \in [ - 1,+1]n is such that \| \~\bfitz  - \bfitz \| 2 = d(\bfitz , [ - 1,+1]n)2 \leq 
n \varepsilon 0). Note that this can be constructed in O(n) time (simply by projecting each
coordinate \~zi onto [ - 1,+1]).

Second, note that the function \~Hn(\bfitx ) is linear in each coordinate of \bfitx . Namely,
for each \ell , \~Hn(\bfitx ) = x\ell h1,\ell (\bfitx \sim \ell ;\bfitA ) + h0,\ell (\bfitx \sim \ell ;\bfitA ), where \bfitx \sim \ell = (xi)i\in [n]\setminus \ell and
h1,\ell (\bfitx \sim \ell ;\bfitA ) =

\sum 
j \not =\ell A\ell jxj . We then construct a sequence \~\bfitz (0), . . . , \~\bfitz (n) as follows.

Set \~\bfitz (0) = \~\bfitz and, for each 1 \leq \ell \leq n,

\~\bfitz (\ell )i =

\Biggl\{ 
\~\bfitz (\ell  - 1)i if i \not = \ell ,
\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}

\bigl( 
h1,\ell (\~\bfitz (\ell  - 1)\sim \ell ;\bfitA )

\bigr) 
if i = \ell .

(3.20)

Finally, we set \bfitsigma \ast = \~\bfitz (n). This procedure takes O(n2) operations.

The lemma then follows straightforwardly from the following three claims:

(i) \~Hn(\bfitsigma \ast ) \geq \~Hn(\~\bfitz ).
(ii) | \~Hn(\bfitsigma \ast )  - Hn(\bfitsigma \ast )| \leq 10

\surd 
n, | \~Hn(\~\bfitz )  - Hn(\~\bfitz )| \leq 10

\surd 
n with probability at

least 1 - e - 2n.
(iii) | Hn(\bfitz ) - Hn(\~\bfitz )| \leq 20n

\surd 
\varepsilon 0 with probability at least 1 - e - 2n.

Claim (i) is immediate since \~Hn(\~\bfitz (\ell + 1)) \geq \~Hn(\~\bfitz (\ell )) for each \ell .

Claim (ii) holds since, for any \bfitx \in [ - 1,+1]n,

| \~Hn(\bfitx ) - Hn(\bfitx )| \leq 
1

2

n\sum 
i=1

| Aii| \equiv \tau (\bfitA ) .(3.21)

Now we have \BbbE \tau (\bfitA ) =
\sqrt{} 
2n/\pi , and \tau is a Lipschitz function of the Gaussian vector

(Aii)i\leq n. Hence the desired bounds follow by Gaussian concentration.
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For claim (iii), let \bfitv = \bfitz  - \~\bfitz , and note that (denoting by \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\bfitA ) the maximum
eigenvalue of \bfitA )\bigm| \bigm| Hn(\bfitz ) - Hn(\~\bfitz )

\bigm| \bigm| \leq 1

2
| \langle \bfitv ,\bfitA \bfitv \rangle | + | \langle \bfitv ,\bfitA \~\bfitz \rangle | (3.22)

\leq 1

2
\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\bfitA )\| \bfitv \| 2 + \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\bfitA )\| \bfitv \| \| \~\bfitz \| (3.23)

\leq n\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\bfitA )
\Bigl[ 1
2
\varepsilon 0 +

\surd 
\varepsilon 0

\Bigr] 
\leq 2n\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\bfitA )

\surd 
\varepsilon 0 .(3.24)

The desired probability bound follows by concentration of the largest eigenvalue of
\sansG \sansO \sansE matrices [AGZ09].

We finally need to show that the quantity \scrE (\beta ) of Theorem 4 converges to the
asymptotic optimum value, for large \beta . This is achieved in the two lemmas below.

Lemma 3.6. Let \scrE 0(\beta ) \equiv (\beta /2)(1 - 
\int 1

0
t2 \mu \beta (\mathrm{d}t)). Then,

\scrE 0(\beta ) \leq \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

2n
\mathrm{m}\mathrm{a}\mathrm{x}

\bfitsigma \in \{ +1, - 1\} n
\langle \bfitsigma ,\bfitA \bfitsigma \rangle \leq \scrE 0(\beta ) +

\mathrm{l}\mathrm{o}\mathrm{g} 2

\beta 
.(3.25)

Proof. First, consider the expectation

En :=
1

n
\BbbE \mathrm{m}\mathrm{a}\mathrm{x}

\bfitsigma \in \{ +1, - 1\} n
Hn(\bfitsigma )

(recall that Hn(\bfitsigma ) = \langle \bfitsigma ,\bfitA \bfitsigma \rangle /2). Recall the definitions of partition function Zn(\beta ),
Gibbs measure \nu \beta , and free energy density Fn(\beta ):

Zn(\beta ) =
\sum 

\bfitsigma \in \{ +1, - 1\} n

\mathrm{e}\mathrm{x}\mathrm{p}(\beta Hn(\bfitsigma )) , \nu \beta (\bfitsigma ) :=
1

Zn(\beta )
\mathrm{e}\mathrm{x}\mathrm{p}(\beta Hn(\bfitsigma )) ,(3.26)

Fn(\beta ) :=
1

n\beta 
\BbbE \mathrm{l}\mathrm{o}\mathrm{g}Zn(\beta ) .(3.27)

A standard thermodynamic identity [MM09, Chapter 2] yields Fn(\beta ) = \BbbE \nu \beta (Hn(\bfitsigma ))+
\beta  - 1S(\nu \beta ), where \nu \beta (Hn(\bfitsigma )) denotes the average of the Hamiltonian Hn(\bfitsigma ) with re-
spect to the measure \nu \beta , and S(q) is the Shannon entropy of the probability distribu-
tion q. Further, F \prime 

n(\beta ) =  - \beta  - 2S(\nu \beta ) \leq 0 and Fn(\beta )\rightarrow En as \beta \rightarrow \infty . Hence

\BbbE \nu \beta (Hn(\bfitsigma ))
(\mathrm{a})

\leq En

(\mathrm{b})

\leq Fn(\beta )
(\mathrm{c})

\leq \BbbE \nu \beta (Hn(\bfitsigma )) +
\mathrm{l}\mathrm{o}\mathrm{g} 2

\beta 
.(3.28)

(Here (a) follows since \nu \beta (Hn(\bfitsigma )) \leq \mathrm{m}\mathrm{a}\mathrm{x}\bfitsigma \in \{ +1, - 1\} n Hn(\bfitsigma ), (b) since \beta \mapsto \rightarrow Fn(\beta ) is
nonincreasing as shown above, and (c) since S(q) \leq S(qunif) = \mathrm{l}\mathrm{o}\mathrm{g} 2, with qunif the
uniform measure over the hypercube.)

On the other hand, \partial \beta (\beta Fn(\beta )) = \BbbE \nu \beta (Hn(\bfitsigma )). Since \beta Fn(\beta ) \rightarrow \sansP \beta (\mu \beta ), by
Theorem 1, Fn(\beta ),\sansP \beta (\mu \beta ) are convex with \sansP \beta (\mu \beta ) differentiable [Tal06a, Theorem
1.2]; it follows that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\BbbE \nu \beta (Hn(\bfitsigma )) =
\mathrm{d}

\mathrm{d}\beta 
\sansP \beta (\mu \beta ) = \scrE 0(\beta ) .

(The last equality is proved in [Tal06a], with a difference in normalization of \beta .)
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This proves

\scrE 0(\beta ) \leq \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{i}\mathrm{n}\mathrm{f}
n\rightarrow \infty 

En \leq \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

En \leq \scrE 0(\beta ) +
\mathrm{l}\mathrm{o}\mathrm{g} 2

\beta 
.

By Gaussian concentration \BbbP (| Hn(\bfitsigma )/n  - En| \geq \varepsilon ) \leq 2 \mathrm{e}\mathrm{x}\mathrm{p}( - n\varepsilon 2/C) for some con-
stant C, and hence the claim follows.

Lemma 3.7. Let q\ast (\beta ) \equiv \mathrm{s}\mathrm{u}\mathrm{p}\{ q \in [0, 1] : q \in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu \beta )\} . Then, for any \beta > 0,

\beta 2(1 - q\ast (\beta ))2 \leq 1 .(3.29)

Proof. The PDE (1.2) can be solved for t \in (q\ast , 1] using the Cole–Hopf trans-
formation \Phi = \mathrm{l}\mathrm{o}\mathrm{g} u. This yields \Phi (q\ast , x) = (\beta 2(1  - q\ast )/2) + \mathrm{l}\mathrm{o}\mathrm{g} 2 \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}x, whence
\partial x\Phi (q\ast , x) = \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(x) and \partial 2x\Phi (q\ast , x) = 1 - \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(x)2. Substituting in (3.8), (3.9), we
get

\BbbE 
\bigl\{ 
\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(Xq\ast )

2
\bigr\} 
= q\ast ,(3.30)

\beta 2\BbbE 
\bigl\{ \bigl( 

1 - \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(Xq\ast )
2
\bigr) 2\bigr\} \leq 1 .(3.31)

Hence

\beta 2(1 - q\ast )2 = \beta 2\BbbE 
\bigl\{ 
1 - \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(Xq\ast )

2
\bigr\} 2 \leq \beta 2\BbbE 

\bigl\{ \bigl( 
1 - \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(Xq\ast )

2
\bigr) 2\bigr\} \leq 1 .(3.32)

The proof of our main result, Theorem 2, follows quite easily from the findings of
this section.

Proof of Theorem 2. Let E\ast \equiv \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty \mathrm{m}\mathrm{a}\mathrm{x}\bfitsigma \in \{ +1, - 1\} n Hn(\bfitsigma )/n. This limit ex-
ists by Corollary 1.1, and we further have E\ast \geq 1/2 (this can be proved by the same
thermodynamic argument as in the proof of Lemma 3.6, noting that (1/n) \mathrm{l}\mathrm{o}\mathrm{g}n Zn(\beta )\rightarrow 
\mathrm{l}\mathrm{o}\mathrm{g} 2 + (\beta 2/4) for \beta \leq 1 [Pan13b]). It is, therefore, sufficient to output \bfitsigma \ast such that,
with high probability, Hn(\bfitsigma \ast )/n \geq E\ast  - (\varepsilon /3).

Let \beta = 10/\varepsilon . By Lemmas 3.6 and 3.7, we have \scrE (\beta ) \geq E\ast  - (\varepsilon /5). Applying
the algorithm of Theorem 4 for \delta small enough, we obtain, with high probability, a
vector \bfitm \in \BbbR n such that Hn(\bfitm )/n \geq E\ast  - \varepsilon /4 and d(\bfitm , [ - 1, 1]n)2 \leq n\varepsilon 2/106. The
proof is completed by using the rounding procedure of Lemma 3.5.

4. Relation with the TAP equations. The TAP equations were introduced
by Thouless, Anderson, and Palmer [TAP77] as a tool to study the Gibbs measure:

\nu \beta ,h(\bfitsigma ) :=
1

Zn(\beta )
\mathrm{e}\mathrm{x}\mathrm{p} \{ \beta Hn(\bfitsigma ) + h\langle \bfone ,\bfitsigma \rangle \} .(4.1)

(This generalizes (3.26) by the introduction of the linear term h\langle \bfone ,\bfitsigma \rangle , with \bfone the all-
ones vector.) The TAP equations are a set of n nonlinear equations in the n unknowns
\bfitm = (m1, . . . ,mn):

h\bfone + \beta \bfitA \bfitm  - \mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(\bfitm ) - \beta 2(1 - q\bfitm )\bfitm = \bfe \bfr \bfr (n) , q\bfitm \equiv 
1

n
\| \bfitm \| 22 ,(4.2)

where \bfe \bfr \bfr is a small error term. Exact solutions correspond to \bfe \bfr \bfr (n) = 0 while
for approximate solutions \bfe \bfr \bfr (n) is small in a suitable sense. In their seminal work,
Thouless, Anderson, and Palmer [TAP77] argued heuristically that the mean of the
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FOCS19-24 ANDREA MONTANARI

Gibbs measure \bfitm \beta ,h \equiv 
\sum 

\bfitsigma \in \{ +1, - 1\} \nu \beta ,h(\bfitsigma )\bfitsigma approximately solves (4.2). Subsequent
physics research clarified that this claim only holds at high temperature, namely if
\beta \leq \beta AT(h), where the critical value \beta AT(h) is known as the Almeida–Thouless line
[MPV87]. However, the TAP equations are believed to hold for \beta > \beta AT(h) as well if
the mean \bfitm \beta ,h is replaced by the mean over a “pure state” \bfitm \alpha 

\beta ,h \equiv 
\sum 

\bfitsigma \in \scrS \alpha 
\nu \beta ,h(\bfitsigma )\bfitsigma .

We refer to [CPS18, CPS19] for recent mathematical progress on this topic.

Here we will not be concerned with the physical interpretation of TAP equations,
but with the computational problem of finding approximate solutions. Bolthausen
[Bol14] gave an iterative algorithm that converges to approximate solutions for \beta \leq 
\beta AT(h). This is an algorithm of AMP type, and essentially amounts to iterating the
TAP equations themselves. The algorithm does not converge for \beta > \beta AT(h).

In this section we prove that the algorithm described in section 2, when used
in conjunction with the specific choice of functions gk, s, v in section 3, actually
constructs an approximate solution of the TAP equations for for \beta > \beta 0, under
Assumption 1. For coherence with the rest of the paper, we focus on the case h = 0:
the case h \not = 0 can be treated by a generalization of the present approach that
is deferred to future work. Notice that Assumption 1 is believed to hold for all
\beta > \beta AT(0) = 1, hence covering the full range of parameters for which the approach
of [Bol14] fails.

As in the previous section, we set q = q\ast , v(x, t) = \beta 2\mu (t)\partial x\Phi (t, x), s(x, t) = \beta ,
g(x, t) = \beta \partial 2x\Phi (t, x), and

\widehat gk(x) \equiv g(x, k\delta )

\BbbE \{ g(X\delta 
k - 1, k\delta )

2\} 1/2
.(4.3)

Throughout, we set K\ast = \lfloor q\ast /\delta \rfloor and recall that \bfitz k, \bfitx k, and \bfitm are given by

\bfitz k+1 = \bfitA (\bfitm k + \bfity ) - 
k\sum 

j=1

\sansb kj\bfitm 
j - 1 ,(4.4)

\bfitx j = \bfitx j - 1 + v(\bfitx j - 1, j\delta ) \delta + \beta (\bfitz j  - \bfitz j - 1) ,(4.5)

\bfitm k =

k\sum 
j=1

\widehat gj(\bfitx j - 1)\odot (\bfitz j  - \bfitz j - 1) :=

k\sum 
j=1

\bfitg j ,(4.6)

with \bfitm = \bfitm K\ast . Finally, we will repeatedly use the fact that the PDE (1.2) can
be solved on (q\ast , 1] using the Cole–Hopf transformation, which yields \Phi (q\ast , x) =
\mathrm{l}\mathrm{o}\mathrm{g} 2 \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}(x) + \beta 2(1 - q\ast )/2.

Lemma 4.1. Setting K\ast = \lfloor q\ast /\delta \rfloor , we have

\mathrm{l}\mathrm{i}\mathrm{m}
\delta \rightarrow 0

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

\bigm\| \bigm\| \bfitm  - \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(\bfitx K\ast )
\bigm\| \bigm\| 2 = 0 .(4.7)

Proof. By Lemma 2.2, we have

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

\bigm\| \bigm\| \bfitm  - \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(\bfitx K\ast )
\bigm\| \bigm\| 2 = \BbbE 

\Bigl\{ \bigl[ 
M \delta  - \partial x\Phi (q\ast , X\delta 

K\ast 
)
\bigr] 2\Bigr\} 

.(4.8)

On the other hand, using Lemma 2.8, we obtain

\mathrm{l}\mathrm{i}\mathrm{m}
\delta \rightarrow 0

\BbbE 
\Bigl\{ \bigl[ 
M \delta  - \partial x\Phi (q\ast , X\delta 

K\ast 
)
\bigr] 2\Bigr\} 

= \BbbE 
\Bigl\{ \bigl[ 
Mq\ast  - \partial x\Phi (q\ast , Xq\ast )

\bigr] 2\Bigr\} 
= 0 ,(4.9)

where the last identity follows from Lemma 3.2.
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OPTIMIZATION OF THE SK HAMILTONIAN FOCS19-25

Lemma 4.2. Setting K\ast = \lfloor q\ast /\delta \rfloor , we have

\mathrm{l}\mathrm{i}\mathrm{m}
\delta \rightarrow 0

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

\bigm\| \bigm\| \beta \bfitA \bfitm  - \bfitx K\ast  - \beta 2(1 - q\ast ) \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(\bfitx K\ast )
\bigm\| \bigm\| 2 = 0 .(4.10)

Proof. By (4.4), we have

\bfitA \bfitm = \bfitz K\ast +1  - \bfitz 1 +

K\ast \sum 
j=1

\sansb K\ast ,j\bfitm 
j - 1

= \bfitz K\ast +1  - \bfitz 1 +

K\ast \sum 
j=1

\~\sansb K\ast ,j\bfitg 
j - 1 + \sanse \sansr \sansr ,

where, by (2.17), and using the fact that \| \bfitm j\| 2/n is bounded by (2.13), we have
\| \sanse \sansr \sansr \| 2/n p - \rightarrow 0. Using (2.17), together with the fact that \| \bfitf k\| 2/n, \| \bfitu k\| 2/n are
bounded by Lemma 2.2, we get

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

\bigm\| \bigm\| \beta \bfitA \bfitm  - \bfitx K\ast  - \beta 2(1 - q\ast ) \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(\bfitx K\ast )
\bigm\| \bigm\| 2

= \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \beta \bfitz K\ast +1  - \beta \bfitz 1 + \beta 

K\ast \sum 
j=1

\~\sansb K\ast ,j\bfitg 
j - 1  - \bfitx K\ast  - \beta 2(1 - q\ast ) \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(\bfitx K\ast )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

(4.11)

= \BbbE 

\Biggl\{ \Biggl[ 
\beta Z\delta 

K\ast +1  - \beta Z\delta 
1 + \beta 

K\ast \sum 
j=1

\BbbE \{ \widehat gj(X\delta 
j - 1)\} \widehat gj - 1(X

\delta 
j - 2)U

\delta 
j - 1

(4.12)

 - X\delta 
K\ast 
 - \beta 2(1 - q\ast ) \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(X\delta 

K\ast 
)

\Biggr] 2\Biggr\} 
.

Next, using again Lemma 2.8, we have
\sum K\ast 

k=1 U
\delta 
k+1

L2 - \rightarrow Bq\ast , X\delta 
K\ast 

L2 - \rightarrow Xq\ast as \delta \rightarrow 0,
and

\surd 
\delta 

K\ast \sum 
k=1

\BbbE \{ \widehat gk(X\delta 
k - 1)\} \widehat gk - 1(X

\delta 
k - 2)U

\delta 
k - 1

L2 - \rightarrow 
\int q\ast 

0

\BbbE \{ g(Xt, t)\} g(Xt, t)\mathrm{d}Bt

= \beta 2

\int q\ast 

0

\BbbE \{ \partial 2x\Phi (t,Xt)\} \partial 2x\Phi (t,Xt)\mathrm{d}Bt

= \beta 2

\int q\ast 

0

\int 1

t

\mu (s) \mathrm{d}s \partial 2x\Phi (t,Xt)\mathrm{d}Bt ,

where in the last step we used Lemma 3.4. By Fubini’s theorem

\beta 2

\int q\ast 

0

\int 1

t

\mu (s) \mathrm{d}s \partial 2x\Phi (t,Xt)\mathrm{d}Bt

= \beta 2

\int q\ast 

0

\mu (s)

\int s

0

\partial 2x\Phi (t,Xt)\mathrm{d}Bt \mathrm{d}s+ \beta 2

\int 1

q\ast 

\mu (s)

\int q\ast 

0

\partial 2x\Phi (t,Xt)\mathrm{d}Bt \mathrm{d}s

= \beta 

\int q\ast 

0

\mu (s) \partial x\Phi (Xs, s) \mathrm{d}s+ \beta (1 - q\ast )\partial x\Phi (Xq\ast , q\ast ) ,
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FOCS19-26 ANDREA MONTANARI

where in the last step we used (3.6). Substituting these limits in (17), we get

\mathrm{l}\mathrm{i}\mathrm{m}
\delta \rightarrow 0

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

\bigm\| \bigm\| \beta \bfitA \bfitz  - \bfitx K\ast  - \beta 2(1 - q\ast ) \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(\bfitx K\ast )
\bigm\| \bigm\| 2

= \BbbE 

\Biggl\{ \Biggl[ 
\beta Bq\ast + \beta 2

\int q\ast 

0

\mu (s) \partial x\Phi (Xs, s) \mathrm{d}s+ \beta 2(1 - q\ast )\partial x\Phi (Xq\ast , q\ast )

 - Xq\ast  - \beta 2(1 - q\ast ) \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(Xq\ast )

\Biggr] 2\Biggr\} 
= \BbbE 

\Bigl\{ \bigl[ 
\beta 2(1 - q\ast )\partial x\Phi (Xq\ast , q\ast ) - \beta 2(1 - q\ast ) \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(Xq\ast )

\bigr] 2\Bigr\} 
= 0 ,

where we used the fact that Xt solves the SDE (3.3), and \Phi (q\ast , x) = \mathrm{l}\mathrm{o}\mathrm{g} 2 \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}(x) +
\beta 2(1 - q\ast )/2.

We can therefore state our result about constructing solutions to the TAP equa-
tions.

Theorem 5 (constructing solutions to the TAP equations). Under Assumption
1 let s \geq 0 and g, v : \BbbR \times \BbbR \geq 0 \rightarrow \BbbR be defined as per (3.4), and set q = q\ast (\beta ) for
\beta > \beta 0. Define the incremental AMP iteration (\bfitz k)k\geq 0 via (2.1), (2.4), (2.5), with \widehat gk
given by (2.39), and let \bfitm be given by (2.10). (The same iteration is given explicitly
in (4.5), (4.6).)

Set K\ast = \lfloor q\ast /\delta \rfloor . Then, for any \varepsilon > 0 there exist \delta \ast (\varepsilon ) > 0 such that if \delta \leq \delta \ast (\varepsilon ),
we have, with high probability,

1

n

\bigm\| \bigm\| \beta \bfitA \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(\bfitx K\ast ) - \bfitx K\ast  - \beta 2(1 - q\ast ) \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{h}(\bfitx K\ast )
\bigm\| \bigm\| \leq \varepsilon .(4.13)

Proof. The theorem follows immediately from Lemmas 4.1 and 4.2, using the fact
that, with high probability, \bfitA has an operator norm bounded by 2 + \varepsilon [AGZ09].

5. Universality. In this section we use the universality results of [BLM15] to
generalize Theorem 2 to other random matrix distributions. Namely, we will work
under the following assumption.

Assumption 2. The matrix \bfitA = \bfitA (n) is symmetric with Aii = 0 and (Aij)1\leq i<j\leq n

a collection of independent random variables, satisfying \BbbE \{ Aij\} = 0, \BbbE \{ A2
ij\} =

1/n. Further, the entries are subgaussian, with common subgaussian parameter C\ast /n.
(Namely, \BbbE \{ \mathrm{e}\mathrm{x}\mathrm{p}(\lambda Aij)\} \leq \mathrm{e}\mathrm{x}\mathrm{p}(C\ast \lambda 

2/2n) for all i < j \leq n.)

Using [BLM15, Theorem 4], and applying the same reduction as in the first part
of the proof of Proposition 2.1, we obtain the following.

Proposition 5.1. Consider the AMP iteration (2.1), with \bfitA = \bfitA (n) satisfying
Assumption 2. Further, assume fk : \BbbR k+2 \rightarrow \BbbR to be a fixed polynomial (independent
of n). Then for any k, \ell \in \BbbN , and any pseudo-Lipschitz function of order \ell , \psi :
\BbbR k+2 \rightarrow \BbbR , we have

1

n

n\sum 
i=1

\psi (z0i , . . . , z
k
i ; yi)

p - \rightarrow \BbbE \psi (Z0, . . . , Zk;Y ) .(5.1)
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Here (Zj)j\geq 1 is a centered Gaussian process independent of (Z0, Y ) with covariance
\bfitQ = (Qkj)k,j\geq 1 determined recursively via

Qk+1,j+1 = \BbbE 
\bigl\{ 
fk(Z0, . . . , Zk;Y )fj(Z0, . . . , Zj ;Y )

\bigr\} 
, k, j \geq 0 .(5.2)

Notice an important difference with respect to Proposition 2.1: instead of Lip-
schitz functions, we require the functions fk to be polynomials. However, this result
is strong enough to allow us to prove the following generalization of Theorem 2.

Theorem 6. Let \bfitA = \bfitA (n), n \geq 1 be random matrices satisfying Assumption 2.
Under Assumption 1, for any \varepsilon > 0 there exists an algorithm that takes as input the
matrix \bfitA \in \BbbR n\times n and outputs \bfitsigma \ast = \bfitsigma \ast (\bfitA ) \in \{ +1, - 1\} n, such that the following hold:
(i) The complexity (floating point operations) of the algorithm is at most C(\varepsilon )n2. (ii)
We have \langle \bfitsigma \ast ,\bfitA \bfitsigma \ast \rangle \geq (1 - \varepsilon )\mathrm{m}\mathrm{a}\mathrm{x}\bfitsigma \in \{ +1, - 1\} n\langle \bfitsigma ,\bfitA \bfitsigma \rangle .

Proof. Let \widehat gk(x), v(x, t), s be defined as in the proof of Theorem 2 for k \leq 1/\delta .
For each M \in \BbbZ and each k \leq 1/\delta , we construct a polynomial \^pk,M : \BbbR k - 1 \rightarrow \BbbR 
which approximates the dynamics defined by \widehat gk( \cdot ), v( \cdot , k\delta ), s( \cdot , k\delta ), in a sense that
we will make precise below.

We define the IAMP iteration, analogously to (2.4), (2.5),

fk(z0, . . . , zk; y) :=

k\sum 
\ell =1

\^p\ell ,M (z1, . . . , z\ell  - 1) \cdot (z\ell  - z\ell  - 1) + y ,(5.3)

and set pZ0,Y = \delta 0 \otimes \sansN (0, \delta ). We then claim that we can construct these polynomial
approximations \^pk,M so that, for any k \leq 1/\delta and any pseudo-Lipschitz function
\psi : \BbbR k+2 \rightarrow \BbbR , we have

\mathrm{l}\mathrm{i}\mathrm{m}
M\rightarrow \infty 

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

n\sum 
i=1

\psi (z0i , . . . , z
k
i ) = \BbbE \psi (Z\delta 

0 , . . . , Z
\delta 
k) ,(5.4)

where the Gaussian martingale (Z\delta 
\ell )\ell \geq 0 is defined as in Lemma 2.2. Given this claim,

the rest of the proof of Theorem 2 can be applied verbatim to this—slightly different—
algorithm.

In order to prove the claim (5.4), we proceed as in the proof of Lemma 2.2.
Namely, by applying Proposition 5.1, we get

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

n\sum 
i=1

\psi (z0i , . . . , z
k
i ) = \BbbE \psi (Z0, . . . , Z

\delta ,M
k ) ,(5.5)

where (Z\delta ,M
\ell )\ell \geq 0 is a centered Gaussian process. Using the same argument as in

Lemma 2.2, we obtain that (Z\delta ,M
\ell )\ell \geq 0 is a martingale. Further, letting qM\ell \equiv \BbbE \{ (Z\delta ,M

\ell )2\} ,
Proposition 5.1 yields the following recursion for k \geq 1 (with initial condition qM0 = 0,
qM1 = \delta ):

qMk+1 = qMk + \BbbE \{ \^pk,M (Z\delta ,M
1 , . . . , Z\delta ,M

k - 1)
2\} \cdot (qMk  - qMk - 1) .(5.6)

The claim (5.4) follows by showing that we can choose polynomials (\^pk,M )k\geq 0 so that
\mathrm{l}\mathrm{i}\mathrm{m}M\rightarrow \infty qMk = qk for each k \leq 1/\delta . This can be done by induction over k. As a
preliminary remark, notice that the sequence of constants qk defined recursively via
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(2.6) are all finite. Indeed if qk < \infty , then \BbbE \{ \widehat gk(X\delta 
k - 1)

2\} < \infty (because X\delta 
k - 1 is a

Lipschitz function of (Z\delta 
\ell )\ell \leq k - 1) and, therefore, qk+1 < \infty as well. We denote by

C0 := q\lfloor 1/\delta \rfloor = \mathrm{m}\mathrm{a}\mathrm{x}(qk : k \leq 1/\delta ) an upper bound on these variances.

The basis of the induction is trivial since qM0 = 0 = q0 for all M . We assume,
therefore, \mathrm{l}\mathrm{i}\mathrm{m}M\rightarrow \infty qM\ell = q\ell for all \ell \leq k. Without loss of generality we can consider
that for any M \geq 1 we have qM1 , . . . , qMk \leq 2C0. Indeed, by the induction hypoth-
esis this holds for all M large enough, and we can always redefine the polynomials
\^p\ell ,M ( \cdot \cdot \cdot ) so that it holds for all M \geq 1. Then notice that the random variable X\delta 

k

of (2.6) can be written as X\delta 
k = hk(Z

\delta 
1 , . . . , Z

\delta 
k - 1) for a certain function hk that is

bounded by a polynomial (of degree depending on k). We then choose the polynomial
\^pk,M ( \cdot ) so that

\BbbE 
\Bigl\{ \bigm| \bigm| \widehat gk(hk(Z\delta ,M

1 , . . . , Z\delta ,M
k - 1)) - \^pk,M (Z\delta ,M

1 , . . . , Z\delta ,M
k - 1)

\bigm| \bigm| 2\Bigr\} \leq 1

M
.(5.7)

Such a polynomial can be constructed, for instance, by considering the expansion of hk
in the basis of multivariate Hermite polynomials (suitably rescaled as to form an or-
thonormal basis in L2(\BbbR k - 1, \mu k), where \mu k is the joint distribution of Z\delta ,M

1 , . . . , Z\delta ,M
k - 1).

The variance bound qM1 , . . . , qMk \leq 2C0 is used in controlling the error term.

The induction claim then follows by

\mathrm{l}\mathrm{i}\mathrm{m}
M\rightarrow \infty 

\BbbE \{ \^pk,M (Z\delta ,M
1 , . . . , Z\delta ,M

k - 1)
2\} = \mathrm{l}\mathrm{i}\mathrm{m}

M\rightarrow \infty 
\BbbE \{ \widehat gk(hk(Z\delta ,M

1 , . . . , Z\delta ,M
k - 1))

2\} (5.8)

= \BbbE \{ \widehat gk(hk(Z\delta 
1 , . . . , Z

\delta 
k - 1))

2\} ,

where the last equality holds by dominated convergence.

Corollary 1.2 follows by applying Theorem 6 with \bfitA , a suitably centered and
normalized adjacency matrix.

Proof of Corollary 1.2. Given a graph G \sim \scrG (n, p), construct the matrix \bfitA =
\bfitA \sansT \in \BbbR n\times n, by setting Aii = 0 and, for i \not = j,

Aij =

\left\{    - 
\sqrt{} 

1 - p
np if (i, j) \in E,\sqrt{} 
p

n(1 - p) if (i, j) \not \in E,
(5.9)

It is easy to verify that this matrix satisfies Assumption 2. Further, we have

\sansC \sansU \sansT G(\bfitsigma ) =
1

2
| En|  - 

p

4
\langle \bfitsigma ,\bfone \rangle 2 + 1

4

\sqrt{} 
np(1 - p) \langle \bfitsigma ,\bfitA \bfitsigma \rangle .(5.10)

Recall that we know from [DMS17] \mathrm{m}\mathrm{a}\mathrm{x}\bfitsigma \in \{ +1, - 1\} n \sansC \sansU \sansT G(\bfitsigma ) = | En| /2 + (n3p(1  - 
p)/2)1/2\sansP \ast + o(n3/2). Let \bfitsigma 1 denote the output of the algorithm of Theorem 6, on
input \bfitA . Applying this theorem and Proposition 5.1, we get

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{i}\mathrm{n}\mathrm{f}
n\rightarrow \infty 

1

2n
\langle \bfitsigma 1,\bfitA \bfitsigma 1\rangle \geq (1 - \varepsilon )\sansP \ast ,(5.11)

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n
\langle \bfitsigma 1,\bfone \rangle = 0 .(5.12)

We construct \bfitsigma \ast by balancing \bfitsigma 1. Namely, if | \langle \bfitsigma 1,\bfone \rangle | = \ell , we obtain \bfitsigma \ast by flipping
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\lfloor \ell /2\rfloor entries of \bfitsigma 1 so that | \langle \bfitsigma \ast ,\bfone \rangle | \leq 1. We then have, with high probability,

\sansC \sansU \sansT G(\bfitsigma \ast )

\geq 1

2
| En|  - 

p

4
+

1

4

\sqrt{} 
np(1 - p) \langle \bfitsigma \ast ,\bfitA \bfitsigma \ast \rangle  - 

1

4

\sqrt{} 
np(1 - p) | \langle \bfitsigma \ast ,\bfitA \bfitsigma \ast \rangle  - \langle \bfitsigma 1,\bfitA \bfitsigma 1\rangle | 

\geq 1

2
| En| +

1

4
(1 - \varepsilon )

\sqrt{} 
np(1 - p) \mathrm{m}\mathrm{a}\mathrm{x}

\bfitsigma \in \{ +1, - 1\} n
\langle \bfitsigma ,\bfitA \bfitsigma \rangle  - 

\surd 
n\| \bfitA \| op\| \bfitsigma 1\| \| \bfitsigma \ast  - \bfitsigma 1\| .

(Here \| \bfitA \| op denotes the operator norm of matrix \bfitA .) Therefore, since | \langle \bfitsigma 1,\bfone \rangle | /n =

\ell /n
p - \rightarrow 0, and \| \bfitA \| op \leq 2.01 with high probability [AGZ09], we get

\sansC \sansU \sansT G(\bfitsigma \ast ) - 
| En| 
2
\geq (1 - \varepsilon ) \mathrm{m}\mathrm{a}\mathrm{x}

\bfitsigma \in \{ +1, - 1\} n

\Bigl\{ 
\sansC \sansU \sansT G(\bfitsigma ) - 

| En| 
2

\Bigr\} 
 - n
\surd 
\ell \| \bfitA \| op

\geq (1 - \varepsilon ) \mathrm{m}\mathrm{a}\mathrm{x}
\bfitsigma \in \{ +1, - 1\} n

\Bigl\{ 
\sansC \sansU \sansT G(\bfitsigma ) - 

| En| 
2

\Bigr\} 
 - o(n3/2) ,

which completes the proof.

Appendix A. Proof of Proposition 2.1. As mentioned in the main text,
Proposition 2.1 is a consequence of the general analysis of AMP algorithms available
in the literature. In particular, it can be obtained from a reduction to the setting of
[JM13, Theorem 1]. Let us briefly recall the class of algorithms considered in [JM13],
adapting the notations to the present ones. (We limit ourselves to considering the
“one-block” case in the language of [JM13]).

Fixing T \geq 1, consider a sequence of Lipschitz functions

Ft : \BbbR T \times \BbbR 2 \rightarrow \BbbR T ,

(x1, . . . , xT , w1, w2) \mapsto \rightarrow Ft(x1, . . . , xT , w1, w2) .

Given two matrices \bfitx \in \BbbR n\times T , \bfitw \in \BbbR n\times 2, we let Ft(\bfitx ;\bfitw ) \in \BbbR n\times T be the matrix
whose ith row is given by Ft(\bfitx i,\bfitw i) (where \bfitx i is the ith row of \bfitx and \bfitw i is the ith
row of \bfitw ).

Then [JM13] analyzes the following AMP iteration, which produces a sequence of
iterates \bfitx t \in \BbbR n\times T for t \geq 0 (whereby F - 1(\cdot \cdot \cdot ) \equiv 0 by definition):

\bfitx t+1 = \bfitA Ft(\bfitx 
t;\bfitw ) - Ft - 1(\bfitx 

t - 1;\bfitw )\sansB \sansT 
t .(A.1)

Here \sansB t \in \BbbR T\times T is a matrix with entries defined by

(\sansB t)ij =
1

n

n\sum 
\ell =1

(D\bfitx Ft(\bfitx 
t
\ell ;\bfitw \ell ))ij =

1

n

n\sum 
\ell =1

\partial Ft,i

\partial xt\ell ,j
(\bfitx t

\ell ;\bfitw \ell ) .(A.2)

Under the assumption that \bfitx 0,\bfitw are independent of \bfitA , and \^p\bfitx 0,\bfitw \equiv n - 1
\sum n

i=1 \delta \bfitx 0
i ,\bfitw i

which converges in W\ell , [JM13, Theorem 1] determines the W\ell asymptotics of the
empirical distribution of \bfitx t,\bfitw .

First, consider the case in which the functions fj : \BbbR j+1 \rightarrow \BbbR are Lipschitz
continuous. Proposition 2.1 can be recast as a special case of [JM13, Theorem 1].
First, notice that we can always choose an n-independent T such that the time horizon
k in (2.3) satisfies k \leq T . We then consider the iteration (A.1) with initialization
\bfitx 0 = \bfzero , data vectors \bfitw = (\bfitz 0,\bfity ), and update functions given by

Ft(x1, x2, . . . , xT , w1, w2)t = ft(w1, x1, . . . , xt;w2) .(A.3)
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FOCS19-30 ANDREA MONTANARI

With this setting, the vector (xti,j)i\leq n \in \BbbR n coincides with \bfitz t as given in (2.1) for
all j \leq t \leq T . The recursion of (2.2) follows from the analogous recursion in [JM13,
Theorem 1].

Next, we have to consider the case of functions fj : \BbbR j+1 \rightarrow \BbbR that are not
necessarily Lipschitz, but pseudo-Lipschitz of order m \geq 1. For a large constant
M \geq 1, and for each j \in \BbbN , we let fMj : \BbbR j+1 \rightarrow \BbbR be a Lipschitz function such
that fMj (\bfits ) = fj(\bfits ) for \| \bfits \| \leq M . Such a function exists by Kirszbraun’s extension
theorem and has the same Lipschitz constant as fj on \{ \bfits \in \BbbR j+1 : \| \bfits \| \leq M\} ,
\mathrm{L}\mathrm{i}\mathrm{p}(fMj ) \equiv LM \leq CMm. Notice further that\bigm| \bigm| fj(\bfits ) - fMj (\bfits )

\bigm| \bigm| \leq C(1 + \| \bfits \| )m\bfone \| \bfits \| \geq M \leq 
C

M
(1 + \| \bfits \| )m+1 .(A.4)

Denote by (\bfitz M,j)j\geq 0 the AMP iterates obtained replacing fj by fMj for each j:

\bfitz M,k+1 = \bfitA fMk (\bfitz M,0, . . . ,\bfitz M,k;\bfity ) - 
k\sum 

j=1

\sansb Mk,jf
M
j - 1(\bfitz 

M,0, . . . ,\bfitz M,j - 1;\bfity ) ,

\sansb Mk,j =
1

n

n\sum 
i=1

\partial fMk
\partial zji

(zM,0
i , . . . , zM,k

i ; yi) .

(A.5)

We denote by \bfitQ = (Qij)i,j\geq 1 the state evolution covariance associated to functions
(fj)j\geq 0 and by \bfitQ M = (QM

ij )i,j\geq 1 the covariance associated to functions (fMj )j\geq 0.
Using (A.4) in the state evolution recursion, we get, by an induction argument,

\mathrm{l}\mathrm{i}\mathrm{m}
M\rightarrow \infty 

QM
ij = Qij \forall i, j \geq 1 .(A.6)

In what follows, given a sequence of random variables Xn and a constant C, we write
\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}n\rightarrow \infty Xn < C if

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\BbbP (Xn \geq C) = 0 .

IfXn,M also depends on the parameterM , we write \mathrm{l}\mathrm{i}\mathrm{m}M\rightarrow \infty \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}n\rightarrow \infty Xn,M \leq C
if there exists a sequence of nonrandom constants CM such that \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}n\rightarrow \infty Xn <
CM and \mathrm{l}\mathrm{i}\mathrm{m}M\rightarrow \infty CM = C. Finally, we write Xn = O(1) if \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}n\rightarrow \infty Xn < C
\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}n\rightarrow \infty ( - Xn) < C for some constant C: let us emphasize that this is different
from “big Oh in probability.” Namely, if Xn = O(1), then there exists a finite constant
C such that \BbbP (| Xn| > C)\rightarrow 0.

We will prove by induction that the following claims—denoted by \scrA (k) = (\scrA 1(k),
\scrA 2(k),\scrA 3(k))—hold for all k:

\scrA 1(k). The empirical distributions of \bfitz M,k, \bfitz k have bounded moments of all orders,
uniformly in M,n, in probability. Namely, for each k, \ell \in \BbbZ , there exist
constants Ck,\ell <\infty such that

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

1

n
\| \bfitz k\| \ell \ell < Ck,\ell , \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}

n\rightarrow \infty 

1

n
\| \bfitz M,k

i \| \ell \ell < Ck,\ell .(A.7)

\scrA 2(k). The iterates \bfitz M,k approximate well \bfitz k in \ell 2. Namely, for each k \geq 0, we have

\mathrm{l}\mathrm{i}\mathrm{m}
M\rightarrow \infty 

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

1

n
\| \bfitz k  - \bfitz M,k\| 2 = 0 .(A.8)
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\scrA 3(k). For any \ell and any function \psi : \BbbR k+2 \rightarrow \BbbR , \psi \in \mathrm{P}\mathrm{L}(\ell ),

\mathrm{l}\mathrm{i}\mathrm{m}
M\rightarrow \infty 

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

\bigm| \bigm| \bigm| \bigm| \bigm| 1n
n\sum 

i=1

\psi (z0i , . . . , z
k
i ; yi) - 

1

n

n\sum 
i=1

\psi (zM,0
i , . . . , zM,k

i ; yi)

\bigm| \bigm| \bigm| \bigm| \bigm| = 0 .

(A.9)

Together with (A.6), and with the results above (i.e., the claim (2.3) for the
Lipschitz functions fMj ), this implies the desired claim

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

n\sum 
i=1

\psi (z0i , . . . , z
k
i ; yi) = \BbbE \psi (Z0, . . . , Zk;Y ) .(A.10)

Recall that, by assumption, \bfitQ \leq k := (Qij)1\leq i,j\leq k is strictly positive definite for
each k. Equivalently, there is no k, and there exist nonvanishing coefficients (cj)j\leq k

such that
\sum k

j=0 ckfj(Z0, . . . , Zj ;Y ) = 0 almost surely.

The base case k = 0 trivially holds. We next assume that \scrA (k) holds and prove
\scrA (k + 1).

Proof of \scrA 1(k + 1). The claim for \bfitz M,k holds because the functions fMj are
Lipschitz, and hence we can use the result above (namely, (2.3) for Lipschitz functions)
to get

1

n
\| \bfitz M,k+1\| \ell \ell 

p - \rightarrow \BbbE \{ (ZM
k+1)

\ell \} ,(A.11)

where ZM
k+1 \sim \sansN (0, QM

k+1,k+1). Using (A.6), the claim follows.

In order to prove the claim for \bfitz k, we will use the shorthand \bfitf j = fj(\bfitz 
0, . . . ,\bfitz j ;\bfity ),

and can therefore rewrite (2.1) as

\bfitz k+1 = \bfitA \bfitf k  - \bfitr k , \bfitr k :=

k\sum 
j=1

\sansb k,j\bfitf 
j - 1 .(A.12)

Let \bfitF j \in \BbbR n\times (j+1) be the matrix with columns \bfitf 0, . . . ,\bfitf j , \bfitP j the projector onto the
column space of \bfitF j , and \bfitP \bot 

j \equiv \bfitI n - \bfitP j . By the induction hypothesis \scrA 3(k), we have

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n
\bfitF \sansT 

k - 1\bfitF k - 1 = \bfitQ \leq k - 1 \succeq \varepsilon \bfitI k ,(A.13)

where the last inequality follows from the assumption about the functions fj not being
linearly degenerate (we write \bfitA \succeq \bfitB if the matrix \bfitA  - \bfitB is positive semidefinite).
This, in particular, implies that we can write \bfitP k - 1 = \bfitF k - 1(\bfitF 

\sansT 
k - 1\bfitF k - 1)

 - 1\bfitF \sansT 
k - 1.

Following earlier work [BM11, JM13, BMN19], we then rewrite (A.12) as

\bfitz k+1 = \bfitP \bot 
k - 1\bfitA \bfitP \bot 

k - 1\bfitf 
k + \bfitP \bot 

k - 1\bfitA \bfitP k - 1\bfitf 
k + \bfitP k - 1\bfitA \bfitf k  - \bfitr k

\mathrm{d}
= \bfitP \bot 

k - 1
\~\bfitA \bfitP \bot 

k - 1\bfitf 
k + \bfitP \bot 

k - 1\bfitA \bfitP k - 1\bfitf 
k + \bfitP k - 1\bfitA \bfitf k  - \bfitr k

= \~\bfitA \bfitP \bot 
k - 1\bfitf 

k  - \bfitP k - 1
\~\bfitA \bfitP \bot 

k - 1\bfitf 
k  - \bfitr k + \bfitP \bot 

k - 1\bfitA \bfitP k - 1\bfitf 
k + \bfitP k - 1\bfitA \bfitf k

:= \bfitv 1  - \bfitv 2  - \bfitv 3 + \bfitv 4 + \bfitv 5 ,

where \~\bfitA is distributed as \bfitA but independent of the \sigma -algebra \scrF k \equiv \sigma (\{ \bfitf j , \bfitz j\} j\leq k).
We next bound the \ell th norm of each of the terms in the last expression:
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1. Consider \bfitv 1. Since \~\bfitA is independent of \bfitu := \bfitP \bot 
k - 1\bfitf 

k, we have \bfitv 1
\mathrm{d}
=

(\| \bfitu \| 2/
\surd 
n)\bfitg + g0(\bfitu /

\surd 
n), where (g0, \bfitg ) \sim \sansN (0, \bfitI n+1). Also, notice that

1\surd 
n
\| \bfitu \| 2 \leq 

1\surd 
n
\| \bfitf k\| 2 = O(1) ,

where in the last step we used the induction hypothesis \scrA 3(k). Further, notice
that

\bfitP k - 1\bfitf 
k =

k - 1\sum 
j=0

akj\bfitf 
j , akj :=

k - 1\sum 
l=0

(\bfitF \sansT 
k - 1\bfitF k - 1)

 - 1
jl \langle \bfitf 

l,\bfitf k\rangle .

Using (A.13) and the induction hypothesis \scrA 3(k), we obtain that | akj | =
O(1). Therefore, since \bfitu := \bfitf k  - \bfitP k - 1\bfitf 

k, and using again the induction
hypothesis \scrA 3(k),

1

n1/\ell 
\| \bfitu \| \ell \leq 

1

n1/\ell 
\| \bfitf k\| \ell +

1

n1/\ell 
\| \bfitP k - 1\bfitf 

k\| \ell 

\leq O(1) +

k - 1\sum 
j=0

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

\biggl( 
| akj | 

1

n1/\ell 
\| \bfitf j\| \ell 

\biggr) 
= O(1) .

We conclude that

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

1

n1/\ell 
\| \bfitv 1\| \ell \leq \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}

n\rightarrow \infty 

1\surd 
n
\| \bfitu \| 2 \cdot 

1

n1/\ell 
\| \bfitg \| \ell 

+ \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

| g0| 
n1/2 - 1/\ell 

\cdot 1

n1/\ell 
\| \bfitu \| \ell 

\leq C \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

1

n1/\ell 
\| \bfitg \| \ell + C \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}

n\rightarrow \infty 

| g0| 
n1/2 - 1/\ell 

\leq C ,

where the last inequality follows from the law of large numbers.
2. Term \bfitv 2 is bounded by a similar argument by noting that (for g0, \bfitg as above)

\bfitv 2
\mathrm{d}
= \bfitP k - 1

\Biggl\{ 
\| \bfitP \bot 

k - 1\bfitf 
k\| 2\surd 

n
\bfitg +

g0\surd 
n
\bfitP \bot 

k - 1\bfitf 
k

\Biggr\} 

=
\| \bfitP \bot 

k - 1\bfitf 
k\| 2\surd 

n
\bfitP k - 1\bfitg .

As shown above, \| \bfitP \bot 
k - 1\bfitf 

k\| 2/
\surd 
n = O(1). Further,

\bfitP k - 1\bfitg =
1\surd 
n

k - 1\sum 
j=0

\~gj\bfitf 
j ,

(\~g0, . . . , \~gk - 1)
\bigm| \bigm| 
\bfitF k - 1

\sim \sansN (\bfzero , (\bfitF \sansT 
k - 1\bfitF k - 1/n)

 - 1) .

By the induction hypothesis \scrA 3(k), we have \| \bfitf j\| \ell /n1/\ell = O(1), and there-
fore,

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

1

n1/\ell 
\| \bfitP k - 1\bfitg \| \ell \leq C \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}

n\rightarrow \infty 

1\surd 
n

k - 1\sum 
j=0

| \~gj | 

\leq C \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

1\surd 
n
\| \~\bfitg \| 2 = 0 ,
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where the last identity follows by applying the Markov inequality condition-
ally on \bfitF k - 1, since \BbbE \{ \| \~\bfitg \| 22| \bfitF k - 1\} = \sansT \sansr ((\bfitF \sansT 

k - 1\bfitF k - 1/n)
 - 1)

p - \rightarrow \sansT \sansr (\bfitQ  - 1
\leq k),

which is bounded by (A.13).
3. Next, consider \bfitv 3 = \bfitr k =

\sum k
j=1 \sansb k,j\bfitf 

j . Notice that

\sansb k,j :=
1

n

n\sum 
i=1

\psi k,j(z
0
i , . . . , z

k
i ; yi) , \psi k,j(z

0
i , . . . , z

k
i ; yi) :=

\partial fk

\partial zji
(z0i , . . . , z

k
i ; yi) .

Since fk \in \mathrm{P}\mathrm{L}(m), we have | \psi k,j(\bfits )| \leq C(1+\| \bfits \| )m - 1. Let \bfits i = (z0i , . . . , z
k
i ; yi),

and fix R \geq 1 a large constant. Then\bigm| \bigm| \bigm| \bigm| \bigm| \sansb k,j  - 1

n

n\sum 
i=1

\psi k,j(\bfits i)\bfone \| \bfits i\| \leq R

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C

n

n\sum 
i=1

(1 + \| \bfits i\| )m - 1 \bfone \| \bfits i\| \geq R

\leq C

nR

n\sum 
i=1

(1 + \| \bfits i\| )m \leq 
C \prime 

R
.

Therefore,

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\sansb k,j = \mathrm{l}\mathrm{i}\mathrm{m}
R\rightarrow \infty 

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

n\sum 
i=1

\psi k,j(\bfits i)\bfone \| \bfits i\| \leq R

(\mathrm{a})
= \mathrm{l}\mathrm{i}\mathrm{m}

R\rightarrow \infty 
\BbbE 
\bigl\{ 
\psi k,j(Z0, . . . , Zk;Y )\bfone \| (Z0,...,Zk;Y )\| \leq R

\bigr\} 
(\mathrm{b})
= \BbbE 

\bigl\{ 
\psi k,j(Z0, . . . , Zk;Y )\} .

Here (a) follows since the induction hypothesis \scrA 3(k) implies weak conver-
gence of the empirical distribution of (\bfitz 0, . . . ,\bfitz k;\bfity ) to the law of (Z0, . . . , Zk;
Y ), and this implies convergence of expectations of bounded functions via
Portmanteau’s theorem. (Recall indeed that (Z1, . . . , Zk) is a nondegenerate
Gaussian vector, and the stated assumption about the joint law of (Z0, Y ).)
Further, (b) follows by dominated convergence since \psi k,j is bounded by a
polynomial. This implies

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

1

n1/\ell 
\| \bfitv 3\| \ell \leq C

k\sum 
j=1

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

1

n1/\ell 
\| \bfitf j\| \ell \leq C .

4. Consider term \bfitv 4. Define\bfitZ j := [\bfitz 1| \cdot \cdot \cdot | \bfitz j+1] \in \BbbR n\times (j+1),\bfitR j := [\bfzero | \bfitr 1| \cdot \cdot \cdot | \bfitr j ]
\in \BbbR n\times (j+1), and \bfitY j := \bfitZ j + \bfitR j . With these notations we have \bfitA \bfitF k - 1 =
\bfitY k - 1, and therefore,

\bfitv 4 = \bfitP \bot 
k - 1\bfitA \bfitF k - 1(\bfitF 

\sansT 
k - 1\bfitF k - 1)

 - 1\bfitF \sansT 
k - 1\bfitf 

k

= \bfitY k - 1(\bfitw 
k)\sansT  - \bfitP k - 1\bfitY k - 1(\bfitw 

k)\sansT := \bfitv 4,a + \bfitv 4,b ,

where we defined the vector \bfitw k := (\bfitF \sansT 
k - 1\bfitF k - 1)

 - 1\bfitF \sansT 
k - 1\bfitf 

k \in \BbbR k. Using
again—as done above—(A.13), and the induction hypothesis \scrA (k), we obtain
\| \bfitw k\| \infty = O(1). Further, again by the induction hypothesis, \| \bfitz j\| \ell /n1/\ell =
O(1) and (as proved in the analysis of term \bfitv 3) \| \bfitr j\| \ell /n1/\ell = O(1) for all
j \leq k. Therefore,

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

1

n1/\ell 
\| \bfitv 4,a\| \ell \leq \mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}

n\rightarrow \infty 

k+1\sum 
j=1

| wk
j | 

1

n1/\ell 
\bigl( 
\| \bfitz j\| \ell + \| \bfitr j - 1\| \ell 

\bigr) 
\leq C .
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For \bfitv 4,b we notice that

\bfitv 4,b =

k\sum 
j=1

hj\bfitf 
j - 1 , (h1, . . . , hk) = (\bfitF \sansT 

k - 1\bfitF k - 1)
 - 1(\bfitF \sansT 

k - 1\bfitY k - 1)(\bfitw 
k)\sansT .

Using again the induction hypothesis, we get \| \bfith \| \infty = O(1) and \| \bfitf j\| \ell /n1/\ell =
O(1), and the claim follows.

5. Finally, term \bfitv 5 is treated almost exactly as term \bfitv 4: we do not repeat the
same argument.

This concludes the proof of \scrA 1(k + 1).

Proof of \scrA 2(k + 1). Fix any j \leq k, and let \bfits i := (z0i , . . . , z
j
i , yi), \bfits Mi :=

(zM,0
i , . . . , zM,j

i , yi). We then have

1

n

\bigm\| \bigm\| fMj (\bfitz M,0, . . . ,\bfitz M,j ;\bfity ) - fj(\bfitz 0, . . . ,\bfitz j ;\bfity )
\bigm\| \bigm\| 
2

\leq 2

n

n\sum 
i=1

\bigl[ 
fMj (\bfits Mi ) - fj(\bfits Mi )

\bigr] 2
+

2

n

n\sum 
i=1

\bigl[ 
fj(\bfits 

M
i ) - fj(\bfits i)

\bigr] 2
\leq C

n

n\sum 
i=1

(1 + \| \bfits Mi \| 2)m\bfone \| \bfits M
i \| 2\geq M +

C

n

n\sum 
i=1

(1 + \| \bfits Mi \| 2 + \| \bfits i\| 2)m - 1\| \bfits i  - \bfits Mi \| 2

\leq C

nM

n\sum 
i=1

(1 + \| \bfits Mi \| 2)m+1

+ C

\Biggl( 
1

n

n\sum 
i=1

(1 + \| \bfits Mi \| 2 + \| \bfits i\| 2)2(m - 1)

\Biggr) 1/2\Biggl( 
1

n

n\sum 
i=1

\| \bfits i  - \bfits Mi \| 22

\Biggr) 1/2

\leq O(1)
1

M
+O(1)

j\sum 
i=1

1\surd 
n
\| \bfitz M,i  - \bfitz i\| 2 ,

where in the last step we used the induction hypotheses \scrA 1(j), j \leq k. Further, using
the induction hypothesis \scrA 2(i), i \leq k, implies that

\mathrm{l}\mathrm{i}\mathrm{m}
M\rightarrow \infty 

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

1

n

\bigm\| \bigm\| fMj (\bfitz M,0, . . . ,\bfitz M,j ;\bfity ) - fj(\bfitz 0, . . . ,\bfitz j ;\bfity )
\bigm\| \bigm\| 
2
= 0 .(A.14)

By a similar argument we conclude that, for all j \leq k,

\mathrm{l}\mathrm{i}\mathrm{m}
M\rightarrow \infty 

\mathrm{p}-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

\bigm| \bigm| \sansb Mkj  - \sansb kj
\bigm| \bigm| = 0 .(A.15)

Recall that \| \bfitA \| op \leq 3 with probability 1  - \mathrm{e}\mathrm{x}\mathrm{p}( - n/C), and therefore, with high
probability,\bigm\| \bigm\| \bfitz M,k+1  - \bfitz k+1

\bigm\| \bigm\| 
2
\leq C
\bigm\| \bigm\| fMk (\bfitz M,0, . . . ,\bfitz M,k;\bfity ) - fk(\bfitz 0, . . . ,\bfitz k;\bfity )

\bigm\| \bigm\| 
2

+

k\sum 
j=1

| \sansb Mkj  - \sansb kj | 
\bigm\| \bigm\| fMj (\bfitz M,0, . . . ,\bfitz M,j ;\bfity )\| 2

+

k\sum 
j=1

| \sansb kj | 
\bigm\| \bigm\| fMj (\bfitz M,0, . . . ,\bfitz M,k;\bfity ) - fj(\bfitz 0, . . . ,\bfitz j ;\bfity )

\bigm\| \bigm\| 
2
.
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Using (A.14), (A.15), together with the fact that
\bigm\| \bigm\| fMj (\bfitz M,0, . . . ,\bfitz M,j ;\bfity )\| 2/

\surd 
n =

O(1) and | \sansb kj | = O(1) which follows by the induction hypothesis \scrA 1(k), we get the
desired claim \scrA 2(k + 1); cf. (A.8).

Proof of \scrA 3(k + 1). As above we let \bfits i := (z0i , . . . , z
k+1
i , yi), \bfits Mi := (zM,0

i , . . . ,

zM,k+1
i , yi). We then have, with high probability,\bigm| \bigm| \bigm| \bigm| \bigm| 1n

n\sum 
i=1

\psi (\bfits i) - 
1

n

n\sum 
i=1

\psi (\bfits Mi )

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq C

n

n\sum 
i=1

(1 + \| \bfits Mi \| 2 + \| \bfits i\| 2)m - 1\| \bfits i  - \bfits Mi \| 2

(\mathrm{a})

\leq 

\Biggl( 
1

n

n\sum 
i=1

(1 + \| \bfits Mi \| 2 + \| \bfits i\| 2)2(m - 1)

\Biggr) 1/2\Biggl( 
1

n

n\sum 
i=1

\| \bfits i  - \bfits Mi \| 22

\Biggr) 1/2

(\mathrm{b})

\leq C

k+1\sum 
i=1

1\surd 
n
\| \bfitz M,i  - \bfitz i\| 2 ,

where (a) is Cauchy–Schwarz and (b) follows from \scrA 1(k + 1). Using \scrA 2(k + 1) (i.e.,
(A.8) with k replaced by k + 1), we obtain the desired claim.

Appendix B. A summary of the algorithm. In this appendix we provide a
pseudo-code description of the algorithm of Theorem 2, for the reader’s convenience.
As usual, \odot denotes entrywise multiplication between vectors. Further, when a scalar
function is applied to a vector, it is understood to be applied componentwise. In
particular, note that \| \partial 2x\Phi (k\delta ,\bfitx k)\| is the \ell 2 norm of the vector whose ith component
is \partial 2x\Phi (k\delta , xki ).

Algorithm 1 IAMP algorithm to optimize SK Hamiltonian.
Data: Matrix \bfitA \sim \sansG \sansO \sansE (n), parameters \delta , \beta > 0
Result: Near optimum \bfitsigma \ast \in \{ +1 - 1\} n of the SK Hamiltonian
Compute minimizer \mu \beta of the Parisi functional \sansP \beta (\mu ) (cf. (1.3)). Compute solution
\Phi to PDE (1.2), with \mu = \mu \beta . Compute q\ast (\beta ) = \mathrm{s}\mathrm{u}\mathrm{p}\{ q : q \in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu \beta )\} (Edwards–
Anderson parameter). Initialize \bfitu  - 1 = \bfzero , \bfitu 0 \sim \sansN (0, \delta \bfitI n), \bfitg  - 1 = \bfone , \bfitg  - 2 = \bfzero ,
\sansb 0 = 0. for k \leftarrow 0 to \lfloor q\ast /\delta \rfloor do

\bfitu k+1 = \bfitA (\bfitg k - 1\odot \bfitu k) - \sansb k\bfitg k - 2\odot \bfitu k - 1 \bfitx k = \bfitx k - 1+\beta 2\mu (k\delta ) \partial x\Phi (k\delta ,\bfitx 
k - 1) \delta +\beta \bfitu k

\bfitg k =
\surd 
n\partial 2x\Phi (k\delta ,\bfitx 

k)/\| \partial 2x\Phi (k\delta ,\bfitx k)\| \sansb k+1 =
\sum n

i=1 g
k
i /n

end
Compute \bfitm =

\sum \lfloor q\ast /\delta \rfloor 
k=1 \bfitg k - 1 \odot \bfitu k. Round \bfitm to \bfitsigma \ast \in \{  - 1,+1\} n. return \bfitsigma \ast 

Notice that this pseudo-code does not describe how to minimize the Parisi func-
tional and how to solve the PDE (1.2). As discussed in the introduction, we believe this
can be done efficiently because of the strong convexity and continuity of \mu \mapsto \rightarrow \sansP \beta (\mu ).
Indeed, highly accurate numerical solutions (albeit with no rigorous analysis) were
developed already in [CR02, OSS07, SO08].

Further, the pseudo-code does not specify the rounding procedure, which is given
below.
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FOCS19-36 ANDREA MONTANARI

Algorithm 2 Round.
Data: Matrix \bfitA \in \BbbR n\times n, vector \bfitz \in \BbbR n

Result: Integer solution \bfitsigma \ast \in \{ +1 - 1\} n
for i\leftarrow 1 to n do

Set \~zi \leftarrow \mathrm{m}\mathrm{i}\mathrm{n}(\mathrm{m}\mathrm{a}\mathrm{x}(zi, - 1),+1)
end
for i\leftarrow 1 to n do

Compute hi =
\sum 

j \not =iAij \~zj Set \~zi \leftarrow \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(hi);
end
return \bfitsigma \ast = \~\bfitz .
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