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Abstract

We present a list of problems in arithmetic topology posed at the June 2019 PIMS/NSF
workshop on “Arithmetic Topology.” Three problem sessions were hosted during the
workshop in which participants proposed open questions to the audience and
engaged in shared discussions from their own perspectives as working mathematicians
across various fields of study. Participants were explicitly asked to provide problems of
various levels of difficulty, with the goal of capturing a cross section of exciting
challenges in the field that could help guide future activity. The problems, together
with references and brief discussions when appropriate, are collected below into three
categories: (1) topological analogues of arithmetic phenomena, (2) point counts,
stability phenomena and the Grothendieck ring, and (3) tools, methods and examples.

Three problem sessions were hosted during the workshop in which participants pro-
posed open questions to the audience and engaged in shared discussions from their own
perspectives as working mathematicians across various fields of study. Participants were
explicitly asked to provide problems of various levels of difficulty, with the goal of captur-
ing a cross section of exciting challenges in the field that could help guide future activity.
The problems, together with references and brief discussions when appropriate, are col-
lected below into three categories: (1) topological analogues of arithmetic phenomena, (2)
point counts, stability phenomena and the Grothendieck ring, and (3) tools, methods and
examples.

1 Topological analogues
1.1 Craig Westerland

This problem concerns the homology of random topological objects and the Cohen–
Lenstradistribution, originally introduced toheuristically understandexperimental obser-
vations about the class groups of number fields [18]. The Cohen–Lenstra distribution on
finite (abelian) groups posits that the probability of each group G being in the support
of the distribution is inversely proportional to |G|n|Aut(G)|m for some n,m ≥ 0. Since
its first use, it has appeared throughout number theory and in various models of random
integral matrix cokernels; see, for example, [15,27,58,86].
Working one prime p at a time, one can compute the p-power torsion and torsion-

free part of the integral homology of a given chain complex by tensoring with the p-adic
integers Zp before taking homology. If one further specifies the total homological rank r
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of such complexes, the Cohen–Lenstra distribution specifies a discrete measure on the
resulting moduleM = Z

r
p ×N (forN an abelian p-group). We can then ask the following

question:

Conjecture 1 Let X• be a random simplicial complex. Does the torsion H∗(X•)tors have
a Cohen–Lenstra distribution?

This question was originally posed by Matt Kahle, Frank Lutz, Andrew Newman and
Kyle Parsons, along with experimental evidence supporting the conjecture, in [50]. West-
erland raised this standing problem and also discussed an analogue for randommanifolds
where one can introduce a torsion linking pairing

Hi(X ;Z)tors × HdimX−i−1(X ;Z)tors
∪−→ HdimX−1(X ;Z)tors

δ−→ HdimX (X ;Q/Z) ∼= Q/Z.

Delaunay [21] introduced heuristics in the context of a bilinear pairing

μ : G × G → Q/Z,

originally in the symplectic context of Tate–Shafarevitch groups but later expanded by
others (e.g., [8,85]) to additional phenomena, where Aut(G) is replaced with Autμ(G) of
automorphisms preserving the pairing.

Question 2 Are there Delauney heuristics in the random manifold case?

Andy Putman mentioned useful models for random 3-manifolds (e.g., Dunfield–
Thurston manifolds via random classes in the mapping class group Modg ) that might
help approach this problem.

1.2 Daniel Litt

Motivated by the Frobenius action on the pro-pGalois group of a curve over Fp, consider
a random automorphism ϕ of a free pro-p group F , and construct a randomWeil group

Wϕ :=F � 〈ϕ〉.
What is the representation theory ofWϕ? Do the predictions from geometric Langlands

theory hold? For example:

Problem 3 Given an irreducible continuous representation ρ : Wϕ → GLn
(
Fp((t))

)
,

does the restriction ρ|F always have finite image?

For F the geometric étale fundamental group of a smooth projective curve X over Fq , the
analogous problemwas posed by de Jong [20] and proven by Gaitsgory [33]. Similarly, one
could ask:

Problem 4 Let L/Qp be a finite extension, and let ρ : Wϕ → GLn(L) be a continuous
irreducible representation. For almost every ϕ (i.e., with probability 1), does H1

cts(F ; ρ ⊗
ρ∨)ϕ = 0?

Viewing H1
cts(F ; ρ ⊗ ρ∨)ϕ as the tangent space to ρ in the character variety of F , we can

understand the previous problem as a “cohomological rigidity” statement. Like the first
problem, this problem is a theorem for F the geometric étale fundamental group of a
smooth projective curve X over Fq : indeed, a theorem of L. Lafforgue [59] implies that
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ρ is pure of some weight, so ρ ⊗ ρ∨ is pure of weight 0. Deligne’s bounds [22] therefore
imply that H1

cts(F ; ρ ⊗ ρ∨) is pure of weight 1, and hence the invariants of Frobenius are
trivial.
More generally, both of the above problems arise from trying to understand in what

sense the action of Frobenius on the geometric étale fundamental group of a smooth
projective curve over Fq is “special”? Affirmative answers to both of the questions above
would suggest that it isn’t!

2 Point counting, stability phenomena and the grothendieck ring
2.1 Akshay Venkatesh

In many interesting number theory problems (e.g., counting number fields), one has not
only a main term in the asymptotic count, but a secondary term or more. For example,
the number of cubic fields of discriminant up to X is

aX + bX5/6 + lower order terms.

We have very little understanding of these lower-order terms, and they are not just of
theoretical interest: when one tries to verify the conjectures numerically, one finds that
the secondary terms are dominant in the computational range.
So the question, following the framework of the Weil conjectures, is:

Problem 5 What is the topological meaning of secondary terms appearing in asymptotic
counts in number theory?

They do not correspond to stable cohomology classes (these are the main terms), but to
some kind of slightly weaker structure, which is still much better behaved than cohomol-
ogy near middle degree.

2.2 Zachary Himes

The recent work of Galatius–Kupers–Randal-Williams [34,35] develops and applies a
homology theory based on Ek-algebras, originally introduced to study k-fold loop spaces
[64], with the goal of showing results “beyond homological stability” which they call
secondary stability. For example, in [35], Ek-homology is used to measure the failure of
homological stability itself as a stable phenomenon in the context ofmapping class groups,
and in [73], this perspective is used to explain the homological stability phenomena which
underlie the breakthrough work of Ellenberg–Venkatesh–Westerland [27].

Question 6 Building off [27], can one proveHurwitz spaces have stability (formore general
groups than the dihedral groups)? Secondary stability, or higher-order stability? What can
one say about the homology of Hurwitz spaces after restricting to subsets of connected
components?

2.3 Daniel Litt

Problem 7 Fix n, d, and q. Howmany supersingular hypersurfacesX ⊂ P
n exist of degree

d over Fq? In particular, does such a hypersurface exist for every degree, dimension, and
characteristic?Moreover, the set of such varieties are the Fq-points of some supersingular
locus V—what is the class [V ] in the Grothendieck ring?
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A great deal is known about the supersingular locus in particular cases. See, for example,
the work of Oort and Li [63] onmoduli spaces of supersingular abelian varieties, especially
on the case of principally polarized abelian varieties Sg,1.

2.4 Aaron Landesman

Cohen–Lenstra heuristics can be used to describe distributions of class groups of certain
global fields. In many ways, the Selmer groups of elliptic curves behave similarly to class
groups. As such, Landesman provided two conjectures—a number-theoretic version and
a topological version—relating topological techniques to the average size of Selmer groups
of elliptic curves over function fields. We describe the latter here, framed as a question
of homological stability, which would likely imply the number-theoretic conjecture. For
more details, see [60].

Definition 8 Themoduli space of Weierstrass models is given by

Wd :={(a(S, T ), b(S, T )) ∈ C[S, T ]2 | homogeneous degree 4d

and 6d, respectively} ⊆ C
10d+2.

A pointW = (a(S, T ), b(S, T )) ∈ Wd gives rise to an elliptic surface SW via

SW :={([S : T ], [X : Y : Z]) ∈ CP
1 × CP

2 | Y 2Z = X3 + a(S, T )XZ2 + b(S, T )Z3},
together with the natural projection map ϕW : SW → CP

1. The universal family of
Weierstrass models, UWd , is the space parameterizing models W and a point p on the
corresponding elliptic surface SW . That is,

UWd :={(W,p) ∈ Wd × (CP
1 × CP

2) | p ∈ SW }.
There are natural projection maps

UWd
f−→ CP

1 × Wd
g−→ Wd.

The Selmer space is constructed as Seldn(C):=R1g∗(R1f∗(μn)).

Question 9 For fixed n, do Seldn(C) satisfy homological stability as d → ∞?

In particular, Landesman provided a more precise prediction:

Conjecture 10 There are constants A and B depending on n so that

dimHi(Seldn(C);Q) = dimHi(Seld+1
n (C);Q)

whenever d ≥ Ai + B.

2.5 Will Sawin

Continuing the paradigm put forward by Vakil–Wood [82], Sawin proposed further com-
parison of three types of convergence for families of varieties:

(1) Homological stability, i.e., isomorphisms between low-degree singular cohomology
groups (equivalently, high-degree compactly-supported cohomology groups), ideally
in some way respecting arithmetic structures such as Galois representations, Hodge
structures, etc.
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(2) Point counts, in particular after normalizing by a factor of q− dim.
(3) Convergence in the Grothendieck ring under the dimension filtration; see, for exam-

ple, [82].

In particular, Sawin suggestedfixing adegreed and considering a sequenceHn of smooth
degree d hypersurfaces in P

n as follows:

Question 11 Does lim
n→∞

[Hn] − [Pn−1]
[An−1]

exist? Is the limit zero?

This convergence makes sense for many objects that can be obtained via maps out
of the Grothendieck group (i.e., Hodge structures), so a negative result would show the
Grothendieck ring is richer than these. In the setting of homological stability, this question
reduces to the Lefschetz hyperplane theorem; with respect to counting points over Fq ,
the limit can be controlled when √q is larger than d − 1 using Lefschetz together with
theWeil conjectures. While any progress toward answering this question is interesting in
its own right, there is also an application to proving Grothendieck ring analogues of the
Browning–Sawin circle method [13].

2.6 Ronno Das

In 1849, Cayley and Salmon [14] showed that every smooth cubic surface over an alge-
braically closed field contains exactly 27 lines. If we instead letX be a smooth cubic surface
over k = R or Fq , for example, the number of lines contained in X and defined over k
can be strictly less than 27. In fact, as shown by Das [19], the average number of lines on
a cubic surface over Fq is exactly 1 for all but finitely many characteristics.
More generally, as suggested in correspondence with Ravi Vakil, one can consider lines

on del Pezzo surfaces of degree 1 ≤ d ≤ 9, where d = 3 is the case of cubic surfaces. See
for example [7] and [75] for more details.

Problem 12 What is the average number of Fq-lines of a degree 1 del Pezzo surface over
Fq?

The average number of lines on a del Pezzo surface defined overFq is 1 for degree d ≥ 3,
except when d = 7 where the average is 2. Moreover, the d = 2 case is closely related to
Bergvall’s computations [6].

Problem 13 Is there a uniform proof for all degrees 1 ≤ d ≤ 9?

2.7 Jesse Kass

When q is odd or when k = R, Segre [77] observed that a line � on a cubic surface X
comes equipped with a distinguished involution L that is necessarily hyperbolic or elliptic
as an element of PGL2, determined by whether or not the fixed points of L are defined
over k .

Definition 14 A line � on a cubic surface X , both defined either over R or Fq for q odd,
is said to be hyperbolic (respectively, elliptic) if the distinguished involution L (see [77]) is
hyperbolic (respectively, elliptic).
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See the papers of Finashin–Kharlamov [30], Okonek–Teleman [69], and Kass–
Wickelgren [54] on how this distinction gives rise to restrictions for the number of lines
on cubic surfaces defined over R and Fq with odd characteristic.

Problem 15 Let X be a cubic surface over Fq , a finite field of odd characteristic, and
with 27 lines defined over Fq . Let H and E be the number of hyperbolic and elliptic lines,
respectively.

(1) What pairs (H, E) can appear?
(2) Statistically, how often do each appear?
(3) What subgraphs of the intersection graph of lines can be given by hyperbolic and

elliptic lines?

2.8 Isabel Vogt

Problem 16 Let X be a smooth cubic hypersurface defined over Fq and fix n ≤ q + 1
points from X . Does there exist an algebraic map f : P

1
Fq

→ X such that the n points are
contained in the image? If so, what degree is necessary?

As proved by Kollár [57], the answer to the first question is yes when q ≥ 8, but the
degree of f grows rapidly. In general, for X a fixed hypersurface with g : Z → X a map on
some finite subscheme Z of P

1, one can consider the space

Mord(P1, X ; g):= {
f ∈ Mord(P1, X) : f |Z = g

}

of maps extending g to all of P
1. The preceding question becomes that of the Fq-points of

Mord(P1, X ; g). In this spirit, Vogt offered the following general problem:

Problem 17 Asking these questions over C, how does the topology of the associated
spaces vary as d grows?

As a related example, fixing a degree d holomorphic function g : CP
m−1 → CP

n,
Mostovoy [65,67] considered the space

Mord(CP
m,CP

n; g):= {
f : CP

m → CP
n|f ◦ i = g

}

for some fixed embedding i : CP
m−1 ↪→ CP

m, and exhibited a map

Mord(CP
m,CP

n; g) → �2m
CP

n

that induces isomorphisms in homology up to degree d(2n − 2m + 1) − 1. Since the
latter space has a homotopy type naturally invariant of d, this result (and subsequent
generalizations into toric varieties [66]) gives a homological stability result in the spirit of
Problem 17.

2.9 Vlad Matei

Problem 18 Consider the variety of monic square-free polynomials,

Polyn(k):={(an−1, . . . , a0) ∈ kn | tn + an−1tn−1 + · · · + a0 is square-free}.
Fixing n and k = Fq , what is the distribution of the ai ∈ Fq for i ≤ n − 2?

In the q � 1 regime, the coefficients are well-known to be uniformly distributed. On the
other hand, fixing q, one can see immediately that an−1 is uniformly distributed simply by
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elementary substitutions. The question of fixing some of the coefficients is of particular
interest to computer scientists; see, for example, [39] for a history of the problem. Matei
outlined two distinct ways to study the aforementioned problem:
The first is by dualizing—considering the discriminant hypersurface � ⊂ A

n and pick-
ing out Fq-points by their coordinates. These, in turn, can be thought of as hyperplane
sections of �. The downside of this approach is that we would need an explicit formula
for� in terms of the coefficients, which becomes computationally infeasible even in small
degrees.
The second approach is by considering hypersurfaces determined by the symmetric

sums of the roots {z1, . . . , zn}. Writing σk for the kth symmetric sum, one could consider
hypersurfaces of the form σk = a ∈ Fq on the open locus of distinct roots. In this case,
the objective is to understand the Sn-action on these hypersurfaces and the associated
cohomology groups, in order to count Fq points on the quotient.

2.10 Oishee Banerjee

While many of the results concerning the cohomology of moduli spaces of polynomials
concentrate on data encoded in their zeroes, i.e., configuration spaces on C, one can
also proceed by studying ramification. Such work is in the spirit of long-standing open
problems concerning the topology of Hurwitz spaces.
Indeed, the irreducibility of the Hurwitz space is a classical result proved in [16], where

the topology of its subvarieties corresponding to specific ramification loci is almost com-
pletely unknown. Banerjee [4] studied the stable cohomology of these Hurwitz spaces
satisfying certain conditions. In addition, her work shows that the étale cohomology does
not stabilize in positive characteristic, which is in contrast to comparable stability results
(see [27,29].)

Problem 19 Fix a prime power q and integer n with char(Fq) > n + 1. For which f (t) ∈
Polyn(Fq) does the anti-derivative

F (t):=
∫ t

0
f (x)dx

give a simply-branchedmapping F : A
1 → A

1? Alternatively, howmany simply-branched
maps F : A

1 → A
1 over Fq of degree n + 1 have dF

dt ∈ Polyn(Fq)?

2.11 Patricia Hersh

This question is motivated by the task of moving from studying the configuration space
of n distinct points on a manifold, either entirely labeled or unlabeled, to instead looking
at situations where the n points are partitioned into groups of points that cannot be
distinguished from each other but can be distinguished from the other groups of points.
IfA is a hyperplane arrangement, one can count the number of Fq points in the comple-

ment X of A using the Möbius function μA of the intersection poset LA (see, for example,
[80]). In short:

#X(Fq) =
∑

y∈LA
μ(0̂, y)qdimA−rk y. (2.1)

Hersh–Kleinberg introduced a multiplicative deformation of the Möbius function, μ′,
defined somewhat similarly toμA but (1) replacing the recursion forμA by a recursion that
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forces μ′ to be multiplicative, and (2) replacing the intersection poset LA in the counting
formula above by the multiset partition poset ordered by refinement. In particular, μ′

records multiplicities of incidences and thus behaves more elegantly in various contexts
(see [47] for details).

Question 20 Replacingμwithμ′ in (2.1) and replacing LA by themultiset partition poset,
does the resulting formula have arithmetic meaning?

Additional references are [36] and [46], the former remarked by Melanie Wood.

2.12 Joseph Gunther

Question 21 Let C(a, b) be moduli space of smooth complex curves in P
1 ×P

1 of bi-degree
(a, b). Is there a homological stability for C(a, b) as b → ∞ with a fixed?

This problem is solved over Fq by [28] and a motivic treatment is found in [9].

2.13 Vlad Matei

In 1984, Kani–Rosen [52] studied relations between idempotents in the algebra of rational
endomorphisms of a fixed abelian variety. In particular, if a groupG covered by subgroups
H1, . . . , Hr acts on a smooth variety X over Q, we obtain idempotents εHi given by

εHi :=
1
Hi

∑

h∈Hi

h

in the group algebra Q[G] that come with linear relations of the form
n∑

i=1
aiεHi = 0.

Question 22 Do these transfer to relations in the Grothendieck ring? That is, are there
ai ∈ Z such that

r∑

i=1
ai[X/Hi] = 0?

Matei observed that this holds for the action of G = S3 on affine space A
3, but Daniel

Litt commented that he expects this to be false mod p generically.

3 Developing tools, methods, and new examples
3.1 Will Sawin

Sawin’s talk outlined joint work with Tim Browning on a geometric version of the Hardy–
Littlewood circle method, used to compute the compactly supported cohomology of the
space of rational curves on a smooth hypersurface (see [13]).

Question 23 Can we apply these methods to other cases, such as to maps

(1) from higher genus curves?
(2) into projective varieties?
(3) into complete intersections?
(4) with local conditions?
(5) with Hodge structure modules?
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3.2 Michael Fried

For n ≥ 4, twomoduli spaces associated with P
1
z appear often:

The moduli of ordered (distinct) points M0,n := ((P1
z )n \ �n)/PGL2(C), and

The moduli of unordered (distinct) points Jn := (Pn \ Dn)/PGL2(C)

where �n is the “fat diagonal,” i.e., the locus of points with repetitions, and Dn is the
discriminant (treating the homogeneous coordinates in P

n as the coefficients of a degree
n polynomial in one variable). For n = 4, these are the (open) classical lines P

1
λ \ {0, 1,∞}

and P
1
j \ {∞}. The fundamental group ofM0,n mod outer automorphisms, πn, is the pure

(spherical) braid group on n strands mod its center Z/2Z. Note that π4 is a free group on
two generators, F2.
The Grothendieck–Teichmüller group is a conjectured description (cf. [24,41,49]) of

the absolute Galois groupGQ given by its action on the profinite fundamental group(oid)s
ofM0,4 andM0,5. Even if correct, Grothendieck’s conjecture is not useful without a way
to name elements in the action of GQ (cf. [49, Question 2, p. 6]).
Ihara replacedπn byπnil

n , its nilpotent completion, as away to name the elements in their
action; note that this will not capture all of GQ. He, along with Anderson, documented
aspects of this for explicit collections of covers (e.g., [1,2]). Foremost was his identification
of the second commutator quotient of GQ (the 2-step nilpotent quotient), using the 3-,
4-, and 5-cycle relations developed by Drinfeld (and apparently known to Grothendieck).
This generalized the Kronecker–Weber description fo the abelian quotient of GQ as the
(Galois group over Q of the) cyclotomic closure of Q (see [48]).

Problem 24 Go beyond the nilpotent quotientπnil
n to give a naming scheme for elements

in GQ.

We propose that a moduli-theoretic approach is possible using reduced Hurwitz space
covers (see [31] and [3,32]). These covers of Jn—defined by finite groups and conjugacy
classeswithin these group, and parameterizing branched covers ofP1 with fixed branching
data and monodromy group—pull back to unramified covers ofM0,n whose components
and their fields of definition are controlled by an explicit braid group action. For example,
for n = 4, components, genuses and cusps of these covers of M0,4 = P

1
λ \ {0, 1,∞}

are efficiently computable. We propose that these Hurwitz moduli spaces give a way to
identify the GQ action. Using versions of Deligne’s tangential base points [23] based in
Jn rather than M0,n (significant even for n = 4) thereby gives tests relating Drinfeld’s
relations to the fields of definition of components of Hurwitz space.
Special case: even the case when the Hurwitz space pullbacks to M0,n are nilpotent

covers should be doable and significant (e.g., in shedding new light on Ihara’s results).

3.3 Jesse Kass

The following was discussed in the context of developing an enriched discriminant or
conductor usingA

1-homotopy theory, in the context of themini-course by KirstenWick-
elgren and work by Marc Levine; see, for example, [61].
Consider a generically separable non-constant Galois cover f : Y → X of smooth

projective curves with Galois group G. Associated with df , there is a certain Euler class,
the enriched different, which is related to the “enrichedRiemann–Hurwitz formula” due to
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Levine. In classical theory, the different is related to the discriminant and the conductor;
see, for example, [68] for an overview.

Question 25 Is there an enriched conductor associated with y ∈ Y and x = f (y)?

Definition 26 The classical conductor is defined via the Artin character (see [40]). In this
context, where Gy:= StabG(y), we have an enriched Artin character

Gy → GW(k)

σ �→ local Lefschetz trace of σ ,

where GW(k) is the Grothendieck–Witt group associated with the field k .

Question 27 Is the enriched Artin character the character of some map?

More generally, the task here is to continue enriching Serre’s book [40].

3.4 Daniel Litt

Following the work of Marc Levine, Jesse Kass, Kirsten Wickelgren, and others (see, for
example, [54,55,62]), Daniel Litt asked about creating enriched Gromov–Witten invari-
ants.

Question 28 Canwedevelop enrichedGromov–Witten invariants in thenon-enumerative
case? Can we relax the conditions, e.g., for non-smooth varieties?

Kass remarked that there are computations over the real numbers, for example [37,78,
84], which might give us some hint on how to define them.

3.5 Hannah Knight

In 1979, based on intuition fromMorse theory, Segal [76] proved that the map

Ratnd(C) ↪→ �2
CP

n

is a homotopy equivalence through dimension (2n − 1)d, where �2
CP

n is the space of
based continuous maps CP

1 → CP
n with the compact-open topology. Part of his proof

included exhibiting homological stability via (non-algebraic) maps

Ratnd(C) ↪→ Ratnd+1(C).

This work inspired many generalizations in the 40 years since, for example extending
the domain to genus g ≥ 1 curves and the target to Grassmannians or toric varieties;
see, for example, [12,17,42,43,51,56]. Jun-Yong Park remarked that his joint work with
Changho-Han and Hunter Spink [44,72] showed stability for maps from P

1 to weighted
projective spaces P(a, b). Kirsten Wickelgren commented that the Chow ring of stable
maps from P

1 → P
n is known to stabilize in the degree, due to Pandharipande [70].

Knight asked what was known about extensions of Segal’s results to the case

Hold(CP
m,CP

n) = {
(f0, . . . , fn) : each fi ∈ C[x0, . . . , xm]d with no common root

}
,

where 1 < m ≤ n and d ≥ 1. Claudio Gómez-Gonzáles remarked that this work had
been carried out, first by Mostovoy [65,67] and, more generally, by Mostovoy–Munguia–
Villanueva [66]. Further, [38] calculates the stable homology as d → ∞, and shows that
both the unstable rational homology and the corresponding point counts seem to be
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independent of d (except for dimension reasons, for the latter). Benson Farb added that
in general, little is known about spaces of algebraic maps when the (complex) dimension
of the domain is greater than one (except when those spaces are finite). This motivates:

Question 29 Can we develop more general methods to study the topology of spaces of
algebraic maps X → Y between varieties, especially when X has dimension greater than
1?

Question 30 Can we replace homology/cohomology with the Chow ring in more general
settings?

3.6 Jesse Kass

Question 31 What are the standing obstructions to computing cohomologies of discrim-
inants? Are there problems that can serve as benchmarks for extending the existing tech-
niques?

Orsola Tommasi commented that she uses Vassiliev’s method (see [81,83]). Many
papers cited here use some variant of Vassiliev’s spectral sequence; Mostovoy [67], for
example, use a truncated version of the spectral sequence when the limiting terms become
too cumbersome to compute.

3.7 Jun-Yong Park

Trace formulas give a concrete way to work with arithmetic topology. However, mod-
uli functors that we want to study are often represented in the category of stacks rather
than schemes, which are harder to work with. Kai Behrend [5] established a trace for-
mula for algebraic stacks, which has extended this arithmetic topology bridge to many
moduli stacks. For example, Han and Park [44,45,71] computed the �-adic cohomology
of the Hom stack Homn(P1,P(λ0, . . . , λN )) and its class in the Grothendieck ring, with
connections to fine moduli stacks of elliptic and hyperelliptic fibrations over P

1.

Question 32 Can we develop a robust and general theory of point counting to understand
moduli stacks arithmetically?

Wei Ho remarked on important connections to the work of Ellenberg–Satriano–
Zureick–Brown [26], bringing togethermany arithmetic problems about counting points,
such as the Batyrev–Manin conjecture, the Malle conjecture, and more via, among other
things, establishing a theory of heights on stacks. See, for example, the paper by Boggess
and Sankar [10], which discusses stacky versions of these conjectures in the context of the
Ellenberg–Satriano–Zureick–Brown framework.

3.8 Inna Zakharevich

Consider the Grothendieck ring of varieties over a field k , K0(Vark ), equipped with its
dimension filtration, where the nth graded piece of the filtration is given by those elements
that can be represented as sums of varieties of dimension at most n, i.e., the image of the
natural map

K0(Var≤n
k ):=Z[X | dimX ≤ n]/([X] = [Y ] + [X − Y ]) → K0(Vark ). (3.1)
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The quotients K0(Var≤n
k )/K0(Var≤n−1

k ) have a simple presentation as the free abelian
group on the birational isomorphism classes of n-dimensional varieties.
However, as shown byKarzhemanov [53] in 2014 and Borisov [11] in 2015, themap (3.1)

is non-injective when k ⊆ C. The failure of injectivity is measured by a spectral sequence
whose differentials compute the differences

[X − U ] − [X − V ],

where U and V are isomorphic open subsets identified by a birational automorphism of
X ; for details, see [87]. This motivates the following problem:

Problem 33 Fix a field k , variety X , and a birational automorphism f : X ��� X . Let
U,V ⊆ X be open subsets such that f : U → V is an isomorphism. Give an explicit exam-
ple such that the complementsX −U andX −V , which will be equal in the Grothendieck
ring, are not piecewise isomorphic.

As remarked above, such an example must exist for k ⊆ C, though none is known; it is
unknown if examples exist over other fields.

3.9 Zinovy Reichstein

Problem 34 Let G be a finite group and fix subgroups H1, . . . , Hr ≤ G, not necessarily
distinct. Moreover, fix d > 0 and faithful d-dimensional representations Vi of each of the
Hi. Is there a d-dimensional irreducible variety X over C with a G action such that there
are r distinct points x1, . . . , xr with xi fixed byHi and isotropy representation given by Vi?

Reichstein remarked that this is analogous in spirit to the Chinese Remainder Theorem
and can be done if each Hi is abelian; see [74, Theorem 8.6] for details. Moreover, when
r = 1 and H = G, one can simply take X = V , while for r = 2 and H1 = H2 = G, it
is an unpublished result of A. Kresch. In the special case, where H1, . . . , Hr are the non-
conjugate Sylow subgroups of G (i.e., a list of Sylow subgroups for the different primes
dividing |G|), this problem arose in the context of work on essential dimension of finite
groups (see [Conjecture 11.5] [25]).

3.10 Hunter Spink

Problem 35 Let R be a ring with m1, . . . , mk ∈ R. Assume that for any subset A ⊂
{1, . . . , k}, we have

∑

i∈A
mi ∈ R×.

Also set ai = m1xi1 + · · · + mkxik ∈ R[x1, . . . , xk ]. What is the smallest n such that there
exist monic f (z), g(z) with coefficients in R[a1, . . . , an] giving

f (z)
g(z)

= m1
z − x1

+ · · · + mk
z − xk

?

For context on this problem, see the paper by Spink andDennis Tseng [79] on incidence
strata of affine varieties that also outlines their conjecture of n = 2k + 1 to problem 35.
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