
Nuclear Inst. and Methods in Physics Research, A 977 (2020) 164332

Contents lists available at ScienceDirect

Nuclear Inst. andMethods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

Computational techniques for the analysis of small signals in high-statistics
neutrino oscillation experiments
M.G. Aartsen 17, M. Ackermann 58, J. Adams 17, J.A. Aguilar 13, M. Ahlers 21, M. Ahrens 49,
C. Alispach 27, K. Andeen 40, T. Anderson 55, I. Ansseau 13, G. Anton 25, C. Argüelles 15,
T.C. Arlen 55, J. Auffenberg 1, S. Axani 15, P. Backes 1, H. Bagherpour 17, X. Bai 46,
Balagopal A.V. 30, A. Barbano 27, S.W. Barwick 29, B. Bastian 58, V. Baum 38, S. Baur 13, R. Bay 8,
J.J. Beatty 19,20, K.-H. Becker 57, J. Becker Tjus 11, S. BenZvi 48, D. Berley 18, E. Bernardini 58,a,
D.Z. Besson 31,b, G. Binder 8,9, D. Bindig 57, E. Blaufuss 18, S. Blot 58, C. Bohm 49, M. Börner 22,
S. Böser 38, O. Botner 56, J. Böttcher 1, E. Bourbeau 21, J. Bourbeau 37, F. Bradascio 58, J. Braun 37,
S. Bron 27, J. Brostean-Kaiser 58, A. Burgman 56, J. Buscher 1, R.S. Busse 41, T. Carver 27, C. Chen 6,
E. Cheung 18, D. Chirkin 37, S. Choi 51, K. Clark 32, L. Classen 41, A. Coleman 42, G.H. Collin 15,
J.M. Conrad 15, P. Coppin 14, P. Correa 14, D.F. Cowen 54,55, R. Cross 48, P. Dave 6, C. De Clercq 14,
J.J. DeLaunay 55, H. Dembinski 42, K. Deoskar 49, S. De Ridder 28, P. Desiati 37, K.D. de Vries 14,
G. de Wasseige 14, M. de With 10, T. DeYoung 23, A. Diaz 15, J.C. Dáz-Vélez 37, H. Dujmovic 30,
M. Dunkman 55, E. Dvorak 46, B. Eberhardt 37, T. Ehrhardt 38, P. Eller 55, R. Engel 30, J.J. Evans 39,
P.A. Evenson 42, S. Fahey 37, A.R. Fazely 7, J. Felde 18, K. Filimonov 8, C. Finley 49, D. Fox 54,
A. Franckowiak 58, E. Friedman 18, A. Fritz 38, T.K. Gaisser 42, J. Gallagher 36, E. Ganster 1,
S. Garrappa 58, L. Gerhardt 9, K. Ghorbani 37, T. Glauch 26, T. Glüsenkamp 25, A. Goldschmidt 9,
J.G. Gonzalez 42, D. Grant 23, Z. Griffith 37, S. Griswold 48, M. Günder 1, M. Gündüz 11, C. Haack 1,
A. Hallgren 56, R. Halliday 23, L. Halve 1, F. Halzen 37, K. Hanson 37, A. Haungs 30, D. Hebecker 10,
D. Heereman 13, P. Heix 1, K. Helbing 57, R. Hellauer 18, F. Henningsen 26, S. Hickford 57,
J. Hignight 24, G.C. Hill 2, K.D. Hoffman 18, R. Hoffmann 57, T. Hoinka 22, B. Hokanson-Fasig 37,
K. Hoshina 37,c, F. Huang 55, M. Huber 26, T. Huber 30,58, K. Hultqvist 49, M. Hünnefeld 22,
R. Hussain 37, S. In 51, N. Iovine 13, A. Ishihara 16, G.S. Japaridze 5, M. Jeong 51, K. Jero 37,
B.J.P. Jones 4, F. Jonske 1, R. Joppe 1, D. Kang 30, W. Kang 51, A. Kappes 41, D. Kappesser 38,
T. Karg 58, M. Karl 26, A. Karle 37, T. Katori 34, U. Katz 25, M. Kauer 37, J.L. Kelley 37,
A. Kheirandish 37, J. Kim 51, T. Kintscher 58, J. Kiryluk 50, T. Kittler 25, S.R. Klein 8,9, R. Koirala 42,
H. Kolanoski 10, L. Köpke 38, C. Kopper 23, S. Kopper 53, D.J. Koskinen 21, M. Kowalski 10,58,
K. Krings 26, G. Krückl 38, N. Kulacz 24, N. Kurahashi 45, A. Kyriacou 2, J.L. Lanfranchi 55,
M.J. Larson 18, F. Lauber 57, J.P. Lazar 37, K. Leonard 37, A. Leszczyńska 30, M. Leuermann 1,
Q.R. Liu 37, E. Lohfink 38, C.J. Lozano Mariscal 41, L. Lu 16, F. Lucarelli 27, J. Lünemann 14,
W. Luszczak 37, Y. Lyu 8,9, W.Y. Ma 58, J. Madsen 47, G. Maggi 14, K.B.M. Mahn 23, Y. Makino 16,
P. Mallik 1, K. Mallot 37, S. Mancina 37, S. Mandalia 34, I.C. Mariş 13, R. Maruyama 43, K. Mase 16,
R. Maunu 18, F. McNally 35, K. Meagher 37, M. Medici 21, A. Medina 20, M. Meier 22,
S. Meighen-Berger 26, T. Menne 22, G. Merino 37, T. Meures 13, J. Micallef 23, D. Mockler 13,
G. Momenté 38, T. Montaruli 27, R.W. Moore 24, R. Morse 37, M. Moulai 15, P. Muth 1, R. Nagai 16,

E-mail address: analysis@icecube.wisc.edu.
a Also at Università di Padova, I-35131 Padova, Italy.
b Also at National Research Nuclear University, Moscow Engineering Physics Institute (MEPhI), Moscow, 115409, Russia.
c Earthquake Research Institute, University of Tokyo, Bunkyo, Tokyo 113-0032, Japan.

https://doi.org/10.1016/j.nima.2020.164332
Received 4 December 2019; Received in revised form 30 June 2020; Accepted 2 July 2020
Available online 8 July 2020
0168-9002/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.nima.2020.164332
http://www.elsevier.com/locate/nima
http://www.elsevier.com/locate/nima
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2020.164332&domain=pdf
mailto:analysis@icecube.wisc.edu
https://doi.org/10.1016/j.nima.2020.164332


M.G. Aartsen, M. Ackermann, J. Adams et al. Nuclear Inst. and Methods in Physics Research, A 977 (2020) 164332

U. Naumann 57, G. Neer 23, H. Niederhausen 26, M.U. Nisa 23, S.C. Nowicki 23, D.R. Nygren 9,
A. Obertacke Pollmann 57, M. Oehler 30, A. Olivas 18, A. O’Murchadha 13, E. O’Sullivan 49,
T. Palczewski 8,9, H. Pandya 42, D.V. Pankova 55, N. Park 37, P. Peiffer 38, C. Pérez de los Heros 56,
S. Philippen 1, D. Pieloth 22, E. Pinat 13, A. Pizzuto 37, M. Plum 40, A. Porcelli 28, P.B. Price 8,
G.T. Przybylski 9, C. Raab 13, A. Raissi 17, M. Rameez 21, L. Rauch 58, K. Rawlins 3, I.C. Rea 26,
R. Reimann 1, B. Relethford 45, M. Renschler 30, G. Renzi 13, E. Resconi 26, W. Rhode 22,
M. Richman 45, S. Robertson 9, M. Rongen 1, C. Rott 51, T. Ruhe 22, D. Ryckbosch 28, D. Rysewyk 23,
I. Safa 37, S.E. Sanchez Herrera 23, A. Sandrock 22, J. Sandroos 38, M. Santander 53, S. Sarkar 44,
S. Sarkar 24, K. Satalecka 58, M. Schaufel 1, H. Schieler 30, P. Schlunder 22, T. Schmidt 18,
A. Schneider 37, J. Schneider 25, F.G. Schröder 30,42, L. Schulte 12, L. Schumacher 1, S. Sclafani 45,
D. Seckel 42, S. Seunarine 47, S. Shefali 1, M. Silva 37, R. Snihur 37, J. Soedingrekso 22, D. Soldin 42,
S. Söldner-Rembold 39, M. Song 18, G.M. Spiczak 47, C. Spiering 58, J. Stachurska 58,
M. Stamatikos 20, T. Stanev 42, R. Stein 58, P. Steinmüller 30, J. Stettner 1, A. Steuer 38,
T. Stezelberger 9, R.G. Stokstad 9, A. Stößl 16, N.L. Strotjohann 58, T. Stürwald 1, T. Stuttard 21,
G.W. Sullivan 18, I. Taboada 6, F. Tenholt 11, S. Ter-Antonyan 7, A. Terliuk 58, S. Tilav 42,
K. Tollefson 23, L. Tomankova 11, C. Tönnis 52, S. Toscano 13, D. Tosi 37, A. Trettin 58,
M. Tselengidou 25, C.F. Tung 6, A. Turcati 26, R. Turcotte 30, C.F. Turley 55, B. Ty 37, E. Unger 56,
M.A. Unland Elorrieta 41, M. Usner 58, J. Vandenbroucke 37, W. Van Driessche 28, D. van Eijk 37,
N. van Eijndhoven 14, J. van Santen 58, S. Verpoest 28, M. Vraeghe 28, C. Walck 49, A. Wallace 2,
M. Wallraff 1, N. Wandkowsky 37, T.B. Watson 4, C. Weaver 24, A. Weindl 30, M.J. Weiss 55,
J. Weldert 38, C. Wendt 37, J. Werthebach 37, B.J. Whelan 2, N. Whitehorn 33, K. Wiebe 38,
C.H. Wiebusch 1, L. Wille 37, D.R. Williams 53, L. Wills 45, M. Wolf 26, J. Wood 37, T.R. Wood 24,
K. Woschnagg 8, G. Wrede 25, S. Wren 39, D.L. Xu 37, X.W. Xu 7, Y. Xu 50, J.P. Yanez 24, G. Yodh 29,
S. Yoshida 16, T. Yuan 37, M. Zöcklein 1

1 III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
2 Department of Physics, University of Adelaide, Adelaide, 5005, Australia
3 Department of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
4 Department of Physics, University of Texas at Arlington, 502 Yates St., Science Hall Rm 108, Box 19059, Arlington, TX 76019, USA
5 CTSPS, Clark-Atlanta University, Atlanta, GA 30314, USA
6 School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA
7 Department of Physics, Southern University, Baton Rouge, LA 70813, USA
8 Department of Physics, University of California, Berkeley, CA 94720, USA
9 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
10 Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
11 Fakultät für Physik &, Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
12 Physikalisches Institut, Universität Bonn, Nussallee 12, D-53115 Bonn, Germany
13 Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
14 Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium
15 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
16 Department of Physics and Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan
17 Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
18 Department of Physics, University of Maryland, College Park, MD 20742, USA
19 Department of Astronomy, Ohio State University, Columbus, OH 43210, USA
20 Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA
21 Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
22 Department of Physics, TU Dortmund University, D-44221 Dortmund, Germany
23 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
24 Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
25 Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
26 Physik-department, Technische Universität München, D-85748 Garching, Germany
27 Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland
28 Department of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium
29 Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
30 Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany
31 Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
32 SNOLAB, 1039 Regional Road, 24, Creighton Mine 9, Lively, ON, Canada P3Y 1N2
33 Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095, USA
34 School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
35 Department of Physics, Mercer University, Macon, GA 31207-0001, USA
36 Department of Astronomy, University of Wisconsin, Madison, WI 53706, USA
37 Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706, USA
38 Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
39 School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
40 Department of Physics, Marquette University, Milwaukee, WI, 53201, USA
41 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
42 Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
43 Department of Physics, Yale University, New Haven, CT 06520, USA

2



M.G. Aartsen, M. Ackermann, J. Adams et al. Nuclear Inst. and Methods in Physics Research, A 977 (2020) 164332

44 Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
45 Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
46 Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
47 Department of Physics, University of Wisconsin, River Falls, WI 54022, USA
48 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
49 Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
50 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA
51 Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
52 Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
53 Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
54 Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA
55 Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
56 Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden
57 Department of Physics, University of Wuppertal, D-42119 Wuppertal, Germany
58 DESY, D-15738 Zeuthen, Germany

A R T I C L E I N F O

Keywords:
Data analysis
Monte Carlo
MC
Statistics
Smoothing
KDE
Neutrino
Neutrino mass ordering
Detector
VLV𝜈T

A B S T R A C T

The current and upcoming generation of Very Large Volume Neutrino Telescopes – collecting unprecedented
quantities of neutrino events – can be used to explore subtle effects in oscillation physics, such as (but not
restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated
from Monte Carlo simulations. With the high number of events that will be collected, there is a trade-off
between the computational expense of running such simulations and the inherent statistical uncertainty in
the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of
simulated events with traditional methods, such as Monte Carlo weighting. In this work we present a staged
approach to the generation of expected distributions of observables in order to overcome these challenges. By
combining multiple integration and smoothing techniques which address limited statistics from simulation it
arrives at reliable analysis results using modest computational resources.

1. Introduction

By virtue of their multi-megaton effective mass paired with the
magnitude of the atmospheric neutrino flux, the next generation of Very
Large Volume Neutrino Telescopes (VLV𝜈Ts) dedicated to neutrino
oscillation physics, such as the IceCube Upgrade, PINGU, and ORCA [1–
4], will record tens of thousands of GeV-scale neutrino interactions.
These large-scale water or ice Cherenkov detectors do not have the
ability to unambiguously distinguish between neutrino flavors and in-
teraction types on an event-by-event basis. Even so, their high statistics
data samples can be used to explore effects that are small compared to
the background, such as the tau neutrino appearance rate, the ordering
of the neutrino mass eigenstates (NMO), or potential neutrino physics
beyond the Standard Model.

All such physics analyses are carried out by comparing the observed
event distributions with expected event distributions (hereafter referred
to as templates) obtained from Monte Carlo (MC) simulation given a
particular set of parameters. The physical phenomena listed above will
appear as statistical (in)compatibilities between the data and templates
obtained from different parameter settings. These differences in event
counts can be as small as a few percent. An inherent problem when
trying to quantify these deviations in high-statistics datasets is that the
templates must be described with an accuracy better than the magni-
tude of the effect being investigated. A limiting factor to the accuracy is
the amount of MC simulation available, which is in turn constrained by
the availability of computing resources. This particularly applies during
the design optimization phase of a planned experiment, which entails
performance assessments of multiple detector variants.

With an adequate machinery at hand to produce templates, extract-
ing the relevant physical and systematic parameters typically proceeds
via maximizing the likelihood of obtaining the observed data under
a given hypothesis. A common feature to all statistical methods is
that the templates need to be generated for a multitude of parameter
combinations, often thousands or even millions. This process needs to
be accurate, but also fast, which typically prohibits the generation of a
full MC simulation for each new template.

In this article, we present an approach that allows for the fast
creation of accurate templates even from MC sets that are several
orders of magnitude smaller than those necessary when using simpler

methods. The approach enables statistical inference based on simple
test statistics, for example the Poissonian likelihood or a 𝜒2 function
in the case of binned templates. An alternative approach that does
not remove template inaccuracies but rather mitigates their impact on
statistical inference is the inclusion of the inherent MC uncertainty in
the test statistic; recent overviews can be found in [5,6].

We exploit the fact that events in VLV𝜈Ts can typically be sum-
marized by only three properties (energy, angle, and type), whose
joint distributions are given by three-dimensional templates. Instead of
building the templates from the MC events directly, our techniques are
based on stages that isolate simpler intermediate distributions from the
MC events (such as detector resolution functions). These intermediate
distributions are successively applied to each other in order to generate
the templates.

Our approach was used to calculate the expected sensitivities for
atmospheric neutrino oscillation analyses with the IceCube Upgrade
and PINGU [2,3,7], and a similar approach was taken in low-energy
sensitivity studies for the KM3NeT design [4]. The applicability of our
approach to different experiments is foreseeable in similar situations,
for example when events can be summarized by their invariant mass
and type.

Throughout this article, we will use the NMO analysis for a generic
VLV𝜈T as an example to illustrate our method (though it also applies to
a wider range of atmospheric neutrino oscillation analyses). Therefore,
Section 2 provides a brief introduction of the example NMO analysis.
This is followed by a characterization of the computational challenge
presented by such an analysis in Section 3. Our approach to overcome
this challenge is presented in Sections 4 and 5, followed by a discus-
sion of the validity of the approach in Section 6. The performance is
compared to other typical analysis methods in Section 7, while the
computational burden is discussed in Section 8. Section 9 concludes
with a brief summary of the article. Finally, in Appendix A we provide
details about the VLV𝜈T toy model that we use to benchmark the
performance of all considered analysis approaches.

2. NMO analysis

The observation of neutrino oscillations and the demonstration of
the neutrinos’ non-zero masses [8,9] represented a major step forward
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in the field of particle physics. While current experimental techniques
have not yet allowed for a direct measurement of the tiny masses,
the magnitudes of their relative differences (mass splittings) are well
known.

2.1. Measurement principles

Measuring the ordering of these neutrino mass states (neutrino mass
ordering, or NMO) presents a difficult challenge. A powerful method to
determine the NMO is the observation of matter effects on neutrinos.
Owing to the high electron density of the Sun, observations of solar
neutrinos have shown the second mass state to be heavier than the
first [10]. It remains an open question, however, whether the third
state is the most or least massive. The former is referred to as the
normal ordering (NO), while the latter is called inverted ordering
(IO). There is currently no experimental evidence decisively excluding
either [11–14].

The study of oscillations of atmospheric neutrinos provides a
promising route toward a decisive measurement of the NMO [2–
4,15]. The path length (or baseline) varies between 20 km for vertically
downward going and 12 700 km for straight upward going atmospheric
neutrinos, with the latter crossing the full diameter of the Earth. With
energies ranging from MeV up to the TeV scale, combinations of
baselines and energies varying over several orders of magnitude are
probed. For the longest baseline, the very pronounced first oscillation
maximum of muon neutrinos occurs at a neutrino energy of around
25GeV, followed by subsequent maxima at lower energies. The electron
neutrinos’ coupling to electrons (coherent forward scattering) in the
Earth creates an effective matter potential which leads to resonant be-
havior of the transition probabilities at energies around 5GeV, known
as matter resonances [16–18]. Furthermore, the Earth’s specific density
profile encountered by the neutrinos can also parametrically enhance
their oscillations [19]. This enhancement compared to oscillations that
occur in vacuum is seen for neutrinos if the NMO is normal or for
anti-neutrinos if the NMO is inverted.

The NMO measurement potential of a VLV𝜈T is based on this
asymmetry, which is imprinted in the observed event distribution. The
latter can be considered the product of the physics processes sketched
in Fig. 1. The flavor composition of the intrinsic atmospheric neutrino
flux is modified by oscillation. In particular, since 𝜈𝜏 production in
the atmosphere is expected to be negligible at the energies relevant
here, this flavor only appears through oscillation [20]. The neutrino
detection probability varies between CC and NC interactions and in
general depends on the neutrino flavor for CC interactions [15]. The
event reconstruction procedure exploits the known response of the
VLV𝜈T to any neutrino interaction type and yields estimates of the
neutrino properties whose distributions are investigated in the NMO
measurement. In reconstruction, owing to the relatively sparse de-
tector instrumentation, VLV𝜈Ts are typically only able to distinguish
between two categories of events: tracks and cascades. Tracks are those
events apparently compatible with the expected detector signature
of a starting muon track. They are intended to distinguish – albeit
imperfectly – 𝜈𝜇 CC interactions from all others (which are categorized
as cascades). As VLV𝜈Ts cannot distinguish anti-neutrinos (to which the
above considerations apply analogously) from neutrinos, the distribu-
tions of cascades and tracks correspond to the summed contributions
from neutrinos and anti-neutrinos.

Two major experimental aspects are obstructive to the NMO mea-
surement. The first is the inability of VLV𝜈Ts to differentiate between
neutrinos and anti-neutrinos. This reduces the effect to the respective
difference in atmospheric fluxes and interaction cross sections. Energy
and directional resolutions of the experiment present the second hurdle.
Both are typically prohibitive to resolving the fast variations of the
oscillation pattern at the relevant energies. As a consequence, the
observable effect is reduced to at most a few percent over the relevant
energy and zenith range (see Fig. 2), requiring neutrino telescopes with

effective masses on the order of megatons to achieve sufficient event
statistics.

Proponents of various VLV𝜈Ts in ice and water have performed
studies confirming the NMO measurement potential of VLV𝜈Ts, finding
that a > 3𝜎 (median) sensitivity to the NMO can be achieved within five
years of exposure time even in less favorable regions of the neutrino
oscillation parameter space [2,4,21].

2.2. Statistical inference

Since the oscillation probabilities – which carry the imprint of the
MO – directly depend on neutrino energy 𝐸true, oscillation baseline
(proportional to the cosine of the neutrino zenith angle, cos 𝜗true), and
flavor, we perform statistical inference by investigating the observable
distribution of log10 𝐸reco, cos 𝜗reco, and event class.1 This proceeds
by means of a comparison of a theoretical model to the observable
distribution via a likelihood function,

𝐿(𝑥1, 𝑥2,… , 𝑥𝑛|𝜽) = 𝛱𝑖𝑝(𝑥𝑖|𝜽), (1)

where 𝑝(𝑥𝑖|𝜽) is the un-normalized probability density to observe the
data 𝑥𝑖 assuming that 𝜽 corresponds to given values of the parameters
of the model. Since the data 𝑥𝑖 stem from independent events, they can
be assumed i.i.d..

For the example NMO analysis in this paper, we bin the data 𝑥𝑖. For
the toy detector introduced in Appendix A, Fig. 2 shows the expected
fractional event rate difference (𝑅NO − 𝑅IO)∕𝑅NO, where 𝑅NO(IO) is the
expected event rate for true NO (IO), based on the two sets of nominal
model parameter values given in Table 1. The templates shown fully
reflect the collection of physics effects presented in Fig. 1 for our
toy detector. The summation over neutrinos and anti-neutrinos and
the finite event reconstruction and classification precisions result in a
maximal fractional event rate difference between NO and IO with a
magnitude at the 5% level. Its sign changes depending on the values of
the reconstructed neutrino properties.

As the most powerful test statistic for distinguishing two simple
hypotheses [22], the logarithm of the likelihood ratio

 = −2 ln
(

max𝜽∈NO 𝐿(𝐧|𝝁(𝜽))
max𝜽∈IO 𝐿(𝐧|𝝁(𝜽))

)

. (2)

is also useful in assessing the ability of an experiment to discriminate
between the two (composite) NMO hypotheses at a given confidence
level. It is representative of the degree at which observing the binned
data 𝐧 under the NO hypothesis is favored over observing it under the
alternate IO hypothesis. The observed event distribution at the detector,
𝐧, however, is a convolution of the atmospheric neutrino flux, the
effects of neutrino oscillations that bear the NMO signature, the neu-
trino interaction and detection processes, and the event reconstruction
and classification procedure. Each one of these effects is accompanied
by systematic uncertainties. As their impact on the template – the
ensemble of expected bin counts 𝝁(𝜽) – is modeled, the systematic
uncertainties directly feed in to the likelihood 𝐿 of the observation.

In order to illustrate how MC uncertainties affect the NMO sensitiv-
ity that is inferred from a binned likelihood analysis with a VLV𝜈T, we
adopt the so-called Asimov approach [23] to compute a simple sensitiv-
ity proxy that is derived from Eq. (2) and that does not rely on a large
ensemble of randomly fluctuated pseudo-experiments. This makes it
computationally feasible to systematically quantify the effectiveness of
our staged approach of generating templates as a function of available
MC statistics.

The sensitivity proxy is based on the test statistic

𝛥𝜒2 = 𝜒2
NO − 𝜒2

IO, (3)

1 The use of the subscript ‘‘true’’ is used to specify the true neutrino
properties and to distinguish these from the reconstructed properties, denoted
with the subscript ‘‘reco’’.

4



M.G. Aartsen, M. Ackermann, J. Adams et al. Nuclear Inst. and Methods in Physics Research, A 977 (2020) 164332

Fig. 1. Sketch of the NMO measurement principles of a VLV𝜈T. After the intrinsic atmospheric fluxes of 𝜈𝑒 and 𝜈𝜇 undergo oscillation, different neutrino interaction types are
detected, reconstructed, and classified into cascade and track categories. The analogous procedure exists for anti-neutrinos. See text for details.

Fig. 2. Expected fractional event rate difference between nominal NO and IO inputs (from Table 1) for the toy model. Events are divided into (40 × 40 × 2) bins, covering a range
of 𝐸reco from 1GeV to 80GeV, the whole sky (cos 𝜗reco from −1 to 1), and the two event classes of cascades (left) and tracks (right). (color online).

where 𝜒2
NO is the minimum 𝜒2 value between the data and model

predictions with the NO priors,2 with all nuisance parameters optimized
over (𝜒2

IO follows analogously). An illustration of example distributions
of the test statistic (3) for the two different NMO hypotheses is shown
in Fig. 3. The goal is to obtain a 𝑝-value 𝑝 which quantifies the
statistical compatibility between the hypothesis that is tested and the
one assumed to be true. In the ensemble approach, the two distributions
would need to be built up by fitting pseudo-experiments. In the Asimov
approach, however, it is shown in [24] that certain assumptions about
the distribution of 𝛥𝜒2 allow adopting the expression

√

|

|

|

𝛥𝜒2|
|

|

as a
sensitivity proxy, determining the significance at which the wrong
ordering can be excluded without the need for pseudo-experiments.

Even though our toy NMO analysis approximately meets the criteria
that ensure that

√

|

|

|

𝛥𝜒2|
|

|

is an accurate sensitivity proxy, we expect the
conclusions drawn from this paper to hold independently. In particular,
this includes the question whether the templates obtained for our
toy detector satisfy the Gaussian limit, in which the log-likelihood 𝐿
in Eq. (2) becomes equivalent to −𝜒2∕2.

Systematic uncertainties and nuisance parameters (any free model
parameters) in our toy NMO analysis are optimized over by the same
process that minimizes the 𝜒2 metric for a given NMO hypothesis.
External constraints applied to such parameters are accounted for by
adding penalty terms to the 𝜒2 value (priors). For a parameter 𝜃 with
a prior of 𝜎, one has the 𝜒2 penalty term (𝜃nominal − 𝜃)2∕𝜎2. While the

2 These external constraints here referred to as ‘‘priors’’ are not – despite
the name – marginalized in a Bayesian sense.

Fig. 3. Example distributions of Eq. (3). The distribution on the left (solid line)
represents the case of NO pseudo-data, while the distribution on the right (dashed)
is obtained when the pseudo-data is taken from the IO. Here, 1 − 𝑝 corresponds to
the confidence level at which the IO is correctly rejected with a probability of 50%.

In the Asimov approach,
√

𝛥𝜒2
IO yields the one-sided number of standard deviations

corresponding to the depicted 𝑝-value.

presence of these penalty terms is meant to illustrate a typical approach

to problems of this sort, their sizes do not follow any precise physical
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motivation. Table 1 gives an overview of all used model parameters,
their nominal values for NO and IO, and priors (where applied). As an
example, the 𝜈∕𝜈̄ flux ratio has a prior of 𝜎 = 0.1, independent of the
assumed NMO.

3. Computational challenge

A theoretical model of the observable event distribution that can be
compared to data often includes complicated processes like particle in-
teractions and detector response that cannot be treated parametrically
but require the use of MC methods (such as in an NMO analysis with a
VLV𝜈T, cf. Fig. 1). This has two major computational implications.

First, not only the data, but also the model is subject to statistical
fluctuations due to the finite amount of MC statistics in each bin. The
latter can in principle be mitigated by increasing bin sizes, but larger
bins come at the cost of a loss in sensitivity to observable physics
signatures smaller than the bin size.

Second, the multidimensional optimization problem can only be
solved with numerical routines. For the NMO studies, we use the L-
BFGS-B algorithm [28] in a 𝐷 = 8 dimensional parameter space
(see Table 1) for optimization. The number of steps necessary for the
optimization to converge depends on the particular analysis and model
being used (i.e., the details of the resulting likelihood landscape); in
the case of our toy example, an average of ∼ 103 templates (one per
realization of 𝜽) were needed to converge.

3.1. Template and MC generation requirements

Since the event count expectations, 𝝁, for all bins in the templates
must be determined at the same level of precision as the magnitudes of
the physics effects being investigated, at least 1

(1%)2 = 104 MC events are
required per bin to study sub-percent variations arising in a comparison
of the two NMO realizations. At the same time, the number of bins
used in any histograms must be commensurate with the experimental
resolution and the feature size of the effect under study. In the example
case, at least (103) bins are required to resolve the distinct features
of the NMO signature; otherwise the analysis cannot exploit the full
potential of the experiment.

The problems associated with generating a large number of tem-
plates in the optimization are exacerbated when estimating the median
sensitivity of an experiment. In general, the optimization process needs
to be applied to an ensemble of𝑁p random toy MC pseudo-experiments.
As illustrated in Section 2.2, the comparison of test statistic distribu-
tions  such as Eq. (2) can be used to estimate a significance value 𝑛𝜎
at which one hypothesis is preferred over the alternative. For example,
if  is Gaussian distributed,3 the uncertainty 𝛥𝑛𝜎 to which 𝑛𝜎 can be
determined depends upon the number of pseudo-experiments𝑁p as (see
Appendix B for details):

𝛥𝑛𝜎 = 1
√

𝑁p

√

𝑛2𝜎
2

+ 2. (4)

With an absolute uncertainty 𝛥𝑛𝜎 at the 1% level, determining the
sensitivity of an experiment at a confidence level of 99.7% (correspond-
ing to 𝑛𝜎 = 3) requires (104) pseudo-experiments.

Therefore, the brute-force approach to our example case requires a
very large number of neutrino events to be simulated: (107) events
for each of (103) values of 𝜽 probed during the optimization process
for each of (104) pseudo-experiments—a grand total of (1014) events.
Even if the time to simulate and reconstruct a single event is 1 s (a
very optimistic estimate for our experiment), full fits to all pseudo-
experiments under the two ordering hypotheses would require (1010)
CPU-core-hours – i.e., a single analysis would keep 105 CPU cores

3 While not a prediction from the model, a near-Gaussian distribution of
the test statistic is observed in most NMO studies [3,4,24].

busy for 30 years4 – a restriction clearly prohibitive to performing any
study. Various state-of-the-art methods are employed to mitigate the
high computational costs. In the remainder of this section, we briefly
present the main ideas behind these methods and give a conceptual
introduction to how they are embedded in the approach we introduce
in this article.

3.2. Weighting and smoothing

The standard event-by-event MC weighting technique avoids re-
peated simulation and reconstruction of events every time a value
of a model parameter is changed. This is possible, first, because the
physics processes of neutrino production in the atmosphere (flux),
their propagation involving flavor oscillation, and their detection and
reconstruction are independent. Each of these processes, therefore, can
be treated separately.

For a process that has an a priori known parametric form (the
parameter values of which are not necessarily known), the outcome of
that process can be predicted by directly evaluating the parametrization
at a set of input values. In our case, both the neutrino flux prediction
and flavor oscillations fall into this category. The second category
of processes are those that require MC simulation. Predictions of the
detection and reconstruction of neutrinos fall into this category because
we do not have a complete characterization of the detector’s response.

This leads to the standard event-by-event reweighting scheme,
which estimates the expected final-level event counts due to all pro-
cesses by simulating a set of MC neutrinos (capturing the effects
of detection and reconstruction), assigning to each a weight derived
from flux and oscillation calculations, and histogramming the events’
weights in bins of observables, as illustrated in the top row of Fig. 4.

In detail: Each MC neutrino – generated with a flavor 𝛽 and a set
of true event properties 𝑿true

𝜈 – is assigned a posteriori the weight 𝑤𝛽
corresponding to the sum over the atmospheric fluxes 𝛷𝛼(𝜽f lux;𝑿true

𝜈 )
of all initial flavors 𝛼 including the probabilities 𝑃 osc

𝛼→𝛽 (𝜽osc;𝑿
true
𝜈 ) to

oscillate into a neutrino of the flavor 𝛽:

𝑤𝛽 ∝
∑

𝛼
𝛷𝛼(𝜽f lux;𝑿true

𝜈 ) × 𝑃 osc
𝛼→𝛽 (𝜽osc;𝑿

true
𝜈 ).

In the above, 𝜽f lux and 𝜽osc are nuisance parameters affecting neutrino
fluxes and oscillation probabilities. Nuisance parameters affecting the
detector response, for instance, often do not have a simple parametriza-
tion. A complete re-simulation of the detector response (including event
reconstruction and classification) may be necessary, in which case only
a discrete set of parameter values could be probed. Here, however,
we consider only a single realization of the detector parameters (𝜽det
fixed)—a simplification without any loss of the general applicability of
the methods discussed.

Since the process of oscillation is decoupled from the detector
simulation, only a single MC set is required to generate the templates
for the different hypotheses under test (e.g., the two mass orderings);
only the weights 𝑤𝛽 must be recomputed. This eliminates statistical
fluctuations between the otherwise disjoint MC samples. However, even
with a single MC set, an undersampling of the phase space of the model
can result in a bias.

As it is often infeasible to generate enough MC events to obtain
sufficient accuracy in the MC integration process, smoothing of the
final event distributions is a common practice. This, however, can be
computationally slow and can introduce artificial features which may
incorrectly reduce or enhance the signal. One such smoothing tech-
nique is kernel density estimation (KDE) [29]. Specifically, to compare
a state-of-the-art smoothing technique to the methods we introduce in
this paper, we apply adaptive bandwidth KDE directly to the weighted
MC. Here, a Gaussian kernel with a width calculated as described

4 Here we make the assumption that the algorithm can be parallelized
perfectly.
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Table 1
Summary of model parameters in the example NMO analysis, including their nominal values for the two NMO hypotheses
and Gaussian ±1𝜎 bounds used as external constraints (priors). The first three parameters are applied to atmospheric neutrino
flux predictions from [25], following the procedure laid out in Section 5.1. The values for the three oscillation parameters
are based on a recent global fit [26,27].
Parameter Nominal value Prior

NO IO

𝜈𝑒/𝜈𝜇 flux ratio 1.0 1.0 ±0.03
𝜈∕𝜈̄ flux ratio 1.0 1.0 ±0.1
Spectral index shift 0.0 0.0 ±0.1
Energy scale 1.0 1.0 ±0.1
Overall normalization 1.0 1.0 ±0.1
𝜃13 (◦) 8.5 8.5 ±0.2 [26,27]
𝜃23 (◦) 42.3 49.5 Non-Gaussian [26,27]
𝛥𝑚2

31 (eV
2) 0.00246 −0.00237 ±4.75 × 10−5 [26,27]

Fig. 4. Operating principles of direct histogramming (top row) and direct KDE (bottom row), which both follow the same weighting scheme for MC events but arrive at the
template differently, as explained in the text.

in [30] is centered at each MC event’s reconstruction information. A
weighted sum over the kernels of all events then delivers the smoothed
distribution as shown in the bottom row of Fig. 4, which will be
compared to the distribution our method yields.

Shortcomings of the direct application of the two techniques dis-
cussed above – the first is the weighting method alone (labeled direct
histogramming ), while the second applies additional smoothing using
adaptive kernel density estimates (labeled direct KDE) – can be over-
come using the staged approach. Before providing an overview of the
staged approach in Section 4, we briefly introduce the key points of the
example NMO analysis used to illustrate the benefits of the approach
with respect to the standard techniques.

4. Overview of the staged approach

The method to obtain templates we describe in this article is divided
into four independent parts, referred to as stages. These identically
reflect the broad physics categories depicted in Fig. 1: flux, oscil-
lation, detection, and reconstruction. The four corresponding stages
and how they are used to obtain event templates in an efficient and
accurate manner are summarized in this section, while more technical
descriptions of each stage follow in Section 5.

4.1. Stages

Each stage represents a collection of related physical effects. Begin-
ning with the flux computed by the initial stage, each subsequent stage
applies a transformation to the output of the previous stage.

1. Flux The expected unoscillated atmospheric neutrino fluxes are
taken from an external model [25]. Flux values from this model
are provided in the form of tables with discrete steps in both neu-
trino energy, 𝐸true, and direction, here the cosine of the zenith
angle, cos 𝜗true. Therefore, an interpolation must be performed
for values between those tabulated. Crucially, these tables give
the integrated flux across the bins, which does not necessarily co-
incide with the flux value at the bin center. Accordingly, we use
an integral-preserving (IP) interpolation. In general, atmospheric

flux models require external inputs including primary cosmic
ray measurements, atmospheric density models, and hadronic
interaction measurements. Many associated uncertainties are
known [31,32] and need to be included as nuisance parameters
in an analysis.

2. Oscillation Flavor oscillations of neutrinos traversing the Earth
modify the flavor content of the original flux in a manner that
depends on the energies and path lengths (derived from the
direction) of the neutrinos. Additional intrinsic neutrino proper-
ties determine the standard flavor oscillation probabilities: three
mixing angles and two independent mass-squared splittings, as
well as a possible non-zero CP-violating phase. In addition,
matter effects induce modifications in the flavor transition prob-
abilities compared to vacuum [16,17,33], which makes up the
basis of the NMOmeasurement capability of VLV𝜈Ts. In [33], the
authors present an analytical expression for the neutrino flavor
transition amplitude in a layer of uniform-density matter, which
in turn was later implemented in, for example, the Prob3++
software [34]. Here, the Earth density profile [35] is approxi-
mated by a finite number of homogeneous layers and the total
transition amplitude is represented by a matrix product of the
amplitudes in the individual layers. The main challenge for this
stage, which in contrast to the other stages does not require any
MC simulation, is to keep the burden of these computationally
expensive calculations to a minimum, while retaining sufficient
accuracy in the modeling of the neutrinos’ propagation.

3. Detection The number of observed events is determined by the
(oscillated) flux as well as a quantity known as the effective area
(alternatively, the effective mass), which results in event rates
when multiplied by the flux.5 This incorporates the probability
that a given neutrino interacts within the detector, is detected,
and passes the given data selection criteria. We obtain the eight
effective areas (𝜈𝑒,𝜇,𝜏&𝜈̄𝑒,𝜇,𝜏 charged current (CC) and 𝜈&𝜈̄ neu-
tral current (NC) interactions) from simulated MC events that
are run through the same selection criteria as the real data. In

5 In contrast, high-energy physics experiments often calculate an acceptance
instead, which is also based on simulation.
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general, each of these effective areas will depend on the energy
and arrival direction of the neutrinos. Depending on the detector
geometry, certain symmetries can be exploited to reduce the
number of parameters on which the effective areas depend.
Here we assume azimuthal symmetry and therefore only extract
effective areas as a function of 𝐸true and cos 𝜗true.

4. Reconstruction The process referred to as reconstruction trans-
lates the raw signals recorded by a detector into estimates of
the physical properties of events. Uncertainties in these estimates
manifest as statistical fluctuations, with respect to the true prop-
erties, which can be described by probability density functions
we refer to as resolution functions. We estimate the resolution
functions from the same MC events as used in the detection
stage, for which we know the true energy, zenith angle, and
interaction type on an event-by-event level. The reconstruction
stage uses these estimated resolution functions to build smearing
kernels (ensembles of resolution functions) that map the event
rates from the space of true variables into the space of recon-
structed observables. Additionally – since most VLV𝜈Ts cannot
exactly distinguish the different neutrino flavors and interaction
types – the events are classified by their signature in the detector
into tracks and cascades. For the example NMO analysis, three
observables are needed: the primary neutrino’s reconstructed
energy (𝐸reco), zenith angle (𝜗reco), and event classification.

Note that there is no universal prescription for identifying the set of
stages appropriate for any given physics analysis or detector. Instead,
stages are chosen to exploit valid simplifications for the task at hand.
For example, atmospheric neutrino flux and oscillation calculations
depend on readily available tabulated spectra and analytic formulas,
respectively. Cosmic ray observatories or high-energy particle colliders,
by contrast, might require complex stages to describe particle showers,
which in turn might depend on high-dimensional, analysis-specific
tables. Any physics scenario resulting in multi-particle final states adds
further complexity.

In essence, the specific problem and analysis at hand determine
to which extent MC sampling is necessary and whether the staged
approach is applicable. If the latter is indeed the case, care must be
taken concerning the choice of appropriate stages and their specific
implementations. In the remainder of this article, we study in detail
the staged approach we have found particularly effective for an NMO
analysis using a VLV𝜈T.

4.2. Template generation

In order to produce the final-level event templates that are ulti-
mately compared to the data, the four stages are combined as depicted
in Fig. 5: integration of the product of the first three stages (flux,
oscillation probability, and effective area) over 𝐸true and cos 𝜗true yields
the event rate in the space of true variables. The event rate in the
space of reconstructed observables is then obtained by a convolution
of the true event rate with the reconstruction resolution functions.
Finally, multiplication by detector exposure time results in an event
count, which can be compared directly to observed data or different
templates.6

Since the transformations computed by individual stages are inde-
pendent of one another, a parameter change affecting one stage does
not affect the transformations used by the other three stages, and in
particular not the result of the previous stages. Therefore, we include
caching functionality that reduces the overall computational expense
when a number of successive templates are retrieved while changing
one parameter at a time.

6 While not shown here, it is possible to extend the model with more
parameters or stages to describe additional effects, such as the modeling of
systematic uncertainties.

The transformations performed by the individual stages are depen-
dent on the neutrino’s energy and zenith angle, and therefore must
be computed and applied differentially. All stages are evaluated on
a grid of points distributed over 𝐸true and cos 𝜗true, with the final
templates output in 𝐸reco, cos 𝜗reco, and event class. Points in energy
are logarithmically spaced in the domain 1GeV to 80GeV while points
in cosine-zenith are linearly spaced between −1 and 1. The number of
bins in each stage (for input, transformation, and output) is adjusted
to reduce numerical integration errors and to avoid smearing out the
physical effects under study. At the same time, this number should be
kept as small as possible to reduce the computational load. An overview
of the binning scheme we have employed, suitably mediating between
these two effects, is given in Table 2.

In order to accurately model the physics discussed in Section 2.1,
the above process must be applied separately to different combinations
of neutrino flavor and interaction type. This means that there is an
intermediate output corresponding to each of the boxes in Fig. 1 and
a separate transformation corresponding to each line connecting those
boxes. Anti-neutrinos double the number of transformations within
and outputs produced by the flux, oscillation, and detection stages.
Reconstructing a 𝜈𝑒, 𝜈𝜇 , or 𝜈𝜏 event is approximately indistinguishable
from its anti-neutrino counterpart (𝜈̄𝑒, 𝜈̄𝜇 , or 𝜈̄𝜏 , respectively) of the
same energy, zenith angle, and interaction type. Therefore, we sum
the 𝜈/𝜈̄-counterpart outputs produced by the detection stage prior to
applying the transformations of the reconstruction stage. The final-level
templates in observables are obtained by simply summing the outputs
of the reconstruction stage.

The fundamental motivation for splitting up the process of template
generation into a sequence of stages is that smoothing methods can
be chosen for each stage that accurately reflect their unique physics,
which in our example analysis apply to the detection and reconstruction
stages. This approach reduces the required MC statistics with no loss of
detail in the flux and flavor oscillation modeling. In contrast, smoothing
events at the final level, as the traditional direct KDE does, acts on
a convolution of effects, including the rapidly-varying behavior in the
underlying oscillation physics. As will be shown later in this article, this
difference is key to achieving higher precision with the staged approach
compared to our reference methods.

For the staged approach, we emphasize that our choice of smoothing
techniques is not unique. The specific techniques we employ are moti-
vated by the typical shapes of the distributions characterized and have
been found to be reliable and robust at modest computational costs.
They should thus be seen as effective but non-exclusive solutions to
problems of the kind discussed in this article.

Note that, in addition to the MC-based calculation of the trans-
formations provided by the detection and reconstruction stages, we
have implemented the option to produce transformations using the
parametric functions of the toy model defined in Appendix A. The
template produced in this way is what we refer to as ‘‘truth’’.

All MC events we use with the staged approach are samples of the
unbinned distributions of the toy model and are shared between the
detection and reconstruction stages. For each combination of neutrino
type and interaction type (for example 𝜈𝑒 CC, 𝜈̄𝜇 NC), we draw an
identical number of events. This number, one twelfth of the total
number of events constituting a given random sample of the toy model,
is referred to as the sample size. A given sample is used together with
the event-by-event MC weighting technique to generate templates for
all possible values of 𝜽, that is, to calculate the associated expected
counts in all bins of each final-level template.

A complete overview of the different operation modes of the staged
approach is given in Fig. 6, which highlights the stages at which these
differ in the template generation process.
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Fig. 5. Illustration of the staged approach for obtaining event templates, here for simplicity using a characterization in one dimension (energy) only. Steps 1, 2, and 3 are in true
energy (𝐸true); the product of these yields the expected event distribution (lower left). Smearing this spectrum with energy-dependent energy resolution functions (step 4) gives the
reconstructed event rate spectrum (lower right). Note that the dotted green line in step 2 shows a hypothetical change of oscillation parameters, affecting only stage 2. Smoothing
can now directly be applied to the distributions in steps 3 and 4, instead of the fully weighted MC as in the direct KDE method.

Fig. 6. Operating principles of the different staged approach modes, which differ in how we generate the transformations of the last two stages. The staged approach without
smoothing is employed for validation purposes in Section 6.1. See text for details.

Table 2
Gridpoints chosen for the staged approach in this work. The output of one stage is the input to the next stage, and the result
of the detection transformation is downsampled from (400 × 400) to (200 × 200) by summing non-overlapping sets of 2 × 2
adjacent points. Outputs of flux, oscillation, and detection are in the domain 𝐸true ∈ (1, 80) GeV and cos 𝜗true ∈ (−1, 1) while
the output of reconstruction is in the domain 𝐸reco ∈ (1, 80) GeV, cos 𝜗reco ∈ (−1, 1), and class ∈ {track, cascade}. Within
their respective domains, points in energy are logarithmically spaced while points in cosine-zenith are linearly spaced.
Stage Transformation Output

Flux – 400 𝐸true × 400 cos 𝜗true
Oscillation 400 × 400 400 𝐸true × 400 cos 𝜗true
Detection 400 × 400 200 𝐸true × 200 cos 𝜗true
Reconstruction 200 × 200 × 40 × 40 × 2 40 𝐸reco × 40 cos 𝜗reco × 2 classes

5. Technical implementation of stages

The stages within our approach, as summarized in Section 4 and
illustrated in Fig. 5, are subject to different technical and computational
challenges due to the physics effects captured by each one. In this sec-
tion we examine specific implementation details which highlight how
each stage balances performance and precision requirements—even in
the presence of low MC statistics.

5.1. Flux

In order to preserve the integral of a tabulated set of data, a
spline is fit to the integral of the data rather than to the values them-
selves. Interpolated values in the initial space are then found by eval-
uating the derivative of these splines. We refer to this method as
integral-preserving (IP) interpolation.

For the NMO example analysis, the tabulated data of interest are the
atmospheric neutrino flux predictions from [25] provided as a function
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of both 𝐸true and cos 𝜗true. To simplify the problem, the integration7 is
performed along one dimension at a time.

Consider the case with fluxes tabulated at 𝑀 × 𝑁 points in (𝐸true,
cos 𝜗true). To retrieve the flux at an arbitrary (𝐸true, cos 𝜗true) point, say
(𝑥, 𝑦), first one spline of the integrated flux as a function of cos 𝜗true
is created for each of the 𝑀 𝐸true locations. The derivative of each
of these splines is evaluated at 𝑦, yielding 𝑀 flux values. The in-
tegral of these values is then interpolated with a spline, and finally
this spline’s derivative is evaluated at 𝑥. This concept generalizes to
higher dimensions, but can quickly become computationally intensive
as the number of splines grows. While the splines used in the provided
example are of one-dimensional cubic type, other spline variants or
interpolation techniques can be used, as long as these allow for dif-
ferentiation. For the example analysis of this article, IP interpolation
is approximately an order of magnitude slower than two-dimensional
cubic spline interpolation.

The IP method improves upon standard interpolation techniques
in that it correctly models the turnover of the flux at the horizon
(

cos 𝜗true = 0
)

and the behavior in the most upgoing and downgoing
regions

(

cos 𝜗true ∼ ±1
)

. This can be seen in Fig. 7, which compares the
results of IP to linear and cubic spline interpolation.

For the tables used in this article’s example analysis, IP interpolation
preserves the integral to better than 0.5% over the complete (𝐸true,
cos 𝜗true)-space. More detailed information on the IP method can be
found in [36].

5.2. Oscillation

The oscillation library that we employ is an extension of the code
described in [37], where the authors ported some of the core functions
of Prob3++ to a graphics processing unit (GPU) via the CUDA C
API [38]—an application programming interface to perform general
purpose computations on GPUs. We then added back in the ability
to handle an arbitrary number of constant density layers of matter,
allowing for highly parallel calculations of three-flavor oscillation prob-
abilities of neutrinos that encounter a realistic radial Earth density pro-
file, with fine-grained control over its characteristics. We implemented
the oscillation calculations with floating point precision selectable to
either single (32 bits, or FP32) or double (64 bits, or FP64) precision.
With our code run in double precision with Prob3++, evaluated on
a 100 × 100 grid of neutrino energies 𝐸true ranging from 1GeV to
80GeV and cos 𝜗true values spanning the region between −1 and 0,
our GPU and CPU implementations of the Prob3++ code produce
consistent results to the level of 10−14 or less. These differences are
due to differing hardware implementations of the same mathematical
operations. Switching from double to single precision on the GPU, we
find that the magnitudes of the differences stay below about 10−5 for all
oscillation channels. Single precision is desirable from a performance
point of view, since most GPUs comprise a larger number of single
precision than double precision arithmetic units, and these extra units
can be exploited by the parallelism in our code.

To evaluate the effects of an approximated Earth density profile
using a limited number of constant density layers and a constant atmo-
spheric production height – both approximations that our code makes
– we compare the oscillation probabilities from our implementation
of Prob3++ against a reference model. The latter is calculated by
nuCraft [39], which is written in Python and solves the Schrödinger
equation numerically. The nuCraft library also supports a realistic
variation of the oscillation baselines according to the distribution of
atmospheric neutrino production heights described in [40] and uses an
interpolated radial density profile of the Earth.

To this effect, we first fix the atmospheric neutrino production
height to ℎ0 = 20 km for both codes, and quantify the deviations

7 Here, a cumulative sum of the bin values multiplied by the respective bin
width.

arising from the coarser Earth model by calculating the 𝜈𝜇 survival
probability residuals on a fine grid in cosine zenith and energy. When
approximating the Earth’s density profile with only four layers (one
for each of the upper and lower mantle, and the outer and inner
core), differences of up to 15% to the output of nuCraft are seen.
These differences decrease to below 5% when using 12 density layers
(see left panel of Fig. 8). Using an even more detailed model with
59 layers results in differences smaller than 0.3% across the whole
two-dimensional spectrum.

Comparing the 12-layer Prob3++ probabilities to those obtained
under the assumption of a more realistic distributed atmospheric pro-
duction height in nuCraft highlights further discrepancies between
the outputs of the two codes (see right panel of Fig. 8). However, the
largest differences (∼ ±10%) appear for near horizontal trajectories,
while the residuals for cos 𝜗 ≲ −0.4 remain roughly unchanged.

Since precise modeling of both the Earth’s density profile and the at-
mospheric neutrino production heights come at a significant additional
computational cost, depending on the analysis in question it might be
desirable (and justifiable) to neglect one or both of these effects. In our
example NMO analysis we find that it is sufficient to use the 12-layer
model and a fixed production height. Both approximations have very
little impact on the final spectra – mainly due to detector resolution
effects – and since they systematically affect both NMO realizations
in an almost identical manner, their effects leave the measurement
comparing the two mass orderings largely unaffected. Moreover, while
the atmospheric flux peaks in horizontal direction (seen, for example,
in Fig. 9), negligible matter effects for the corresponding trajectories
result in very little intrinsic sensitivity of this part of the spectrum to
the NMO.

5.3. Detection

As a reminder, the effective areas are quantities used to translate
an incoming flux to the event rates in the detector. These effective
areas are calculated from a limited number of MC events, hence they
can suffer from statistical fluctuations which can be a non-negligible
contribution to the total uncertainty of the final physics result. At
the same time, effective areas are typically well-behaved quantities in
energy and zenith angle (under some realistic assumptions, e.g., that
no discontinuous selection cuts are applied and no gaps exist in the
detector acceptance). Therefore, smoothing techniques can be applied
to alleviate the unwanted uncertainty contributions from statistical
fluctuations.

For charged current interactions, we compute the effective area
separately for each neutrino flavor. In contrast, we do not distinguish
between flavors for neutral current (NC) interactions, since their cross
sections are identical. Neutrinos and anti-neutrinos are handled inde-
pendently, accounting for a total of eight independent effective area
functions. For convenience we include the multiplication by detector
exposure time (𝑡exp) in the same step, which means that this stage
outputs event counts (𝑁events) instead of rates

𝑁events = 𝛷[m−2𝑠−1] ⋅ 𝐴eff [m2] ⋅ 𝑡exp[s] , (5)

for some input flux (𝛷).
In our staged approach we first evaluate the effective areas on a fine

grid in (𝐸true, cos 𝜗true) using the MC events via MC integration, where,
when generating events, the sampling is chosen to provide a relatively
uniform coverage across all grid points. For our example case study,
we use a uniform sampling across cos 𝜗true and a power law spectrum
for the energies ∝ 𝐸−1

true to closely follow actual IceCube oscillation
analyses. (Note that an optimization of the sampling choices would
benefit both the staged approach and the reference methods.) Still, for
small sample sizes, some grid points may have no associated events,
leading to gaps in the distribution. We remove these by applying a
simple Gaussian smearing along the two-dimensional grid. In a second
step, cubic splines are employed to perform smoothing. Here, first,

10



M.G. Aartsen, M. Ackermann, J. Adams et al. Nuclear Inst. and Methods in Physics Research, A 977 (2020) 164332

Fig. 7. The top part of the figure shows three different interpolation methods applied to the same set of data points from [25] while the bottom portion shows the fractional
deviation of the integral (= area under the curve) from these three methods. The deviations from the integral-preserving method presented in this paper have a maximum ∼0.02%.

Fig. 8. Deviation of 𝜈𝜇 survival probabilities computed with Prob3++ compared to nuCraft. The left panel uses a fixed production height of 20 km for both codes and twelve
constant-density layers for Prob3++. In the right panel the values from nuCraft are the average probabilities for a range of neutrino production heights across the atmosphere.
(color online).

splines are created along the 𝐸true dimension individually for every
cos 𝜗true bin, and evaluated to obtain new values for every grid point.
Then, this splining procedure is repeated along the cos 𝜗true dimension.

Fig. 9 shows the truth template of 𝜈𝜇 CC events on a grid with
𝑛bins = 40 × 40 points together with the fractional deviations that arise
when the same template is obtained from MC samples8 of different sizes
using direct histogramming versus the smoothing method described
above. We use 𝜈𝜇 CC events as an example here and below. Table 3
gives the average (binwise) relative deviations 𝛿2 defined as

⟨

𝛿2
⟩

= 1
𝑛bins

𝑛bins
∑

𝑖=1

(

𝜇′
𝑖 − 𝜇ref

𝑖
)2

𝜇ref
𝑖

(6)

and maximal 𝛿2 values defined as

𝛿2max = max
1≤ 𝑖≤ 𝑛bins

⎡

⎢

⎢

⎣

(

𝜇′
𝑖 − 𝜇ref

𝑖
)2

𝜇ref
𝑖

⎤

⎥

⎥

⎦

(7)

by which the templates from our method and from direct histogram-
ming deviate from truth (with bin counts 𝜇ref

𝑖 ). If the 𝜇′
𝑖 were i.i.d.

samples of the 𝜇ref
𝑖 , the metric 𝛿2 = 𝑛bins

⟨

𝛿2
⟩

would correspond to
Pearson’s chi-square.

The 𝛿2 values provide direct insight into how the accuracy of the
template description compares to the statistical uncertainty of the real
data that would be observed. For reference, since the observed bin
counts would be Poisson samples of the truth, their average deviation
from the truth in the asymptotic limit would be given by

⟨

𝛿2
⟩

= 1.

8 Generated from the toy model in Appendix A.

The templates themselves, based on MC simulation, exhibit their own
statistical uncertainties. These lead to finite values of 𝛿2, the averages
and maxima of which are shown in Table 3 as a function of MC sample
size. It is essential that these inaccuracies inherent to the template gen-
eration process are considerably smaller than the statistical fluctuations
in real data in order to ensure accurate statistical inference.

Applying our method we find deviations that are lower by a factor
of about 40 for the smallest MC set, and by a factor of about 13 for the
largest. It is noteworthy that the maximum deviation (𝛿2max) across all
bins decreases monotonically with MC sample size, confirming that the
used smoothing method does not introduce any observable bias.

5.4. Reconstruction

The usual way to obtain templates in the space of reconstructed
variables is to place each individual MC event in the final-level dis-
tributions according to the reconstruction information that the event
carries. This is the case for both methods that are used for comparison:
direct histogramming and direct KDE, the only difference between
these being how the final-level distributions are estimated. While this
approach correctly takes into account joint dependencies of the event
reconstruction on the involved variables, it is particularly sensitive to
small MC sample sizes due to the potentially high dimensionality of the
space of reconstructed variables. In contrast, the staged approach uses
the available MC simulation to construct detector resolution functions
which we integrate to form a transformation that maps a template in
true variables (such as that shown on the left in Fig. 9) onto the space
of reconstructed variables, what we refer to as the final-level template.
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Fig. 9. Parametric reference distribution after the first three stages (flux, oscillation, and detection) for the 𝜈𝜇 CC channel in (cos 𝜗true, 𝐸true) (left panel) and relative residuals
(|𝑁 −𝑁true|∕𝑁true) for the direct histogramming (right panel, top row) and our proposed method (right panel, bottom row) on a 40 × 40 grid using different amounts of simulated
events. (Note that the numbers are not percentages.) The three columns in the right panel represent different MC sample sizes of 103, 104, and 105 events, respectively. The samples
are drawn from the unbinned toy model distributions of Appendix A. (color online).

Table 3
Average 𝛿2 per bin and the worst-case bin’s 𝛿2 value comparing templates on a 40 × 40 grid in (𝐸true, cos 𝜗true)-space (i.e., before
applying reconstruction resolutions) generated by direct histogramming (top) and the smoothed-staged approach (bottom) with
the toy model’s reference template. Shown are values obtained for independent input MC samples of various sizes (from 103

up to 106 events per flavor/interaction type).
Sample size 103 104 105 106

Direct hist.
⟨

𝛿2
⟩

215 22.5 2.07 0.201
𝛿2max 21600 1810 79.4 11.2

Staged approach
⟨

𝛿2
⟩

5.14 0.526 0.0615 0.0156
𝛿2max 460 17.2 2.27 0.975

In the case study of the NMO analysis, the mapping of true variables
(𝐸true and cos 𝜗true) to reconstructed variables (𝐸reco, cos 𝜗reco, and event
class) is extracted from the MC as a ‘‘migration’’ tensor of order five,
𝑖𝑗𝑘𝑙𝑚. It maps the histogram of event counts in the two-dimensional
space of true variables, ℎ𝑖𝑗 , to the observed histogram of event counts
in the three-dimensional space of reconstructed variables, ℎ′𝑘𝑙𝑚:

ℎ′𝑘𝑙𝑚 =
∑

𝑖,𝑗
𝑖𝑗𝑘𝑙𝑚ℎ𝑖𝑗 . (8)

The reconstruction transform in general has to be computed as a
five-dimensional transform, as all five dimensions can depend on one
another—i.e. they are correlated. Studying the correlations among the
dimensions in our particular MC revealed, however, that 𝐸reco only
depends on event class and 𝐸true, cos 𝜗reco depends on event class
and both input dimensions, and event class only depends on 𝐸true.
For each of the three reconstruction variables, we subdivide the MC
in the quantity’s dependent dimensions to the point that correlations
are not visible and that all events in the subdivision can be assumed
to be samples from the same one-dimensional distribution—i.e. the
resolution functions we generate.

There is a trade-off in terms of how much to subdivide the MC
for producing these resolution functions. Since resolution changes as a
function of a dependent dimension, sufficiently narrow subdivisions in
that dimension group together MC events drawn from essentially the
same distribution. Subdivisions that are too wide will group together
events drawn from different distributions and the resulting resolution
functions will be erroneous. However, narrower subdivisions admit
fewer MC events in each subdivision and so lead to greater statistical
variations in the estimated resolution functions (i.e., their shapes will
be more affected by random fluctuations in the MC).

To balance these competing factors, we devised the following
heuristic. For the quantity being characterized, we divide each depen-
dent dimension evenly—except event class, which is binary. 𝐸true is

divided evenly in log-space to help ensure even subdivisions group
together events with similar energy resolution, as this quantity changes
more rapidly at low 𝐸true than at high 𝐸true. We allow each subdivision
of 𝐸true to separately expand enough to capture at least 100 events,
and at least 500 events in each subdivision of cos 𝜗true. If expansion is
performed, subdivisions’ upper and lower edges are expanded by the
same factor (up to the limits of the dimension). The captured events
are then used to produce resolution functions.

The remaining parameters that require tuning in this heuristic
are the number of subdivisions to use for each dependent dimension
for each quantity being characterized. For this, we visually inspect
the 2-dimensional distributions of each characterized quantity as a
function of each dependent dimension and require that the events in
each subdivision do not display strong dependence on the dependent
dimension.

If the functional form of the resolution functions is known, a para-
metric model of this form fit to the MC yields the most accurate
and lowest variance reconstruction transform. However, as we do not
know the form of these functions, a non-parametric density estimation
technique is used to approximate them. In particular, we chose to
use adaptive KDE [41] with bandwidths scaled uniformly such that
the narrowest is that found from the Improved Sheather Jones (ISJ)
algorithm [42]. KDE works by placing a kernel function (we use a
Gaussian) centered at the value of each event’s variable to be described
and then summing over all kernels. Adaptive bandwidth KDE uses
different widths for each kernel, where the bandwidths are inversely
proportional to the density of points near the location of the kernel. The
ISJ bandwidth selection algorithm used to normalize the kernel widths
is an improvement over predecessor algorithms (e.g., [30,43]) in that it
does not make assumptions that the quantity being estimated is drawn
from a Gaussian distribution. In our experience, this outperforms fixed
bandwidth KDE by not underestimating the heavy-tailed distributions
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Fig. 10. Example energy and cosine-zenith-angle resolution distributions for 𝜈𝜇 CC events classified as cascades, estimated with histograms and adaptive KDE. Energy resolution
is shown for 100 events with 𝐸true ∈ [26.7, 29.8]GeV and cosine-zenith resolution for 100 events with 𝐸true ∈ [1.0, 1.1]GeV. The samples used to construct the histogram and KDE
are shown by vertical lines beneath the histograms.

we encounter, but it bears repeating that other density estimation
techniques can yield better or worse results depending on the specifics
of the MC in question. An example of two resolution functions (one
for both energy and zenith angle, respectively) estimated using the
adaptive KDE method is shown in Fig. 10.

Fig. 11 again demonstrates that templates obtained from our KDE-
based reconstruction stage deviate much less from the parametric
reference template after reconstruction than templates from direct
histogramming of reconstructed MC events.

6. Validation and comparison of templates

This section more closely examines the templates generated with
the staged approach and compares them – along with those generated
by the other two methods (histograms and KDE) – to the parametric
reference distributions of the toy detector model. This validation is
split into two parts. The first examines the grid of points that are used
to numerically approximate the integral over the first three stages,
whereas the effect of smoothing is investigated in the second.

6.1. Sampling grid

In order to demonstrate the validity of our choice of grid points
shown in Table 2 as well as the equivalence between the staged ap-
proach and traditional MC weighting as grid point spacing in 𝐸true and
cos 𝜗true is reduced, we compare the staged approach without smooth-
ing (i.e. using raw histograms as transforms in place of smoothing
functions and KDEs) to direct histogramming. The specific comparison
done here without smoothing is solely for the purpose of validating the
principle of stages vs. direct histograms.

Table 4 shows the 𝛿2 difference (cf. Eqs. (6) and (7)) between the
final templates obtained from the staged approach (with bin counts 𝜇′

𝑖 )
and direct histogramming (𝜇ref

𝑖 ) for a variety of grid point densities in
𝐸true and cos 𝜗true, using the same MC set of size 106 for both methods.
These templates are output with a binning of 40 × 40 × 2 in 𝐸reco,
cos 𝜗reco, and event class. The relative decrease in the average 𝛿2 value
roughly scales with the inverse of the relative grid density increase,
thus confirming that the two methods will agree to arbitrary precision
in the asymptotic limit. In the following, for practical reasons we limit
ourselves to the specific case summarized in Table 2.

6.2. Smoothing

To validate the final templates with smoothing applied at each
stage, we compare them directly to truth. For reference, we also show
the agreement resulting from both the direct histogramming and the
direct KDE methods.

While Table 5 quantifies deviations from the reference distributions
again in terms of 𝛿2 and in dependence of MC sample size, Fig. 12 dis-
plays the final-level templates for each of the aforementioned methods
using a sample with 104 events.

The staged approach outperforms the two alternatives in terms of
𝛿2 values by more than one order of magnitude for all those sample
sizes studied here. Furthermore, inaccuracies of the templates from
the staged approach scale with the inverse of sample size almost as
fast as those of templates from direct histogramming. In addition, it is
noteworthy that the KDE method shows comparably slow convergence,
i.e., it performs worse than direct histogramming for the sample size of
106.

While for the experimental data (or pseudo-data) one expects statis-
tical fluctuations on the order of 𝛿2 = 𝜒2 = 1.0 per bin, the accuracy of
the templates must be better than this. As shown in Table 5, considering
a sample size of 104 and the staged approach, the average 𝛿2 deviation
from truth is only about 30% of what is expected just from statistical
fluctuations in data, while more than 106 events would be necessary to
achieve the same average 𝛿2 using direct histogramming or KDE. (See
Table 5 for details.) Therefore, to reach an equal accuracy, two or more
orders of magnitude larger samples are needed for histogramming or
KDE compared to the staged approach. The next section illustrates the
implications for running a data analysis.

7. Example analysis results

To illustrate the impact of sample size, we show the resulting
√

|

|

|

𝛥𝜒2|
|

|

as defined in Section 2.2 with the assumption of true NO, as
an estimate for the sensitivity to the NMO for our example analysis
in Fig. 13. For reference, the true result is derived directly from the
exact templates based on the parametric toy detector model and lies at
√

|

|

|

𝛥𝜒2|
|

|

= 5.75. For the three methods discussed throughout this paper,
the statistical uncertainty of the obtained sensitivity is indicated by
error bars in the figure. This uncertainty is computed from several sta-
tistically independent MC sets9 and indicates the central 68% quantile
of each ensemble. In particular, as the sensitivity proxy does not take
into account MC uncertainty [5,6], this range is not, a priori, expected
to reflect any sensitivity bias for the three methods.

The uncertainty reveals that the methods exhibit quite different
intrinsic fluctuation of their respective sensitivity estimates, as well as
different scaling behavior of the variance with sample size. As sample
size decreases, direct histogramming without any smoothing applied
results in an increasing overestimation of a VLV𝜈T’s ability to exclude

9 Each MC set is used together with the staged approach to generate one
Asimov toy data template and (103) ‘‘test’’ templates.
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Fig. 11. Same as Fig. 9, but comparing final-level templates after all four stages are applied. Note that the residuals in the 1k-samples plot for direct histogramming go up to 31
but the scale is clipped at 10. (color online).

Fig. 12. Final-level templates used for the example data analysis. The reference distributions (truth) obtained directly for the toy detector model parameterizations are shown in
panel (a). Given the same sample of 104 events the estimated distributions using histograms are shown in panel (b), using KDEs in panel (c), and using the staged approach in
panel (d). (color online).

Table 4
Average and maximal 𝛿2 deviations per bin of the final 40 × 40 × 2 binning between final templates of non-smoothed staged
approach and direct histogramming, for different grid point densities in (𝐸true, cos 𝜗true) for the first three stages, using an MC
sample of 106 events. The last (=reconstruction) stage uses a reduced binning, as described in the text.
Grid (𝑀 ×𝑁) 40 × 40 80 × 80 160 × 160 320 × 320 640 × 640 1280 × 1280
⟨

𝛿2
⟩

0.01067 0.00253 0.00060 0.00014 0.00003 0.00001
𝛿2max 1.45906 0.46930 0.19718 0.04974 0.00634 0.00172

the wrong neutrino mass ordering. In the most extreme case shown
here (corresponding to the smallest sample size of 103), the sensitivity
is estimated to be more than one order of magnitude greater than
the actual capability of the experiment. Only for the sample size of
107 does direct histogramming indeed give reliable results. This is

expected from the simple rule of thumb (cf. Section 3.1) of (104)
events per bin × (103) bins. Also the often quoted requirement on
MC sets having ten-fold the statistics compared the data (such that
bin-to-bin fluctuations in the MC sample are negligible compared to
the corresponding fluctuations in the experimental histogram) is only
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Table 5
Average and maximal 𝛿2 deviations per bin of the final 40 × 40 × 2 binning between final templates of the three shown
methods and truth, for independent input MC samples of various sizes. Note that the staged approach has smoothing applied
(the default), in contrast to Table 4.
Sample size 103 104 105 106

Direct Histogramming
⟨

𝛿2
⟩

468 42.6 4.27 0.458
𝛿2max 3.4 ⋅ 104 906 138 10.5

Direct KDE
⟨

𝛿2
⟩

32.2 11.4 3.67 1.25
𝛿2max 245 90.2 50.3 25.3

Staged Approach
⟨

𝛿2
⟩

3.01 0.303 0.111 0.0301
𝛿2max 47.4 3.03 1.80 0.387

Fig. 13. Estimated sensitivity (
√

|

|

|

𝛥𝜒2|
|

|

) to the NMO vs. sample size for direct histogramming, direct KDE, and the proposed staged smoothing methods applied to multiple
(between 50 and 200) statistically independent toy MC sets. Vertical lines indicate central 68% quantiles of the ensemble. The dashed horizontal line shows the significance
obtained from truth templates based on the parametric toy detector model. The staged approach outperforms the other methods – both in terms of bias and variance – for sample
sizes through 3 ⋅ 106, with direct histogramming only matching the staged approach using 107 samples. Note that no data points exist for direct KDE and sample sizes above 3 ⋅ 105,
as computational processing times become impractically large. Also note that direct histogramming is off-scale high for fewer than 3⋅104 events (mean values are indicated to the
right of the corresponding markers).

met after 3 ⋅ 106, which is where the direct histogramming starts giving
correct results.

Illustratively, an undersampling of the detector response distribu-
tions due to low MC statistics is highly likely to lead to an overestima-
tion of the experiment’s sensitivity because the NMO signature that is
present in the space of true variables is carried over to random bins in
the reconstructed observables with reduced cancellation.10

Applying KDE smoothing to the weighted events instead of his-
togramming them (i.e., direct KDE) leads to a reduction of the overesti-
mated sensitivity for sample sizes of up to at least 3 ⋅105 but is not able
to eliminate the bias entirely for the tested sample sizes. For sample
sizes larger than (105), the direct KDE method is too computationally
expensive to deliver results within a reasonable time (for more details
on timing, see Section 8).

The estimated sensitivity using the staged approach is statistically
compatible with the true sensitivity across the whole range of sample
sizes considered. It shows no bias and lower variance for predicting
sensitivity to physics compared to the other methods within the limits
of our testing.

8. Benchmarks

Whether a given analysis method is useful in a realistic setting
depends not only on its numerical reliability, but also on how long it

10 For example, if a bin in the final-level template is solely populated
by (unweighted) MC neutrinos, and no anti-neutrinos, or vice-versa, it will
contribute artificially strong to the overall NMO sensitivity due to the missing
summation over both event types (cf. Section 2).

takes to compute the quantity of interest (note that this duration is in
addition to the initial time needed to generate the MC). For reference,
we performed benchmarks of the template generation times in the
course of a typical analysis process.11 These are compiled in Fig. 14.

Note that no initial start-up times – such as the construction of the
smearing kernels used within the reconstruction stage – are included
here. For all three methods separate timings based on our CPU-only
and GPU-accelerated implementations are provided.

While for sample sizes below 104 to 105 events direct histogramming
is the fastest method, it is unusable owing to the large fluctuations
associated with the templates it produces, which in turn result in
the grossly overestimated sensitivities shown in Fig. 13. Direct KDE
only proves competitive when used in conjunction with the smallest
datasets. The faster-than-linear scaling of its computational needs with
sample size then quickly renders it impractical to use. Our proposed
method is independent of sample size by construction (excluding initial
start-up costs), but will get more expensive if a finer grid point spacing
is desired.

The timing difference between the CPU and GPU implementation
of the staged approach is not as large as for the other methods, since
it is only using the GPU for parallelization of the neutrino oscillation
weights calculation (whereas the other methods make use of the GPU
more extensively).

11 Timings were obtained on a computer with an Intel Xeon E5-1660 v3
3.0 GHz CPU and an NVIDIA GeForce GTX Titan X GPU.
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Fig. 14. Average template generation time during a typical analysis for input datasets of varying size, shown for the direct histogramming, the direct KDE, and the staged approach.
Solid lines represent timings based on (partial) GPU acceleration, whereas the dashed ones are for CPU-only calculations.

9. Summary

The search for small physics effects in high statistics neutrino oscil-
lation experiments requires careful treatment and use of simulated data.
Statistical fluctuations within distributions obtained from Monte Carlo
simulations are able to severely distort an analysis, rendering derived
constraints or sensitivities essentially meaningless.

The staged approach we have presented serves two main purposes.
Firstly, computational expense is reduced through sampling of physics
and detector response distributions on a discrete grid instead of com-
puting a weight for every individual Monte Carlo event. In this respect,
we have demonstrated that our method of breaking down the template
generation into independent stages converges to the MC weighting
scheme when using a grid of a high enough, albeit feasible, density. For
a fixed number of grid points, the template generation time has been
shown to be independent of the input sample size. Secondly, the staged
approach allows the application of smoothing techniques to a detector’s
response functions. In the specific example shown, the detection stage
characterizes the detector’s effective area by integrating weighted MC
events on a grid and smoothing the resulting histogram, followed by
the event reconstruction stage using an adaptive KDE smoothing on
the resolution functions applied to arrive at final-level templates. This
has proven superior to the smoothing of the final event distributions
since it is faster and – even more importantly – yields more accurate
and robust results. The presented choice of smoothing techniques works
sufficiently well for our purposes, but this choice is neither unique nor
do we claim it to be optimal, and it depends on the wider experimental
context. Beside this choice, our overall approach may prove particularly
useful when a fast assessment of the physics potential of various detec-
tor designs is desired, or when analysis methodologies are optimized.
Any final-level analysis will likely rely on large quantities of MC to
guarantee the precise and accurate modeling of the experiment.

In the example neutrino mass ordering analysis that we have
conducted – to benchmark and compare the different approaches – we
found that direct histogramming of events leads to a gross overestima-
tion of sensitivities when used in conjunction with small numbers of
events (≲106 events for our toy model). Conversely, the proposed staged
approach leads to correct results that are largely unaffected by the
sample size across the tested range and the variance of results is small
compared to the result above about 104 neutrino events. This means
that the necessary amount of simulated events is reduced significantly

(by about two orders of magnitude in our example)—an important
aspect especially since Monte Carlo event simulation and reconstruction
times can represent major hurdles to progress in the field of neutrino
oscillation experiments.
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Appendix A. Toy data model

In the following we provide a parametric toy detector model used to
transform the oscillated atmospheric fluxes into event counts. The func-
tions we use either serve as direct inputs (truth) to the various stages of
the simulation chain laid out in Section 4, or as sampling distributions
from which toy MC samples are drawn. We point out here that these
are entirely empirically motivated, and should only be seen as proxies
of the performance indicators in next-generation VLV𝜈Ts (such as the
IceCube Upgrade [1], PINGU [2,3], or KM3NeT/ORCA [4]).

Simplifications or limitations of the model do not affect the com-
putational analysis techniques themselves. Rather, the goal in the fol-
lowing is to capture the most essential features of the expected detector
response: threshold effects in detection, the finite accuracy and skew of
reconstruction resolution functions, as well as limited flavor and charge
identification capabilities. This does not invalidate the conclusions
drawn from comparing the various analysis approaches.

A.1. Detection efficiency

We assume a detector of fiducial mass 𝑀f id = 10megaton, with a
neutrino detection energy threshold of 𝐸th = 1GeV for all neutrino
flavors and interaction channels apart from 𝜈𝜏 charged current (CC)
interactions, where the intrinsic interaction threshold is higher, at
𝐸th = 3.5GeV. The detector’s effective mass 𝑀𝛼

eff = 𝜌ice𝑉 𝛼
eff for a

given combination, 𝛼, of flavor and interaction type, where 𝜌ice is
the ice density and 𝑉 𝛼

eff the detector’s corresponding effective volume,
exhibits a phenomenological dependence on true neutrino energy, 𝐸true,
asymptotically approaching 𝑀f id according to an exponential function:

𝑀𝛼
eff (𝐸true) = 𝑀f id ×

(

1 − 𝑒−𝑘𝛼×(𝐸true∕GeV−𝐸th∕GeV)
)

for 𝐸true > 𝐸th . (A.1)

We include three effective masses to cover all the neutrino interaction
channels: one for 𝜈𝑒, 𝜈̄𝑒, 𝜈𝜇 , and 𝜈̄𝜇 CC, one for 𝜈𝜏 and 𝜈̄𝜏 CC, and one
for all NC channels. For the CC channels we choose 𝑘𝛼 = 0.4, while for
the NC channels the function rises more slowly, with 𝑘𝛼 = 0.1. The left
panel of Fig. A.15 shows these dependencies for neutrino energies up to
𝐸true = 80GeV. The detector can be roughly considered fully efficient
(𝑀eff = 𝑀f id) for all detection channels above 𝐸true ≈ 50GeV.

The 𝜈-𝜈̄ asymmetry – which is required to make the NMO
measurement – will be introduced through differences in flux and cross
sections, i.e., it will become apparent in the detector’s effective area.
The latter we obtain from the effective mass via the conversion

𝐴𝛼
eff (𝐸true) = 𝜎𝛼(𝐸true) × 𝑛ice∕𝜌ice ×𝑀𝛼

eff (𝐸true) , (A.2)

where 𝜎𝛼 is the total neutrino–nucleon cross section for a given flavor-
interaction channel 𝛼, 𝑛ice ≈ 6 × 1023 cm−3 is the nucleon density in ice,
and 𝜌ice ≈ 0.92 g cm−3 the mass density.

We also make some simplifying assumptions about the cross sections
used in Eq. (A.2), in that we take 𝜈𝑒 and 𝜈𝜇 (𝜈̄𝑒 and 𝜈̄𝜇) CC cross sections
to be the same, as well as all 𝜈𝑥 (𝜈̄𝑥) NC cross sections. In addition, we
model all the mentioned cross sections to rise strictly linearly with 𝐸true
above 𝐸true = 1GeV [44]:

𝜎𝛼(𝐸true)∕𝐸true = 𝑐𝛼 × 10−38 cm2 GeV−1 , (A.3)

where we set

𝑐𝜈𝑒,𝜇CC
= 2𝑐𝜈̄𝑒,𝜇CC

= 0.70 , (A.4)

𝑐𝜈𝑥NC = 2𝑐𝜈̄𝑥NC = 0.25 . (A.5)

To obtain 𝜈𝜏 (𝜈̄𝜏 ) CC effective areas, we interpolate the correspond-
ing neutrino–nucleon cross section curves given in [45]. All resulting

effective areas as a function of neutrino energy are depicted in the
right panel of Fig. A.15. We take these to be invariant in azimuth, but
universally introduce an arbitrary, smooth polynomial modification 𝑀
with the zenith angle dependency

𝑀(𝑥) = 1
20

(−𝑥3 + 𝑥2 − 𝑥) + 1 (𝑥 ≡ cos 𝜗true), (A.6)

which we normalize to unit area.12

A.2. Reconstruction resolutions

Neutrino zenith resolutions with respect to cos 𝜗 are represented by
single Gaussian distributions. The distributions’ parameters are taken
as functions of 𝐸true only. For each flavor and interaction channel, we
assign a mean 𝜇𝛥 cos 𝜗(𝐸true) = 0 across all energies, and a standard
deviation of 𝜎𝛥 cos 𝜗(𝐸true) =

0.3
√

𝐸true∕GeV
+ 0.05.

Neutrino energy resolutions we describe using right-skewed Gumbel
distributions. These are shifted and scaled by 𝜇′ and 𝜎′ with respect to
their standard form, via the transformation 𝑥 → (𝑥 − 𝜇′)∕𝜎′. These pa-
rameters again only depend on 𝐸true. The CC distributions are assumed
identical for all flavors, and are shown in Fig. A.16:

𝜇′CC
𝛥𝐸𝜈

(𝐸true) = 0, 𝜎′CC𝛥𝐸𝜈
(𝐸true) =

(

0.4
√

𝐸true∕GeV
+ 0.1

)

× 𝐸true . (A.7)

For NC interactions, we take a spread that scales with 𝐸true in the same
way 𝜎′CC𝛥𝐸𝜈

does, but assume a non-zero mean due to the undetected
energy carried away by the outgoing neutrino: 𝜇′NC

𝛥𝐸𝜈
(𝐸true) = −0.6𝐸true.

Note that each energy and cosine zenith residual distribution is
renormalized such that its integral over the physical region (𝛥𝐸𝜈 +
𝐸true ≥ 0 and −1 ≤ (𝛥 cos 𝜗 + cos 𝜗true) ≤ 1) yields 1.

A.3. Event classification

Correctly identifying few-GeV CC muon neutrino interactions with
relatively sparsely instrumented neutrino telescopes in water/ice is
difficult mainly for two reasons. The track length of a near minimum
ionizing muon is only on the order of a few meters, comparable to
the extent of an electromagnetic cascade of the same energy. Also,
photon scattering lengths similar to the horizontal spacing between
photomultiplier tubes smear out the Cherenkov ring around the muon
direction, which is otherwise observed at a specific angle with respect
to the muon direction in the medium.

We take into account the muon neutrino CC (‘‘track’’) identification
efficiency 𝑝𝜇,CCtrack improving with (reconstructed) neutrino energy, 𝐸reco,
by setting

𝑝𝜇,CCtrack ≡ 𝑝𝜇,CCtrack (𝐸reco) = 0.9 ×
(

1 − 𝑒−0.2×(𝐸reco∕GeV+0.6)
)

. (A.8)

This reflects the track length of the secondary muon increasing linearly
with its energy, but also the possible production of a low-energy muon
which cannot be distinguished from the accompanying hadronic cas-
cade even for higher-energy muon neutrino CC interactions. All other
(in)efficiencies are assumed to be constant:

𝑝e,CCtrack (𝐸reco) = 𝑝NCtrack(𝐸reco) = 0.15 , (A.9)

𝑝𝜏,CCtrack(𝐸reco) = 0.25 . (A.10)

These are shown in Fig. A.17. The probability to identify any event as
‘‘cascade-like’’ for a given reconstructed energy is just the complemen-
tary probability to that of the track identification.

When a toy MC event is subject to this classification, we assign it
one of two discrete numbers – representative of either identification as
track or cascade – with the above probabilities.

12 𝐴eff (𝐸true) is the average over the full sky, cos 𝜗true ∈ [−1,+1].
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Fig. A.15. Effective masses (left) and areas (right) as a function of true neutrino energy for a generic toy detector with fiducial mass of 10Mt. The dependency of the effective
masses on energy is given in Eq. (A.1). Cross sections are from Eq. (A.3), except for 𝜈𝜏 and 𝜈̄𝜏 interactions, which are interpolated from [45]. Effective masses are the same for
neutrinos and anti-neutrinos. See text for details.

Fig. A.16. Example energy resolution functions (right-skewed Gumbel) used for all
CC interactions, as given by Eq. (A.7). The modes of the corresponding NC resolution
functions are shifted by −0.6𝐸true with respect to the distributions depicted here.

Fig. A.17. Event classification efficiencies implemented as functions of reconstructed
neutrino energy. Shown is the probability to identify an event of a given type as
‘‘track-like’’. Events are identified as ‘‘cascade-like’’ with complementary probabilities.

Appendix B. Uncertainty in significance

Under the assumption that the test statistic  under two hypotheses
𝐻1 and 𝐻2 is normally distributed (with means 𝜇1 and 𝜇2 and with
identical standard deviation 𝜎), the number of standard deviations (𝑛𝜎)
separating the two hypotheses can be written as 𝑛𝜎 = |𝜇1 − 𝜇2|∕𝜎 (cor-
responding to a one-sided hypothesis test and a one-sided conversion

from 𝑝-value). Sampling each distribution with 𝑁p pseudo-experiments
results in the following uncertainties for mean and standard deviation
(see for example [46])

𝛥𝜇 = 𝜎
√

𝑁p
, (B.1)

𝛥𝜎 = 𝜎
√

2(𝑁p − 1)
. (B.2)

Since the combination of the quantities is linear, we can perform
simple error propagation, so that the relative uncertainty in significance
becomes (with ⊕ denoting sum in quadrature)
𝛥𝑛𝜎
𝑛𝜎

= 𝛥𝜎
𝜎

⊕
𝛥|𝜇1 − 𝜇2|
|𝜇1 − 𝜇2|

. (B.3)

Using

𝛥|𝜇1 − 𝜇2| = 𝛥𝜇1 ⊕ 𝛥𝜇2 =

√

2
𝑁p

𝜎 (B.4)

the second term simplifies to

𝛥|𝜇1 − 𝜇2|
|𝜇1 − 𝜇2|

=

√

2
𝑁p

𝜎
|𝜇1 − 𝜇2|

=

√

2
𝑁p

1
𝑛𝜎

. (B.5)

Substituting Eqs. (B.5) and (B.1) into Eq. (B.3) yields

𝛥𝑛𝜎
𝑛𝜎

= 1
√

2(𝑁p − 1)
⊕

√

2
𝑁p𝑛2𝜎

=
√

1
2(𝑁p − 1)

+ 2
𝑁p𝑛2𝜎

. (B.6)

The absolute error on the number of standard deviations and its ap-
proximation for large 𝑁p then follow immediately as

𝛥𝑛𝜎 =

√

𝑛2𝜎
2(𝑁p − 1)

+ 2
𝑁p

(𝑁p≫1)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

1
√

𝑁p

√

𝑛2𝜎
2

+ 2. (B.7)
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