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A major challenge in understanding spike-time dependent information encoding in the neural system is
the non-linear firing response to inputs of the individual neurons. Hence, quantitative exploration of the
putative mechanisms of this non-linear behavior is fundamental to formulating the theory of information
transfer in the neural system. The objective of this simulation study was to evaluate and quantify the
effect of slowly activating outward membrane current, on the non-linearity in the output of a one-
compartment Hodgkin-Huxley styled neuron. To evaluate this effect, the peak conductance of the slow
potassium channel (gx.siow) Was varied from 0% to 200% of its normal value in steps of 33%. Both cross-
and iso-frequency coupling between the input and the output of the simulated neuron was computed
using a generalized coherence measure, i.e.,, n:m coherence. With increasing gx_sow, the amount of sub-
harmonic cross-frequency coupling, where the output frequencies (1-8 Hz) are lower than the input fre-
quencies (15-35 Hz), increased progressively whereas no change in iso-frequency coupling was observed.
Power spectral and phase-space analysis of the neuronal membrane voltage vs. slow potassium channel
activation variable showed that the interaction of the slow channel dynamics with the fast membrane
voltage dynamics generates the observed sub-harmonic coupling. This study provides quantitative
insights into the role of an important membrane mechanism i.e. the slowly activating outward current
in generating non-linearities in the output of a neuron.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In biological neurons, the action potential spike is the principal
basis of information encoding and this property is remarkably pre-
served across different organisms and neuronal types. Besides the
classical view of information being carried by modulation of the
firing rates of neurons (Barlow et al., 1992), it is well recognized
that spike timing is also used as the coding scheme in neural sys-
tems (Sejnowski, 1995; Fetz, 1997). The relative timing of firing
has been shown to be an important computational property in
neuronal assemblies for a diverse set of functions like distributed
information processing in cortical microcircuits (Nessler et al.,
2013), pattern recognition (Hu et al., 2013; Masquelier et al.,
2009; Panzeri and Diamond, 2010; Tiesinga et al., 2008), encoding
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of behaviorally relevant information in the somatosensory and
auditory systems (Saal et al, 2016) and Hebbian learning
(Caporale and Dan, 2008). In the terms of the motor system,
although rate coding plays a predominant role due to different
recruitment thresholds of motor units (Enoka and Duchateau,
2017), millisecond-scale variations in the timing of spikes have
been shown to play a crucial role in predicting and causally con-
trolling behavior (Srivastava et al., 2017). Recent work has shown
that spike timing codes are ubiquitous, consistent, and essential
for all motor coordination (Putney et al., 2019).

A major factor that influences the temporal activity of individ-
ual neurons is the non-linearity of spike train output in response
to a time varying input they receive from a multitude of synapses.
Different types of neuron have their own repertoire of ion chan-
nels that is responsible for their characteristic non-linear firing
patterns and also their unique neurocomputational properties
(Jeong, et al., 2012). For example, activation of the L-type calcium
channels in nigral dopaminergic neurons results in intrinsic
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bursting behavior which has been shown to exhibit low-
dimensional determinism and likely encodes meaningful informa-
tion in the awake state (Jeong, et al., 2012). Persistent inward
currents mediated by their voltage-gated sodium and calcium
channels are an important source of non-linear behavior of spinal
motoneurons and is instrumental for generating the sustained
force outputs required for postural control (Hounsgaard et al.,
1988). Indeed, modulation of these channels by descending
monoaminergic inputs acts as a gain control mechanism for the
somatic motor system (Cameron et al., 1980; Wei et al., 2014;
Binder et al., 2020). Fast kinetics of the post-hyperpolarizing
potassium channel is responsible for maintaining the firing state
of cortical interneurons near the Andronov-Hopf bifurcation point
thereby making them ideal candidates for processing information
restricted to specific oscillatory phases (Stiefel et al., 2013). Thus,
quantitative exploration of the role of individual ion channels in
the modulation of the output behavior of neurons is essential
for understanding the general principles of information encoding
employed by the neural system.

The nonlinear relation between the time-varying input to the
neuron and its spike train output, mediated by its component ion
channels, can generate various types of input-output interactions
such as harmonic, subharmonic and/or intermodulation coupling
(Roberts and Robinson, 2012). Since a linear system can only gen-
erate iso-frequency coupling (quantified by linear coherence or
cross-correlation) between an input and the output, nonlinearity
of a system can be easily detected in the frequency domain by
measuring the input-output interactions across different frequen-
cies (McGee et al., 2005; Shils et al., 1996; Victor and Shapley,
1980; Miles et al., 2007).

Spike-frequency adaptation (SFA) i.e. the slowing of neuronal
firing rate in response to a constant stimulus is a ubiquitous neu-
ronal process that has a prominent effect on its dynamics
(Laughlin, 1989). Ionic mediators of SFA are diverse and include:
(i) M—type currents generated by voltage-dependent, high
threshold potassium channels (Brown and Adams, 1980), (ii)
post-hyperpolarization-type currents mediated by calcium-
dependent potassium channels (Madison and Nicoll, 1984), (iii)
slow recovery from inactivation of the fast sodium channel
(Fleidervish et al., 1996), (iv) sodium-sensitive potassium cur-
rents (Bhattacharjee and Kaczmarek, 2005) and, (v) calcium-
sensitive chloride current (De Castro et al., 1997). Each of these
has been observed in a variety of systems and is involved in dif-
ferent neurocomputational functions (Peron and Gabbiani, 2009).
However, all the mediators have the same underlying mechanism
of membrane hyperpolarization operating on a relatively slower
time scale as compared to those membrane mechanisms that
generate the action potential (i.e. the fast sodium and potassium
currents).

The objective of this simulation study was to evaluate and
quantify the effect of this slow membrane hyperpolarization mech-
anism (using the M—type current which mediates SFA induced
spike-time modulation) on the non-linearity in the output of a
one-compartment Hodgkin-Huxley styled neuron (spike-trains
convolved with an EPSP) driven by a time-varying input current.
We hypothesized that the slow time scale of this mechanism gen-
erates increased subharmonic coupling between the input and the
output. To test our hypothesis, we systematically varied the peak
conductance of the M—type potassium channel of our model which
resembles the strength of its coupling with the membrane voltage.
We showed how changes in this parameter produce systematic
changes in the non-linear input-output coupling of the model neu-
ron using a generalized coherence measure i.e. n:m coherence
(Yang et al., 2016). Furthermore, we explored the underlying
mechanisms of the observed changes in non-linearity using power
spectral and phase space analysis.
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2. Methods
2.1. Neuron model

A one-compartment Hodgkin-Huxley styled neuron model was
used for our simulations. The minimalist model incorporated the
following ionic currents (with the corresponding channel conduc-
tances): fast sodium (Iy, with maximal conductance gy,) (Traub
et al,, 1991), delayed-rectifier potassium (Ix with maximal conduc-
tance gx) (Traub et al., 1991), slow non-inactivating M—type potas-
sium (Ix.siow with maximal conductance gi.sow) (Yamada et al.,
1989), and leakage (I, with constant conductance g;) currents:

Ina = Ena X M2y x hna % (V — Exa) (1)
I = g x mg x (V — Ex) (2)
Ix—stow = Ex—siow % Mi—stow *x (V — Ex) 3)
=g x(V-E) 4)

where V is the membrane potential of the neuron. Ey,, Eg, and E; are
the reversal potentials for sodium, potassium, leakage currents,
respectively. The voltage gated sodium and fast potassium channel
is responsible for the spiking behavior while the M—channel serves
as an abstraction for the slowly activating outward membrane cur-
rent that mediates spike-frequency adaptation. The variables m and
h (with subscripts indicating ionic channels) represent the activa-
tion and inactivation variables of the corresponding ionic channels,
as described by the following differential equations:

Tm_,-(V)Em,- = mm,(V) —m; (5)
d
Th.i(v)ahi = hxl(V) — h,‘ (6)

where i indicates the name of the channel, m_;(V) and h_;(V) rep-

resent the voltage-dependent steady-state activation and inactiva-

tion, and t,;(V) and 1,,;(V) are the corresponding time constants.

The steady-state activation and the time constant are given by:
am.i(v)

MeciV) = V) £ V) :

1
- oCm,i(‘/) + ﬂm.i(v)

and similarly, for h. o; and g; are the forward and backward rates of
the first order gating kinetics of the i jon channel between the
closed (C) and open (O) states:

o4(V)

Tmi(V) 8)

C—0 9

Bi(V)
The membrane potential of the neuron (V) was computed from
the following first-order differential equation:

dv
CE: *INa *IK *IK—slow *IL+1inj (10)

where C is the membrane capacitance (1 pF/cm?), I;is the time-
varying input as described below and ¢ is time. The parameters of
this model are based on experimentally fitted values of cortical
interneurons (Pospischil et al., 2008) (see Appendix and Table 1 for
details of these parameters and values of all constants).
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2.2. Input signal

The input to the neuron was designed as a beta-band signal
(15-35 Hz, 1 Hz resolution, sum of sinusoids with uniform random
phase € [0, 27t]) with power values of each frequency being drawn
from a Gaussian profile (i = 25 Hz, o = 3.3 Hz), mimicking the cor-
tical oscillations observed experimentally during the awake state
(Pfurtscheller and Da Silva, 1999). Subsequently we added a mem-
brane noise to this signal (see Fig. 1). The membrane noise repre-
sents stochastic membrane perturbations of biological neurons
(Faisal et al., 2008) and we modeled them as a zero-mean Wiener
process (Maltenfort et al., 1998).

2.3. Simulations

To test the effect of slow outward membrane current, we varied
the peak conductance gi g0 Of the M—type slow potassium chan-
nel, which controls the amount of slow hyperpolarizing current in
our model, from 0.0 mS/cm? (i.e. no M—channel) to 0.18 mS/cm? in
steps of 0.03 mS/cm?. These values covered the entire range of
experimentally fitted values of gi_s0, for different types of cortical
interneurons (Pospischil et al., 2008). Since the output spike train
of a single neuron (given an input with SNR —3.3 dB) has very
low power in the input signal frequencies, the coherence estima-
tion between its input and output will not be significant (unless
it has an unnaturally high firing rate of the order of kHz, see for
example Fig. 5B of (Negro and Farina, 2011). Thus, to obtain signif-
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icant input-output coherence we needed to sum together the out-
put across several simulation runs. For this purpose, if we fixed the
firing rate at any particular value, it would have been difficult to
demonstrate the generalizability of our results across different fir-
ing rates. Therefore, we decided to adopt a biologically plausible
firing rate range of 5-50 spikes/s across 30 simulation runs. If we
keep all other parameters constant, increasing gx.siow decreases
the firing rate of the neuron and vice versa. Hence, we adjusted
the recruitment threshold of the neuron (by tuning the equilibrium
potential E; (Rybak et al., 2006/12/01/ 2006) so that for different
values of gi_s0nw We have the same firing rate. For each value of
Zi-slow» OUr code first optimizes the range of E; values needed to
produce firing rates in the range of ~5-50 spikes/s across the 30
simulations. In other words, for each value of gi_g,, We have a par-
ticular range of optimized E; values so that the range of the resul-
tant firing rates is the same. One issue with artificially
manipulating the E; in this way could be that even though the
range of the resultant firing rates remain the same, the distribution
is altered because of a non-linear relation between the two. Fortu-
nately, we found this not to be the case. Using the optimized E;val-
ues, for each g_siow, the distribution of the firing rates was found to
be the same (see Fig. 2). All simulations were performed in Julia
using the stiff stochastic differential equation solver SkenCarp of
the DifferentialEquations package (Rackauckas and Nie, 2017).
Each run of the simulation was conducted at a sampling rate of
100 kHz for 200 s. The 1st 10 s were thereafter discarded to con-
sider only the steady-state behavior of the neuron. The resulting

Fig. 1. Input design. The input to the neuron model was designed as a combination of beta-band (15-35 Hz) Gaussian signal with added membrane noise. The signal-to-noise

ratio was —3.3 dB.
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Fig. 2. Distribution of firing rates. For every level of peak slow potassium conductance (gx_siow), @ set of 30 simulations were conducted by varying the leakage potential E; of

the neuron to get the same distribution of firing rates in each case.

data was sufficient for a robust neural coupling analysis (Hagihira
et al., 2001).

2.4. Data analysis

The data of each 190 s simulation were divided into 1 s non-
overlapping epochs and the spike trains of each epoch were
obtained in 1 ms bins. Subsequently, to convert the output spike
trains to continuous signals, they were convolved with a normal-
ized alpha function (time constant of 5 ms) to construct a contin-
uous signal resembling a train of excitatory post-synaptic
potentials (EPSP) (Dayan and Abbott, 2005). Fig. 3 shows a sample
trace of the membrane voltage and the corresponding EPSP. The
EPSP signals from the set of 30 simulations per step of gi_si,w Were
summed together to constitute the output signal for subsequent
analysis.

We used our recently developed generalized coherence mea-
sure, i.e.,, n:m coherence (NMC) (Nikias and Mendel, 1993), to
assess cross- and iso-frequency coupling between the simulated
input and the output signals. The n:m coherence is a straightfor-
ward extension of the linear coherence based on high-order statis-
tics (Yang et al., 2016) for distinguishably determining cross- and
iso-frequency coupling between signals. Thus, the iso-frequency
coupling obtained by this method is comparable to linear
coherence.

Let X(f), Y(f) be the Fourier Transform of two time series (e.g. the
input and output signals). The NMC between them is defined as:

ISxy (Fx»fv)|
\/Sx(Fx)Sy (Fy)

for assessing cross-frequency (fy#fy) and iso-frequency (fy =fy)
coupling between signals, wherem/n is the simple whole number
ratio of fy /fy (e.g. if fy =8,fy =16 then m =1, n = 2) and

NMC(fx.fy) = (11)

Fig. 3. Sample trace of the membrane voltage of the simulated neuron and its corresponding EPSP signal: The EPSP signal was obtained by convolving the spike train with an
alpha-function. [Neuron parameters: peak slow potassium conductance, gx_sow = 0.09 mS/cm?, epoch-averaged firing rate = 50 spikes/s, epoch no. = 100, E, = 34.6mV]

4
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Sxv(fxofy) =< X"(F)(Y"(fy))" >, (12)
Sx(fx) =< X"(F)X"(fx) > (13)
where <-> represents the averaging over epochs and

X" =X(fx),X(fx), .. X(fx) (14)

n

The NMC reflects the strength of iso- or cross-frequency cou-
pling between signals. When fy = f,, we have m = n = 1, then
the NMC is equivalent to the classical (linear) coherence for iso-
frequency coupling (Yang et al., 2015). When f,#f,; then the
NMC indicates the non-linear coupling between signals across dif-
ferent frequency components (i.e. cross-frequency coupling) (De
Hemptinne, 2013). Thus, the n:m mapping can generate both inte-
ger and non-integer harmonic (m > n) and sub-harmonic (m < n)
coupling between the input and the output in the frequency
domain (Nikias and Mendel, 1993). As a generalized coherence
method, the NMC is a metric indicating cross-frequency coherence
between signals, which is different from other cross-frequency
coupling methods such as the phase-amplitude coupling (Yang
et al., 2016) reflecting how a low-frequency phase modulates a
high-frequency amplitude.

According to Cauchy-Schwarz-inequality, we have:

|[<X'FIY" ) >| < (< K =) (< [yl >)  a5)

Thus, the NMC is bounded by 0 and 1, where 1 indicates that
two signals are perfectly coupled at the tested frequency pair (f,
fy). As the NMC values are computed by comparing different fre-
quency pairs between signals, the significant threshold was
adapted with a Bonferroni correction to control the type I error
(family-wise error rate: 0.05) (Nikias and Mendel, 1993). There
are 2100 frequency pairs that were included for Bonferroni correc-
tions (15-35 Hz in the input x 1-100 Hz in the output). More
details of the NMC method is available in (Nikias and Mendel,
1993). Since the input to our neuron model has a noise component,
each coupling analysis was repeated 100 times, each time with a
different realization of the Wiener noise added to the beta-band
input in the same signal-to-noise ratio as the original input (i.e.
—3.3 dB, see Simulations and Fig. 1). For each level of gk siow, the
total amount of iso-frequency coupling (IFC), harmonic coupling
(HC) and sub-harmonic coupling (SHC) between the beta-band
input and the neuron output was computed using n:m coherence.
Thus, there were 100 values of IFC, HC and SHC for each gx_siow- All
the data groups for the following analysis were first tested for
homogeneity of variances using Bartlett’s test and normality using
Anderson-Darling test. To test for the effect of gy sow on IFC, HC,
and SHC, we used one-way ANOVA followed by Tukey’s post hoc
test. Where the condition of homogeneity of variances was not
met, we used Welch’s ANOVA followed by Games-Howell’s post
hoc test. Likewise, where the condition of normality was not
met, we used the non-parametric Kruskal-Wallis followed by
Dunn-Sidak post hoc test. A significance level of 0.05 was used
for all the statistical tests.

3. Results

The n:m coherence was analyzed between the time-varying
input and the EPSP output of the neuron for every step of gi_siow-
Both iso- and cross-frequency coupling (IFC and CFC) was detected
between the input and the output (see Fig. 4). Moreover, the
detected CFC included both harmonic and sub-harmonic coupling.
Using Kruskal-Wallis test, we found no significant effect of the
peak M—channel conductance (gx.siow) on the amount of IFC [F
(6,693) = 0.97, p = 0.98] (see Fig. 5). Using one-way ANOVA, we
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Fig. 4. Neural coupling between the beta-band (15-25 Hz) input and the output of
the neuron (peak slow potassium conductance, gx.sow = 0.09mS/cm?). Both iso-
frequency (1:1) and cross-frequency coupling (m:n, where m # n) was detected.
Cross frequency coupling includes both integer and non-integer harmonic (m > n)
and sub-harmonic (m < n) coupling. Thus, harmonic coupling includes all the
coupling values above the iso-frequency (1:1) coupling. Integer harmonic coupling
(n =1 and m > n) is shown by green-dashed lines (2:1 and 3:1). Integer sub-
harmonic coupling ((m = 1 and n > m) is shown by blue-dashed lines (1:2 and 1:3).
Non-integer harmonic (m > n and m, n # 1) and sub-harmonic (n >mand m,n # 1)
coupling is also visible. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

found that gy 0w had a significant effect on both harmonic [F
(6,693) = 52.36, p < 0.001] and sub-harmonic [F(6,693) = 214.09,
p < 0.001] CFC. Using the Tukey’s criterion for post hoc compar-
isons, we found that while there was a slight decrease in harmonic
CFC, sub-harmonic coupling increased progressively with increas-
ing gi_siow from 0.0 to 0.12rr15/(:m2 after which there was saturation
(see Fig. 6). This shows that the strength of the slow potassium
conductance has a strong positive correlation predominantly with
the subharmonic component of the cross-frequency coupling
wherein frequencies (15-35 Hz) in the time-varying injected cur-
rent are phase-amplitude coupled with lower frequencies
(<15 Hz) in the EPSP output of the neuron consistently across mul-
tiple epochs.

To further investigate how subharmonic input-output coupling
is generated, we examined the power spectrum of the neuron out-
puts. The power spectrum showed a progressive increase in the
amplitude of low-frequencies (predominantly in 1-4 Hz) with an
increase of gix_sow While the amplitude of higher frequencies (>8
Hz) remained constant (see Figs. 7 and 8). Thus, with the increase
of gi_siow, there is de novo increase in power of the low-frequency
oscillations in the EPSP output of the neuron. Since the power of
the input frequencies remain constant, selective increase in power
of the low-frequencies in the output, results in progressive
increase of subharmonic cross-frequency coupling, as shown by
the n:m coherence measure.

Finally, we wanted to definitively implicate the slow potassium
channel as the sole source of the increase in low-frequency oscilla-
tions in the neuronal output. To do this, we first examined the tem-
poral profile and the corresponding power spectrum of the activity
of the gating variables of the three ion channels in our model i.e.
sodium, delayed rectifier potassium and the M-channel (see
Fig. 9a and b). For the same time-varying input, the temporal
dynamics of the slow potassium channel activation gate showed
significantly higher power in the low-frequencies (1-4 Hz) as com-
pared to the gating variables of the other ion channels. So, the
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Fig. 5. Linear (iso-frequency) coupling between the beta-band (15-35 Hz) input and the output of the neuron for all levels of gi_siow. No changes were seen in linear coupling
with increasing levels of peak slow potassium conductance, gk siow (P = 0.986). The shaded area indicates + SEM.

Fig. 6. Harmonic and sub-harmonic coupling (HC and SHC) between the beta-band (15-35 Hz) input and the neuron output for increasing values of peak slow potassium
conductance gi.s,w. Each coupling analysis was repeated 100 times, each time with a different realization of the Wiener noise added to the beta-band input in the same
signal-to-noise ratio as the original input (i.e. —3.3 dB, see Simulations and Fig. 1). For each level of gk_s,ow, the total amount of iso-frequency coupling (IFC), harmonic coupling
(HC) and sub-harmonic coupling (SHC) between the beta-band input and the summed EPSP signals from the set of 30 simulations was computed using n:m coherence. Thus,
there were 100 values of IFC, HC and SHC for each level of gi_,w. On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the
25th and 75th percentiles, respectively. Individual datapoints are plotted using the "+ symbol. Asterisks in superscript of the n" level indicate a significant change of the value

from the previous (n-1)™ level. (Tukey’s post hoc test, ** p < 0.001, * p < 0.05).

question that arises from this observation is how do the low-
frequency oscillations in the activity of the slow potassium gate
percolate to the neuronal membrane dynamics? To investigate
this, we examined the dynamics of the neuron on a phase plane.
The state of the neuron at any time-point corresponds to a point
on the phase plane. Since our neuron model is five-dimensional

(comprising of the neuronal output, activation, and inactivation
sodium gates and one activation gate each for the fast and slow
potassium currents), the complete phase plane for this model
would be a five-dimensional hyperplane. However, as observed
earlier, because of the slow time-scale of operation, low frequen-
cies are predominantly present in the activation variable my_go,
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Fig. 7. Power spectrum of the neuron output for increasing levels of peak slow potassium conductance gi. . For each level of gx_g,ow, the summed EPSP signals from 30 runs
of 190 s simulations were divided into 1 s non-overlapping epochs and the power spectrum was computed using the fast Fourier transform at 1 Hz resolution. With increasing
levels of gi_siows there is a progressive increase in power in the low frequencies (<8 Hz) whereas there is no change in power in the higher frequencies.

Fig. 8. Changes in power spectrum in the low frequencies (1-8 Hz). See label of Fig. 7 for details of the power spectrum was computed. On each box, the central mark
indicates the median power value, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. Individual epoch-wise power values are
plotted using the '+ symbol. There was progressive increase in power in the lower frequencies, especially in 1 Hz (Welch’s ANOVA: F(5,528.53) = 159.50, p < 0.001), 2 Hz (one
way ANOVA: F(5,1134) = 54.51, p < 0.001), 3 Hz (one way ANOVA: F(5,1134) = 70.73, p < 0.001) and 4 Hz (one way ANOVA: F(5,1134) = 67.0415, p < 0.001). Asterisks in
superscript of the n™ level indicate significant change of the value from the previous level. (Games-Howell/Tukey’s post hoc test, ** p < 0.001, * p < 0.05).

of the M—channel. Hence, we restricted the phase-plane analysis to
the neuronal output (i.e. the pooled EPSP) and my_g,wbecause these
are the most pertinent state variables for examining the emergence
of observed sub-harmonic input-output coupling. We conducted
the phase-plane analysis for low frequencies by band-pass filtering
the pooled EPSP and my_g, for each level of gi_sow (1-4 Hz cut-off,
2nd order Butterworth filter, see Fig. 10). Due to the presence of
noise in the input, the trajectory of the orbits exhibited jitter.
Despite the jitter, with increasing gy.siow the trajectory progres-

sively converged to a limit cycle attractor in a tighter fashion. This
result shows that with increasing gi._siw there was increased low-
frequency phase-locking between neuronal output and mg_gow
across epochs. Furthermore, to quantify the strength of phase lock-
ing, we measured the phase-locking value (PLV) between the slow
potassium channel activation gate and the neuronal output across
all the epochs for the different values of gx_s0n Using a generalized
phase coupling measure called multi-spectral phase coherence
(MSPC) (Benda and Herz, 2003). For any two time series x(t) and
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Fig. 9. Time profile of activation of the ion channel gating variables (peak slow potassium conductance, gx_sow = 0.09mS/cm?). The sodium activation and inactivation gates
(mpgandhy,) and the fast potassium activation gate (my) have dominant fast kinetics while the slow potassium gate (my_gj, ) has dominant slow kinetics. The traces show the
activity of the gates with the same input driving the neuron in its steady-state as described in Input signal in Methods. B: Power spectrum of the activity of the channel gates
in A. The slow potassium activation gate shows a larger amount of low-frequency activity (my_s.w) as compared to the other gating variables.

Fig. 10. Phase-portrait of the pooled activity of the slow potassium activation variable (my_goy ) vs. neuronal output (EPSP). The signals were band-pass filtered (2nd order
Butterworth, 1-4 Hz cut-off) to examine the degree of phase-locking at low frequencies with increasing peak slow potassium conductance (gx_,, ). The phase portrait was
constructed using data from 10 consecutive 1 s epochs in the steady-state condition (epochs no. 101 to 110).

y(t) with K epochs (i.e. trials), let X(f)and Y(f)be their Fourier
transforms. The multi-spectral MSPC at the d‘* order is defined as
the magnitude (denoted as /) of the complex measure called
multi-spectral phase coherency (denoted as ‘V): Y = ||, for quan-
tifying the d" phase coupling. The multi-spectral phase coherency
¥ is defined by:

K B R
Wy (f1.f2 frit, a2, Gr)g = Ze’zr:1 @@ r)-llz) - (16)

k=1

where fy is an output frequency of Y(f)as defined before,
f1,f5,- - frare the input frequencies of X(f), ®x(f,) is the phase of

X(f,)at the k™ epoch, a;,a,, - - - azare the weights of input frequen-
cies to corresponding output frequency fy and,

R
> larl=d (17)

Details about the computation of MSPC are given in Appendix A
of (Benda and Herz, 2003). As the magnitude of Wxy; MSPC(yxy)
reflects the consistency of phase difference over epochs. Like other
phase-synchrony measures, MSPC reflects the pure phase relation-
ship between two signals, independently of the signal’s amplitude.
The value of MSPC varies between 0 and 1, where 1 indicates that
the phase relationship is perfectly consistent across epochs, and 0
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Fig. 11. Strength of phase locking between the slow potassium channel activation gate (my_ge,) vs. pooled EPSP. The phase-locking value (PLV) was computed using the
multi-spectral phase coherence measure for 1-4 Hz (see Results for details of this measure). With increasing peak slow potassium conductance (g_g,,, ), the PLV was found to

increase till 0.12 mS/cm? beyond which there was saturation.

indicates that the phase relationship is completely random. In our
case, both the input and output frequencies are 1-4 Hz and d = 1
i.e. we are measuring the iso-frequency PLV (see Fig. 11). As in
NMC, 16 frequency pairs were included for Bonferroni corrections
(1-4 Hz in the input x 1-4 Hz in the output). With increasing peak
slow potassium conductance (g g,,), the PLV was found to
increase till 0.12 mS/cm? beyond which there was saturation.

4. Discussion

In this study, we examined the effect of a slowly activating out-
ward membrane current, namely the M—type potassium current
on the non-linearity in the output of a one-compartment Hodgkin
Huxley neuron. The sub-harmonic cross-frequency coupling
between the input and output of the neuron was found to increase
progressively with an increase in the peak conductance of the slow
potassium current while there was no change in the iso-frequency
coupling. We showed that this slow membrane hyperpolarization
mechanism generates low-frequency oscillations, which are not
present in the input, due to its slow time scale of operation.
Increasing the strength of the peak conductance of the channel
associated with this mechanism causes an increase in power in
the low frequencies (1-4 Hz) of the membrane voltage. It also
increases the low-frequency phase locking between the membrane
voltage and the channel activation variable across epochs.

An important question to address is what our results imply in
terms of the functional consequences of the observed changes in
neurocomputational properties. The ability of spike-frequency
adaptation (SFA) to influence information processing depends on
both the nature of the input the neuron receives as well as the nat-
ure of sampling employed by its downstream targets (Peron and
Gabbiani, 2009). SFA has been proposed to be a mechanism of
high-pass filtering that preferentially selects for fast stimuli over
slow ones (Benda et al., 2005). This has been shown to be particu-
larly important for sensory discrimination. For example, the
rapidly adapting electroreceptors in Apteronotus leptorhynchus
have a predilection towards fast communication stimuli (Steriade
et al, 1993). The frequency selectivity of pyramidal neurons in
the cortical map of these electroreceptors has also been shown to
be dependent on the expression of slow-potassium channels. How-
ever, as our simulation results show, the same slow membrane

mechanisms, when driven by a high frequency input (15-35 Hz),
can generate its own low-frequency (1-4 Hz) rhythm (Fig. 8A) that
subsequently leaks out into the neuronal activity (Fig. 6). Thus,
there is non-linear distortion of the output of the neuron in the
form of cross-frequency coupling between the input frequencies
to the neuron and these intrinsically generated low frequencies.
In fact, previous experimental studies have indeed implicated the
role of slow potassium currents in < 1 Hz neo-cortical oscillations
(Sanchez-Vives and McCormick, 2000; Steriade et al., 1993). Addi-
tionally, cholinergic blockade of these currents have been shown to
abolish the slow wave oscillations (Compte et al., 2003). A previous
computational study showed how transition to down states medi-
ated by the slowly adapting sodium-dependent potassium current
is responsible for generating slow (<1 Hz) neuronal oscillations
(Nishino et al., 2011). In line with these evidence, our work pro-
vides a quantitative approach to estimating the low-frequency
generation mechanism of slow-potassium currents while also
showing how the high-pass filtering function of these currents
may be distorted by the input-output cross-frequency coupling
induced by them.

The role of neuromodulators on slow outward membrane cur-
rents can also be insightful in the context of our results. For exam-
ple, acetylcholine is a central nervous system neuromodulator that
is of significant behavioral and functional importance. The level of
acetylcholine is elevated during alert, vigilant states and it is asso-
ciated with a global EEG desynchronization(Steriade, 2004),
increased power in higher frequency bands (Brécher et al., 1992)
and increased synaptic plasticity (Aiken et al., 1995). Acetylcholine
has also been shown to block slow membrane hyperpolarization
and SFA mediated by potassium currents (McCormick, 1993;
Gutkin and Ermentrout, 1998). From the dynamical systems point
of view, acetylcholine mediated modulation of slow potassium cur-
rent causes transition between Type 1 and Type 2 excitability
(Gutkin et al., 2003; Stiefel et al., 2008). A notable difference
between the two firing states is that the firing rate vs. injected cur-
rent (FI) curve is discontinuous in Type 2 neuron whereas it is con-
tinuous in Type 1 neuron. A related difference between the two
neuron types is the phase response curve (PRC) where the effect
of short depolarizing perturbations given during different phases
of the spiking cycle of the neuron is measured when it is being dri-
ven by a stable periodic frequency (Roach et al., 2019). While Type
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1 neurons show a monophasic response meaning a positive pertur-
bation will uniformly advance a spike generation, Type 2 neurons
are biphasic meaning depending on the timing of the perturbation
relative to the spiking cycle, the next spike maybe be either
advanced or delayed (Koch and Segev, 2000). Such biphasic modu-
lations of the inter-spike intervals can in turn lead to increased
cross-frequency input-output coupling (Markram et al., 2003;
Yang et al., 2018; Rekling et al., 2000). Our results provide quanti-
tative evidence of how this transition from Type 1 to Type 2
excitability changes the input-output frequency relationship of
the neurons. In fact, the reduction in cross-frequency input-output
phase coupling is another line of evidence of how high-
acetylcholine states may increase the fidelity of rate coding (i.e.
iso-frequency coupling).

The monoaminergic neuromodulatory system (serotonin and
noradrenaline) has profound and powerful effects on spinal
motoneuron excitability which in turn regulate their response to
cortical motor commands (Heckman et al.,, 2009; Sinha et al,
2020). One of the dominant mechanisms of serotonergic raphe
system-mediated cranial and spinal motoneuron excitability is the
suppression of the calcium-dependent slow potassium current
(Sinha et al,, 2020). Likewise, at the local spinal circuitry level,
cholinergic interneurons promote motoneuron excitability via M2
receptor-mediated reduction in the same slow potassium currents
(Miles et al., 2007). Thus, based on the results of our study, increased
neuromodulatory drive should reduce the input-output cross-
frequency coupling of the motoneurons. However, in our previous
study we had also observed a progressive increase in cross-
frequency phase coupling between the supraspinal input and the
output of the motoneuron pool as the number of interneuron layers
increased between them (i.e. as the drive to the motoneurons shifted
from the mono-synaptic to the multi-synaptic descending path-
ways) [71]. These observations open up the avenue of future studies
for further exploring the combined effects of mono vs multi-synaptic
descending pathways and the neuromodulatory systems (via their
effect on the slow potassium currents) on the input-output cross-
frequency coupling of spinal motoneurons.

5. Limitations and prospects

We acknowledged that there are a few limitations to the cur-
rent study. First, the range of peak conductances of the slow potas-
sium channel explored in this study was limited by the set of
parameters on which the neuron model was based (i.e. cortical
interneurons). However, the model is sufficiently minimalistic
and does not contain any specializations e.g. dendritic structures,
special ion channels, etc. which might affect the generality of the
findings. Second, since our study was at the single neuron level,
we did not consider the effect of neuronal connectivity at the net-
work level output while varying the strength of the slow conduc-
tance mechanism. Thus, the effect of slowly activating outward
membrane currents on the emergence of low-frequency oscilla-
tions at the neuronal ensemble level can be the prospect of future
studies. Thirdly, subtle differences in the mechanisms of different
outward membrane currents may affect neuronal encoding differ-
ently. For example, a previous study showed that slow outward
current mediated by calcium-dependent potassium channels
implement noise shaping that improves spike-rate coding of low-
frequency signals, whereas M—type currents implement high-
pass filtering that improves spike-time coding of high-frequency
signals (Aiken et al., 1995). The subtlety lies in the fact that
calcium-dependent potassium currents activate in a spike-
dependent manner while M-—currents are spike-independent.
Finally, as a logical extension, it will be interesting to compare
and contrast the effects of slow membrane hyperpolarization vs.
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depolarization mechanisms (like those mediated by persistent
inward currents) on the input-output non-linearity of neurons in
future studies.
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Appendix
EPSP

0\ (et
gsyn(t) = Zmax (E) e( e )

where gmax is the peak synaptic conductance and t. is the time
constant:

Emax =1 mS/cm2

t-=5 ms

Equilibrium potentials

Exa =50 mV; Ex = —90 mV;

E, = -70 mV*

* The leakage equilibrium potential was adjusted to vary the
mean firing rate per epoch in the range of 5-50 spikes/s for the
same time-varying input (see Input signal in Methods for details)

Table 1
Formulation of voltage-dependent ionic channels (Traub et al., 1991; Yamada et al.,
1989)

Ion channel Activation variable (m) Inactivation variable (h)
(Meei (V) = 0mif(0mi + Bmi)  (hoci (V) = otnif(0thi + Br,i)
(tmi (V) = 1/(“1111 * Bm,i)) (thi (V) = ]/(ah,i + Bh,i))
Na*+ _ —032(V-VT-13) o — 0.128(e~(V-VT-17)/18
Olm 72717 3 h . ( )
By — 02801 _40) Bn = o=
e 5 -1
K™ Om = 70.03/27%?1?711& -
_(v-vp10)
Pm =05e"a
slowK* (M*type) My K—slow = % -
1+e 10
TinK-slow = 336035720 ¢~ V535720 3ervfzsy,281ﬂ:eav+3s,\ 20
" Tmax =4S
Vr adjusts the spiking threshold, see Table 1 of [35] for the full range of values (for
regularly spiking neurons,mean = -61.5 + 3.2 mV)In our model,we used
Vr = —60.0mV.
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Neuron parameters (Pospischil et al., 2008)

gy =50 mS cm™2; g, =5 mS cm™?;

ik sow* =0.0-0.18 mS cm™2; g, =0.1 mS cm?;

* The gx_q0w DParameter was varied in the simulations (see Sim-
ulations in Methods for details)

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jtbi.2020.110509.
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