
1.  Introduction
The ability to accurately determine the temporal evolution of globally averaged ocean quantities (e.g., 
temperature, salinity, and sea level) is essential for monitoring and predicting the Earth's climate but ulti-
mately difficult to achieve (Wunsch, 2016). Despite strong advances made in the implementation of global, 
multi-platform (in situ and satellite) climate and ocean observing systems (Houghton et al., 2012; Speich 
et al., 2019), many challenges remain when trying to achieve sufficient coverage over the vast global oceans. 
Satellites can probe globally at reasonable sampling frequency but are very limited when it comes to meas-
uring the ocean interior; in situ instruments can sample the subsurface but suffer from limited spatiotem-
poral coverage.

In any observational system, built-in redundancy, which allows the same quantity to be measured by two or 
more independent methods, is ideal for cross-calibration and uncertainty quantification. Such is the incipi-
ent case, for example, with global mean sea level: satellite altimetry on one hand and space gravity (Lander-
er et al., 2020; Tapley et al., 2019) and in situ Argo floats (Roemmich et al., 2009, 2019) on the other provide 
two independent estimates that can be compared for consistency (WCRP,  2018). These same observing 
platforms, which overlap since ∼2002 despite some heterogeneity in spatiotemporal coverage, together with 
information on sea ice, can in principle be used to assess global mean ocean salinity S  (Munk, 2003)—a key 
indicator of the Earth's freshwater budget, in particular the associated transfers between the ice and terres-
trial water reservoirs and the ocean.

Llovel et al. (2019) have recently used in situ estimates of S  to check the trends in ocean mean mass in-
ferred from the Gravity Recovery and Climate Experiment (GRACE) mission (Tapley et al., 2019), finding 
reasonable agreement between the two different measurements for the period 2005–2015. Assessing the 
variability at seasonal and interannual time scales is, however, also of primary interest in climate studies. 
In addition, given the evolution of all observational systems—for example, new Argo floats (Roemmich 
et al., 2019), gaps and changes between GRACE and GRACE Follow-On (GRACE-FO) missions (Landerer 
et al., 2020)—it is important to continuously monitor their consistency. Recent examination of sea level 
budgets portrayed by satellite altimeter, gravity, and in situ observations have pointed to substantial incon-
sistencies since ∼2015 suggestive of problems with one or more of the data sets (Chen et al., 2020). Here 
we assess if, over the most well-observed period since 2005, the in situ salinity and satellite gravity data can 
be the basis for accurate and consistent estimates of seasonal, interannual and long-term changes in S  or 
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equivalently in global mean freshwater content in the oceans. Our findings have important implications for 
global mean sea level studies as well.

2.  Data and Methods
2.1.  Salinity Products

Five different gridded salinity fields (Liu et al., 2020), based on in situ data mostly from the Argo Program 
(Roemmich et al., 2009, 2019), were used to estimate S . These Argo-based analyses are: the Barnes objec-
tive analysis (BOA) from the Chinese Second Institute of Oceanography (Li et al., 2017); the EN4.2.1 prod-
uct (or EN4 for short) from the UK Met Office (Good et al., 2013); the variational interpolation product 
from the International Pacific Research Center (IPRC) available from http://apdrc.soest.hawaii.edu/pro-
jects/argo/; the Monthly Objective Analysis using Argo (MOAA) from the Japan Agency for Marine-Earth 
Science and Technology (Hosoda et al., 2008); and the Roemmich-Gilson (RG) Argo Climatology from 
the Scripps Institution of Oceanography (Roemmich & Gilson, 2009). All data sets were available at and 
downloaded from https://argo.ucsd.edu/data/argo-data-products. With the exception of MOAA and EN4, 
these analyses use exclusively Argo data to produce optimally interpolated fields at monthly intervals and 
a spatial resolution of 1°. The EN4 analysis provides near-global and full-depth coverage, while the others 
have much less coverage of the high latitudes, and also shallow coastal regions and marginal seas, and 
are everywhere restricted to depths shallower than 2,000 m. For all these products, S  is estimated as the 
volume-weighted average of the available salinity fields for the period 2005–2019. For EN4, aside from full-
depth estimates, values of S  based on the upper 2,000 m are also provided (denoted as EN4-2k). We also 
consider averages with all products restricted to latitudes 60°N-60°S, to examine the sensitivity of results 
to inclusion of high latitudes.

2.2.  Gravity Data

Global mean monthly series, representing the combined total mass of ocean plus sea ice and overlying 
snow, are derived from both GRACE and GRACE-FO missions (Wiese et al., 2019). The data, accessed on 
February 24, 2020, are based on the Jet Propulsion Laboratory mascon solutions (Watkins et al., 2015) that 
use the Coastal Resolution Improvement filter. Available monthly values from 2002 to 2019 are used in this 
work, with no attempt to fill missing values due to data dropout and the gap between GRACE and GRACE-
FO missions (Wiese et al., 2019).

2.3.  Sea Ice and Snow Products

For continuous, global values of sea ice and snow volume over the period of analysis, we use two different 
estimates both based on ocean-sea ice models constrained by data assimilation. In one case, monthly grid-
ded effective sea ice thickness and water equivalent snow depth data are produced by the Global Ice/Ocean 
Modeling and Assimilation System (GIOMAS) and based on the global Parallel Ocean and sea Ice Model, 
run with data assimilation (Zhang & Rothrock, 2003). Values for the period 2005–2019 were downloaded 
from https://pscfiles.apl.uw.edu/zhang/Global_seaice/. The equivalent water thickness from the combined 
sea ice and snow is calculated by multiplying the respective values by the GIOMAS grid-cell areas, summing 
over the domain and dividing by the global ocean surface area (3.6 × 1014 m2).

A similar calculation is performed using the sea ice and snow thickness fields from the state estimates 
produced by the Estimating the Circulation and Climate of the Ocean (ECCO) project. The ECCO Version 
4 Release 4 (ECCO et al., 2020; Forget et al., 2015) used here covers the period 1992–2017 and assimilates a 
variety of observations including in situ temperature and salinity profiles, satellite sea surface temperature, 
salinity and height, and ocean bottom pressure from GRACE and GRACE-FO. Output was downloaded 
from https://ecco.jpl.nasa.gov/drive/files/Version4/Release4.
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3.  Monitoring Changes in S
Estimating S  from in situ measurements involves mapping the sparse sampling into a globally gridded field 
and integrating over the volume covered by the data. Quasi-global sampling was only achieved by the Argo 
Program ∼2005 (Roemmich et al., 2009), with the Program approaching the full deployment target of ∼3000 
floats in ∼2007 (cf., Figure 6, Wong et al., 2020). Nevertheless, one major issue is still the poor coverage 
below 2,000 m and also at high latitudes, particularly those covered by sea ice, and shallow coastal regions, 
including marginal seas. Another issue is the aliasing of undersampled small scales onto the spatial mean.

The five gridded salinity products from different groups described in Section 2.1, based primarily on Argo 
profiles but also using other data, and commonly analyzed in salinity studies (Liu et  al.,  2020; Llovel 
et al., 2019), are used here to estimate S  for the period 2005–2019. A comparison of all the monthly series 
(Figure 1) reveals a wide spread in variability, which indicates considerable sensitivity of S  estimates to the 
choice of data and their quality control as well as mapping methods. Larger spreads are seen in early years 
(2005–2007), when there was less Argo data available (Wong et al., 2020), and also after ∼2015, when all 
series except RG exhibit substantial increases. Apart from these features, there is no clear seasonal cycle in 
a relatively large month-to-month variability that seems somewhat incoherent among the different series.

Differences in the EN4 and EN4-2k curves (Figure 1) suggest sensitivity to vertical coverage. In particular, 
the rise after 2015 seems considerably larger in EN4-2k than in EN4, and closer to most of the other series. 
In addition, differences with estimates restricted to latitudes 60°N-60°S are largest for EN4 and EN4-2k, as 
expected (Figure 1). Clear seasonal differences indicate the importance of high latitudes to the seasonal cy-
cle in S . More generally, effects of high latitudes yield differences that are comparable in magnitude to the 
spread and can be an important source of uncertainty in the in situ estimates of S .

An alternative method for calculating S  essentially amounts to monitoring changes in the weight of the 
ocean, which represent the net exchange of freshwater with the land, atmosphere and cryosphere (assuming 
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Figure 1.  (Top, left axis) Monthly time series of S  calculated from five different gridded in situ salinity products: Barnes objective analysis (BOA, Li 
et al., 2017), EN4 (Good et al., 2013), International Pacific Research Center (IPRC, http://apdrc.soest.hawaii.edu/projects/argo/), Monthly Objective Analysis 
using Argo (MOAA, Hosoda et al., 2008), and Roemmich-Gilson (RG, Roemmich & Gilson, 2009). The EN4 series is the only based on a global product; EN4-
2k uses only values over the upper 2,000 m, similar to the other series. (Bottom, right axis) Color curves denote differences between S  series based on data 
restricted to latitudes 60°S-60°N and those in the top panel. Black curve represents the spread in S  values in top panel, calculated as the standard deviation of 
the BOA, EN4-2k, IPRC, MOAA, and RG series for each month.
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negligible changes in salt content). Expressing changes in freshwater as an equivalent water thickness 
change δhfw, the fractional change in S  is approximately equal and of opposite sign to the fractional change 
in ocean volume or mean depth (Munk, 2003; Wunsch, 2018), that is,

  0
0

fwhS S
H

� (1)

with 0S  being a reference mean salinity value and H0 being the average ocean depth. The launch of GRACE 
in 2002 and GRACE-FO in 2018 (Landerer et al., 2020; Tapley et al., 2019) essentially provides a measure of 
δhfw + δhsi, where δhsi represents changes in freshwater contained in floating sea ice and snow, in equivalent 
water thickness, and positive values for δhfw, δhsi denote increases in freshwater of respective reservoirs. 
Inferring δhfw from gravity data requires a separate estimate of δhsi. In addition, although gravity measure-
ments are truly global, coarse spatial resolution (∼300 km) can make it difficult to separate land and ocean 
mass changes (Watkins et al., 2015).

The monthly time series of δhfw + δhsi in Figure 2, based on GRACE and GRACE-FO data described in Sec-
tion 2.2, shows a clear upward trend (2.1 ± 0.3 mm/yr (Wiese et al., 2019)) and a seasonal cycle of ∼1 cm 
amplitude and maximum in September/October, with weaker interannual fluctuations. Typical 1-sigma 
uncertainties for the monthly values are 0.3–0.4 mm (Wiese et al., 2019), including the effects of leakage 
errors estimated as in Wiese et al. (2016). The observed variability, corresponding to that of barystatic sea 
level, is within the expected bounds provided by independent satellite measurements of global mean sea 
level, which contain also the effects of changes in global mean thermosteric changes (WCRP, 2018).

Separate estimates of δhsi, obtained from the ECCO and GIOMAS ocean/sea ice data assimilation products 
described in Section 2.3, can be used to remove effects of changes in sea ice and snow mass from the space 
gravity measurements. The resulting δhfw series (Figure 2) shows a considerably larger seasonal cycle, rep-
resenting a strong seasonality in δhsi that is out-of-phase with δhfw (i.e., changes in sea ice and snow mass 
result in opposite changes in ocean freshwater content, as expected from a primary exchange between the 
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Figure 2.  Monthly time series of δhfw + δhsi, in mm of water thickness, based on Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On 
measurements, and δhfw, based on latter series corrected by estimates of sea ice and snow thickness δhsi from the Estimating the Circulation and Climate of the 
Ocean (ECCO) and Global Ice/Ocean Modeling and Assimilation System (GIOMAS) products. Gaps in the gravity data are left blank.
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two reservoirs). In contrast, only a slightly more positive trend results from removing effects of δhsi, repre-
senting a relatively small decrease in sea ice and snow mass over the period of analysis. Differences in the 
ECCO- and GIOMAS-based δhfw series are most evident at the seasonal timescale: GIOMAS has a stronger 
seasonal cycle in sea ice over the Southern Ocean, which leads to a larger annual peak in δhfw. Such differ-
ences give a sense of uncertainty in available δhsi estimates.

4.  Assessing S  Series
How consistent are the in situ estimates of S  in Figure 1 and those that can be inferred from δhfw values in 
Figure 2? We examine separately the mean seasonal cycle, interannual variability, and long-term trends. 
Values of δhfw are converted to changes in S  using Equation 1 with H0 = 3,682 m (Charette & Smith, 2010) 
and 0 34.7S  g/kg (Wunsch, 2018).

The mean seasonal cycle, calculated by averaging all the January, February,…, December values for each 
series (Figure 3), exhibits widely different behavior among the in situ products. Curves from EN4, IPRC and 
BOA contain a visible annual cycle, but times of high and low S  can differ by up to 3 months. No apparent 
annual cycle is seen for MOAA series. The seasonal cycle for RG is weaker with a minimum in March but 
no clear maximum. Compared to in situ series, the seasonal cycle based on estimates of δhfw tends to be 
weaker and smoother, with high S  in May and low S  in September; accounting for sea ice effects introduces 
noticeable phase deviations from a pure annual cycle (Figure 3). There is little agreement with most in situ 
series. The closest match is with EN4, although the latter has substantially larger amplitudes and is shifted 
in phase by at least one month. Using ECCO or GIOMAS for the δhsi correction yields relatively minor dif-
ferences, compared to the spread in in situ S .

Interannual variability in S  shows a large range (∼5 × 10−3) for in situ estimates (Figure 4), which is equiv-
alent to δhfw ∼50 cm! As noticed in Figure 1, a large part of this range is due to the rise in S  after 2015, 
which is clear for all in situ series except RG. Such rise is likely related to known but not easily removable 
salinity biases in some batches of recently deployed Argo floats (Roemmich et al., 2019). The RG prod-
uct seems to have stricter quality control of the affected instruments. In any case, typical year-to-year S  
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Figure 3.  Mean seasonal cycle in S  (g/kg) for all in situ and GRACE-based estimates shown in Figures 1 and 2. Month 1 corresponds to January. Equivalent 
changes in freshwater content, in mm of water thickness, are given on the right y-axis.
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changes equivalent to several cm in δhfw are seen in all in situ series. Over all, the interannual variations in 
in situ S  estimates are clearly unrealistic when compared to observed variability in global mean sea level 
(WCRP, 2018). The interannual variability for δhfw-based series is more than an order of magnitude smaller. 
The most conspicuous change is the long-term negative trend in S , with the effects of sea ice adding visible 
year-to-year variations, particularly in the second half of the record.

Linear trends in in situ S  calculated for 2005–2019 (Table 1) are largely affected by the apparent systematic 
biases after ∼2015. Trends for 2005–2015 are much smaller, except for IPRC and MOAA series, which show 
still unrealistic positive values. Negative trends are seen for EN4 and RG series, but with considerable un-

certainty (Table 1). The GRACE-derived estimates, in contrast, indicate a 
decrease in S  stable across both periods and clearly distinguishable from 
zero, given formal trend errors. Effects of sea ice are relatively small for 
2005–2015, but tend to yield a stronger negative trend over 2005–2019, 
suggesting an increased role of sea ice melting in S  changes in most re-
cent years.

5.  Interpretation and Conclusions
The spread in behavior among all in situ S  estimates, for all time scales 
examined (Figures 3 and 4; Table 1), indicates their sensitive dependence 
on particular choice of data, quality control procedures, and mapping 
methods. These sensitivities are exacerbated by the acknowledged sparse 
in situ data sampling, including deep and high latitude regions with very 
few measurements. As already noted, including depths >2,000 m makes 
a visible difference in the case of the two EN4 series, both for the seasonal 
cycle (Figure 3) and the interannual variability (Figure 4). Given that, not 
much seasonal variability is expected in the abyssal ocean, such differ-
ences are suggestive of sampling issues.
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Figure 4.  Annual mean S  series for various products as in Figure 3. The curves based on gravity data have been multiplied by 10 for better visualization.

Products 2005–2019 2005–2015

BOA 2.37 ± 0.20 0.12 ± 0.17

EN4 1.41 ± 0.13 −0.14 ± 0.16

EN4-2k 2.95 ± 0.24 0.04 ± 0.27

IPRC 3.06 ± 0.18 1.82 ± 0.23

MOAA 3.23 ± 0.15 1.62 ± 0.17

RG 0.35 ± 0.12 −0.12 ± 0.18

GRACE −0.21 ± 0.01 −0.22 ± 0.02

GRACE − δhsi (ECCO) −0.22 ± 0.03 −0.21 ± 0.04

GRACE − δhsi (GIOMAS) −0.25 ± 0.02 −0.20 ± 0.03

aValues given for various in situ and gravity-based estimates of S . 
Calculations are based on annual mean series in Figure 4. Value in bold 
represents the period 2005–2017.

Table 1 
Linear Trends and Standard Errors for S  (10−4 g/kg/yr)a
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Horizontal data coverage can be equally important. Restricting the volume integral of EN4 salinities to 
lower latitudes, corresponding to the horizontal extent of Argo-based products, leads to substantial changes 
particularly for the seasonal cycle (Figure 1), indicating that changes in salinity at high latitudes are im-
portant to determine S . The finding is consistent with the result that seasonal variations in sea ice mass 
contribute substantially to the total freshwater content in the oceans (Figure 2).

Most importantly, results also indicate that in situ values of S  can have systematic biases. These biases are 
large enough to affect estimates of global mean steric sea level. In particular, the spurious rise in S  after 
2015, seen in all series except RG, is equivalent to δhfw changes of ∼20–40 cm (Figure 4). Using Munk's fac-
tor of 1/36.7 to convert δhfw to halosteric sea level (Munk, 2003) yields a decrease of the order of 5–10 mm. 
This is of the same magnitude and sign of discrepancies seen in comparisons between global mean sea level 
altimeter estimates corrected for steric effects and barystatic sea level based on GRACE and GRACE-FO 
data (Chen et al., 2020). Our analyses indicate that a considerable portion of discrepancies found in Chen 
et al. (2020) can be explained by the biased in situ salinity data since 2015.

Estimates based on δhfw measurements, which are consistent with contributions of freshwater to global 
mean sea level budgets (WCRP, 2018), provide at this point a more reliable method to arrive at S  than the 
in situ measurements. In particular, long-term trends and interannual signals are relatively weak and can 
be overwhelmed by issues with in situ sampling. The δhfw-based estimates of S  can serve as a consistency 
check on in situ measurements, revealing potential unknown biases and providing a way to cross-calibrate 
those data. Cross-calibration of gravity-based estimates of δhfw + δhsi is already routinely carried out against 
independent estimates obtained from differencing global mean sea level and thermosteric sea level, calcu-
lated from satellite altimetry and Argo temperatures, respectively (WCRP, 2018).

We have explored how having estimates of δhfw + δhsi from space-based methods and separate knowledge 
of δhsi can allow one to estimate S . Knowledge about δhsi is, however, also scarce. Conversely, having a 
good estimate of S  from in situ measurements, one could use its equivalent δhfw values to remove effects of 
ocean freshwater content on the space gravity estimates to arrive at improved values of δhsi. Improvements 
in sampling from in situ measurements, including the implementation of deep profiling floats and better 
coverage of high latitude, ice-prone regions, promise to provide further redundancy and consistency checks 
on all these essential climate variables.

Data Availability Statement
All data used in this study are publicly available at the following sites: salinity (https://argo.ucsd.edu/
data/argo-data-products); GIOMAS sea ice (https://pscfiles.apl.uw.edu/zhang/Global_seaice/); ECCO sea 
ice (https://ecco.jpl.nasa.gov/drive/files/Version4/Release4); GRACE and GRACE-FO (https://podaac.jpl.
nasa.gov/dataset/TELLUS_GRAC-GRFO_MASCON_CRI_GRID_RL06_V2).
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