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ABSTRACT

Salinity is one of the fundamental ocean state variables and has been used to infer important information

about climate change and variability. Previous studies have found inconsistent salinity variations in various

objective ocean analyses that are based on the Argo measurements. However, as far as we are aware, a

comprehensive assessment of those inconsistencies, as well as robust spatial and temporal features of salinity

variability among the Argo-based products, has not been conducted. Here we compare and evaluate ocean

salinity variability from five objective ocean analyses that are solely or primarily based on Argo measure-

ments for their overlapping period from 2005 to 2015. We examine the salinity variability at the sea surface

and within two depth intervals (0–700 and 700–2000m). Our results show that the climatological mean is

generally consistent among all examined products, although regional discrepancies are evident in the sub-

surface ocean. The time evolution, vertical structure, and leading EOFmodes of salinity variations show good

agreement among most of the examined products, indicating that a number of robust features of the salinity

variability can be obtained by examining gridded Argo products. However, significant discrepancies in these

variations exist, particularly in the subsurface North Atlantic and Southern Oceans. Also, despite the in-

creasing number of Argo floats deployed in the ocean, the discrepancies were not significantly reduced over

time. Our analyses, particularly those of the discrepancies between products, can serve as a useful reference

for utilizing and improving the existing objective ocean analyses that are based on Argo measurements.
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1. Introduction

Salinity is one of the fundamental ocean variables that

are routinely measured, and variations in salinity have

been used extensively in climate studies. First, ocean

salinity is strongly impacted by air–sea freshwater ex-

change, land freshwater discharges, sea ice formation

and melting, and ocean dynamics (Rao and Sivakumar

2003; Foltz et al. 2004; Dong et al. 2014; Haumann et al.

2016; Liu et al. 2019). Since salinity is easier to measure

than the air–sea freshwater flux, the surface and/or near-

surface salinity is often used as a ‘‘rain gauge’’ (Schmitt

2008) for understanding changes in the global water cycle

(Hosoda et al. 2009; Helm et al. 2010; Durack et al. 2012;

Skliris et al. 2014). Second, despite being an order of

magnitude smaller than the thermal contributions (Durack

et al. 2014), changes in ocean salinity also contribute to

long-term sea level change. On basin scale, in particular,

various studies have highlighted the importance of salinity

to regional halosteric changes for different time scales

(Llovel et al. 2011; von Schuckmann and Traon 2011). For

instance, the long-term trends in thermosteric and halo-

steric changes compensate in the Atlantic Ocean from the

1950s to the 1990s (Levitus et al. 2005).

The description of ocean salinity variations largely re-

lies on available observational datasets (e.g., the WorldCorresponding author: Chao Liu, chaoliu@udel.edu
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Ocean Database 2013). Since 2001, the Argo Program,

utilizing a large number of autonomous floats, has be-

come one of the essential components of the present

global ocean observing system (Argo 2000). This pro-

gram has allowed for the first time a nearly global sam-

pling of the upper 2000m ice-free ocean with relatively

small bias since about 2005 (Roemmich et al. 2009;

Abraham et al. 2013). A number of institutions have

developed gridded data products and analyses solely or

primarily based on Argo measurements of temperature,

salinity, and pressure using different statistical methods.

These gridded Argo products have been widely used and

are usually considered as the ‘‘truth’’ with some mea-

surement uncertainties (e.g., Chang et al. 2013; Wang

et al. 2017).

As many studies have revealed, however, significant

discrepancies appear among these gridded Argo prod-

ucts (Lee 2016; Trenberth et al. 2016; Wang et al. 2018).

A large portion of these differences relate to the map-

ping techniques for filling the gaps in time and space

(Abraham et al. 2013; Boyer et al. 2016). Moreover,

systematic errors also exist in the Argo autonomous

measurements (Jayne et al. 2017). For instance, a large

portion of real-time profiles might be subject to salinity

errors larger than the 0.01 accuracy criterion since 2016

(Roemmich et al. 2019). Substantial variations (.2mm)

in global halosteric time series after 2015 have also been

reported (Wang et al. 2017), which, however, are in-

consistent with recent Gravity Recovery and Climate

Experiment (GRACE)-observed ocean mass changes

(Llovel et al. 2019). Since this drifting had happened for

several years until it was found within the last two years,

it can be a problem for both the real-time and delayed-

mode data. In this study, due to the reported systematic

salinity errors, we will focus on the global and regional

salinity changes from 2005 to 2015.

The existence of significant discrepancies among grid-

ded Argo products suggests that estimates of temporal

variability and decadal trends in ocean salinity are likely

product-dependent. While there have been a number of

assessments of the salinity products from various ocean

reanalyses and selected objective analyses that are based

on Argo measurements (Xue et al. 2012; Chang et al.

2013; Shi et al. 2017; Li et al. 2019), it is necessary to revisit

the global- and basin-scale salinity changes on decadal

scales and examine the robust features as well as the

discrepancies among the Argo products that have been

overlooked in the past.

In this study, we conducted an assessment of five se-

lected Argo-based gridded salinity products and revealed

what level of consensus and discrepancies can be achieved.

The detected uncertainties between different objective

analysis (OA) products will further provide an important

basis for future ocean salinity analyses. This paper is or-

ganized as follows. Data and methods are described in

section 2. An intercomparison of salinity variations at the

near surface andwithin two layers (0–700 and 700–2000m)

is presented in section 3. A summary and discussion of the

results are given in sections 4 and 5.

2. Data and methods

a. Gridded salinity datasets

Five Argo-based salinity gridded products are ana-

lyzed in this study, including the EN4 ocean objective

analysis from the U.K. Met Office (Good et al. 2013),

the Roemmich–Gilson Argo climatology from the

Scripps Institution of Oceanography (RG; Roemmich

and Gilson 2009), the grid point value of the monthly

objective analysis using Argo data (MOAA) (Hosoda

et al. 2008), the International Pacific Research Center

(IPRC) Argo product (IPRC 2019), and the global

ocean Barnes objective analysis Argo gridded dataset

(BOA; Li et al. 2017). Thesemonthly products have the

same horizontal resolution of 18 3 18 and the over-

lapping time span of 2005–15. We chose these five

gridded products because they are often used in Argo-

related studies that included more than one OA

product (e.g., Trenberth et al. 2016; Wang et al. 2017,

2018). They are of the same spatial resolution and

regularly updated.

For the purpose of global analysis, we will focus on the

ice-free open ocean between 608S and 608N (Roemmich

et al. 2009), although increasing numbers of Argo floats

have been deployed in the polar regions (Jayne et al.

2017). We also converted the pressure levels to depths

and removed the seasonal signal by fitting and removing

annual period sinusoids at each grid point, which pro-

vides similar results to those obtained by removing a

climatological seasonal cycle (not shown).

Although the discrepancies among the five products

cannot reveal any common errors (e.g., drift in salinity

observations), they can reveal uncertainty that is caused

by different center-specific processes, including map-

ping methods, data editing, and additional non-Argo

data. One of themajor differences among the products is

that IPRC, RG, and BOA only utilize the temperature

and salinity measurements from Argo, while EN4 and

MOAA include other data such as from mooring arrays

and ship-based observations. These two datasets are also

the only ones that used a pre-Argo baseline climatology,

making it difficult to differentiate the associated dis-

crepancies and identify the actual sources (i.e., from the

climatology or the raw data). However, since profile data

from Argo substantially outnumber other forms of
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observations since the early 2000s (Durack 2015),

differences in data sources are initially considered as an

insignificant factor in the observed discrepancies on the

global and basin scales.

In comparison, prior studies show that the mapping

methods are a major source of the discrepancies in the

gridded products (Boyer et al. 2016). Of the selected

five products, BOA uses objective interpolation

technique based on Barnes successive correction

method (Barnes 1964), while IPRC uses a variational

analysis technique (IPRC 2019), which includes cal-

culated dynamic height from satellite data. The other

three products are all based on optimal interpolation

methods using slightly different methodology and

covariance functions (Hosoda et al. 2008; Roemmich

and Gilson 2009; Good et al. 2013). As already

mentioned, EN4 and MOAA also use pre-Argo

baseline climatology [World Ocean Atlas (WOA)

1998 and 2001, respectively] whereas others are

more recent.

In addition, the vertical grids of salinity profiles vary

among the five objective analyses (Fig. 1). As most

Argo data are only available in the upper 2000m,

Argo-only datasets (i.e., BOA, RG, and IPRC) have a

lower limit around 2000m. BOA and RG have the

highest number of vertical layers and almost identical

spacing. Meanwhile, EN4, which provides full depth data,

has a similar number of layers to MOAA and IPRC in the

upper 2000m, but most of its layers are concentrated in

the top 300m. Such differences will also contribute to the

overall discrepancies (e.g., Toyoda et al. 2017). While this

study is mostly focused on vertically averaged layers, the

effects of different vertical spacing are also briefly discussed

[see section 3b(1)].

b. Comparison strategy

Many studies have found substantial variability and

change in ocean salinity in the upper 700m of the global

ocean (e.g., Boyer et al. 2005; Durack andWijffels 2010;

Shi et al. 2017). Basin-scale salinity changes are also

found in the deeper ocean (below 700m), which are

associated with density compensation, circulation

changes, and water mass changes (e.g., Curry et al.

2003; Durack et al. 2014; Purkey et al. 2014; Storto et al.

2017). To be consistent with the previous studies, we

will examine salinity variations on three depth inter-

vals: the near surface (the vertical average of the top

20m), 0–700m, and 700–2000m.

The ensemble mean (SESM) and ensemble spread

[SSPD; modified from Balmaseda et al. (2015), Shi et al.

(2017), and Xue et al. (2017)] are used to analyze the

agreements and disagreements of the five gridded prod-

ucts. At each grid point, SESM is given by

SESM 5
1

N
�
N

n51

S
n
, (1)

where N is the total number of Argo products (N 5 5),

and Sn represents the salinity from individual objective

analyses at each time and space grid point (e.g., BOA,

IPRC). The averaging involved in SESM will diminish

random and quasi-random errors among the datasets

(Balmaseda et al. 2015).

The ensemble spread of the gridded Argo products

about the corresponding SESM is calculated as

SSPD 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

n51

(S
n
2 SESM)2

s
. (2)

The difference of each product from the ensemble mean

is also calculated, and the largest difference (absolute

value) among all products is recorded as the ‘‘largest

deviation’’ (SLDT). Values of SLDT and SSPD reflect the

uncertainties that are mostly induced by different

mapping methods, baseline climatology, and vertical

resolutions. While we cannot directly tell the origin of

the discrepancies solely from SLDT and SSPD, such in-

formation can be inferred by comparing the products in

groups based on their common techniques. Low SSPD

indicates the results are robust (i.e., products are similar

among themselves), and SLDT shows the product that

deviates the most from SESM.

Here we consider SLDT in addition to SSPD to account for

the fact thatwehave a small number of samples (N5 5) and

the standard deviation does not likely reflect the full distri-

bution. Identifying products associated with the largest de-

viations will detect significant outliers that may not be

apparent in the standard deviation value due to clustering in

some of the analyses. In addition, since not all the datasets

provide a corresponding error matrix (e.g., BOA, IPRC),

we assumed that these Argo-based analyses are of similar

quality when calculating SESM and SSPD (Balmaseda et al.

2015). It should be noted that neither the individual Argo

products nor SESM should be simply considered as an

FIG. 1. Vertical grids of the selected gridded products. The

number of levels (from the sea surface to 2000m) for each product

is labeled in parentheses.

15 OCTOBER 2020 L IU ET AL . 8753

Brought to you by University of Delaware Library | Unauthenticated | Downloaded 08/04/21 05:49 PM UTC



equivalent to the ‘‘truth’’ due to the spatially and tem-

porally uneven distribution of Argo floats and low

number of samples averaged.

3. Results

a. Mean state

The spatial patterns of SESM, the temporally averaged

ocean salinity (S), are presented in Fig. 2 together with

the corresponding SSPD and SLDT. The geographical pat-

terns of salinity for the surface and subsurface layers are

evidently different (Fig. 2, left column). The pattern of

sea surface salinity (SSS), which is strongly affected by the

air–sea freshwater exchange (Yu 2011), is strongly zonal

(Fig. 2a). Basin-scale patches can be found in the verti-

cally averaged salinity (Figs. 2d,g) and roughly reflect the

spatial distribution of the subsurface water masses. We

can clearly see the relatively freshwater in the North

Pacific and the Southern Ocean, and the highly saline

Mediterranean Outflow Water, which is an important

modulator of the North Atlantic salt budget below 700m

(Voelker et al. 2006). Overall, the 0–700 and 700–2000m

vertically averaged salinity distribution shows a combi-

nation of a large range of factors, including various forms

of mode, intermediate, and deep water masses.

Although regional features of S are generally robust

among the products, the distribution of SSPD (Fig. 2,

center column) shows that the discrepancies on clima-

tological meanoften exceed 0.02 for the surface, and 0.01 for

the subsurface. At the surface, high values of SSPD appear in

the major ocean current systems (e.g., the Gulf Stream, the

Eastern Equatorial Countercurrent, and the Agulhas

Return Current), where mesoscale eddies and sharp salinity

fronts are challenging to resolve with Argo floats (Fig. 2b).

These regions are also poorly sampled in general

(Vinogradova et al. 2019), and the sparse observations

can lead to high sampling errors in the mapping process

(Kosempa and Chambers 2016). Similar differences are

found in the 0–700m and the 700–2000m layers, except

that values of SSPD are smaller by a factor of 2–3. Overall,

the sampling errors associated with sparse float observa-

tions introduce large uncertainties into the products an-

alyzed in the current study.

Values of SLDT (Fig. 2, right column) and the differences

ofS betweeneach griddedproduct andSESM (Fig. 3) provide

further information on the discrepancies. For instance, one

of the largest deviations at the surface comes from IPRC

(Fig. 2c). The zonal pattern in the IPRC residuals (Fig. 3j) is

likely due to the use of an absolute dynamic height model

(ADH), which can be viewed as a streamfunction of

FIG. 2. Distribution of (left) the ensemble mean of the temporally averaged salinity over 2005–15 (SESM), (center) its ensemble spread

(SSPD), and (right) largest deviation (SLDT) for (a)–(c) sea surface, (d)–(f)0–700m, and (g)–(i) 700–2000m. The regular-font numbers in

the SSPD panels indicates the areamean of each basin, and the bold italic number is its globalmean. The SLDT panels only depict the sources

of the deviations that are larger than 1/8 of SSPD maximum, not the actual values.
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FIG. 3. Comparison of (a)–(c) SESM and (d)–(r) the deviations of each gridded product from SESM for different layers. Shown are BOA,

EN4, IPRC, MOAA, and RG for (left) sea surface, (center) 0–700m, and (right) 700–2000m.
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geostrophic circulation; shifts in strength and position of

zonal currents will influence the three-dimensional

spatial grid.

In comparison, EN4 and MOAA show large-scale de-

viations in the subsurface layers (e.g., Figs. 2f and 2i).

These deviations highlight the importance of data selection

andchoiceof climatological field (the ‘‘first guess’’) sinceEN4

and MOAA are the only two products applying pre-Argo

baseline climatology. More specifically, the baseline

climatology of EN4 approximately represents the aver-

age over 1971–2000 with a mean time in 1985 with sparse

observations, which is approximately 25 years older than

that of RG and BOA. Such difference on baseline cli-

matology can lead to large-scale bias (Figs. 3g–i). For

instance, the disagreements in the North Atlantic be-

tween EN4 and SESM are likely due to the 25-yr older

climatology introducing signals of a different phase of the

Atlantic multidecadal variability (Stendardo et al. 2016;

Zhang et al. 2019). However, it is still elusive why MOAA

shows a large-scale opposite pattern to EN4while both share

similar data sources and baseline climatology.

Discrepancies are also apparent in the temporal var-

iability of salinity, which is further explored in the next

section. The geographical patterns of salinity variability

(SVar; calculated as the temporal standard deviation of

the SESM time series) in different layers of the global

ocean are presented in Fig. 4. The value of SVar is high

where one would expect, in areas of strong freshwater

exchanges and dynamical processes. For instance, at the

sea surface, the east and west boundaries of the tropical

Atlantic are modulated by major river runoffs, and the

Indonesian Seas by the air–sea freshwater exchange. The

western boundary currents and the Antarctic Circumpolar

Current also contribute to SVar, especially for the subsur-

face ocean. As the patterns of SVar largely resemble the

patterns of SSPD (Fig. 2, center column), it further supports

that the discrepancies of climatological mean salinity are

closely related to the temporal variability of salinity.

b. Temporal variability

1) SALINITY CHANGES IN DIFFERENT OCEAN

LAYERS

Figure 5 shows the time series of the anomaly of global-

averaged salinity (hS0i) for the sea surface, upper 700m, and

700–2000m layer from 2005 to 2015. While there is no sig-

nificant trend in any layer, hS0i varies on different time scales

ranging from seasonal to interannual. For instance, hS0i at
the sea surface (Fig. 5a) shows strong interannual variability,

which has amodest negative correlation (around20.4) with

theMultivariate ENSO Index (MEI) for the 10-yr period. A

similar relationship between halosteric sea level and ENSO

has been reported before (e.g., Fasullo et al. 2013; Wang

et al. 2017). In addition, such interannual variability can also

be inferred from the GRACE-based ocean mass change

(Llovel et al. 2019), although the spatial coverage of

GRACE is slightly different from that ofmost griddedArgo

products used in this study.

The five products in general show similar salinity changes

both at the sea surface (correlation around 0.95) and in the

subsurface (correlation around 0.8). Although substantial

discrepancies are visible (especially fromMOAAand EN4

in 2005), hS0iSPD (dashed line inFig. 5) is below0.01most of

the time.However, since the subsurface salinity changes are

also below 0.01 and on the same order of magnitude, these

discrepancies point to substantial uncertainty in these esti-

mates. Notably, hS0iLDT (colored bar in Fig. 5) shows that

RG salinity values deviate from other datasets and SESM in

2008–09 and 2014–15 at the sea surface, and the second half

of 2015 in the 700–2000m layer. A similar deviation of RG

is found before in halosteric sea level studies (Wang et al.

2017). In addition, MOAA deviates from most products

in 2006–07 and 2011–15 below 700m; further analysis

(Fig. 10o) shows it mostly comes from the tropical Pacific

FIG. 4. Salinity variability (SVar) from SESM for (a) sea surface and

the (b) 0–700 and (c) 700–2000m layers.
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Ocean. These discrepancies profoundly impact the esti-

mated long-term trendswith these products (see section 3c).

Another interesting feature in Fig. 5 is that hS0iSPD
and hS0iLDT do not show any noticeable trend; both

parameters declined in 2005 and then stayed constant. In

comparison, the Argo array achieved quasi-global cov-

erage in 2005, and the number of the deployed floats

increased stably without drastic rate of change (Johnson

et al. 2015; Wijffels et al. 2016; Riser et al. 2016; Boyer

et al. 2018). On the one hand, the steady hS0iSPD implies

that all mapping methods used by the five datasets can

generate robust salinity fields on the global scale based on

available salinity profiles. On the other hand, the fact that

hS0iSPD does not change much with the increasing number

of observations indicates the development of 18 3 18 global
ocean objective analyses may have encountered some

limits. Products with higher resolution (e.g., Cabanes et al.

2013; Kolodziejczyk et al. 2017) may be needed to better

utilize the increasing surface and subsurface measurements,

which will greatly benefit studies on ocean fronts, mesoscale

eddies, and other oceanic processes.

Salinity changesover timeare further analyzedat different

depths (Figs. 6 and 7). For the upper 700m layer, strong

interannual variability appears in themixed layer and travels

downward to about 200m within approximately 1.5 years

(Fig. 6a).Meanwhile, hS0iSPD02700 and hS0iLDT
0–700 (Figs. 6c,e) show

that the salinity profiles for EN4 largely deviate from other

datasets in the upper 100m (Fig. 1), mostly due to their

different vertical resolutions and sources of data. Below

700m, there are also interannual variations in salinity, al-

though themagnitude is smaller than 0.005. Similarly, due to

the differences in vertical spacing and bias from other as-

similated data, large discrepancies appear below 700m in

2006, 2008, 2011, and 2015. Figure 7 further compares the

deviations of each dataset from SESM. Figures 6f and 7f

suggest that EN4 is likely the leading cause for most of the

high hS0iSPD700–2000. Disagreements on long-term trends also

appear, as Figs. 7j and 7l show a salinity increase forMOAA

and a decrease for RG relative to SESM for the 700–2000m

layer. Furthermore, an annually recurring residual signal is

found between 800 and 1000m for IPRC, (Fig. 7h), which

will be further explored in the next section.

2) TIME EVOLUTION OF ZONAL MEAN SALINITY

Analysis of zonal means can provide further informa-

tion about the temporal variability of salinity on the

global scale (Figs. 8a–c). The zonal mean of SSS anomaly

(hS0
ZonaliSurface) shows significant semiannual variability at

FIG. 5. Anomaly of monthly and globally averaged salinity (hS0i, left axis) for different layers.
Shown are BOA,EN4, IPRC,MOAA,RG, and SESM for (a) sea surface, (b) 0–700m, and (c) 700–

2000m. The dashed line and the colored bars at the bottom of each panel are the ensemble spread

(hS0iSPD) and the largest deviation (hS0iLDT) for each month. Values for both hS0iSPD and hS0iLDT

are given on the right axis. The color scheme for hS0i and hS0iLDT are the same.
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all latitudes and long-term trends in the midlatitudes

(Fig. 8a). For instance, a negative trend is found in 408–
608N, which can be attributed to the accelerated hydro-

logical cycle (Durack et al. 2012). On the basin scale (not

shown), the freshening is most prominent in the North

Atlantic, which is likely due to a decline in themeridional

salt transport (Robson et al. 2016; Tesdal et al. 2018).

Another major feature is the interannual variability in

the tropical region (308S–308N), which comes from the

Pacific Ocean and propagates away from the equator.

This pattern is closely linked to ENSO through the

common EOF analyses (next paragraph).

For the upper 700m layer (Fig. 8b), the pattern of

hS0
Zonali0–700 is similar to that of hS0

ZonaliSurface but of

smaller magnitude and much weaker interannual variabil-

ity. Below 700m, the spatial structure of hS0
Zonali700–2000

consists of an interannual fluctuation between 408–608Nand

308–508S and a long-term salinification between 308S and

408N (Fig. 8c).

While the differences between the various datasets

and SESM in their zonal means (Figs. 8d–i) are very

subtle, the common EOF analyses of the time series

of the zonal mean salinity reveal some robust and

inconsistent features (Fig. 9). At the sea surface, the

first and second EOFmodes account for about 45% of

the total variance. The spatial pattern of mode 1

(Fig. 9a) shows a minimum located in the tropical

region (108S–208N) and two peaks centered at 158S
and 308N, and the PC from SESM (Fig. 9b) has a

modest correlation with MEI (dashed line in Fig. 9b)

at 0.69 for the period 2005–15. The correlation coef-

ficient increases if hS0
ZonaliSurface is calculated in the

Pacific Ocean (0.74) instead of the global ocean, especially

for the band 208S–208N (0.85). Since ENSO originates in

the tropical Pacific with significant regional impacts, it

largely modulates the salinity changes in that region (e.g.,

Hackert et al. 2011; Zhu et al. 2014; Zheng and Zhang

2015; Zhao et al. 2016). Therefore, the first EOF mode of

zonal mean SSS anomaly is dominated by the variability

associatedwithENSO.The secondmode shows a different

spatial structure (Fig. 9c): the spatial pattern between the

equator and 308N is positive, while the subpolar region

north to 408N is negative. As the PC steadily increases

from 2005 to 2015 (Fig. 9d), mode 2 likely represents

positive trends centered at 208N and 408S, which are

prominent in the Pacific Ocean, and a negative trend be-

tween 408–608N in the North Atlantic (Fig. 10a). Previous

studies (Vinogradova and Ponte 2017; Li et al. 2019) show

FIG. 6. Time evolution of (top) hS0iESM, (middle) hS0iSPD, and (bottom) hS0iLDT for (a),(c),(e) 0–700 and

(b),(d),(f) 700–2000m. The hS0iLDT panels only depict the sources of the deviations that are larger than 1/8 of

hS0iSPD maximum, not the actual values.
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that the increase of salinity in the PacificOceanwasmainly

caused by a reduction of surface precipitation and is re-

lated to the interdecadal Pacific oscillation (IPO).

For the 0–700m layer, mode 1 of hS0
Zonali0–700 andmode 2

of hS0
ZonaliSurface have similar structures and PCs, as domode

2 of hS0
Zonali0–700 and mode 1 of hS0

ZonaliSurface (Figs. 9e–h).

Mode 1 represents a positive decadal trend at 208N and

408S, and a negative trend between 408–608N (Figs. 9e,f).

Mode 2 shows an ENSO-like pattern (Figs. 9g,h), and the

PC from SESM is correlated with MEI at 0.74.

Below 700m, the results are not as robust as for the

surface and the upper 700m. The strongest signals inmode

1 are in the subpolar regions of the Northern Hemisphere

(Fig. 9i). This peak corresponds to the Mediterranean

outflow region, where the temporal variability is stronger

than in the rest of the ocean (Fig. 4c). ThePCs represent an

interannual anomaly for most products that is positive in

2006–07 and negative in 2010–11 (Fig. 9j). In addition, the

second EOF mode (Figs. 9k,l) explains 17% of the ob-

served variance depending on the datasets.

The EOF results also highlight the differences in the

interpretation of interannual variability in different

products, especially for the 700–2000m layer. For in-

stance, MOAA shows disagreements from others in

the Northern Hemisphere in mode 1, and RG largely

disagrees with most products in mode 2. Moreover, the

first two modes of hS0
Zonali700–2000 from IPRC are visibly

different from other products. Based on the peak at

about 308N and its seasonal variation, mode 1 of IPRC

likely represents the recurring residual signal in Fig. 7h.

Mode 2 of IPRC is similar to mode 1 of other products

(Figs. 9k,l) but with a broader peak. In addition, the

annually recurring residual from IPRC reappears in

Fig. 8f, and is located in the North Atlantic, approximately

at 308N, 258W in the Mediterranean outflow region. The

source of these signals is the local data availability in the

IPRC salinity product at 900 and 1000 m depth in certain

years. Due to the location and regularity, the reported

residual occurs in our intercomparison of global and

zonal means.

c. Global and regional salinity trends over 2005–15

Discrepancies in the mean salinity over the global

ocean can heavily affect the estimation of long-term

FIG. 7. A comparison of (a),(b) hS0iESM and (c)–(l) the deviations of each gridded product from SESM for different

layers. Shown are BOA, EN4, IPRC, MOAA, and RG for (left) 0–700 and (right) 700–2000m.
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trends both globally and regionally, especially if those

differences are not random. To better illustrate these

discrepancies, the linear trend of the salinity time series

is calculated conventionally by generalized least squares

regression (Table 1). In this analysis, the trends are

calculated for the period 2006–14 after removing the

seasonality, and we assume random residuals and ac-

count for reduced degrees of freedom. The uncer-

tainties of these trends are also provided at the 90%

confidence level.

The estimated trend of sea surface salinity (hS0iTND
Surface)

varies from insignificant value of 1.286 2.523 1023 yr21

for IPRC to 1.90 6 2.33 3 1023 yr21 for MOAA, while

the RG surface salinity is significant at 3.01 6 1.99 3
1023 yr21. However, it is worth noting that hS0iTND

Surface

from RG is not significantly different from other data-

sets accounting for their overlaps within the uncer-

tainties. For the upper 700m layer, all salinity trends are

positive with large uncertainties so that ranges include

zero. Trends in the 700–2000m layer (hS0iTND
700–2000) vary

from20.276 1.013 1024yr21 forBOA to20.096 0.873
1024yr21 forSESM.Among theproducts,EN4,MOAA,and

RG show a trend that is significantly different from zero

(21.15 6 1.02 3 1024, 1.68 6 0.68 3 1024, and 20.81 6
0.76 3 1024 yr21, respectively), but they do not agree in

terms of sign. In addition, the entire upper 2000m also

does not present any significant trend.

Regionally, changes in ocean salinity will affect the

local buoyancy balance, stratification, and the derived

halosteric heights (Durack et al. 2014; Llovel and Lee

2015; Wang et al. 2017; Tesdal et al. 2018). In contrast to

the trends in the global mean salinity, the spatial pat-

terns of regional salinity trends (STND) are similar

among all products (Fig. 10). At the sea surface (Fig. 10,

left column), the salinity increased in the subtropical

Pacific but decreased in the North Atlantic and the

eastern Indian Ocean. The increase in the Pacific is in-

duced by the reduction of precipitation (Li et al. 2019),

and the decrease in the North Atlantic is the result of an

increase of the freshwater input from the Arctic (e.g.,

Proshutinsky et al. 2009; Tesdal et al. 2018). The fresh-

ening in the eastern Indian Ocean is likely related to the

Indian Ocean dipole (IOD; Huang et al. 2008) and the

strengthening of the Indonesian Throughflow with en-

hanced regional precipitation (Llovel and Lee 2015).

For the upper 700m layer (Fig. 10, center column), the

pattern of STND

0–700
largely resembles that of STND

Surface with

similar major patches of significant increases and de-

creases, but the estimated trend values are about 50%

smaller. Compared to STND
Surface, one of the unique features

of STND
0–700

is the salinification in the subtropical Atlantic,

which is likely due to the changes in the Mediterranean

outflow since 2005 (Schroeder et al. 2016). In addition,

STND

0–700
from MOAA and RG are visibly smaller than

FIG. 8. A comparison of (a)–(c) zonal mean salinity anomalies (hS0
ZonaliESM) and (d)–(i) the deviations of selected gridded products from SESM for

different layers. Shown are IPRC and RG for (left) sea surface, (center) 0–700m, and (right) 700–2000m after a 7-month running mean.
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other products, although they agree after accounting for

the uncertainties (Figs. 10n,q).

For the 700–2000 m layer, some large-scale features

(e.g., salinification in the Pacific and the polar front,

freshening in the Atlantic) are still robust (Fig. 10, right

column); the South Atlantic and the subpolar regions are

freshening, and the salinity is increasing slowly in the

tropical Pacific. Such regional patterns are consistent

with other studies based on different measurements and

reanalysis products (e.g., Robson et al. 2016; Giglio and

Johnson 2016, 2017; Tesdal et al. 2018). In general, deep

water movements in the North Atlantic (Buckley and

Marshall 2016) and the north Indian Ocean (Thompson

et al. 2016) increase the salinity variability. Due to stronger

temporal variability, sampling and interpolation errors are

expected to be larger. Meanwhile, the patterns of STND

70022000
from BOA, EN4, and RG (Figs. 10f,i,r) are substantially

scattered in the tropical region. In addition, most products

present a large-scale freshening in the Sargasso Sea, but

RG shows a smaller value (Fig. 10r).

The most apparent discrepancy for the 700–2000m layer

occurs in the tropical region. A positive trend in the tropical

FIG. 9. First and second EOFmodes of hS0
Zonali for (a)–(d) sea surface, (e)–(h) 0–700m, and (i)–(l) 700–2000m. Shown are

(left) the spatial structuresand (right) theprincipal components forBOA,EN4, IPRC,MOAA,RG,andSESM.Thedashed line

in (b) and (h) is the MEI (see the right axis). The mean fraction of variance explained by each EOF mode is also provided.
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Pacific appears in all products except RG (Fig. 10r), where

the salinity change is visibly smaller. Between 258S and

258N, nearly all the products suggest a more saline tropical

Pacific since 2005. The estimated trend for the regional area-

averaged salinity (Table 1) ranges from2.333 1024yr21 for

EN4 to 5.87 3 1024yr21 for MOAA with relatively small

uncertainty (0.56–1.24 3 1024yr21). However, the RG

salinity trend is much smaller and insignificant at 0.23 6
0.79 3 1024 yr21. Also, RG has the lowest regional

spatial correlation to SESM at 0.6, while that of other prod-

ucts is 0.7–0.9. Interestingly, better agreement on the salinity

trend for the global ocean can be achieved after excluding

the tropical Pacific (summarized in Table 1): most of the

Argo-basedOAproducts show significant freshening ranging

FIG. 10. Spatial pattern of salinity trend (STND; yr21) from (top to bottom) SESM, BOA, EN4, IPRC,MOAA, and RG over 2005–15 for

(left) sea surface, (center) 0–700m, and (right) 700–2000m. Black contours mark zero. Stippling indicates areas of statistically significant

nonzero values at the 90% confidence level.
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from 22.51 6 0.91 3 1024yr21 (EN4) to 21.18 6 1.08 3
1024yr21 (RG), exceptMOAA(20.036 0.813 1024yr21),

which shows less of a decrease in the Southern Ocean and

Indian Ocean as displayed in Fig. 10o.

4. Summary

In this study, we compared salinity around the global

ocean from five Argo-based gridded products to present

the robust salinity variability over 2005–15. We also

identified the discrepancies associated with individual

products and presented some evidence for the sources of

these differences. As prior studies indicate (e.g., Boyer

et al. 2016; Wang et al. 2017), a large portion of these

differences relates to the choice of mapping method,

baseline climatology, and data correction (Domingues

et al. 2008; Ishii and Kimoto 2009; Levitus et al. 2012;

Abraham et al. 2013; Chang et al. 2013; Boyer et al.

2016). The impacts of those factors are evident in our

estimation of the time mean, temporal variability, and

decadal trends of global ocean salinity.

The timemean of ocean salinity is overall robust, both

on values and spatial distributions. Small but detectable

discrepancies (around 0.02) appear mostly in regions

that are either dynamically active or have large salinity

gradients (e.g., the Gulf Stream and the Agulhas Return

Current). These active conditions are challenging for

sampling and further interpolation, resulting in large

uncertainties. The choice of mapping methods and

baseline climatology could also cause nonnegligible

disagreements. For instance, the banded pattern from

IPRC residuals (Figs. 3j,k) is likely related to its inter-

polation method, in which an ADH model is addition-

ally applied onto the three-dimensional grid. EN4 and

MOAA, the only two objective analyses that used pre-

Argo data as the baseline climatology, also exhibit

basin-scale deviations. While further work is needed to

better understand these discrepancies and uncertainties,

it is recommended to be careful choosing the best cli-

matology for the well-observed Argo era.

Temporal variability of salinity over the global ocean

were then assessed on different spatial scales. In general,

many variations are robust: strong interannual vari-

ability is evident in the upper ocean with a downward

propagation; the patterns of zonal evolution show im-

pact of ENSO and a combination of long-term trends at

different latitudes. Apart from these robust features,

subtle discrepancies were also revealed and can be at-

tributed to the data source. One example is that EN4

and MOAA, the only two products that utilized non-

Argo data, deviate from the others on the global mean

below 700m during the first few years of the examined

period. Meanwhile, IPRC shows a recurring annual re-

sidual around 900m in the North Atlantic due to the lack

of data in its gridded salinity product. These disagreements

on subsurface salinity anomalies are at least comparable to

the anomalies themselves, indicating the importance of

improving the in situ measurements since such large un-

certainties discourage any meaningful interpretation.

The global and regional salinity trends were also ex-

amined over the 10-yr period. For the global mean,

while the trend values are unanimously positive for the

sea surface and the upper 700m layer, no statistically

significant trends can be concluded at any examined

layer for their large uncertainties. In contrast to the

global mean, patterns of the regional salinity trends are

highly robust among different products. Large-scale

disagreements only arise in the tropical Pacific and the

Southern Ocean, and the most evident deviation comes

from RG, in which smaller trends prevail in almost the

entire tropical Pacific. The source of this basin-scale

deviation remains elusive, but it is in line with previous

studies that show the RG salinity has been drifting at

least since 2015 (e.g., Wang et al. 2017), which would

cause smaller overall trends. It is unclear if this observed

deviation in the 700–2000m layer is associated with the

TABLE 1. Decadal trends of salinity in different layers of the global ocean from each individual dataset and ensemble mean

(31024 yr21). Regional [tropical Pacific (Tropical Pac.) and global ocean excluding tropical Pacific (Global excl. TP)] trends in the

0–2000m layer are also given. Uncertainties are estimated at the 90% confidence level. Bold indicates the result is significantly different

from zero.

BOA EN4 IPRC MOAA RG SESM

Global trend

Sea surface 14.6 6 24.0 17.5 6 24.3 12.8 6 25.2 19.0 6 23.3 30.1 6 19.9 18.8 6 24.2

0–700m 2.84 6 1.81 1.89 6 3.30 2.68 6 3.23 0.95 6 1.65 1.69 6 2.21 2.01 6 2.15

700–2000m 20.27 6 1.01 21.15 6 1.02 0.08 6 0.73 1.68 6 0.68 20.81 6 0.76 20.09 6 0.87

0–2000m 20.11 6 0.94 20.92 6 1.30 0.13 6 1.13 0.80 6 0.69 21.31 6 1.17 20.24 6 1.07

Regional trend in the 700–2000m layer

Tropical Pac. 2.88 6 1.24 2.33 6 1.14 5.03 6 0.56 5.87 6 0.78 0.23 6 0.79 3.24 6 0.59
Global exc. TP 21.53 6 0.95 22.51 6 0.91 21.92 6 0.80 20.03 6 0.81 21.18 6 1.08 21.44 6 0.97
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recently reported drifting (Roemmich et al. 2019). In

addition, our results show a consistent freshening over

the global ocean if the tropical Pacific is excluded.

5. Discussion

Overall, while some of the revealed discrepancies

among these OA products are equal to or smaller than

those of the ocean reanalyses when comparing to prior

studies (e.g., Shi et al. 2017), they do reveal potential

issues that need attention. The spatial and temporal

variability of global ocean salinity described in this study

provide an opportunity to examine changes in water cy-

cle, especially the change in ocean mass. Although no

significant trends in the global mean salinity were iden-

tified in any of the examined layers, the prevailing posi-

tive trend values in the upper 700m ocean are evident.

In particular, such a salinification is not in line with

recent estimates of freshwater discharges that are

based on GRACE measurements (Llovel et al. 2019).

Some studies (Wang et al. 2017) suggest the observed

trends could be caused by not properly accounting for

the effects of freshwater input in inadequately sampled

regions, contributions from the deep ocean, and

changes in surface forcing and interannual variability

which dominate the trends over the examined period.

Further investigations are still needed to fully address

this disagreement.

As some gridded products (e.g., EN4) are evidently

different from the others on subsurface salinity vari-

ability, the use of the ensemble mean can represent an

optimal scenario with reduced bias (e.g., Shi et al. 2017;

Toyoda et al. 2017; Wang et al. 2017). At present, in-

tercomparison studies on temperature and heat content

are regularly conducted, and similar studies on salinity

should be carried out in the future as well.

One interesting finding of this study is that the dis-

crepancies among the examined products do not de-

crease with the increase of salinity observations from the

Argo program. For instance, some of the observed dis-

crepancies on the global mean salinity are an obvious

result of inadequate sampling (e.g., the deviation of EN4

and IPRC in global mean salinity in the early 2000s).

However, in regions and periods that are sampled with

greatly improved coverage, substantial disagreements

are also observed and some can be largely attributed to

the differences in mapping methods (Boyer et al. 2016).

Beside the suspicious deviation of RG from other gridded

products since 2015, such discrepancies among the gridded

products are concerning. Therefore, better ways are needed

to utilize the increasing Argo profiles as merely increasing

the number of Argo profiles does not necessarily improve

the consistency between these 18 3 18 gridded products.

Moreover, high-resolution products are also necessary to

study mesoscale and submesoscale oceanic structures.

In short, there is still muchwork to be done to improve

the estimation and interpretation of observed salinity

variations over the global ocean. The present effort is a

useful step toward improving the understanding of the

uncertainties in salinity variability during the Argo pe-

riod. Our results provide helpful guidance on the use of

current gridded Argo products by many researchers in

their own studies and serve as a useful reference for data

centers working on the development of next-generation

gridded Argo products.
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